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ELECTROMAGNETIC FIELD IN A LASER RESONATOR

INTRODUCTION

Since the invention of the laser the open resonator has been of considerable interest
in applied physics. Our present theoretical understanding of the optical field distribution
in an open resonator is founded on the work of Fox and Li [1] and of Boyd and
Kogeinik [2]. Although their theories have been extended and refined [3], the approach
of these authors to describing the field is still used and is the basis for nearly all of the
subsequent theoretical work on the subject.

The Fox and Li analysic, the Boyd and Kogelnik analysis, and almost all subsequent
treatments of the theory for open resonators employ the Fresnel-Kirchhoff integral of
scalar diffraction theory [4]. However other approaches to describing electromagnetic
wave propagation are superior in many respects. The Fresnel-Kirchhoff theory has num-
erous disadvantages It is basically a scalar theory and can be extended to treat the electro-
magmetic properties of light only with some difficulty. Because it is an expansion of the
ficld in terms of spherical (Huygens’) wavelets, it usually glves rise to awkward expressions
in rectangular coordinates. These expressions can frequently be handled only after mak-
ing very restrictive approximations such as a paraxial approximation, the Fresnel approxi-
mation, or the Fraunhofer approximation. And lastly the Fresnel-Kirchhoff theory is not
easily extended to consider wave propagation in amplifying or conducting media.

For certain classes of problems a much more straightforward, and in some respects
more satisfactory, approach to wave propagation employs an expansion of the electro-
magnetic field into an angular spectrum of plane waves [5-7]. These expansions are
particularly simple in rectangular coordinates, so that problems can often be solved more
accurately. Also, in many cases all of the Cartesian components of an electromagnetic
ficld can be represented very simply in terms of only two scalar plane.wave spectra, one
for each state of plane polarization. Thus a full electromagnetic treatment often becomes
no more difficult than a scalar treatment. For these and other reasons the angular-
spectrum representation is frequently superior to the Huygens’.wavelet representation.

A scalar theory employing the angular-spectrum representation to describe the field
in an empty resonator with plane parallel reflectors was given by Bergstein and Marom
(8]. In the present report we will develop a closely related electromagnetic theory to
deseribe the ficld in any resonator with two identical reflectors that have circular bound-
arics. These reflectors may have arbitrary radii, foca! length, and axial separation. This
theory s not limited to the paraxial approximation, is an electromagnetic theory which
takes full account of the vector properties of light, and gives the field distribution in three
dimensions over the interior of the resonator and not only over the surface of a reflector.
A limitation to the theory is the use of an axial gain approximation to account for the
active medium. This is similar, however, to the approximation that is used in the theorles
based on the Huygens-Fresnel principle.
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2 WILLIAM H. CARTER

In the following (first) section we will derive the mode equation, which determines
the angular spectrum for each mode of the resonator field, and we will give integral
expressions for the Cartesian components of the electromagnetic field in terms of the
angular spectrum. In the second section we will study the transverse electric component
of the field in small resonators which are either confocal, spherical, or unstable, through
numerical integration of the expression derived in the first section. These data indicate
that these resonators all show signs of instability due to high diffraction losses and that
the effects on the fields due to saturation of the amplifying medium are negligible if
spatial hole burning is ignored. Finally in the third section we will quantize the field and
show that the quantized field is in good agreement with that frequently assumed on the
basis of closed resonator theory.

THE MODE EQUATION -

This report is concerned with the distribution of the electromagnetic fields, in three
dimensions, inside a laser resonator such as that shown schematically in Fig. 1. This
resonator is formed by two identical reflectors with unit reflectivity, each of diameter 2a
and focal length f and separated by an axial distance 2L. Because the resonator is sym-
metric about the plane P in the figure, the fields in each half of the resonator are the
same upon reflection about P (except for a possible change in sign). For this reason it is
sufficient to determine the fields only over the region to the left of P.

T

j_ VAV

FOCAL LENGTH f

- L ———f

Fig. 1—Geometry of the resonator studied in this analysis

[EE— -

Incidentally it will become evident that the fields in one class of asymmetric resona-
tors can also be determined directly from this analysis. These resonators are formed by
replacing one of the reflectors by an infinite, plane reflector with unit reflectivity coin-
ciding with the plane P. ' ‘

‘The standing waves inside this symmetric resonator may be represented in terms of
traveling waves by employing a technique used previously by Fox and Li [1]. This is
done by replacing the two reflectors by an infinite sequence of equivalent lenses mounted
in opaque stops and considering only traveling waves propagating through the lenses in
the +z direction as shown in Fig. 2. If we require that these traveling waves reproduce
exactly the same fields between each pair of lenses, then the traveling waves in region A
of Fig. 2 are the same as the component of the resonator standing waves which travels to
the right within the half of the resonator to the left of P, and the traveling waves in
region B are the mirror image of the complementary component of the resonator standing
waves which travels to the left within the half of the resonator to the left of P. Thus the
sequence of lenses is actually an unfolded replica of the resonator.
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Fig. 2-The resonator from Fig 1, which hae been unfolded into an
equivalent sequence of lensee  The mode equation follows from the
requirement that the trancverse electric field be equal, except for a
postihle change in slgn, over the two plancc as shown in thic figure.
Thic is given by Eq¢ (1)

The traveling waves will reproduce the same fields between each patr of lenses if the
following condition is met  The component of the electric field transverse to the regona.
tor axis must have the same spatial distribution over the plane z = 27, just after passing
through the lens, as over the 2 = 0 plane (Fig. 2) except for a possible change in sign;
that s,

2 2
{E(x. y, 0)} - i{E(x, y, 21,)} exp [(T)ik(x2 +y2 4 f2) ”]circ (5——%1—) » (1a)
X X

a

{E(x. y, 0)} = i{E(x, y, 21,)} exp [(T)ik(x2 +y2 4 f? ) ’2] circ( P ), (1H)
y y a

where the symbols A . A . A _ represent the Cartesian x, y, 2 components of the
vector A The field< here afe assumed to be monochromatic with the time dependence
exp (- {wt) suppresced and k & w/c. The upper sign inside the parenthesis is taken if the
lenses are convex, the lower sign is taken if they are concave, and

cre(r)=1,if0<r<, (24)
= 0, otherwise. (2b)

The resonator is acsumed to contain an isotropic, homogeneous, nonconducting
medium which contains sources which amplify the field by stimulated emission. Losses
due to scattering and absorption by the medium are neglected. It is also assumed that
the medium is Doppler broadened [9], as for a gas laser, so that the atomic populations
coupled to the right- and left-traveling waves are different and can be separated into
regions A and B of the unfolded resonator.

