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ABSTRACT

An analytical treatment of data from rocket aspect sensors
(such as magnetometers and solar sensors) was developed in
terms of Euler angle coordinate systems and transformations,
since the Euler angles represent the zenith, azimuth, and spin
angular coordinates of the rocket. It was found that the relation-
ships between the sensor outputs and the orientation of the rocket
are exceedingly straightforward when considered in terms of
these coordinate transformations.

Three cases of aspect sensor combinations were considered;
complete magnetometer data were assumed in each of the three
cases (except for consideration of failure of one of the three mag-
netometers) with supplementary information in case 1 from con-
tinuous sun sensor coverage, in case 2 from partial sun sensor
data, and in case 3 from horizon scanners. The equations are
derived for ideal experimental conditions (instrumental errors
are neglected).

The solutions can easily be programmed on a computer. A
general computer program was not developed, however, because
the problems encountered in the reduction of aspect data vary
considerably for each rocket flight.

PROBLEM STATUS

This is a final report on one phase of a continuing problem.

AUTHORIZATION

NRL Problem AOI-06
Project RR 004-02-42-5301

Manuscript submitted January 3, 1967.
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USE OF EULER TRANSFORMATIONS IN THE
DETERMINATION OF ROCKET ORIENTATION

INTRODUCTION

Many rocket experiments require accurate determination of the orientation of the
rocket with respect to the earth. Instruments such as solar sensors, magnetometers,
horizon scanners, star scanners, and gyroscopes can be incorporated in the vehicle pay-
load to provide the required directional information.

A number of discussions involving the interpretation of rocket aspect data have been
presented. A paper by Ott, Horstman, and Lahn (1) considered the case of a uniformly
or rapidly rotating vehicle. Their methods can be modified to include more general modes
of rocket motion. Asquith and Baxter (2) discussed attitude determination using spherical
trigonometry for the interpretation of magnetometer and sun and earth sensor data. Their
analysis was limited to the example of a rocket having a large spin to precession ratio.
Morrison (3) considered the various methods of orientation determination in a qualitative
discussion. Other authors (4,5) considered partial aspect reduction using magnetometers
alone.

The purpose of the present report is to relate the outputs of attitude sensors to the
orientation of a rocket in space through the use of Euler transformations. Euler angles
are quite convenient for application to rocket aspect problems, since they physically
represent the three angular coordinates of the vehicle: zenith, azimuth, and spin. In
addition the transformation matrices are very straightforward, so that relationships
between various coordinate systems are readily obtainable.

The three cases of attitude determination discussed herein are assumed to have
complete magnetometer coverage supplemented (case 1) by complete solar sensor data,
(case 2) by partial information from, say, a single sun detector, and (case 3) by horizon
sensors. Gyroscopes and star scanners are not considered because of their different
operating principles. A discussion of star scanning techniques has been given by
Kupperian and Kreplin (6), with subsequent elaboration by Morrison (3).

No attempt is made to provide a general computer program to incorporate any of the
present solutions, because the problems encountered in the reduction of aspect data vary
considerably for each rocket flight. However, the present analyses are extended to a
point where the results are easily programmable.

The effects of instrumental error are not taken into account in these calculations.
Indeed, the calibration and resolution of the sensors play the major role in determining
the accuracy of the solution. However, these effects are not within the scope of the
present discussion. The special case of instrumental failure (or coverage by only two
magnetometers instead of three) is considered.

In the present discussion the rocket experiment is assumed to be mounted laterally
(perpendicular to the rocket axis). Experiments which look out through the nose cone
have the same axis as the rocket. In this case, however, a lateral axis can be defined
(arbitrarily) to provide a sensor reference axis.
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It is assumed that all information about rocket altitude and subtrajectory position on
the surface of the earth is provided by radar data.

SYMBOLS

The various symbols used in this report are as follows:

R Rocket vector.

E Experiment vector or direction of observation.

