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TWO-ELEMENT QUADRIFILAR ARRAY

INTRODUCTION

Two desirable properties of a satellite-tracking antenna are hemisphere coverage and
rejection of unwanted signals such as multipath. If the ground antenna is steerable, these
properties are achieved by virtue of a narrow beamwidth. However, if the antenna is
fixed, a wide beamwidth is required for hemisphere coverage, and a sharp pattern cutoff
at the horizon is desirable to reduce multipath effects. To achieve both these require-
ments, an array of two quadrifilar helices with the proper phasing and spacing was de-
signed.

Measurements were made in an anechoic chamber which has recently been instru-
mented with a computer and magnetic tape system. Computer programs were written to
compute axial ratio, tilt angle, and polarization loss and were applied to the quadrifilar
array.

SINGLE QUADRIFILAR HELIX

The multifilar helix excited with a progressive phase relationship was first examined
by Gerst [1]. The quadrifilar helix consists of four identical windings rotated 90° apart
and fed with a 0°, 90°, 180°, 270° phase relationship. As is true with the single-winding
helix, if the gquadrifilar helix hag several turns, it becomes a traveling-wave anténna; how-
ever a quadrifilar with one turn or less is a resonant structure {2, 3].

Several quadrifilar helices were built and tested. Figure 1 shows the case selected
for the array which will be discussed in the next section. The preliminary quadrifilar
models were constructed of copper tape wound on a styrofoam cylinder. The antenna is
fed from the top, with a balun through the center of the cylinder and a hybrid at the
base. This excited the four windings with the necessary 90° phase progression. The tests
were conducted at the bottom of the UHF band.

The three-quarter-turn guadrifilar helix of Fig. 1 is 0.63A, in length (A, at the center
frequency, designated), fz, and 0.11A, in diameter. The copper-tape windings have a
width of 0.02A, and are 0.71\; long. A Smith-chart plot of impedance is shown in Fig.
2. Unlike the traveling-wave quadrifilar, the short resonant quadrifilar helix is narrow-
band, exhibiting about a 4% impedance bandwidth (VSWR < 2) for this case. However the
the resonant resistance for this quadrifilar helix is a convenient 50 £2, obviating the need
for any matching transformers.

A polar pattern for circular polarization is shown in Fig. 3. The zenith corresponds
to @ = 0 (north pole of a spherical coordinate system), considering the quadrifilar helix

Note: Manuscript submitted October 10, 1973,
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Fig. 1—Three-guarter-turn quadrifitar helix

as a ground antenna. The axial ratio is in general low, with a maximum in the north-pole
hemisphere of approximately 4 dB. Good circularity throughout the hemisphere is im-
portant for satellite tracking, since the satellite antenna will often have high axial ratios
over part of the pattern or could even be a linear antenna. Faraday-rotation effects pre-
vent the determination of the arriving wave polarization from a linear satellite antenna at
VHF and UHF frequencies.

Although the pattern of Fig. 3 provides good hemisphere coverage, it decreases
rather stowly for & > 90°. This slow pattern cutoff below the horizon, inherent with the
resonant quadrifilar helix because of the short length, leads to poor multipath rejection.
Figure 4 illustrates direct and ground-reflected signals arriving at the antenna. For graz-
ing incidence (v small) the magnitude of ground reflection coefficients are near 1.0 for
E¢ or Ef polarization, The reflection coefficient for E¢ polarization remains large for
most angles of incidence. Consider ¢ = 85° {« = 5°): the polarization is E¢, and the
ground reflection coefficient is 0.95. The pattern in Fig. 3 is for circuiar polarization;
however E¢ and EG patterns are similar. Therefore, the multipath rejection due to the
pattern is only 2 dB (¢ = 85° and ¢ = 95°). This could lead to fading in which the sum
of the direct and reflected signal would be 12dB below the direct signal alone. Multipath
effects are the most severe near the horizon, when the path loss to the satellite is also
maximun. Mu}tipath effects may be \.hffli’.."d}t Ry dcucuuuw, for cz&cuupn—: if the antenna
was on the edge of a roof and the ground was not level. Thus an antenna which has
better multipath rejection would be advantageous.
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Fig. 2—Impedance bandwidth of the quadrifilar helix shown in Fig, 1

QUADRIFILAR ARRAY

An array of two quadrifilar helices will be discussed next. This atray is an attempt
to achieve the necessary hemispherical coverage for fixed satellite tracking while having a
sharp pattern cutoff at the horizon to reduce multipath effects. A vertical array was
chosen, since it will be omnidirectional in ¢, provide pattern control, and make possible
a sharper cutoff at the horizon because of the increased length.

The separation, relative phase, and element pattern determine the array pattern. We
first consider an ayray of two omnidirectional sources (Fig. 5} with separation d and

relative phase y. The received signal due to a plane wave is

3
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Fig. 3—Typical ¢ cuf for the quadrifilar helix (Fig. 1} measured using
circular polarization

Fig. 4—Quadrifilar ground antenna with multipath interference

Fig. 5—Array of two omnidirectional sources
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Eq. (1), we get
/ 2rd sin >
l+cos(y-—T71—"—
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In terms of dB level the amplitude pattern hecomes
2nd sin o
1+cos{v- T
0
dB=1010g10 2 (3

We now consider the case in which the array pattern at zenith (o = 90°) is 15 dB below
the peak of the pattern. Gain requirements for a satellite ground antenna are usually less
severe overhead because the path loss is minimum, satellite antenna gain is at the peak,
and the signal has already been acquired. Then from Eq. (2)

1+ cos (’y - 2)\—Wq)
0.178 = 0. (4)
2
which gives the following relationship between the separation and phasing:
v = 360d/A, - 159.5. {5)

The worst-case muitipath effects normally occur at the minimum elevation angles, For
example, if tracking is limited to @ > 10°, then the worst-case is near o = 10°. We first
assume perfect ground reflection and two omni sources; then the signal level from Eq.