If in addition to these conditions an axial gain approximation is employed, a¢ dis-
cussed in Appendix A, the traveling waves which propagate through the sequence of lenses
shown in Fig. 2 can be expanded in the manner

E(x, y, 2) = g(2) ff &(p. @) Klprraysmd gy, (8a)
p2rq2<t
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4 WILLIAM H. CARTER

H 3, 2) = 8(2) ff H(p, q)e™P**9* ™) dpdg, (30)
p2+g2<1

where

m=y1-p%-¢%. (4)

Each term in this expansion is a homogeneous plane wave modified by the complex gain
coefficient g(z) which arises due to the effect of the amplifying medium. As the amplifica-
tion is reduced, g(z) approaches unity but &(x, y, z) and H(x, y, z) do not change. In

this limit Eqgs. (3) become an angular spectrum expansion for a field in free space. The
Cartesian components of &(x, y, z) and #(x, y, z) are angular spectra that are related by
the well-known expressions [6]

&mm-{pﬁmw+ &mm] (52)
&mqrzqu&mm+ 8mw] (5b)
&mm—}[ 800+ 2 8,60, (50)
5 a)= 5 P&mq)pamqﬂ (5d)

where
zZ,= % : (6)

The complex gain coefficient in Eqgs. (3) is given, as shown in Appendix A, by

2(2) = exp {[(Q’;'Z' ) + ik’] z}, )

if the medium is unsaturated, and by

gm=VQ{mF1NMJWﬂ 8)
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if it is completely saturated. The constants appearing in Eqs. (7) and (8) are defined by
the single-pass gain

g(2L) = hlet'3, (9)

The propagation constant s given by

kak' = !'.::3 (10)

where k' (k' << k) is a correction to an initially assumed value of k& which is given from
the following analysic and is used to determine the resonance frequency of the interfer-
ometer and where n = (/€]

The axial gain approximation, used in Appendix A to derive Eqs. (3) through (10),
limit< this analysic to fields that satisfy two conditions. First, the field must be well
collimated about the 2 axis (realistic if Lfa >> 1) such that &(p, q) and ¥(p, q) are only
appreciable if p? 4+ g2 << 1. Sccond, the field must propagate with sufficiently weak
gain that g(2) is slowly varying.  Under this approximation the field distribution over any
plane perpendicular to the z axis is the same as #t would be in the absence of the
amplifying medium, as evident from Eqs (3), and the traveling waves are amplified only
with increasing 2.

The mode equation. a Fredholm equation with solutions giving the angular spectrum
for the field< aceociated with each normal mode of the resonator, may now be obtained
using this approximation. To proceed, we first transform Eqs. (3) into the cylindrical
coordinates

p=pcosh, (11a)

q=psinb, (11b)

x=roosd, (11¢)

y=rsin g, (114d)

as deseribed in Appendix B, to obtain

- 1

E(r, ¢, 2) = 25g(2) Z reh? J e, (p)e®™J (kpr)odp, (12)

- 0

- 1

H(r, ¢ 2) = 258(2) Z: ('J"’j h”(p)r'"”".!n(kpr)pdp. (12h)
- 0

where

2x
e (p)= -2-;-"‘ &(p cos b, psin 6)=1"do, (130)
0

GITIISSYIONN



6 WILLIAM H. CARTER

2 ' . : .
h,(p) = — H(p cos 8, p sin 6)e™ " db o (13b)
0

are coefficients in the Fourier series expansions with respect to 6 andn =0, 1, 2, 3, .
Next we substitute Eq. (12a) into Eqgs. (1) to obtain the mode equation in the form
(Appendix C)

) 1 a )
eff)(b)=ig(2L) J egs)(p)eik\h_p'zu k2fe(Tt-)ik(r2+f2)1/2Jn(kprr)Jn(kpr)rdr p'dp,
0 :

- (14)

where eff)(p) represents the x component of e, (p), if s = + 1, or the y cbmporient, if
s=-1.

The mode equation may be expressed in a more convenient form by making the
transformation

e‘s>’(p)=e<s>(p)\/5exp<ik 1-p L) | (15)

and rewriting Eq. (14) in the matrix notation (using the notation EA for a summation
of A over the continuous index p) :

Z M,y [eﬁzsr)z:’ , - Yon [egr)l:, ’ (16)
o P

’

P

with the complex symmetric matrix

a

M, =+/p0’ exp [ik (\/1 T y/1- pz)L] k2 f eI 5 Goptyy (Rpryrdr

17)

and the eigenvalues

Vonr = t8(2L) =y, le‘k"" N2L = 'ann’N2L. ' ) (18)

The phase of v,,' obtained from Eq. (16) is specified up to an arbitrary additive constant
N=1,2, 3,... Onsolving Eq. (18) for ia,,'n, we fmd that

R . [0 1yl AN - P(y,,0)] ‘

lOlnn;N = -TL-— + lk hnlN = 2_L ’ (19)

where P(y,,.) is the phase of v, limited to the range [0, 21r] In addltlon to the
angular lndex n and the longltudmal index N, a radial index n’, where n' = 1, 2, 8, ..., has
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been added to descriminate among the many possible elgenvalues of Eq. (16). The state
of polarization for a mode {is given by s as described below. Thus a particular field dis.
tribution, or normal mode, is specified by a set of four integers: (n, n’, N, ).

The axial gain approximation is not new to resonator theory. In fact it is used
implicitly in all theories which use a free-space diffraction integral, such as the Fresnel
Kirchhoff integral, to account for the propagation of the waves between the reflectors.
However an additional paraxial approximation, which is usually used to simplify the
Fresnel-Kirchhoff integral, has been entirely avoided in the present theory by the use of
the plane-wave representation. Therefore the present theory should be more accurate and
should apply to resnnator fields that do not satisfy the restrictions imposed by this
paraxial approximation.

The Cartesian components of the electromagnetic fields assoclated with any mode
given by (n, n', N, 8) for an unsaturated medium are found by superimposing right. and
left-traveling waves from Eqs. (3) to form the resonator standing waves, transforming to
cylindrical coordinates using Eqs. (11), and making use of Eqs. (5), (7), and (13) as
discussed in Appendix D. For the mode (n, ', N) which is linearly polarized in the x
direction (for which we arbitrarily set the index s = 41), the field is given by

1
[ene e, "}, " At f e Dple B NLS[/T = 9 + 0 )z = 1)

0
X 4, (kpri/pdp, (200)
{E},;g.g.(r, é. z)} e 0, (200)

y
1
{Ei,’,,’-kv. ¢. 2) uzwr'*awj 1Y (pyebenn NLC (/1 - p? 4o )z - 1)
0

X (4,0 (kor)e® -J (kpre-io) PP AP (200)
\/1 - p2?