1, 2, 3 Rocket coordinate system axes; is the experiment axis and 3 is the
rocket axis.

Ea Subscript representing the earth coordinate system.

I l, 1 3 Moments of inertia of the rocket along the and 3 axes.

x, y, z Right-handed, earth-fixed coordinate system.

9, X, qp Euler angles representing rocket zenith, azimuth, and spin angles in the
earth coordinate system.

VR A vector in the rocket coordinate system.

VEa A vector in the earth system.

VY A vector in the yaw system.

A Transformation matrix from body-fixed coordinate system to space-fixed
system.

A Transpose of A.

B Magnetic field vector.

S Solar vector.

Y Yaw cone axis vector.

Y1, Y2, Y3 Yaw coordinate system axes; Y3 is along Y.

, a, v- Euler angles representing the position of R in the yaw coordinate system.

X Apparent spin rate.

t Time.

N Average number of spins in a yaw cycle.

T Yaw period.

RO Radius of earth.

H Rocket altitude.

Z Impact parameter.

2
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A dot above a particular quantity represents differentiation with respect to time. All
subscripts are, in general, self-explanatory and are defined in the text. In addition, all
symbols which are used as simplifying substitutions are also defined therein. Note that
yaw and precession are used interchangeably in this report.

THE EULER COORDINATE SYSTEM

An excellent discussion of Euler angles is given by Goldstein (7). He also includes
a section on matrices and their transformation properties.

The coordinate systems used in the present calculations. are shown in Fig. 1. R and
E represent the rocket and experiment axes, and $, y, and z define an earth-fixed coor-
dinate system. Note that the earth system axes and y can represent (for example)
south and east, with representing the zenith direction. 0 is the rocket zenith angle,

- 90 0 is the rocket azimuth measured from the x axis, and qp is the rocket spin angle
referenced from the "line of nodes." Note that the projection of the rocket vector on the

- y plane is always perpendicular to the "line of nodes."

Fig. 1 - Euler coordinate system

The transformation of a vector
given by

VR in the rocket system to VEa in the earth system is

(1)VEa = AVR 

where A is the transformation matrix given (7) by

cOs p c os 'p - cos sin 'sin q/ -sin 'p cos 0 - cos & sin ' cos 'p sin 8 sin ]
A = cos 'p sin 'p+ cos 0 cos 'p sin.' -.sin ip sin 'p + cos 0 cos 0 CoS 'p -sin 0 cos qb . (2)

X_ sin 0 sin 'p sin 0 cos 'p cos 0 _

3
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The relationship between the experiment orientation and the rocket coordinates is
easily obtained using Eq. (1). In the rocket system the normalized experiment vector (in
matrix form) is

ER = [0] (3)

whereas in the earth system it is

E.1 sin E CoS E

EEa = = E sin fE (4)

E Cos E

where E is the experiment azimuth measured from the axis and 0 E is the experiment
zenith angle. Substituting Eqs. (2), (3), and (4) into Eq. (1) and writing out the results of
the multiplication in component form, one has

sin E cos E = cos ' cos 0 - cos 0 sin sin , (5)

sin E sin E = cos P sin 0 + cos 0 cos sin , (6)

and
Cos H= si si p. (7)

Thus once the rocket coordinates are determined, the experiment orientation can be ob-
tained by use of the above equations.

ORIENTATION FROM MAGNETOMETERS WITH
CONTINUOUS SOLAR COVERAGE

In the case of magnetometers with continuous solar coverage the sensors continu-
ously measure the projections of the magnetic field and solar vectors in the rocket
coordinate system throughout the flight. The advantage of this type of coverage is that
attitude can be obtained even if the vehicle does not behave as a rigid body undergoing
free motion, or if an attitude control system is employed.

The magnetic field and solar vectors are designated as BR and SR respectively in
the rocket system. In matrix form they are

BR rB2 and SR S2 (8)

where the 3 axis is along the rocket axis and is along the experiment axis.

