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ABSTRACT

Using Maxwell’s electromagnetic equations anddefining
a superconductor as a conductor in which the magnetic
inductionis zero, expressions are obtained for the magnetic
field and surface currents about a superconducting torus for
several cases. First, two basic cases are solved, one in-
volving a scalar potential only and the other a vector
potential only. Then by superposing these two solutions
appropriately, other interesting cases are studied. From
these solutions are obtained expressions for the self-
inductance, magnetic moments, and other characteristic
quantities of the superconducting torus. These quantities
aretabulated for a number of tori. To facilitate computation
of quantities not adequately covered by the brief tables, ap-
proximate formulas are included in an appendix. Finally,
to illustrate the practical value of these calculations, the
behavior of a superconducting torus in a magnetic cycle
is studied.

PROBLEM STATUS
This report presents the findings of one of the math-
ematical investigations being conducted on the behavior of
superconducting systems.

AUTHORIZATION

NRL Problem P01-07R
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ELECTRODYNAMICS OF A SUPERCONDUCTING TORUS

INTRODUCTION

Experiments are frequently conducted using a superconducting
toroidal ring of cirecular cross section, the ring being placed in a
magnetic field applied perpendicularly to the plane of the torus.
Consequently, a calculation is presented here of the field and
current distributions, and other properties, of an ideal super-

conducting torus (with zero penetration depth).

In order that there be no resultant field inside the material
of a superconducting tbrus, surface currents arise which are dis-
tributed so as to produce a magnetic field equal and opposite to the
applied field within the material of the torus. Further, there may
be present surface currents, in the absence of an applied magnetie
field, for which the net current is not zero, but is produced by an
external supply, or is induced to conserve the flux enclosed by the
multiply-connected superconductor (torus) when the externmal field is
removed, In genmeral, the torus in a magnetic field applied perpen-
dicularly to its plane will possess surface currents which are a
superposition of these two types.

The basic electrodynamic problems solved here are the following
two types:

Case I. A superconducting torus in a uniform field applied per-

pendicularly to the plane of the torus, with zero net

o
-
Le
P

Ry
"

{ERIER



currents This is the Meissner-~Ochsenfeld effect
giving zero resultant magnetic field within the
material of the torus.

Case II. A superconducting torus in zero appliea field with net
current not zero. The current must be so distributed
over the surface that the resultant magnetic field
within the material of the torus is zero.

The results obtained for I and II can be utilized in the analysis of
the following casess

Case III. A net current is supplied by starting with an applied

magnetic field and with zero net current (Case I),
then removing the applied field leaving a net per-
sistent current (Case II). This case differs from
Case II in that the field and current distributions
for Case III are expressed in terms of the initial
appliéd fieid rather than the final net current, as
in Case II.

Case IV. Ceginning with zero applied field andno surface currents,
a magnefic field is applied inducing -a net current in
such a manner that the enclosed magnetic flux remains
zero. This is a superposition of Case I and Case II.

The basic cases, I and II are calculated rigorously with the

assumption that the penetration depth (~ 10~5 cm) is negligible. From

these cases, rigorous expressions in the form of infinite series are



obtained for cases III and IV by superposition after a determination has
been made of the enclosed flux for cases I and IT. In addition, a
rigorous expression is derived for the magnetic moment of the torus for
each of the four cases, and for the self-inductance of a superconducting
torus.
To make the calculations more immediately applicable, approximate
formulase are given for the maximum and minimum fields at the surface
of the torus for each of the four cases outlined above. Similarly,
approximate formulae are given for the moments and the self-inductance.
The error in each of these approximate formulae is easily evaluated
by comparison with the numerical results obtained by tabulation of the
rigorous formulae. This enables one to use the approximate formulae
with greater confidence. These formulae are collected in the appendix.
Finally, the results of these calculations are used to determine
the behavior of a superconducting torus subjected to a magnetic cycle

involving the suppression of superconductivity.

SOLUTION OF THE FIELD EQUATIONS
A. METHOD OF CALCULATION OF CASES T AND II

The assumptions made are that the penetration depth is negligible
relative to the thickness of the wire forming the torus, the normal
component of the field vanishes at the surface of the superconductor,

and the intermediate state is not involved.
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Case I. In this case we compute the external field—l-f and surface
current distribution J from a scalar potential V, the equations being

v*V=0 s externally, (1)

—H.z _— Srad V (2)

and the magnitude of the surface current J, in electrostatic units per cm.,

- cH
J= qi-—- (H at toroidal surface) (3)

-l
Case II, The field distribution H is calculated from the wvector

potential T, the equations for this case being

VXVXA =0 (4)
with V-A=0 (5)

The surface current is found from eqge. (3) and the total current I
is introduced in the usual way by taking the line integral of the magnetic
field around a closed path threaded once by the current,

These calculations are made in the toroidal coordinate system.

B. THE TOROIDAL COORDINATE SYSTEM
In this section, we shall describe the toroidal coordinate system

and give the differential operators in terms of these coordinates, without

1, 2

proaf, The transformation equations comnecting the familiar cylin-

1g, Bateman, Partial Differential Equations of Mathematieal Physics,
Camtridge University Press (1932). Chapter X.

2 E, W Hopson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge
University Press (1931), Sections 253-258.
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drical coordinates ( £, 6 »Z ) with the toroidal coordinates (s, € ,

@ ) are the following, the polar angle O tbeing identical in the two

SYTIONN

L]
e
-

systems

_ avs? —| ,
s - cos@ (7)
z= SSine
$-cos ¢ (8)
and conversely, 2
pFtz-=
cot ¢ = & az (9)

2 2
I ok R A S
°F (f2+ 22 a2 )* -4 a?p? (10)

It is customary to employ the ¢oordinate W= cosh"l s instead of s, as
is done here, but the solutions of our problem occur as functions of
coshp and consequently s is more convenient to use. Moreover, the
coordinate s, = constant which defines the toroidal surface of the
superéonductor has a simple geometrical meaning, namely, the ratio of
the mesn radius of the toroidal loop to the radius of the toroidal wire.
Fige. 1 shows a section of the toroidal coordinate system in a
8 = constant and © + 7 = constant plane, The s = constant surfaces are
tori, the tori for smaller values of s entirely enclosing those for
larger values of s. The value s = 1 designates the torus which fills
- all of the coordinate space and which, physically, corresponds to a
finite torus vhose inner rim is reduced to a point. The value s =0@

corresponds to an infinitely thin torus of radius g. Thus the symbol

-5



w=o02m |

CONSTANT
PLANE

Fig. 1 - Toroidal coordinate system



a which occurs in equations (7) through (10) is the scale factor of the

system. If R is the distance from the center of the circular cross section=

of a torus to the center of the loop (mean radius of a toroidal surface)

then g is connected to R by

a=RVsE-t /5% (11)

where s, is any particular toroidal surface (for example, the surface
of the wire)s
If we denote by r, the radius of the circular cross section of a

torus (for example, the radius of the wire forming a torus), then

so = R/r (12)