1
"”j et (p)eRnmNECl(k /1 - p% 4 0, )z - 1)]
0

{
{n;;nu.(r, é. z)} - X
X

0

X U, g lkpr)e'2® - J_o(kpryeri2e) PVP AP (204)

\/1 - p2

GITIISSYIONN



8 WILLIAM H. CARTER

1
{H("l}v(r o, z)} = Z—' ein® f G (p)e lenn'NLC[(km + o )& -L)]
0
| BERA
- [y (kpr)ei®® +J_,(kpr)e2?] PN
p? VI-p
+ 47, (kor)y/P ———— dp, (20¢)
VI
HEL 2mi" ino [ o041 eionm N _
},(r, ha)f = ——e (i (p)e S[(km + 5 )(z - L)]
0 0
X [Jml(kpr)e"f’ +J _l(kpr)e""”]p\/— dp, ©(209)
where
S(¢) = - i cos (§), if N is odd, | (21a)
 =sin (§), if N is even, (21Db)
C(¢) = i sin (§), if N is odd, (21c)
= cos (§), if N is even, (214d)

and where o .\ is defined by Eq. (19). Modes of arbitrary polanzatlon are found from
Egs. (20) by adding the field components for the complementary (n, n', N) mode which
is plane polarized in the y direction (s = - 1). The field components for the y-polarized
mode can be found simply by performing a coordinate rotation on Eqs. (20).

The fields in a saturated medium are somewhat different. For example the trans-
verse electric component for the (n, n', N) mode which is plane polarized in the x direc-
tion is given by

1

{Eg;%;,(r, ®, z)}x = 2mitein® J elri) (p)e™'nm NL { 1/ 1+ (lynnl2 - 1) zﬁ
0

X exp [i(k\/1 - p? iR )E-L)] F 1/1 + (ol - 1) (2LLz)

X exp [i(ky/T-p2 + & WL - z)]]’ J,(kpry/pdp, (22)

where the derivation follows in the same way as that for Eq. (20a), but by using Eq. (8)
in place of Eq. (7), as discussed in Appendix D.
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The mode ficld in Eqs (20) or (22) is still arbitrary up to an overall conmmt
amplitude. which is determined by normalization of the angular spectrum e ){,(p) A
particular normalization convention will be specified in a later section in a manner ap-
propriate for the quantum theory of laser resonator fields.

The eigenvalues 4, . given by Eq. (18) are equivalent to those appearing in the usua!
resonator theory and provido usefu! information about the modes. The fraction de of the
electromagnetic energy lost by diffraction as the waves trave! from one reflector to the
other is given by

de = (1 - 1), (23)

just as in the conventional theory [3, Eq. (81)]. The ph:w of v, .. specifies the resonant
frequeney for the mode. The frequency for the (n, n’, N, 8) mo o as given by substitu-
tion from Eq. (19) into Eq. (10), is

c[#N - P(ynn')]

Won Ok 4R )=k g (24)

To employ Eq. (16), we must first ascume a frequency ck close to resonance and then
use Eqe. (16) and (24) to obtain the precise frequency w, ... The assumed frequency is
in effect pulled by the resonator an amount given by the frequency shift

W, en =k ) [*N - P(v )
ck 2Lk ’
which follows directly from Eq. (24).

df = (26)

The longitudinal mode number N is not the same as the usual longitudinal mode
number N’, which is defined to be the number of half wavelengths in the length 27, but

is related to it by

2’/(&’ [ 3% 2[4k - P(‘y o)

N = nn'N -N 4( nn (26)
xc L §

according to Eq. (24) [3, Eq. (81)]. For most resonator fields, N’ as defined here s not
an integer but approaches an integer with increasing 21 /a.

The ficlds aseociated with the modes with even N produce transverse electric com-
ponents which vanish over the z = L plane according to Eqs. (20). Thus these are also
the ficlds of an asymmetric resonator with an infinite, plane reflector of unit reflectivity
in the 2 = L plane.

NUMERICAL CALCULATION OF THE MODE FIFLDS

The trancverse electric component of the field for several of the lower loss modes in
resonators that are either confocal, spherical, plane parallel, or unstable has been evaluated
numerically through the use of the equations derived in the last section. It has been
calculated only for modes which are plane polarized, circularly symmetric (n = 0), and of
fixed longitudinal order (N* = 40). However, the same procedure can be employed to

AI1315$Y1INN



10 WILLIAM H. CARTER

study other modes and other Cartesian components of the fields. Resonators were chosen
for this study with dimensions ¢ = 5\ and L = 10\ (where A = 27 /k). These resonators
could not be treated by the usual resonator theories, because they do not satisfy the
restrictions imposed by the paraxial approximation.

The procedure used is relatively simple. First, the elements of the matrix given by
Eq. (17) are determined for a particular set of resonator parameters using Simpson’s rule
to numerically evaluate the integrals. Second, the matrix is diagonalized using the IBM
Share subroutine ALLMAT, which has been tested extensively in a similar application by
Sanderson and Streifer [10]. The resultmg eigenvalues 7y,,y are used to determine AN
from Eq. (19), and the eigenvectors e 1Y (p) give the angular spectrum for the (n, n’, N)
mode. Finally, the field components assomated w1th the (n, n’, N) mode in an unsaturated
medium are found by substituting %’ an'y and e ( p) into Eq. (20) and integrating
numerically using the trapezoidal rule. Similar modes for a completely saturated medium
are obtained using Eq. (22) in place of (20a).

 The matrix is represented to the computer by a 50 by 50, single-precision, complex
array. Tests conducted by varying the array dimensions (up to 100 by 100) indicate that
no serious sampling errors occurred in calculating the fields described here. However, for
s1gn1flcantly larger resonators with larger Fresnel numbers,

= E > 5, 27
serious sampling errors do occur.
Confocal
|
R=20\ __|
. |
T !
a=5A I t=10n
|
L l
F—L=tox—

Fig. 3—Confocal resonator studied
in this work

The three radial modes of lowest loss have been examined by this procedure for the
small, confocal resonator shown in Fig. 3. Isometric drawings showing the transverse
electric component, that is, the magnitude of {E,,n(r, 0, 2) }, over the region where
0 <z < L, for these modes are shown in Fig. 4 for an unsaturated medium. Since the
fields are symmetric about the z = L plane, only the fields to the left of the plane are
shown. The energy loss per pass de and the frequency shift df for these modes are also
shown as determined from Eqs. (23) and (25). The energy loss is seen to increase
anomalously fast with increasing n' from only 1.39% in the first (lowest loss) mode to
65.6% in the third. It is also evident that the modes become increasingly irregular as the
loss increases. By irregular is meant the rapid irregular spatial variation of the envelope of
the otherwise orderly standing wave pattern shown in Fig. 4c. This does not occur for
instance in the standing-wave pattern shown in Fig. 4a, and it is very slight in the pattern
shown in Fig. 4b.
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a1-837%

Fig 4—1sometric projectione showing the spatial distributions for the trane.
verse electric field over the confoeal resnnator shown in Fig 8. (a) The first
(loweet loee, eylindrically symmetric) mode, withn = 0, n" = 1, N' &~ 40, and
8= ¢41. (b) The second (srcond lowest Jose, eylindrically symmetric) mode,
whthn* 0, n « 2 N « 40, and s = +1. (c) The third (third lowest loss,
cylindrically symmetric) mode, with n = 0, n' = 3, N ~ 40, and g « +1,

Similar modes were examined for the spherical resonator shown in Fig. b, and iso-
metric drawings of the transverse electric components are shown in Fig. 6 for an un.
saturated medium. The radial modes in this spherical resonator are seen to have lostes
that increase even more rapidly with n’ than those for the confocal resonator. The
associated irregularity of the field is evident in Figs. 6b and 6c. The calculations were
repeated for a spherical resonator of the same proportions but of twice the size. For the
larger resonator the modes are similar to those in the smaller resonator, but the losses
increase much more slowly with n', and the fields are not as frregular.