In the earth coordinate system the solar vector SEa can be found in standard tables
(8), and the magnetic field vector BEa is obtainable by use of, tabulated coefficients (9).
For this discussion it is assumed that all of the vectors are normalized so that one must
divide the sensor outputs by the absolute magnitude of B and S.

Transformation of B and S from the rocket coordinate system to that of the earth
involves the equations

4
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BEa = ABR (9)

and

SEa = ASR, (10)

where A is given by Eq. (2). If these equations are written out in component form, there
will be six equations in six unknowns (the sines and cosines of 0, , and ). The solu-
tions will provide a unique determination of the rocket coordinates and, subsequently, the
experiment orientation.

Writing Eq. (9) in component form yields

Bx = B(cos q' cos ' - cos sin 'P sin tp) + B2 (-sin 'P cos 

- cos 0 sin cos qP) + B3 (sin 0 sin 'P)' (11)

By = B(cos 'P sin ' + cos cos 'P sin ) + B2 (-sin 'P sin 'P

+ cos cos 'P cos qP) + B3(-sin cos 'P) (12)

and

B8 = B sin sin q/) + B2(sin cos qP) + B3 cos . (13)

Since the S equations are strictly analogous, they are not written.

To facilitate their solution, Eqs. (11), (12) and (13) can be made linear and put into
matrix form. Note that Eq. (13) is immediately linear if it is divided by si n 0:

B1 sin ' + B2 cos P + B3 cot 0 - B8 csc = . (14)

Combining Eqs. (11) and (12) yields

B2 sin ' - B cos ' + By sin ' + B cos ' = 0 . (15)

Also, combining Eqs. (11) and (12) with Eq. (14) gives

Bx sin - By cos + B cot - B3 cc 0 = 0 . (16)

In matrix form, Eqs. (14), (15) and (16), along with the analogous solar equations,
can be written

o o B,, -By B2 -B 3 sin 

o 0 S, -S Y S8 -S 3 cos 

B 1 B2 0 0 B3 -B2 sin 
= 0. (17)

Si S2 0 0 S3 -Sz cos 

B2 -Bi By B2 0 0 cot 

S2 -Si Sy SZ 0 0 csc

5
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The solution of this equation will yield the rocket orientation. However, since this is a
homogeneous matrix equation, five of the variables must be found as a function of the
sixth. This poses no problem if the independent variable is chosen to be cac , since 
exists only in the first two quadrants.

The solution of the set of equations given in matrix form by Eq. (17) can easily be
programmed on a computer having a library subroutine which solves simultaneous linear
equations. However, a longhand solution is relatively simple because of the large num-
ber of zero elements in the matrix. The method is presented in Appendix A. The special
cases of partial magnetometer coverage, magnetometer failure, and in-flight calibration
are discussed in Appendix B.

ORIENTATION FROM MAGNETOMETERS WITH
PARTIAL SOLAR COVERAGE

In the case of magnetometers with partial solar coverage the magnetometer infor-
mation is supplemented by occasional aspect data. A typical example of this supplemen-
tation of data is when a single sun sensor is incorporated in the rocket payload. Then
the solar vector is determined in the rocket system once per spin cycle (as long as the
rocket vector direction is not the same as that of the sun). Between these points the
motion is governed by rigid body dynamics. If the vehicle does not behave like a sym-
metric rigid body in free motion, and/or the moments of inertia are unknown, this method
will not apply.

The assumption of free motion is generally applicable during the upper portion of the
rocket trajectory. However, one must be careful in applying the methods of this section
to a liquid fuel rocket, since some fuel may remain in the tanks after engine burnout,
thus nullifying the rigid body requirement. This effect can be taken into account by in-
troducing a correction factor during each spin cycle so that the attitude data is compati-
ble for successive solar scans.