The two sets of surfaces orthogonal to the surfaces s = constant
are the half planes 9.= constant and the spherical bowls ¢ = constant.
The © = constant half planes are the same as the half planes of
cylindrical coordinates. The ‘f = constant spherical bowls all have
the fundamental circle s = oo , of radius a, as their common rim. When

® =0or 27 , the surface becomes flattened to the infinite plane
outside the fundamentaleircle and corresponds to the eylindrieal
coordinates z = O andf > a. When ¢ =70 , the surface is again
flattened and is the thin circular disc of radius g corresponding to
the eylindrical coordinates z = O and f< 2. In the upper half of
Fige 1,? hag the range, 0 < <57 < 7, , while in the lower half,
U< < 2,
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The directions of pesitive s, ¥, q

line element dl is given by

where

= N*[ds/(s1) + dy® + (s~ dB

N = a/(s-cos g)

‘]

are shown in Fig. 2.

(13)
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(14) =

From eq's. (13) and (14) we can deduce the following operator relations:

gradV

vV

(gradV)s

(gradV)|f

(VX

VAVES

A)= e [F7 5 (NAY) - 55 (NAS)

oy

_Ast-1 3NV
=N ?s
- 2Y
N 2y

AN

NJs*-t 260

{ (N(s _‘))V) ‘Y(N aV) + J\-L

C. GENERAL SOLUTION OF THE DIFFLERENTIAL EQUATIONS

Case 1:

to the Plane of the T

Torus, with Zero Net Current -

The Laplace squation governing V is

-9 -
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(15)
(16)

(17)

(18)

(19)

(20)

(21)

(22)

A Superconducting Torus in a Uniform Field Applied Perpendicularly



ds \ s-cos ¢ 3s P@\s-cosy Iy
(23)
since the symmetry of the problem shows that V will be independent of
the coordinate £ . The equation can be separated if we write
V=+s"cos ¢ U (24)
and then separate the equation for U by writing
U (s,9) = SG6) & (g) (25)
giving
2'_2_‘% +nd=0 |
@ (26)
d [ ydS)_(n2-2)S =0
ds [“ ) 98] -("*-#)S (27)
2

where n~ is the separation constant.
Since there is no net current in this case, the potential must be

single valued so that

V = m [boE% () +ian:Pn—~5 (5) sin ny +Z bnﬁ\-i (s)cos mf] (28)
n=1 n=t

The symbols Pn_i(s\ (n=0,1, 2, - - =) are .half—odd integer Legendre
functions, of the first kind satisfying the differential equation (27).
Those of the second kind Q.n‘./1 (s) become infinite at s = 1 and are not
suitatle for representing the expansion of V. The properties of these
functions will be discussed in a later section.

The components of H are, according to eq's. (2) and (15), (16),

(17, M= - (s—cos @)VsTol. V.
s~ Q ds (29)

- 10 -
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$ - 0% Vv

s o

(30)
with Hg = 0.

Case II: A Superconducting Torus in Zero Applied Field with Net Current

Not Zero -

From symmetry, there will be only one component of the
~ current vector, namely the 6-component. Therefore, the only component

of T will be 4, which we shall briefly denote by A. Eqe (4) becomes

‘152" [(s «ws ‘Y)?s S-cos A)] (S- s—ooscy]—‘
(31)
We can separate the differential equation by writing
A =Vs=cosy T(s)@(q’) (32)
and find that
Jd°P 0
= T ¢ (33)
and .
.é. + 0~ T =0
If we write T ==&\/sz -1 g—ss- where S is the solution of eq. (27), wm
find that T satisfies (34) so that A is given by
a0
1 = 1 1
A=vVs-cosg {(b°+ a,¢) P, (s)"'ZanB\-i(s)S‘m ny +Zh\f,’,_i(9)ws“ ‘f] ,
2 n=t n=t 35)

AT31SSYTINN



E. NOESERY dayl(e)/ds_ % -,(s) -
(36) '

and Pr:i (s) 4s the associated half-odd integer Legendre function of
the first lkind and of first order. Those of the second kind become
infinite at infinity and are therefore excluded.

The components of_f, according to eq's. (6) and (19), (20), (21)

= Hy=-2RYA + 25008 55
(37)
$cos @~ 1| (s-cos g)VET=T DA
H‘f:'a_j;%_;\ a S
| (38)
with Hy = 0

D, THE HALF-ODD INTEGER LEGENDRE FUNCTIONS OF THE FIRST KIND
A convenient form for the representation of the half-odd integer d
- Legendre functions . (s) S 2 1, 1s the Laplace second integral 3

w
dy (39)
7c, JGs Ty cosg)'

R.y(s) =

For the case n = 0, w get

. (s)= 2 sV Vot K(k) | (40)

"
where K(k! =;,/a§/1/'-R‘S""z§ is the complete elliptic integral of the

first Xind and _ 2 J;‘:T
s+Vs2 (41)

3 E. T. Whittaker and G. N, Watson, Modern Analysis, Cambridge University -
 Press, (1927), section 15.23. ‘

VAN
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245 v
Similarly ‘D;(sb————'s;s E (K

(42)

where E is the complete elliptical integral of the second kind, and
k is defined by eq. (41).
Values of Bn.yls) for n> 1 can be obtained from these by recurrence
formulae, 4
An alternative expression for P, (s) and for F,(s) can be found
in a few lines by an analysis of the differential equation (27). The
Riemann P - equation for eq. (27) is the scheme (treating s as a complex

veriable for the moment), -

-1 +1 o
PPy o o m o »
o 0 -n+3

To find P

-l
z

(43) by making the homographic substitution

(s) we set n = O and transform the Riemann P =- equation

t=(s-1)/(s+1) (44)
obtaining S
I o
Ri(g)=P! o 4 o t\
los o |
fo!7
or R;l(skVT:‘{P o o 3% t}
1 © o 3 (45)

Thus, the relation for R,(s) becomes

Py =yE P37 3505 35) \46)

4 Ref. 3, section 15.21.

- 13 =
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where F is the hypergeometric function. Bui, the complete elliptic
integral of the first kind K(k) is related to the hypergeometric

function by 5
K =FF(4:4:5K) )

so that

Pt (s) = ;z‘_-\/-;r;,- K (\/g)

(48)

From eq. (48) and the recurrence formula relating Pé (s) with P, (s)
and JP(s)/ds , 4

B =2 [20/3F EW -vihe K@) (49)

where
k= VE

(50)

and should not be confused with the k of eq's. (40), (41), (42).