AITIISSYIONN



12 WILLIAM H. CARTER
Spherical

p—L=10a—~

Fig. 5—Spherical resonator studied
in this work
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S ORDADER O
de=490%
0 z — L a df=2i0%
A o LA P
A AR
, VWf
Lifi
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’ \M\“z:—/ ’
N v"/
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o/ s d4f=576%
| ’ '/ I‘\ 0/ 0
'I/ " I‘ /. \ <
& l 0 i g s /ow )
x "// 4" ’lc ,;' LR
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de=893%
df=902%

Fig. 6—Isometric projections showing the spatial distributions for the transverse
electric field over the spherical resonator shown in Fig. 5. (a) The first (lowest loss,
cylindrically symmetric) mode, withn = 0, n’' = 1, N' ~ 40, and s = +1. (b) The
second (second lowest loss, cylindrically symmetric) mode, with n = 0, n' = 2,
N' = 40,and s = +1. (c) The third (third lowest loss, cylindrically symmetric) mode,

withn=0,n" =3, N ~ 40, and s = +1.
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Fig 8—Isometric projections showing the spatial distributions for
the transverse electric field over the unstable resonator shown in
Fig 7. (s) The first (lowest loss, eylindrically symmetric) mode,
withne O, n =1, N ~ 40, and s = +1. (b) The second (second
lowest lott. cylindrically symmetric) mode, with n = 0, 0’ = 2,
N ~40,and s~ ¢1

The two lowest loss radial modes were also examined in the unstable resonator
shown in Fig. 7. The fsometric drawings of the transverse electric field for these modes
are shown in Fig. 8 for an unsaturated medium. Both modes clearly show the rapid
frregular amplitude variations which are well known to be characteristic of unstable
resonators [{11). By comparison of Figs. 8a and 8b to Figs. 4c, 6b, and B¢, it is evident
that the frregularities observed in the modes for the confocal and spherical resonators are
similar to those known to occur in unstable resonators.

It appears likely that the anomalous behavior of all of these modes is assoclated with
the onset of mode instability resulting from high diffraction loss in these small resonators.
Although the confocal and spherical resonators are stable according to the usual geometrieal

A3TA18SY10NN



14 WILLIAM H. CARTER

theory used to describe mode stability, this theory does not account for diffraction loss.
Therefore it is not surprising that when diffraction loss is taken into consideration, any
open resonator may show some instability if it is sufficiently small relative to the wave-
length of the field. This agrees with the observation that the modes were less irregular in
the larger spherical resonator than in the similar resonator half the size.

Plane parallel resonators examined in this manner produced an interesting confirma-
tion of the mode equation. For a plane parallel resonator with the dimensions a = 5\
and L = 10\ used in this work, the matrix in Eq. (17) is nearly diagonal. In fact, if we
set

exp [Fik(r? +f2)] =1 (28)
in Eq. (17) and let @ = oo, we obtain the diagonal matrix

M, =8(p - p') exp (i2k V1 -p2L). (29)

Thus plane parallel interferometers with infinite reflectors have modes that are plane
waves in agreement with the early Fabry-Perot theory [12]. ’

Many of the numerical calculations were repeated for the modes in a saturated
medium using Eq. (22) in place of (20a). The distribution of the transverse electric com-
ponent of the field is similar in each case to that obtained for the unsaturated medium.
Therefore, within the axial gain approximation, where spatial hole burning is neglected,
saturation appears to have very little effect on the fields. Typical results for the trans-
verse component of the electric field, with and without saturation, are compared in Fig. 9.

MODE QUANTIZATION AND NORMALIZATION

It is frequently assumed that the modes in an open resonator in the absence of the
amplifying medium can be quantized in the same manner as those in a closed resonator
[13, Eq. (2.1), or 14, Eq. (2.2)]. In this section this assumption is shown to be valid for
paraxial fields. The mode amplitudes are determined by a normalization condition im-
posed on the angular spectrum by the quantum formulism.

Physical fields are real functions of time; thus, to describe a field with precision, we
must drop the analytic-function representation used in the earlier sections. Each Cartesian
component associated with the (n, n’, N) mode is described by an expression of the form

1 : '
Ulx, y, 2 8) =5 Z (8, N (O (5, 3, 2) + g (DU (5, 9, °2)], (30)
nn'N

where u, .\ (%, y, 2) represents the spatial distribution of a particular Cartesian component
as given by Eqgs. (20), and a . \(t) represents the time-dependent amplitude of the mode
which is common to all of the Cartesian components. This amplitude is very nearly time

harmonic with radial frequency w, .\



20

(1

NRI. RFPORT 7663

1
\
-\ LiNTAR GAN
o\ 3RO MODE SPHERICAL
F\ \ L+ 10
- \ 0%
182

2.2
2.0 t ,’\\ﬁ' :’\' 3RO MOOE sopusmcu
s ] i L:l X
et ﬂ" v ‘\,' | 93
s |
1.6} !
1
Lal- LINFAR
r GAIN

2

!
(e},

1.0

T Y T

T

EXPONENTIAL
GAIN

(b)

Fig 9-The magnitude of the trancverse electric field showing that saturation
of the medium (exponential gain, given by Eq (22), rather than linear galn,
given by Eq (20a)) has fittle effect on the field of a typlcal mode when hole
burning effects are neglected  (a) Plotted ac a functionof r. (b) Plotted asa

functio

nofz

16

aITIISSYIINN



16 WILLIAM H. CARTER

To quantize the resonator field in the usual manner, we show that each mode be-
haves mathematically like a harmonic oscillator, so that the well-known quantum theory
for this ocsillator can be used. We begin by calculatmg the total energy stored in the
resonator,

%f J J [EE(x’ Yy, 2, t) . E(xa Y 2 t) +”, H(x, Yy, 2, t) . H(x’ Y, 2, t)] dzrd¢dr,
0 o 0 » an

in which each Cartesian component must be expressed in the form given by Eq. (30).
The vacuum resonator field for each mode, in the absence of the active medium, is
obtamed from Egs. (20) by replacing k\/l p2 +a v by ka1~ ;02 with (k,,,,N =

n/c). The axial gain approximation is now dlscarded SO that these expressions for
the vacuum resonator field follow rigorously from Maxwell’s equations. For the most
general resonator field the Hamiltonian ¥ is obtained by substituting the vacuum field
for each mode from Eqgs. (20) into Eq. (30), then substituting from Eq. (30) into Eq.
(31), and summing over all modes. After considerable algebra, and the use of paraxial
approximations, as discussed in Appendix E, we obtain the expression