The method of this section will be to recognize that if the vehicle is a rigid body, its
motion in the (earth-fixed) yaw coordinate system is constant. Then if the rocket posi-
tion is known at some instant, the future orientation can be predicted. First, the spin
rate, the precession rate, and the yaw cone angle of the rocket can be found from the
magnetometer data. Second, the position of the yaw cone in the earth-fixed coordinate
system is determined by the rocket position on the cone for at least three different times.
Next, the phase or position of the rocket vector on the cone is found at one particular
time and then combined with the constant spin and yaw rates to give the orientation at
any later time. Last, by transforming from the known yaw coordinate system to that of
the earth the required attitude can be found.

In general the motion of a symmetric rigid body under the action of no torques (ig-
noring the translation effects of gravity) can be described as a body-fixed vector rolling
on a yaw cone. If the position of this fixed precession cone is known along with the posi-
tion of the rocket on the cone at some instant, the orientation of R in the earth system
can be found at all later times by use of rigid body dynamics.

Rigid Body Equations

The free motion of a symmetric rigid body can be depicted by considering a yaw
coordinate system Y1, Y2, and Y3 as shown in Fig. 2. The rocket is precessing about the
Y3 axis at a constant rate, a, and at a constant cone angle p. The vehicle is also spinning
at a rate cr, where 6- is referenced to the Y3 axis. The equations of rigid body dynamics
(10) provide the relationship

6



NRL REPORT 6537

a os 3 ', (18) Y3

-YAW CONE AXIS

where 13 and Il are the moments of iner-
tia along the R and E axes respectively and R

a' is the apparent spin rate produced by a
combination of true spin and precession.
It is given by

c o + a cos /3. (19)

Combining Eqs. (18) and (19) yields Y 2

1-3
1~~~~ ~(20)

It will be shown later that 3a, a, and are \
obtainable from magnetometer signals.

Rocket Position in the Yaw Fig. 2 - Yaw coordinate system
Coordinate System

If at some time, say t = O, the position of the rocket in the yaw system is found to be
a0 , 0 and 8, then at later times the rocket coordinates will be

a = at + a, (2 la)

. t + o, (21b)
and

3= B. (21c)

Then knowing the yaw axis coordinates, the R vector can easily be transformed to the
earth system to give the rocket orientation at t.

To obtain a and 6r from the magnetometer data, consider what the magnetometers
are measuring. Figure 3 shows the rocket vector in a magnetic field coordinate system.
The magnetic-field direction B is arbitrarily depicted as being outside the yaw cone, al-
though within the yaw cone is also possible. The normalized longitudinal magnetome-
ter signal (along the rocket axis) is

B3 = COs (22)

and the lateral magnetometers measure

B = sin MOB COS (23)

and

B2 = sin 0B sin MOB, (24)

where the phase reference is arbitrarily set equal to zero. Thus 'P is measured from the
point where B is a maximum. The problem is then to find a, 6-, and /3 from these
equations.

7
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The yaw period can be determined by ob-
serving the cyclic behavior of B (or the enve-
lope of B or B). Since the precession rate
is the same with respect to either B or Y3,
and since a is a constant,

3600 
yaw per iod 

Fig. 3 - Magnetic field coordinate
system with the magnetic field vec-
tor B outside the yaw cone

To determine the actual spin rate 6- from
the magnetometer data, one must know whether
or not the yaw cone encloses the magnetic field
vector. This is because the average spin pe-
riod as measured from an axis outside the yaw
cone is shorter than it would be if the axis
were within the cone. In fact there will be one
more spin per yaw period if the reference
point is outside of the cone. Note, then, that
if angular rates are considered, rather than
periods, the yaw rate is the difference be-
tween the average spin rate, as measured
from an axis inside of the cone, and the aver-
age rate measured with respect to an exterior
axis.