Fig. 3 shows a plot of Pn_& (s) for several values of ne. For large

values of s,

o [Z 2T men "
RM-'&(S) \[; r(n+}\ 2 n>0 (51)

For 8 =1, Fhy(l) = 1, for all values of n. (52)

5 E. T. Copson, Theory of Fumctions of a Complex Variable, Oxford
University Press (1935), ppe 245, 3%

-1, -
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B, THE HALF-O0DD INTEGER LEGENDRE FUNCTIONS OF THE SECOND KIND

The convenient expression far Q,_4(s), the half-odd integer

Legendre function of the secomd kind, is .

7
ne d
Quyled =7, 7‘2%{%—;’; (53)

Putting n = 0, and transforming the integral appropriately, we can show

Q.; () =2 KWZ) (54)
Using the recurrence farmula 6

Qi(‘)= s Q_ssh 2(s*- N dQ-§sVds

that

wo get from (54)
Q, ()= sy KT - 2/22 E(Z) (55)

Recurrence formulae can be established for these functions and are
6
jdentical with those for ﬁ,i(s), with Qn-i(s) replacing P,,_{ (s).
Fig. 4 shows a plot of () _ (s) far several valves of n. For
z

large s,

7w L'(n+d ~(n+1)
Qh_{(s)"'\[;_ 2" (n+1) * (56)

A relation between these Legendre functions of the first and second

kinds which we shall often need is the following
(n+3) RH(S)Q.,_JL(S) - E,-Jz(S)Qnﬂ(s)]r- | (57)

6 Ref. 3, section 15.32.

- 16 -
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for n= b, 1, 2,- - -. This can be shown by proving that ege. (57) is r
true for n = O using eq's. (48), (49), (54) and (55), then using the
recurrence formulae (loc. cit.4, 6) to show that the expression in

eq. (57) is equal to a similar expressiocn with (n - 1) replacing n.

B, CASE I: FIELD AND CURRENT DISTRIBUTION
In the remainder of the report we shall simplify the writing by

employing the abbreviated symbols Fny=F_i(s), Q.. = Q.- (s),

p

—
n--i -

surface of the superconducting torus.

F:_ll(s‘,\ Py Q,\_,‘E Qn-g (s.) y and so forth, where s, is the

We begin by finding an expression for the uniform applied magnetic
field. Let V, be the potential of the uniform applied field H, so that

a sin
\/..-—Hz.—H—_—-‘L-ws“f |
slng (58) ‘

=-aHoVs -wsy

(s
] .

Now (s-cosg) % can be expanded in terms of the solutions of eq. (23).
The expansion, given in terms of Legendre functions of the second kind,

is,7

(s- ws‘f)% £—Q + 2% ZQﬂ' osng  (59)

By taking the derivative of both sides of eq. (59) with respect to g,

we find that o
-—i:.i__— = __"_/:-_ sin N@.
(s-cosgl® ot Z 3 S0
n:
from which

Vo= _ 42 a H Vs g Zn Q"‘i sin ng (60)

¥ Ret. 2, p. 443



This expansion diverges at s = 1, but is to be used only as an auxiliary

relation to enable us to match boundary conditions later,on the sur-

A3ITITSSYTINN

face 8, > 1,where the Q"-i functions are finite. Then, the portion
of the resultant field due to the applied field will be expressed again
in closed form as in eq. (58).

The potential for Case I will be written as consisting of two
perts, that due to the uniform applied field given by eq's. (58) or
(60) and an added potential V, which is given by eq. (28) and whose
coefficients are so chosen that the normal component of the field
Hg = - grad g (V + V,) shall be zero at s = 8,, that is, at the surface of the
torus.

Considerations of symmetry show that the field must be perpendicular
to the z = 0 plane, that is, Hy = O when Q’e 0, T, By taking the gradient
of eq. (28), we see that this requires that b, =b,= 0 , so that Vl

must be represented by a sine series just as V° +» Hence writing

V=\,+V
B = 4vZall
we have x
V= V.s-cosq?Z (anE\-i - nBQr\—-&)s.ln ny (61)
n=\4
and alternatively f H oo
oS .
V=1/s- -Cos¢ l~ (‘: w::;; +ZQ“E__!L sin m.f} (62)
n=z§ .

-19 -



Wo take = (grad)g of eq. (61) using eq. (29) and reduce the

result with the recurrence farmulae
1 ’ V 4 r
3Py +sPL =3 (R, + Rlx)

(63)
’ ’
3Quy +5QL . =1 (Qhuy + Qh3)

(64)
derivable from the usual recurrence farmulae, where the prime denotes
first derivative with respect to s. 4lso, we let

) = a"+l— %n
n T Apn — Qq-y
Az = aQa 2 - al
and .
A, = a, (65)

The result for H is

@Z{ n+ m.gf E,:g “B(Q:»& - an—-?,)]'s;n "Y} (é6)

At s,y Hg = 0, for all values of g 5 so that

o 1 0 31
An-HPrM-}‘ - AV\E-; -B (étu-* :-g) =0 (6’7)

From the recurrence formula expressed by eq. (67), we can write
- — in terms of 4. The result is
n [ 1 o1 o .
B; [ Qui - Ql-%l?—ﬁ P-; P
=1 + p

(68)

-

Nl
>

ner 1 Pl
n+dg In-3
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Al can be determined from the condition that the line integral of
the magnetic field around a curve threaded by the torus is zero,
since the net current is zero. The easiest path along which to inte-
grate is that for which s = constant < 85 and in a 6 = constant plane.
The component of the magnetic field along such a path is just H‘f o
It is evident that any line integral in the uniform applied field
will be zero, so we consider only that part of the field Hyp due 1o

V.. In this case the line integral, using eq. (13) with ds = d8 = O,

1
is
55H ou- “H"' dy =0
S - (.OSC{ (69)

<5, s45,

Now, from eq. (30), the V; part of eq. (62), and from eq. (65), we

obtain for Hly ’
Ry A Nne— A P S N 1
H‘l‘f Vs ‘f (&_ 4 E (ﬂ+ 3) "l M,J. —(n-3)Anti gl‘a q ‘(70)

2

Substituting eq. (70) into (69) and referring to the integral repre-

sentation of Qh-i given by eqe (53) we get
Y A 044) (Pry Quoy — By Quuy) = 0
n=0

which, in view of (57) reduces to

i A. =0 (71)
n=t

-21 -
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Equations (68) and (71) together give

ad - 1 24 181 72
A —2aH, F-‘Z [ z, [Qu% - Q% 72
T - ==
with oo
= ﬁl él *1'_1
F=&F Zo s By (73)