== Z feoy, [ay, (B)ag, () + ay (Day (D], (32)
M

where M is a simplified notation for (n, n’, N, s) and the angular spectrum is normalized
in the manner

1 h 3
J e 2 (24— \dp= — 2 (33)
A ; 1-p2 (2n2ec?L)

By substitution from the definitions

07 e — ((‘JMQM + ipM), v (34a)

(wyry - Py )s - (34b)

Eq. (32) becomes

1 ’ '
H= Z P+ wiad . (35)
T2 4 ,
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The Hamiltonian in Eq. (35) is identical with that for a collection of uncoupled harmonic
oscillators, each with a displacement given by q,, and a momentum given by p,, [16a,
16]). It is clear from Eq. (35) that the ficlds in an open resonator obey the classical
equation of motion for a harmonic oscillator:

o1 Oy '

o, ot D (860
K Oy

5—(}; . 3 = w},qM. (36h)

Now that we have established the similarity between each mode in the general
resonator field and a classical harmonic oscillator, the field may be quantized in the usual
manner. Consider any function f of g, and p,, with the total derivative

df(quu)‘[dqu 2 9y @ (37)

0
dt dt  dqy, * ar oy * ﬁ]f(q”.p”).

The equation of motion for f, upon substitution from Eqs. (36) into Eq. (37), becomes

df(qy. Pyy) af(QM. Py)
‘_-“'&_‘“ = {’(QM- PM). ,(} + ""'—a";"—""""' ’ (38)
where
_ of oKX of oK
\ 3(} = - 39
[, aQu al’” am qu (89)

is the Poisson bracket of f and 3. The field is quantized by replacing the classical fune-
tions f and ¥ in Eq. (38) by the Hilbert space operators f and ¥ and replacing the Pols-
son brackets by 1/ih times the commutator brackets {f, ) [156b) to obtain the Helsen-
berg equation

d?(an‘;M) 1 .. -
— = Wy b ¥ ¢ —5— . (40)

dt

This Is the quantum-mechanical equation of motion for any operator f which is a func-
tion of the operators g,, and p,,.

In this formulation the mode amplitudes a,, and a}, in Eqs. (34) are replaced by the
operators

1 » -
= (W Gy ¢ ipy) (41a)

e
M o,

GITIISSYIOND



18 WILLIAM H. CARTER

iy = —— (copgly - By (41b)
iy, |
which obey tﬁe commutation relations
| [y &y 1= 8y | (42a)
[y » By} = (8], 0,1 =0 - (42b)

and act as annihilation and creation operators, respectively, on the Mth mode of the Fock
space vectors representing the energy eigenstates. That is [15c],

ayl{n}, nyy > = /myy l{"}’ my =12, (43a)
a3l {n}, my >= i 71 [{n}, ny + 1> (43b)

(The notation I{n}, my; > indicates a Fock space vector for a system of many energy
levels. One particular level of interest, the Mth level, contains n,, quanta; the occupation
of the other levels {n} are not of immediate interest and are not indicated.) Each
Cartesian component of the field in Eq. (30) is represented by the configuration space
operator

U, v, 2, t) = % Z [y By (. , 2) + &L(t)u}'{,(x, ¥, 2)], (44)
M

which may be used to calculate the various observable parameters associated with the
field.

Scully and Lamb [17] have obtained a closely related expression for the electric
field in a later resonator which they use in studying the detailed dynamics of the resona-
tor field coupled to an amplifying medium. It is interesting to compare an expression
derived from Eq. (44) with theirs. In their work they are concerned only with the field
in a resonator with plane parallel reflectors, which is described using a simplified mathe-
matical model. For example their electric field operator [17, Eq. (29)] is given by an
expression which in our notation becomes

{E(x » t)} ]/2 — - [y ()+ &} (0)] sin [‘N "’z]. (45)
ELTA

A more general expression for the x component of the electric field in a resonator is
derived from our work by substituting Eq. (20a) into (44) giving

{E(x, % 2 t)} = 4n Z {i"”ei“"’am(t)f e (PIS[(ky/1 - p2)(z - )]
| x ‘ 0 |

M

X J,(kor\/pdp + h. c.}, (46)
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where h e signifies a term which is a Hermitian conjugate of the other term in the braces.
By comparizon of Eq. (45) with Eq. (46) we find that our theory leads to the ficld
operator of Scully and Lamb, if we make the following approximations in Eq. (46). Let
the reflectors be plane with large radius a and assume that only one axia! plane wave
contributes to each mode:

hof  8(p)

——— — 47
dr?cc®L \fp

ey (p) =

Also, we will neglect all modes which are not rotationally symmetric, 8o that n = 0, and
we will use the paraxial approximation given by Eq (E3):

N’
(b, /1- P2 & -—i-’f : (48)

Equation (46) then becomes

hood -
E(x y, 2, l) = 2% Z ”2‘:! [aM(t)+aM(t)] sin sz_?: y  (49)

Equation (49) is identical with (45) except for a constant scale factor
2112
of = L) - (50)

(\/_ ku)

which is due to differing field normalization. A problem arises with these idealized mode
ficlds however which becomes evident upon substituting Eq. (47) into (33). The angular
gpectrum cannot be properly normalized due to the infinite energy of the single plane
wave. This problem, which was overcome by Scully and Lamb by neglecting the ficld
over the domain r 2> g, does not occur in our theory if the resonator fields decay away
from the axis such that they have finite energy.

In our work only homogenous plane waves are included in the angular spectrum.
For the most genera! fields evanescent plane waves should also be included [18].
CONCILUSIONS

The new open resonator theory developed in this report has several advantages over

the theories which employ the Fresnel-Kirchhoff diffraction integral. Its primary
advantage is that it applies to resonators in which the field cannot be treated in the

paraxial approximation. This theory also leads more easily to a full electromagnetic treat-

ment of the ficld. On the basis of this theory the components of all the field vectors
may be determined numerically over the entire resonator in three dimensions. This has
been demonstrated for the transverse electric field in several different resonators.

The primary limitation of this theory is the use of the axial gain approximation.
Under this approximation the fields behave as free fields over every cross sectional arca
transverse to the axis. This same approximation appears, in one form or another, in all

AITITISSYTIONN
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of the currently known open-resonator theories, and it is a serious limitation. This is
especially true if saturation effects are to be considered.

We have considered the effect of complete uniform saturation on the mode and
found it to be slight. Unfortunately the important effect of spatial hole burning could
not be treated with this model. Thus we can only conclude that the primary cause of
field changes in the presence of a saturable medium is the result of these holes.