To determine the position of the magnetic
field vector with respect to the yaw cone, one
can measure the varying magnetometer spin

period throughout a complete yaw cycle. If the B vector is within the cone, the spin
period is a maximum at the point of closest approach to B and a minimum at the farthest
point. The reverse situation occurs when B is outside the cone: a minimum in the period
is experienced at the point of closest approach. Thus by examining the spin period, one
can determine whether or not the magnetic field vector is outside the yaw cone. Once
this information has been obtained, the average (over a yaw cycle) spin period is the
same as the true spin period if B is inside the cone. If B is outside, one spin rotation
per yaw cycle must be subtracted from the average number of spins per cycle to obtain
the true spin period. This can be summarized in the following way if T is the yaw period
and N is the average number of spins in a time T:

(26)

= N B within the cone.

& = 360B x e

N- T B outside the cone.

Note that if B is outside the cone, C can be written as

= average spin rate - a. (27)

Care must be exercised in the determination of N. The average spin period ought to
be plotted over several yaw cycles. The result should be a straight line with no slope.
If a slope is present, the rocket is not a rigid body, and if there are deviations from the
straight line, an error has been made in the determination of N.

Now that a and 6- are known, ,3 can be determined by the use of Eqs. (18) and (20).
This of course assumes a knowledge of 11 and !3.

R

(25)

8



NRL REPORT 6537

A second method can be employed to find /8. Consider the output of the longitudinal
magnetometer, i.e., cos B. Define the minimum value of B (or the angle of closest ap-
proach of R and B) as O'. The maximum value of 0 B is 2 + ' if B is outside the yaw
cone (Fig. 4a) and B = 2 - if B is within the cone (Fig. 4b). Therefore,

FOB
/ = 1/2

6ffB

max 6O, B outside the cone.

max + ei, B inside the cone.

) B );

(28)

(a) B outside the
yaw cone

(b) B inside the
yaw cone

Fig. 4 - Geometry for the determination of ,8
from the minimum and maximum output B
of a longitudinal magnetometer

Yaw Cone Position in the Earth Coordinate System

For a solution of the rocket motion in the yaw coordinate system, it is necessary to
know ao and o-O. First, however, the position of the yaw cone in space (ay, y) is deter-
mined. Note that qy is arbitrary and therefore can be set equal to zero. This merely
alters the phases a and o-.

The yaw coordinate system has the following form in the earth system:

oy]

YEa (29)

where o - 900 is the Y azimuth measured from the axis, and O is
the yaw vector. Since Y and B are constants,

cos(, + B), B outside the cone.
Y B = C =

cos(, - '), B inside the cone.

Then

the zenith angle of

(30)

B, sin 95y - By cos y + B,, cot y = C Csc 3y

9
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which is an equation involving four unknowns. Now if the sun position (or some other
earth-fixed vector) is known in the rocket system at a certain time, the rocket orienta-
tion can be determined by use of Eq. (17). Then with

Y *R cos = constant = C2 (32)

one can write

ksin 'y - co 'k + R cot 0 = C2 csc y(33)

If the rocket position is known at two more points, equations similar to Eq. (33) can be
written and uniquely solved for 0 and qy. Otherwise one can plot oy vs oy from Eqs.
(31) and (33) and test which values give a reasonable rocket motion. This may be possi-
ble if information is available from another source, such as the experiment itself.

If OY and by have been determined, a.0 and ao can be found at the time (say t = 0)
when the rocket position is known. Since REa and E are known, their projections in the
yaw system are

RY1

R = AYEaREa RY2

LRY3I

and (34)

EY = AyEaEEa 'Y2

LEYJ

where AYEa is the transposed matrix of AEay. (Note that AA = 1 if the transformation
matrices are orthonormal.) It is given by

cos Oy sin y 0

AYEa = -COS 0y sin ky COS y cos y sin y (35)

sin 0Y sin ky -sin y cos Oy coS y

where qjy has been set equal to zero. Ry and E are determined by rotating the rocket
and experiment axes through angles a0, 0 and /8 into the yaw system:

and RY= AyRRR (36)
EY = AYR ER,

where YR is given by Eq. (2) with ao, 0, and /8 in place of X, p', and a. Since ER is
given by Eq. (3) and