Thus the problem of Case I is essentially solved. Befare collecting
the parts of the solution together, we introduce the further simpli-

fication

Q1’4_; - Q;_% =24 Ql--'-

2

and A . 8¥7a H,

ner 9

a’nl'l

The magnetic field distridution and surface current distribution

far Case I:

H,/H,= Tt sing + qr"—:'?Z(%.RL - @, Rg)sin g

-Cosg - (74)
o /= 22rzs o+ 5 vy [
+Z [(2n+\)otm‘\°.,+l —(2n-1)%n 2 n-g. cos nq‘
(75)
w -
J < H° = -S_o__cff_‘f_._! + lﬁm &&E +Z {(2'\+I)dn+|.é+-; ‘u"")«‘n-Pn--i ws"‘f}
Yt So~cwos g T o
(76)



where

- -4
n=i LER S n-3

(F is given by eq. (73))

nw o, ° .
and Z: ) Qt-i B’, P; a" @
& = + o 1

! é:i Fﬁv)\f— n:% P'\"’é

J is in electrostatic units per em. To express the current 'density in
amperes per Cm., let J, be the surface current density in amperes per

cme Then replace J/c in eq. (76) by J,/10.

G, CASE IT: FIELD AND CURRENT DISTRIBUTION

The detailed calculations for this case are somewhat more
lsborious than those of Section Fo But as in Section F, we shall con-
fine our remarks to the broad outlines of the calculation.

As befare, we begin by caleulating Hg, using veq's. (35) and (37).
From symmetry H, must be zero in the ¢ = (0,9¢ ) plane, that is the
field is perpendicular to this plane. This consideration taken to-
gether with the condition that Hy be single valued in ‘f’ s leads to

a, = 0, n > 0. This leaves

H$= s~c057 {Z an Slrﬂf cosng
ZSE“b P -y Smn(f

2 E b Ry g s |

a=zl

- 23 =

(77)

(78)
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The quaentity enclosed in the braces must be expressed entirely in a

sine series.

introducing the constants
Bnﬂ =(n+ ?3) L’ﬁn - (“‘é)bn

B, =(n+3)b, - (n—-’;\\)n-\\

» o o .

B, :—%_bl“%.bl

@
"
njw
O
-+

fon

H8 becomes

M, @Z[Bw ma = BRI ]y

Whens-so,ﬁs-o,farallvaluesofty o Thus

=B, /%,

IH'I

which leads by successive application to

_BB
Bm\_ 1 p' B

n+i ‘n-%

To find By, we proceed somewhat as in Section F. That is we

in terms of B, and take a line integral of Hy around 2

express H? 1
circular path 8 = constant < s,e

Then, by appropriate use of the recurrence formulae and

(79)

(80)

v



) In view of the conventions adOp’oed in Section B (see Fig. 2),

. | _e=Io (Hgat =
‘ f S-coscr (81)

d3TITSSYIOND

with s = constant < 8, I is in electrostatic units and is the net

current in the torus.

To find H s Wo use eqe (35) with a, = 0 and eq. (38). Just

)
as H; was expreased as a sine series, so H'f must be expressed as a
cosine series, This trigonametric transfarmation and the successive
reduetion of the coefficients of the trigonometric terms by use of
the recurrence formulse is much more tedious than in Section F.
However, by using eq. (80) when the expression has been properly
reduced, the end result is

. S ~ (oS B! n+4) Py _(n- -4)R-3] cos ng
H,= ———-‘fB.lz‘? +R'E Z[ 5 T Q‘_,z_} (g2)

To integrate (81) we write H.’ as

H?z \/;c_a:fnz f;‘(s) ws ng (83)

and substitute into (8l). With the help of eq. (53) the integration
of eq. (81) yields

I =
~21 =vT) £09Q.,0)

n=0

Replacing fn(s) by the carresponding terms in eqs. (82) and (83) and
using eq. (57) we get

== c (84)



vhere F is defined by eq. (73).

Tl;erefm'e s the megnetic field and surface current distributioms
for Case II, when account is taken of eq. (11) and I/c is replaced
by I,/10, where I, is the current in amperes, are

HR/1,=-EE i F Yoy B F;Z[—gl -55;]3%::1 "

00

21t S, os 1' +i)R+i (n-i)P-g cosny
Hs’R/If-%ﬁ‘-' Fvecey §+2€ ﬂ:.t L-‘ 86)

n=1 n- 3

2 ot il
I L GO v et (on

CHARAGTERISTIC QUANTITIES

H, COMPUTATION OF FLUX AND SOLUTION OF CASES IIT AND IV BY SUPERPOSITION
‘ ""."In'c.‘a.se IIT, we wish to £ind expressions far H and T due to a per-

siste.nt current remaining after removal of the applied field. We shall

assume that the persistent current remsining is just the amount required

to maintain the flux in the ring at the value which existed when the

torus was in an applied field Ho and had no net current. This means

that the torus begins in a situation portrayed by Case I and ends in

Case II. The solution of the problem will follow immediately after

the flux far Cases I and II have been determined.

- 26 =



Starting with no applied field and no surface currents, a field
is applied and a net current induced in such a manner that the enclosed-
flux is zeros This is Case IV, and is solved as soon as we know the
fluxes of Cases I and II since we need only oppose equal and opposite
fluxes to complete the solutiom.

We shall use the symbol & to indicate flux (not to be confused
with the symbol & 1in eq's. (26) and (33)). 4 superseript I, II, III,
or IV on any of the physical quantities flux, field, current,moment,
etc., will indicate the case which the quantity represents.

To compute the flux ® for Cases I and II, we take the surface
integral of the field over the 4= plane from s = 1 to s = g The
non-vanishing component of magnetic field is H.f and since ¢ =3 ,
we write this as H,.

&= [H,dA -
where dA is the element of area. dA = 25 pdp  in the z = O plane.

In toroidal coordinates, putting ¢ =sr , we have
So

- Hﬂ:dS
@ =2na .]‘(s+l\z

2
s=1

By inspection of eq's. (75) and (86), with ¢ =% , we see that the
general term for Hy 1is of the form Vs + 1 P,.-i in both cases

so that we have the following types of integrals to evaluate.