The numerical data for the transverse components of the electric field obtained on
the basis of this theory indicate that mode instability occurs in very small confocal and
spherical resonators which have dimensions the order of a few wavelengths. This con-
clusion is supported by tests with larger resonators in which the apparent stability is im-
proved. Since the geometrical theory by which these resonators are shown to be stable
neglects all effects due to diffraction losses, it is not surprising that it appears to fail when
the resonator has dimensions the order of a few wavelengths.

We have also shown how the resonator fields given by this model can be quantized.
The quantized field is described by a formulation very similar to that usually used to
describe the field in a finite closed resonator. The configuration-space field operators
obtained here reduce to those obtained from the simplified mode theory of Lamb and
Schully for a resonator with large, plane parallel reflectors. Although the axial gain
approximation was used to obtain the fields in the presence of the active medium, the
vacuum fields which were quantized do not depend on any gain approximations. The
quantum theory is derived however using approximations which are valid only for paraxial
fields.

The numerical data presented give a much clearer picture of the spatial distribution
for the transverse electric field inside of such resonators than have been prewously avail-
able. : .
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Appendix A
PROPAGATION OF TRAVELING WAVES IN AN AMPLIFYING MEDIUM

An approximate representation for a traveling wave propagating through an amplify-
ing medium can be obtained as follows. The real electric field E.(x, y, 2 t), the polariza-
tion of the medium P(x, y, 2, t), and the population inversion per unit volume N(x, 7y,

z, t) are related under frequently encountered conditions by the nonlinear differential
equations*

2 ' " |y o 12
OPx %2t , 2 PE%EY | opi =22 12 NG, 3, 2 D, 3, 2 t)
' (A1)
aN(x’ y’ z’ t) N(x’ y’ 2, t) _Ne = l aP(xa y, zv t) . N
ot * T, hw ot E (% 9, 2 1), (A2)
2
E(x, y, 5 1) 72 B2z 32P(x, y, 2, t)
VX(VXE(xy,z,t))+——-——— r oy LE%ED
ot c2 ot2 0 at2

(A3)

where n = \/€/€;. The material constants T, Ty, L, “‘1 |, N¢, and A, which Pantell and
Puthoff* dlscuss in detail, are respectively the longltudmal relaxation time, the transverse
relaxation time, the Lorentz correction factor, the matrix element of the dipole moment
operator coupling the two states resonant with the field, the equilibrium population in-
version per unit volume, and the power attenuation constant.

We begin by assuming that the field and the polarization are time harmonic and can
be given by

(5 3 2 1) = 5@, 3 DBy (3, )" + e, (a4)

P(x, y, 2, t) = % Py(x, 3, 2)e" ™t + c.c, (AB)

where E (x ¥, 2) is the free field which remains if the coupling to the medium vanishes
© and where c.c. indicates the complex conjugate of the preceding term. The population
inversion per unit volume N(x, y, z) is assumed to be time independent. Thus, upon
substituting Eqs. (A4) and (Ab) into (A2) and making use of the rotating wave approxi-
mation, we obtain

*R.H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York, 1969, p. 86.

22
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N(x. y, 2)-N® S T . p*
T, g7, Lle(x. y, D)€y (x, y, 2)  Pylx, 3, 2) + ce ). (AG)

By similarly substituting Eqs (A4) and (A5) into (A1), we have

- 1T, "‘12'2 .
Polx, 3. 2) = == L —o— N(x.y. D)lelx, 5, 0)IE(x, 3, 2). (A7)

The population inversion can now be obtained by substituting Eq. (A7) into (A6) to
obtain

N(x. y, 2)= N ) (AR)

T,T,) (‘”12'2)( 2)
() () (2

where I(x, y, 2) Is the intensity of the light as defined by

N,
I(x. y. 2) = —5= [Blx 3. DIEy(x, y. D12 (A9)

By substituting Eqs (A4), (A5), and (A7) into (A3), assuming that g(x, y, £) is sufficlently
slowly varying that terms containing its second derivatives can be neglected, and by
separately equating the positive and negative frequency terms, we find that

Viglr, y, DI X [VX E(x, 3, 2)] - [Viglx, 3, 2)l - V]E((x, 5, 2)

wp. T 12
.. wn [ Oh 2 L 132 N(x y, 2)- -;-] leix, y z)lEo(x, y. 2). (A10)

In deriving Eq (A10) use was made of the fact that the free field E (x, y, 2) satisfies the
usual wave equation

2
W
V2E,(x. 5. 2) ¢ = nEy(x. 5. 2)= 0 (A11)
and also the equation
V-E(x,y,21)=0. (A12)

For the laser resonator under investigation we are concerned with a traveling wave
propagating down the 2 axis:

E.(x,y. 2)=e(xy, 2)elt, (A13)

GITITSSYIONN
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We assume for the purpose of representing the gain factor g that the vector e(x, y, z) can
be treated as transverse to the z axis and slowly varying relative to the exponentlal in

Eq. (A13). In addition we make the axial gain approximation by assuming g is a function
of z only. Upon making these approximations and substltutmg Eq. (A8) into (A10), we
obtain

 Blglx, 3, &) _ [E 1(0) + L,

A ‘
32 B m - ?] lg(x, y, )|, (A14)

where I, is the intensity required to saturate the medium,

NEC
I_ = (A15)
sat
<2T1T2> <l;_¢12I2>
L
. h2 3
and
(4
_ hwN 1 (A16)

Yo Tor, I(0)+1_,

is the gain at 2 = 0.

If the medium is completely unsaturated such that I(x, y, z) << I sat” then it follows
by solutlon of Eq. (A14) that

s-exp {20 @

where we have taken the gain in the z = 0 plane to be g(0) = 1, and where the gam in
the z = 2L plane is given by the constant

Yo ((0)+1,) A] 2L}

Yl = lg(2L)] = exp {[ T % (A18)

sat
The modes of a resonator exist only for certain vaiues of k. To determine these

values of k from the eigenvalue analysis in this report, it is convenient to define the com-
plex gain factor given by the expression

g(z) = exp {[Q';lzl + k] } : (A19)

Thus the magnitude of g(z) is the true gain factor as given by Eq. (A14), and the phase
represents a correction to % in equations of the form

E.(x, ¥, 2 t) = g(2)e(x, y, 2)e’*=1) +ce. (A20)
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The phace of g(2) specified by the eigenvalue analysis in this report is such that E (x, y, 2,
t) as given by Eq. (A20) has the proper wavelength for a particular resonator mode.