{9 far mut-nfonhaca miiltinath ie
vy 00 QULOL-PIOAsTe UIVIPAnl 5

ord sin 10° / 97d sin 10°
1 + cos Y*T_ 1+cos|y+ ——
0 7\0

S, = - - » (6)
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Fig. 6—Plots of Egs. (5), (7), and (8}
Substituting for v from Egq. (5}, we get
297.5d 422.5d
1+cos - 1595 1 +cos -159.5
Ay Ay
g =1 - 3 , oD
iy 2 Y pA '

The dB level of 8, (S;g = 20 log §,) is plotted against d f}‘a in Fig. 6 along with Eq {57,
The signal level as a functlon of d,l?\ depends on both the direct gain at « = +10° and
the reflected gain at o = -10° and rEapresents the dB level relative to the peak gain with
no reflection. If we assume a reflection coefficient of 0.9 and a 3-dB element pattern
rejection (o = -10° relative to o = +10°), the level for out-of-phase multipaths is
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Fig. 7—Pattern for an array of two isotropic sources with d/xg = 0.78
and v = 120°
1+ cos (29;’5‘1 - 159.5) 1+cos (4%\2'5(1 - 159.5)
0 0

= - . 8
S, 5 0.637 5 ,  (8)

which is plotted in Fig. 6. For both cases the optimum d /7\0 is near 0.8; however be-
cause of the rapid decrease in level for dﬁ\@ > 0.8 a value of d/?\o = (.78 was chosen,
This case is plotted in Fig, 7 with v = 1207, The gain at zenith is approximately -15 dB

unth resnort to tha neale and the hﬂ++ﬂ1"h decreases ranidly helow the horizon due to the

Fravii L USROG W vt prn@ian, daala vl pauuviazi MATLATRGTD LG RLY R CLV YY b Liwvia A L 5§ vy

null near & = -10°. Reduction of the backlobe will depend on the element pattern.

The balun for the vertical array (Fig. 8) is constructed of semirigid coax. Both
antennas can be connected to the same structure because of the A;/4 short between the
individual antenna baluns. The relative phase is determined by the 0.78A separation (A
being the wavelength in the semirigid coax), the 180° difference between the two
individual baluns, and the phasing network composed of three 90° hybrids.

The three-quarter-turn quadrifilar helix (Fig. 1) was used for the two elements of
the array (Fig. 9). Impedance measurements at the four inputs were identical and
exhibited almost no change from the previous measurements (Fig. 2) on the single
quadrifilar helix., Thus with the effect of mutual coupling small, pattern calculations
combining the array factor and element pattern should be fairly accurate. A typical 8 cut
for the quadrifilar array measured with left-hand circular polarization is shown in Fig. 10
with the isotropic level near 8. Calculated values based upon the element pattern of Fig. 3
and the array factor of Fig. 7 are also plotted. The calculated points were normalized to

the peak of the measured pattern and show good agreement.
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Fig. 8—PBalun for a vertical array of two guadrifilar helices

A quadrifilar array for outside use was constructed of aluminum tubing and nylon
containing a light stablizer. The antenna is shown in Fig. 11 mounted on the dielectric
head in the anechoic chamber. A radiation distribution plot for left-hand circular polariza-
tion is shown in Fig, 12, The directivity isotropic level is 9.6 dB; numbers less than 9.6
are above isotropic. The rapid decrease in signal level for 8 > 90° is evident. The level
of right-hand circular polarization is low for all 4.

The anechoic chamber is instrumented with a computer and magnetic tape system.
Two amplitudes and the phase angle between these amplitudes are measured at each ¢
coordinate and stored on magnetic tape. Usually the amplitudes correspond to £, and
E . Computer programs were written to compute other antenna properties such as axial
ratio, tilt angle, and polarization loss from the data stored on magnetic tape.
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Fig. 9—Vertical array of two
quadrifilar helices

ZENITH
8=0°

Fig. 10—Typical 8 cut for the guadrifilar array (Fig, 9) measured using
circular polarization. The calculated points are normalized to the peak
of the measured pattern.
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Fig. 11—Quadrifilar array made for outside use
by substituting aluminum tubing for the eopper-
tape windings on styrofoam shown in Fig, 9

Axial ratio can be expressed in terms of right- and left-hand circular polarization

components as

. EryctEpge
axial ratio = —M—mMm

£ RHC ™ ELHC§ '

where £ RHC and EL He are determined by

2 2 :
} 1/E9 +E¢+2E8E¢sm5
¥

E_ ...
Fidyi 2
and
2 2 .
. _ E9+E¢-2E3E@sm6
LEHC 9

(9)

o~
[
=
-

(11}

and § is the phase angle of E, relative to E;. The dB axial ratio for the guadrifilar array

is shown in Fig. 13. From 5 elevaiion angle to overhead the maximum axial ratio is

4 4B and the ratio is usually much lower,

10
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Fig. 12-Radiation pattern of the quadrifilar array shown in Fig. 11 measured

The polarization ellipse tilt angle is given by

The tilt angle is measured counterclockwise from the E

1
tilt angle = 3 tan~!

2 2
E? _ 2

using left-hand circular polarization

2E8E¢ cos O

12)

axis (90° corresponds to the £ "

direction). The tilt angle pattern for the array is shown in Fig. 14, The numbers must
be multiplied by 5 to obtain the actual angle; thus 0 and 36 correspond to the ellipse

maximum along £, and the number 18 corresponds to the £ » direction.

The polarization loss between an antenna with axial ratio R4 and a wave with axial

ratio RW is

11
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