[ Poaldds (89)
Cpooy = fBslilds

(s+1)

GATATSSVIOND



When the upper limit is s,y we write é““iv for the integrale.
To integrate Gy /29 we refer back to the elliptie integral

expression far P eq. (48), with k=-[321 | Thus
Xpr _1/2, q ’ oy

C.o= 2 i‘_/.: kK(k) dk (90)

on transforming from s to k. Integration by parts yields

2 Cym BB [ -7 3 ) (52)

On the other hand, using the relation

which 1s one of the standard expressions relating K and E, we can deduce
that

C., = 28 (K-E)- f k] (92)

2
2

By subtracting eq. (92) from eq. (91) wo can eliminate the integral.
Then transforming fram K and B to P, Fi by means of eq's. (48) and
(49) we obtain as our final result

C, = P-;‘; - E‘Q
2 Vs+i : (93)
Similarly, we can deduce that
C. _ (2s+|)P-i —3‘?& ' (94)
L '\/54—!



Forn»1in C, +4 we derive a recurrence farmula from the

standard recurrence formulae connecting the Pm--’z- functions of

j P“"z JS
(si")

various degrees. To ewvaluate

we begin by setting up the identity

é_ B.d—ﬁ‘\-i\_ Pmy pn— _ 4 Pn.)g_"'?‘—-/;
Tl A e 2 (s+n)%

By means of the recurrence formulae

(s*~1) Pn’oi = (n+%)(se.+‘; - pn--;)

(st-1) pn’.xi =(n+ ‘;.)(P'n.;_ ~s e\-i)

we can show that the identity we wrote tramsfarms to

i_(_ﬁn_:fﬂ-)z nB. + () By
s s +1

(s+1)%

Integrating this expression with respeet to s, we obtain

'?Ni - Pn-"
Vs+1\

= "Cmi + (n+1) Cn—-'i

or finally
,%‘i.:f—"—i - (| *Jﬁ)c"’i

\
an} =W VYs+ (95)

This holds far n= 1, 2, 3 - = = « It is indeterminate for n = O.

- 29 =
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Therefore
1

® - _ G -1)* + ‘I'/- s. ( xC. +Z( |) (2n+=)utm. ém,i (96)
s R* H, So" | ~(2n-1) %n é”__ ] }
Similarly, |

I 2_\/——1—_— -t o 100 (..»,{)C...i__ (n-z)Cng
el SRR G |

A

(97)

To determine the field and current distributions far Case IIT, we
X .
set @ = @n o We denote by rhs(96) and rhs(97) the right hand

sides of the respective equations. Then

IA= RH,* [rhs(96)] / {rks(?"!)]

If w put G = - [rhs(‘)é)] |
- [rhs (97)] | - (98)

we can write

1, = RH.G
(99)

¢
The magnetic field distribution and surface c¢urrent distribution
for Case IIT are then obtained by substituting far I, in eq's. (85),
(86), (87) of Case II. It is not mecessary to write the expressioms
explicitly here.
Case IV is a superposition of Cases I and III. The relation can

be summarized as
— I

— 1
=H ~H (100)
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padh i L4
Obviously, since T' and ® have been matched in regard to their

fluxes, the flux due to B within the ring is zero. &, & and
G are tabulated in Table T. © |
TABLE I
FLUX FOR CASES I AND IT

=2 § /xRt -®"/L,R G

(] r - o (2

(1) (2) (3) (4)
1.2 1.2562 x 10°L 1.2721 x 10+ 3,102/ x 10°
1ok 2.6596 T n 2.086, " m BT "
1.6 3.8156 " L6714 M 2.5660 M
1.8 4e7354 M 6.2421 M 2.3833 ®
2.0 5.4680 M 7.6859 M 2.2350 M
3.0 7.5404 M 1.3353 x 10 1,771 "
4e0 8.4411 0 1736 00 1.5088 0
5.0 8.,9152 n 2.0395 " 1.3733 n
6.0 9.1972 " 2.2852 1,264 "
7.0 9.3793 " 2,4907 ® 1.1830 "
8.0 9.5043 M 2.6673 0 1.1194
9.0 9.5040 " 2.8220 0 1.0681 °
10.0 9.6608 M 2,9596 M 1.0255  °
I. SELP-INDUCTANCE

The self-inductance L of a superconducting torus in terms of the
flux and current I, is (in henries)
=100™/T
L=l A (101)

& By s Pn&-’i and the carresponding functions of the second kind are
tabulated in Tables of Associated Legendre Functions, Columbia Uni-
versity Press, New York (1945). These functions are tabulated for
valuesn=-1, 0,1, 2, 3, 4, m =0, 1, 2, 3, 4 and s from 1.0 to
1000 (ﬂ.nt'ervals of 001):

- 3] -
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This can be shown by beginning with energy relations comnecting

Ipy L and‘ﬁiand remembering thatlthe resultant magnetic field inside
the material of the torus is zero. Transformation of the volume
integral of the magnetic energy by Green's theorem then leads to
eqe. (101), 2 |

Thus, if we put L in millihenries,

n+z z)én-&‘i (ﬂ"%

L./R-—w/"ar lOéEF {é + 2R PZ( ) [( - “?‘:2_‘;_%}

n#& n-% n-i

in millihenries/cm.

To obtain numerical values of L/R in millihenries/cm. far the
values of so = R/r shown in column (1) of Table I, multiply the
(absolute) values recorded in column (3) of Table I by 10"°. For ex-
ample, when so = 4, L/R = 1.7346 x 1077 mh./cm.k Fig. 5 shows a graph

of eq. (102).

J. MAGNETIC MOMENTS
Let H represent the moment of a torus in any one of the Cases I,

II’ III, or IV. Then
M = f"‘f’ Sora I
where dl, is the line element, in the surface, perpendicular to J ..

theres M is in magnetic units (pole-em, or dyne-cm./gauss).

9 Mo Abraham and Re. Becker, The Classical Theory of Electricity and
Magnetism, Blackie and Son Limited, London (1937), p. 169. The
proof sketched there can be adapted easily to the superconducting
torus.

_33-

AITITSSYTIONN



Converting to toroidal coordinates

M= 27 R’.(i_;.'_) f( Jemu d (103)

% - cos g)°
Examination of eq's. (76) and (87) showsthat the integrals in-

volved on substitution for Jemu are
nx

(:i::s;’;? —3(5,, l)éi- n=0,1,2,"" (104)
(-]
and j - ES
(s, -cos'f) IGCRDL (105)

Eqe (104) can be derived by differentiating eq. (53) twice under the
integral sign with respect to s and then multiplying by (s? - 1) since

Q:__;_ = (s*=1) szn-i /dsz

Similarly, eq. (105) can be derived from 10

.
—ﬂ— = ——I—_——'
J s-cosg 52y

Using (104) and (105) we have for the moment M® of Case I,
_ 2 %
M/ArRH, = o2 + 2 (- %5) {wPQ