If the medium ks completely saturated such that I(x, y, 2) >> [ " then a simple
solution may still be found for the nonlinear differential equation in’i-,q. (A14) if further
approximations are made. We assume that I(x, y, 2) in Eq. (A14) can be approximated
by

Iz, y. 2) = Ijle(2)1%. (A21)
This is valid only if spatia! hole burning (spatial varlations in g due to spatial variations in

E,(x, y, 2)) arc ignored.  If we also assume that the effects due to absorption can be
lgnored by setting A = 0, then Eq. (A14) has the approximate solution

2
let2) = ‘ﬂ ' [1"—’(5,‘—)1)1] (A22)

Here we have again taken g(0) = 1 and replaced Eq. (A18) by

2L, (1(0) + 1, ]
I, )

I =l2r) =1+ (A23)

The linear intensity gain predicted by Eq. (A22) is in agreement with the experimental
data of Allen and Peters®. To allow for the adjustment of the wavelength to satisfy the
requirement of the resonator mode, we again define the complex gain factor by

2_1v,1 ..
£ = }/1 + [91('2——,*)—1—)1] e*'z, (A24)

We have found in this appendix that the fields are given within this approximation
by the empty-resonator traveling waves multiplied by the complex gain factor g(2).
Therefore, by expanding the source-free fields of the empty resonator into an angular
spectrum of vector homogeneous plane waves in the conventional mannert, we obtain
the ficld equations employed in this report:

E(x, y, 2) = g(2) ] f &(p, p)*PY*ay*mIgndq, (A26n)
p9¢q9<1

H(x, y, 2) = g(2) ff Hp, q)e®praymypndg (A25b)
pPeqici

with the exp (- {w!?) time dependence suppressed.

®1. Allen and G.1 Pclere, 4 Phye A4 664 (1971)
1G. Borglotti, Alta Frequenza 82, 808 (1963)
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Appendix B

ANGULAR-SPECTRUM EXPANSION IN CYLINDRICAL COORDINATES

An angular-spectrum expansion, like the integral appearing in Eq. (3), can be trans-
formed into cylindrical coordinates. In this appendix this procedure is described for the

more general case where

U(x, v, 2) =J] l(p’ q)eik(m+qy+mz)dpdq,

with
m=y/1-p2-q2,if p? + 2 <1,
C=i/pE g o1, ifp% g2 > 1.
Substituting Eqgs. (11) into (B1), 'ma.king the Fourier series expansion

"~ U(pcosh, psinb) = Z wp, n)ei™?

n=-e

and interchanging the order of sﬁmmation and integration,‘ we have

o o . 2r

UG, 6, 2) = Z f u(p, n)etm? f

n=-= 9 0

One integral appearing in Eq. (B4) is easily evaluated to g'ive

ik 6-0)*ind 4o = 9nit i
f eikpr cos (0-0)+ino gg = on; "Jin(kpr‘)e ne
0

by stubstituting the generating function*

o0

it cos(6-¢) = Z i"'e:"{(a_‘p)Jnf(E),

n'=?°°

eikpr cos(0~p)+ino d0pdp.

(B1)

(B2)

‘®3)

(B4)

(BS)

(B6)

*See Eq. (a.1.41) in Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, editors,

Government Printing Office, Washington, D.C., 1964.
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where § may be complex.  Finally, by substituting Eq. (B5) into (B4), we obtain

UG, 6, 2) = 25 Z P j ulp, me®™7y (kprypdp, (B7)
n— 0
where

m=J1-p% ifp<1, (B8)
=i1/pT-1,ifp>1,
and where either the upper or lower signs may be used. Equations (12) follow by sub.

stituting U(r, ¢, 2) from (B7) for the integral in Eqs. (3), after selecting the upper sign
and limiting the range of integration in (B7).
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Appendix C
DERIVATION OF THE MODE EQUATION

In this appendix the mathematical procedures leading to Eq. (14) are described.
Substituting Eq. (12a) into (1a) for the x component gives

oo 1

o2 Z i e f ef,‘fl‘)(p')Jn,(kp'r)p'dp'
n'=-co 0 : A
o 1
=iomg(2l) ), i f (0 )™V 102y (ep'rp!dp'e (IR circ<——2—> .
n'=-oc . 0
(C1)
Next, we multiply Eq. (C1) by a function
einJ (kpr)r, (C2)

integrate over all 0 <r < oo and 0 < ¢ < 27, and interchange the order of the integra-
tions to obtain

oo 1 21{ 00
o i j el1)(p") J ein'-n)% g¢ f J(kp'r)J, (kpr)rdr | p'dp’ = +2mg(2L)
n'=-o 0 0 0
00 1 21I'
3 o [ e | [Ty
n’=—°° 0 ’ 0 .
a
X I e FIRCZHLIZ 5 (hy'r)g (Roryrdr |p'dp. (C3)
0
Finally we use the identities
27 .
J eiW Mgy = 218 (C4)
0
and*
, _8(p-p)
I J,(kp'r)d, (kpr)rdr — (C5)

b (k°p)
*P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, p. 943.
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in Eq. (C3) and obtain the mode equation for the x component of e (p):

1 ]

e!D(p) = 29(21) J el ('t 1-p72202 J eIRCIDITG (kp'r)d, (kprirdr| p'dp.

0 0 (C6)

In the same manner an identical mode equation may be derived for the y component of
€.(p). Thus we generalize Eq. (C6) to the form of Eq. (14) by replacinig e{*1)(p) by
t'f,')(p). where the x component of the angular spectrum is indicated if s = 41 and the y
component if s = -1,
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Appendix D
DERIVATION OF THE FIELD EQUATIONS

In this appendix we derive Egs. (20) and (22) for the components of the resonator
field. ' ‘

The standing waves inside the resonator are obtained from the traveling waves as
follows. The traveling waves propagating to the right are combined point by point with
an identical set of traveling waves moving to the left. These traveling waves are combined
such that the appropriate boundary conditions at the reflectors are satisfied. For example,
if the plus sign is taken in front of Egs. (1), the transverse electric component associated
with the waves travling to the left must be subtracted from the similar component
associated with the waves traveling to the right so that the transverse electric component
vanishes at the reflectors. Similarly, if the negative sign is taken in front of Egs. (1),
these components must be added instead so that the transverse electric component of the
standing wave vanishes at the reflectors. Thus, using Eq. (3a) we obtain the expression
for the x component :

X

{Eif,lw(x, » z>} = f J &, (B QP+ [g(2)e™™ ™" Tg(2L - 2)e *M(*L) ] dpdy,
2
| prratal (D1a)

where either the upper or lower sign is taken as the upper or lower sign in Eq. (1), or
equivalently as N is even or odd respectively. This connection between the sign conven-
tion and the parity of N follows from Eqgs. (18) and (19).