00 P
+ Y [@nriltan Ry —2n- R 3]Q0
nzﬂ[ Nel 'ne

Far Case II, the moment MY  is
2 42 e 1,81 (Mi)éwi (n-4)R-3
Mly‘ﬁR IA=~l—!3-(l";{i)Fl {F;Qz_'i 2P¢Z[eli n—{ ﬁ ‘5“1_ ]Qﬂ-}
(107)

Vg, B, Dwight, Tables of Integrals, the Macmillan Company, New York
(1947), Ttem No. £59.21. Eratss P



The negative sign simply means that when IA is in the direction
of increasing 6 (Fig. 2), MY 1is in the direction of decreasing P
(ar increasing z, Fig. 2).
Far Case III
T ME _36 (.ﬂ—n )
e ELE (208)
For Case IV
1
MY ™M U P
rer=rrl Bl PR B FE D (109)
Graphs of the moments ut ’ u" ’ u" » and M~ are showm in
Figs. 6, 7, 8, and 9, respectively.
The moments are tabulated in Table II (magnitudes only)
TABLE 11
MAGNETIC HIOMENTS
M’.l Mn Mm Mﬁ
s=Rir i, xR, EnRH. i3 FH,
(1) (2) (3) (4) (5)
1.2 5400 xol 1256 302 2,922 x072 . 5,692 x0T
1.4 3.9790 2.6 0 50582 0 4537
1.6 3.0411 ¢ 3.8155 " 73430 ® 3.7725 ®
1.8 2,390 L7354 W 844643 " 342425 "
2 1.9349 ® 54681 9.1659 " 2.8515
3 8.5001 x10™2  7.5405 ° 1.0033 x1071  1.8533 "
4 4o7508  ® 8.4411 M 9.6787 %1072 1.4430 ®
5 3,0293 1 8.9152 n 9.1825 0 l.2212  ®
6 2,008 9.1972 ¢ 8.,7216 ® 1.0820 ¢
7 1.5395 " 9.3793 " 8.3220 " 9.8615 x10™2
8 1.1X774 9.5043 " T7.9797 ® 9.1571 ¢
9 942955 x10'3 9.5940 M 7.6853 " 8.6149 M
10 Te5247 ® 9.6607 ¢ 74302 8.,1827 »

- 35 =
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K., MAXIMUM AND MINIMUM FIELDS
In experiments involving superconductors, it is desirable to

know for what value of applied field, or of persistent current, the
field at some place on the surface attains the eritical value. Thus,
if we know the maximum value of the resultant field at the surface

of the torus in terms of the applied field or indueced current, the
condition for critiecal field at the surface of the torus can be com=
puteds In addition, if we know the minimum field at the surface of
the torus, we can obtain a rough idea of the field and current distri-
butions, with the aid of qualitative drawings, without a detailed com-
putation of the infinite series representations. For this purpose,
Table III gives the minimum and maximum fields for Cases I and II

and Table IV for Cases III and IV, The subscripts 7T and 23 refer
to the coordinate ¢ and indicate the inner rim and outer rim of the
“torus, respectively. Only magnitudes are tabulated. Figs. 10, 11, 12
and 13 show plots for the outer and immer fields for Cases I, I1, III

and IV,

- 40 -



OUTER AND INNER RIM FIELDS, CASES I AND II

TABLE III

5,=R/r Hx / Ho Hae /Ho Hy R/L, Hox R/I
Inner Outer Inner Outer
(Max) (Neither) (Max.) (Min.)
(1) (2) (3) (4) (5)
1.2 LeT434 1.8082 1.5289 5,04 x10™3
1.4 3.5688 1.8291 1.2757 1.461 x107°
1.6 3.0916 1.8449 1.2056 2,727
1.8 2.8304 1.8573 1.1902 4.2/19 M
2 2.6559 1.8674 1.1987 5,9640 M
3 2.3236 1.9002 1.3544 1.6804 x0~L
L 2,2089 1.9188 1.5594 3,0047 M
5 2,1528 1.9311 1.7740 L4734 M
6 2.1198 1.9400 1.9906 6.0378 "
7 2.0983 1.9468 2.2072 7.6699 M
8 2,0832 1.9522 2.4231 9.3522 "
9 2,0720 1.9566 2.63¢81 1.1073 x10
10 2.0634 1.9602 2.8522 1.2825
15 2.0395 1.9718 3.9119 2.1881 "
20 2,0286 1.9781 49580 3.1225

- 4] -
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TABLE

Iv

OUTER AND INNER RIM FIELDS, CASES III AND IV

o Y
S= R/r H]:/Ho H::/Ho H.". /Ho HZW/HO
Inner Outer Inner Outer
(Max.) (Min,) (Neither) (Max.)
(1) (2) (3) (4) (5)
1.2 4,743 1.562 x107° ~0 ., l.s23
1.4 3,569 4,087 " 3 x10 1.8700
1.6 3,0936 6.9976 " 2.0 x10™0  1,9148
1.8 2.8366 1.0110 x10~1 6.2 " 1.9584
2 2.6791 1.3330 1.31 x10™2  2.0007
3 2.4029 2,9813 " 7,93 " 2.1983
4 2.3841 4,5937 " 1.752 x10”1  2.3781
5 2.4362 6.1434 " 2.834 " 2.5454
6 2.5168 7.6341 " 3.970 " 2.7034
7 2.6111 9,0736 " 5.128 " 2.8542
8 2.7125 1.0469 x100 6.293 " 2.,9991
9 2.8177 1.1827 " 7,457 " 3.1393
10 2.9249 1.3152 " 8.616 " _  3,2753
15 3.4681 1.9399 " 1.4286 X/0° 13,9116
20 4,0024 2.5206 " 1.9738 " 4.4987
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INNER RIM, o=7

J— OUTER RIM, @=27
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Fig. 10 - Plot of field strength at inner and outer rim
of the toroidal surface: C(Case I
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Fig. 11 - Plot of field strength at inner and outer rim
of the toroidal surface: Case II
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BEEAVIOR OF A SUPERCONDUCTING TORUS UNDER MAGNETIC CYCLING
A number of experiments and deseriptions concerning the behavior
of the moment of a superconducting torus in a variable applied magnetic
field appear in the literature, but perhaps the clearest exposition
18 that which appears in Shoenberg's book on superconductivity. 1
In Fig. 14, a hysteresis loop for a superconducting torué of

ratio s, = R/r = 4, is plotted, this being the size used in one of

o
Shoenberg's papers. 12 The so0lid lines in Fig. 14 are for the super-
conductor in the ideal state and are subject to the calculations of this
report when we introduce the additional piovision that the surface currents
are limited in such a manner that the maximum value of the magnetic field
at the surface of the superconductor shall not exceed a certain critical
value Hk. In view of eq. (3), this can also be considered as a restriction
on the maximum allowable value for surface current density. This means
that the persistent current wiil conserve flux, when the applied field
changes, only to the extent that the critical field value is not exceeded
at the surface of the superconductor. We shall use the same units as
Shoenberg in our discussion. 11 pa i/ %—n Raﬁk is the moment M of

the torus divided by the volume of a sphere whose radius is the same as
the mean radius R of the torus and also divided by Hk. h is the ratio

of the applied field Hb to the critical field Hy,. The facts concerning

the intermediate state incorporated in the broken lines of Fig. 14 are

11 p, Shoenberg, Superconductivity, Cambridge University Press, (1938),
Chapter IV, '

12
D. Shoenberg, Proc. Roy. Soce, 155, 712-726 (1936).
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those given by Shoenberg and others from experiment and are not amenable

to the calculations of this report, but are accepted ad hoe.