The other Cartesian components of the standing wave, which are also found using
the appropriate boundary conditions at the reflectors, are given by

{Eﬁf%w<x"‘y’ z)} 3 J f &, (p q)e P+ [g(z)e #mF7g(2L - 2)e™™(P?)] dpdy,

2492
pe+ge<l (D1b)

” &,(p, Q)e™ P [g(2)e™ ™ 1g(2L - 2)e™ (2L | dpdy,

2492
porgt<l (Dlc)

{ E®), v, 9, z)}

z

{Hsf),w(x, %, z)}‘ = H 3, (0, q)e =) [g(z)e *merg(2L - 2)e™ ™ (*L2)]dpdy,
p2a?<l (D1d)
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{“'a'lw(* y. ”} il .U H(p. ) 2P0 [g(2)e M7 3g(21, - 2)e* ML)} dpdg,
> 2,02«
preatel (D1e)

{"m”"“‘ > ”} i H H,(p. @x XN [gl2)c® 7 3g(21, - 2)em(21-) 1 dpdq.
oAt (D1f)

The validity of these six equations can be varified in the limit of zero gain (g = 0) by
directly substituting them into Maxwell's equations for free space®.

Since the derivation of all of the Cartesian components in Eqs. (20) and (22) follow
from Eqs (D1) in escentially the same manner, we will give the derivation of only the 2
component of the electric component aseaciated with the field in an unsaturated medium.
To obtain thic component, we assume that the ficlds are plane polarized in the x dirce
tion so that & = 0, substitute Eq. (5a) into (D1c¢), substitute Eq. (7) into (D1c), and
transform the Fesult into cylindrical coordinates as given by Eqs. (11). We then find that

1

{es;,,!g.u. ¢, z)} .- 'I oD (p)e Xt meonn NIC (km + o o Wz - 1))
’ (]

2
XJ [e&oreoda-opi(nely +,&prcn4~-¢)ot(n-1m]d0< p >d,,’
2
0 p (D2)

where C(}) is given by Eqs (21). The integral over 8 is evaluated using Eq. (B5), so that
upon substituting Eq. (15) we have

1
{E(n’nu-(r. ¢ t)} . 2771 I e (p)knNEC[(km + o )z - 1))
2
0
X [J,0q (kpr)c® - (kpr)e-te}[ VP __\gp (D3)

1-p%

The other field components in Eqs (20) are found in exactly the same way. The com.
ponents in Eq. (22) are found in a similar manner, except that Eq. (8) is used in place
of (7).

*Sce G Borgiottl, Alta Frequenra 82, BOR (1963)
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: Appendix E
THE RESONATOR-FIELD HAMILTONIAN

The classical Hamiltonian for the most general resonator field is obtained by sub-
stituting Eqs. (20) into Eq. (31) and summing over all modes. In this appendix we will
carry out this calculation.

To simplify the algebra it is useful to separate Eq. (31) into a sum of terms, each
containing the energy contributed by one Cartesian component of the field. To obtain
the energy contributed by the x component of the electric field associated with the field
plane polarized in the x direction, we sum Eq. (20a) over all modes, set /1 - p2 +
khwN = BuyNV/1 - p2 (where kp,,n is real), and substitute it into Eq. (31). We then
find that

2L .2

Z glj J J {E(+ g,(x y, 2, t)} {Ef;:rln)M(x, Y, 2, t)} rdrd¢dz
nn'N 0 0 0 x
mm'M -
1 1 2
- _72.{- € Z { in+m+2ann’Namm J (+1)(p)\/_d,o J g},}(l)')vp’ dp' f ei(nim)e d¢
nn'N 0 0
mm'M
2L .
X J S[(k\/1 - p2 + k' Wz -~ D)IS[(Ry/1 - p'2 +E, 1))z - L)]dz
0 .
X J J, (kpr)d,, (ko'r)rdr + c.c.}
0
1 1 ' . 2
rge L { NOmm'M J i (0)\/p dp [ [eﬁ;'},,)?(p')] Vo' dp’ J eln-medg
nn'N 0 ‘ 0 0
mm'M ‘
2L ,
X J‘ S,[(knn’N‘/l -p%)(z - L)1S[(k,, V1 - 0'%)z - L)1dz
0 ) ‘
X J J,(kpr)d  (kp'r)rdr + c.c.}. _ (E1)
0
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The 0 integration is evaluated with the help of the identity in Eq. (C4). The integra-

tion over r is carried out using Eq. (C5). After the integration over p’, only terms for
which p' = p are nonvanishing. The integration over z can be carried out using

U
I 81k, 11 -2z - DISIK,, oy /1 - PPNz = L))z~ L8, 8. 8pr- (E2)
0

This equation follows from Eq. (C4), provided that the integral extends over the domain
of orthogonality for the sinusoids. This is not generally the case; however, if we assume
that c(‘),'. (p) can be taken to be zero outside of some domain where p << 1, then we find
from Eq (26) that

N’
k1= ‘*’(“;“L“) . (E3)

By substituting Eq. (E3) into (F2) and assuming that N’ can be approximated by an
integer (valid for paraxial resonator fields), we find that the integral extends over the
domain of orthogonality for the sinusoids.

After evaluation of the integrals in Eq. (E1) and after some reduction it takes the
form

1
2
**Le . , .
r %’A‘;m'MI ¢L"!y(p)[e:"") (p)] P88, 80 + cc
nr'N 0

1

el)\?
"L a.mwoz,wj ke (p)1%dp 4 c.c. (E4)
ndN ()

The right-hand side of Eq. (E4) gives the energy contributed by the x component of the
electric field for all modes which are plane polarized in the x direction. The energy con-
tributed by the other Cartesian components associated with these modes can be found in
the same way. The total energy contained in all of the x polarized modes, found by
summing over all contributions, is

1

el)\? .
= “T 2: (ann'Na:m'N ‘ann’Nann'N)J‘

2
10T )2 |2+ ~E—ldp.  (EF)
n'N 0

1-p2

It is evident from this expression that modes with different (n, n’, N) do not couple;
they contribute their energy independently to the total.

To find the energy contributed by the modes which are plane polarized in the y
direction, it Is first necessary to note that any two modes which are plane polarized in
orthogonal directions do not couple. Consider any field with two plane-polarized
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34 WILLIAM H. CARTER
components as given by Eq. (10). By substituting Eq. (5) into (10), and then substltutmg
(10) into (31), we find that

2 2
JC=7\_LLgﬂ_(z)|_ f_[ [el&(p. @)% + ul¥(p, 9)I%]

p2+q2<1
A2L|g(z)|2 2 [ ¢
H e, )2 (1-"_>+|&qu>!2 (1-_"_) dpdg.  (E6)
p2+q2<1 - mz m2 -

This result confirms our assumption that the two orthogonally polarized cdmponents of a
general field do not couple but contribute their energy independently to the total.

Since all modes with different (n, n', N) are independent, and since the two modes
with the same (n, n/, N) but different s contain the same energy (the field distributions
are the same but rotated 90° in space), we can obtain the total energy of the most
general resonator field simply by summing Eq. (E5) over s.  The Hamiltonian is put into
the standard form given by Eq. (32) simply by normalizing the angular spectrum.as given
by (83) and simplifying the notation by replacing (n, n', N, s) by the single symbol M.
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