Line OA:

Line AC:

Beginning at O, with no applied field or persistent current,
h is gradually increased. From Table II, column (5), the
eqe of OA is m = 0,1443 h. This line ends at A when the
eritical field is reached. From Table IV, column (5),

this is reached at the outer rim (¢ = 2r) first, and
actually at h = (2.3781)~1 = 0,42050, with m at A equal

to 0.060676.

If it were not for the critical field condition, an in-
crease in h beyond 0.42050 would result in a prolongation
of 04, But now, any current density on the surface of the
superconductor tending to exceed the value associated with
B is dissipated somehow, Thus the net persistent current
will not incresse, but will actually decrease in order that
the field at 3’ = 2Im remain critical.s In the meantime, the
field at §’= T will increase with increasing h until it
likewise attains the eritical velue. Thus we have the

line segment 4AC, terminating at C when the value of the
field at @ = 77 has likewise reached Hk so0 that the field at

both inner and outer rim is critical.

(Such expressions as "the superconductivity is destroyed just long

enough to permit some of the lines to cross the ring and increase the

- 49 -
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enclosed flux,"™ have no meaning and are actually nincorrect electro-
dynamics. The current merely fails to increase enough to compensate for
the applied field increases and maintain zero flux. One must use the
superposition principle. Zero field inside the meterial of a super-
conductor means an equilibrium of magnetic force ‘fields , an equilibrium
between applied field Ho and "spontaneously" induced field -Ho due to
induced surface currents. This means that the resultant —I;is zero. In
electrodynamics, as in mechanics, "force equilibrium" has an entirely
different meaning than "absence of forces.")
From Table III, column (3) and colurmn (5), the field at the outer rim
is given by
He = 1.9188 H, + 0.30047 I,/R (@ = 2m) -
From Table II, column (2) and (3) we have
M = 0.047508 H, £ r® + 0,080411 7R°I,
From these two equations, it follows that
m = 0,21070 - 0,35677h
is the equation of line AC,
The terminus C is reached when Hh = Hk’ or
Hy = 242089 Hy = 145594 I,/R (g = m)
On the way to C, the field at the inner rim reverses sign and
becomes parallel to the applied field and the field at the outer rim,.
A Cy, m = 0,029194

h = 0.50874 . ,



Further increase in h must put the superconductor either in an
"intermediate state™ or into the "normal state." For no arrangement of
surface currents, obeying our analysis for ideal superconducting tori,
will result in a field less than or equal to the critical field at the
outer and inner rims. ZExperiment shows that the superconductor enters
a so-called "intermediaste state™ which endures until the applied field
h = 1. The superconductor acts as though the permeasbility K has some
value between zsro and unity, rather than zero as for the ideal super-
conductor.,

Lines OD, DF: Consider the case of a torus split in a manner such that

persistent (flux conserving) currents cannot occur.
The relationship between the moment and applied field

for this case is the line 0D. The equation for OD is
(Table II, column (2))

m = 0,047508h

D is reached when the field at the imnner rim, where it is

maximum, reaches H . From Table III, column (2), this
occurs at

h = (2.2089)"% = 0.45271

and for m at

m = 0,021507 .

Beyond D, the field at the surface of the torus would
exceed Hk if the torus would remain in the ideal state.
However, the magnetic moment, by~experiment (Shoenberg
decreases linearly to zero as h —e1, The path ODF is

4

reversible.

- 5] -

11, 12,

TINN

e =1
L]
L]
L)

HERE



Lines CE, EF:

Line FD:

According to experiment, the torus, which wes carried

to the state C via OA, AC, drops to E and then follows

the split torus path EF reversibly. This was tzken by
Shoenberg to mean that beyond C, the torus has no per-
sistent current and is indistinguishable from a split
torus. This, of course, neglects the effect of the split
other than its prevention of persistent currents., A&t C,
there still remains & net current, of amount I,/RH = 0.07936
amperes per gauss cm. This accounts for the difference in
m between the points O and E. Any attempt to inerease h
beyond its value at C immediately throws the torus into
the intermediate state where persistent currents can

no longer maintain themselves and it drops to E and
follows the split ring course to F.

Not until D is reached, on the return from F, can the
superconductor exist in the ideal state. Any attempt to
set up persistent currents to conserve fiux sonewhere
along FD would result in the field at § = 11 exceeding

Hk. The net current was such as to subtract field from

the "case I field at ? = T along the path from A to C,

~but ‘on the return from F, a net current would add field

to the "Case I" field. When D is reached, the field at

the inner rim is maximum and is equal to the critical

- 52 =



Line DG:

field. Thus on the return path from F to D, the behavior
of the torus does not differ from that of a split ring.
One might hope that in decreasing the field h from the
value at D, the flux value at D would be conserved.
However, the current required to conserve the flux at its
D value turns out to be such as to give rise to a field
exceeding critical field at the inner rim. Only as much
persistent current will flow as can occur without the
magnetic field surpassing H£ at the surface of the torus.
Referring to columns (2) and (4) of Table III, we see
that the limiting condition on the net current which can
flow is

B = 2.2089 H  + 1.5594 I,/R

For the moment, we have

— M __ = 0.047508H, - 0.063308 I,/R

2nR3

3

which ylelds the following equation for the line DG,
m= 0,13718h - 0,040597

In the absence of an applied field h, the torus is left
with a residual moment, at G,

m =-0,040597 (h = 0)

~due to the current

I, = 0.64126 H_ R amperes

Corresponding to this residual current, the flux at G

is only 92.7 per cent of the original flux at D. The point

C lies on the extension of line DG.
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Line GK:

Line GB:

Beginning with the torus at G, we make the field negative.
The current continues to increase in magnitude with H, = Hk
all the way from G to K's At G, Ho, 18 0.19260 H and in-
creases to H, = H  at K's This is a continuation of the
line DG through G and stops at

h = = 0,34437

n =~ 0,087836

This is a superposition of a Case IV current maintaining
zero flux, and the current already present at G. This yields

the equations

Hy, = 0.19260H_ ~ 2.37812H,
B, = B~ 0.17520H,

4s h increases from zero, H, decreases to zerc and Hy decreases
to zero. But, Hyy reaches zero first and increases to B, all
the while, the field Hy remaining less than critical field.

This occurs at the point B on the AC path at

h = 0,50149

n = 0,031747

Further increase now results in a retracing of BCEF, Having
discussed the principal paths, it is now easy to follow the

behavior of the torus along K'C', D'K and KA,

The ideas presented here are not new in principle, being the same in

general point of view as those in Shoenberg's book.11 However, the exact

calculations given here, which were not available to Shoenberg, present

an opportunity for a more careful experimental analysis of Shoenberg's

description. For example, the extent to which the region around the
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points B, C, Dy E can be amplified by using smeller values of 8, is
illustrated in Fig. 15 where, there, s, has been chosen at the value l.4.
To be noted are: (a) the shift in the value of h at point D from a value
near 0.5 to a value of 0.28; and (b) the increased change in the value of m

between C and E.



APPENDIX

APFPROXIMATE FORKULAE
To facilitate camputation, & number of approximate formulse are
listed here for some of the quentities calculated in the ezrlier sections.,
The error resident in the formulae are indicated along with each formula.
The symbol A is used for an abbreviation of loge85° s lege in

these formulae

A=log.8s, = log.(8R/r)
Half-odd integer Legendre functions of the first kind:

_ JZ 3l£g85—l]
Ryl ~ e log s + 1652

E(s)~3l/-—z§[\ + _Z_Lg&f}_ﬁ_;{’_]

7T 16s?
Ttne) (25)"* ot
n2l FL%(S\“’ m | — dn 82

For these three formulae, useful when s > 10, which is beyond the
range of the tables 8, the error is less than 0,1% for s > 10 up to
n = 8 and perhaps further.

First derivative of the half-odd integer Legendre functions of the

first kind:

4 Zs - S-log8s
R%(sh-z—————ﬂ&_d[ugss 2+ 2= ]
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P () ~ VZs s [I _ 3(|+2Log8s!]

e (s?  (s2-1) 16 s2 .
B (a~ Doed | aened) :
nz 1\ nes\S 20 \"(m‘ﬂ(f-') Yns2

The error in the above three formulae is less than 0.1% for s > 10 and
for n §{ 8 and perhaps further.

Half-odd integer Legendre functions of the second kind

Q"i(S) ~ w/-l;;s (\ + !—63_5_2)

Q..l. (S)"’ _'_)% ( l 325 )
v I(ney) _(__V:‘fJ)
nz\ Qn-é(5)~(2s)"*i I (n+r) (‘ + 4 (ne1)s? )

the error at 8 > 10 being < 0.1% for n £ 5.
The function F1 gefined by eq. (73)

-1 A-2
F { + Bt

The error in F-1 < 0,1% for 8o 7 4. F-l is confined to the range

- 32
|4F'g:,—,—;2 ~ 108076,

when
o >s > |

The coefficients a, defined by eq's. (77) and (78)

~ _ T %Hgl
- LR



~ TTZ(ss-1) 4\ +37
5 *, 32 5/ [l + 3252 l
‘ 2
N L.c .1y [
(2'1-‘) ["‘(n)]z(z’so)zn"'g

2 2
1w 5. n-j n Nn2(n+1)

+ (M’.‘f_‘i’ _HA _ 8n3+4n2—-l()n+3)]

For o, , and o, the error is of the order 0.03% at S.=10 but

. increases slowly with n,.
. The flux for cases I and II, and the ratio G defined by ec. (98):
‘ QI (5o =Y (s2-1Y A
i r ~—\ M ‘/S.f P ('Jr 25°)
7,(RZ‘_‘i" S5
Frreor ~ 0.1 % at s,=10
=T

2 \/f ﬂkz—\37\+7)
= (A~ 2)(‘+25 16 sE(N=2)

Error~01% at s,=10
So—1 L 12X-TIA+97 _ 28N -8IA153
G~ ( )‘“’[ 25, 16s2(A-2) 852 (N-2)
Error~01% at s, =10

The self-inductance:

L N 13A+H LT w-é
L/R~ Yoe [ S (7\“2"(‘ 25,7 1652 (A-2) )X

millihenries per cm.

Error ~ 0.1% at S, = 2
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The magnetic moments:

M3 (1+ A22)

LRRH, ~ (@s) 8 5=

Error < 0,01% for s, % 2

(l 8A- 77)
'xRZI ‘0

Error ~0.1% at 8, = 2

MZ L 3 (1- 2610
4xRH, 16(A-2) 252

3

Error ~ 0,1% in range 2 £ s, £ 10

MY 3 (Hm:_@)
’lsiﬁRBHo 16 (N\-2) 16 52

Error ~ 0.35% at 8, = 2

Error { 0.2% for 4 < 8, < 10

The maximum and minimum fields for the four cases I, II, III and IV:

He/H, ~ 1 +/22 (1 + -l . ’\sv;g’)

Error ~ 0.2% at 8, = 2

Error { 0.1% at s,> 8
S - t

32 502 8 5‘3

Error { 0.1% for 5o> 2



v
Y HRR/L, ~ 23y
H:rR/IAfv gso-]/ﬁ"—T (l—-
IE/ o~ Se=1 (
P H;r H° 2()\-2) b+ 2s,

Il ~ L
HE /H,~ 3

S.—|
So+

A-| A+
(‘*'FE:—+- 4sZ )

AITITSSYTOND

Error £ 0.65% for l.2% 5.4 2

EZrror { 0.15% for s°> 2

A-1 zx-u.b’)
s, + 452
Error ~2% at S, ® 2

Error ~0.6% at s, = 3

Error { 0.1% at s,% 6

So — §

2At1 23N —69\ + 88)

Error £ 1% at so = 1,8

Error £ 0.1% at 8,2 3

r-2

(v

2A-5 25 N+3.8N+2.5 )
T T2s. /1652

2

Error{0.85% at s o

Error< 0.1% for s,> 4
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HN/H A 2zl 6A-17 LA 4+ 1L21A+5.323
g o f—~ 20"
2(/\“2) 2s, 42
Error ~ 0.1% at SO =2
Error ~ 0.47% at S, = 4
Error £ 0.03% at so>, 6
™ — _ 2
HQ"/H°~|+’_’./_§°_(.S£'_!_ (|+ 1\3‘__ 3.125 X I8.5A-L-Jq
Z(A-2) Ss 16 s2

Error £ 0.04% for s°> 2
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