RR = [ ] (37)

Eqs. (36) can be written in component form as

10
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R= sin sin a, (38a)

RY2 = -sin 8 cos a, (38b)
and

RY 3 = COS (38c)

and

E= COS a COS a - cos sin a sin a, (39a)

EY2 = cos a sin a + cos 8 cos a sin a, (39b)
and

EY3 = sin sin . (39c)

With RY; and Ey known and at t = 0, a = a and a = a Eqs. (38) and (39) can be solved
for a-0 and ao. Note that these angles are "overspecified,? since 8 is measured inde-
pendently. Then, at later times R and E are given by Eqs. (38) and (39) using Eq. (21).
With Ea y as the transposed matrix of AYE. the rocket and experiment attitudes in the
earth system can be found at any time from the equations

RE = AEa Ry

and (40)

EE = AEayEy

Another method of attitude interpretation is of interest for the combination of sensors
discussed in this section, namely, the possibility of plotting the points of known orienta-
tion on a globe. By drawing curves through these points, approximate aspect solutions
can be obtained. However, these solutions are often too crude and must be used with a
smoothing procedure for practical applications.

ORIENTATION FROM MAGNETOMETERS
PLUS HORIZON SENSORS

Two analyses of horizon sensor data are given in this section. The first considera-
tion is the general case of rigid body motion, and the second is concerned with the sim-
pler case of a large ratio of precession to spin rate. Of course, they both assume that
the zenith angle of the rocket is large enough to permit detection of the horizons.

General Case

The first method is to find the position of the yaw cone for some particular time
from the magnetometer and horizon data. Then one can follow the motion of the rocket
on the yaw cone at later times via Eqs. (34) through (40).

Typically the signal from a horizon sensor has two intensity maximums per rotation
with some low-level value between as the earth is scanned. When the time interval be-
tween the horizons is a maximum, the rocket has its largest zenith on the yaw cone. At
this time, the rocket vector, the yaw cone axis, and the local vertical are all coplanar.
Similarly, when the interval is a minimum, the rocket is at the point of closest approach
to the local vertical. The rocket vector is again in the same plane as the zenith and the
cone axis. Therefore, because the azimuth angle of the rocket is the same when 0 is
either maximum or minimum, can be eliminated from Eq. (16), provided the magnetic
field of the earth has not varied appreciably over the region of translation of the rocket
during half of a yaw period. The resulting equation is
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B, (cot max - cot min) = B csc 0 max - B csc min' (41)

where B is the magnetic field component along the rocket axis at a time corresponding
to = min'

Equation (41) can be solved for max or Omin since

r2,3 + Omin if the local vertical is outside the yaw cone,
Smax - (42)

-2, - min if the local vertical is inside the yaw cone,

where /3, the half-angle of the yaw cone, can be found from the magnetometer data, as
was shown in the preceding section. The position of the zenith with respect to the yaw
cone can be found from the horizon sensor data. If the spin period measured by the
sensors (as opposed to the time interval between horizon) has a minimum when the
rocket zenith angle is maximum, the local vertical is inside the yaw cone (and vice
versa). Thus, using Eq. (42), Eq. (41) has two solutions for Omin' Usually one of them is
obviously not the true case.

The position of the yaw cone axis can now be found. The zenith angle of Y is given by

, + min' if the vertical is outside the cone.
= (43)

P - min, if the vertical is inside the cone.

The yaw axis azimuth is given by Eq. (16) with = max (or min)' since Y is coplanar
with the rocket and the vertical. Again there are two solutions, but it is usually easy to
discern the true azimuth. Finally, the rocket and experiment orientations in the earth
coordinate system can be found at any later time with Eqs. (34) through (40).

Since the local vertical changes significantly for a rocket with a large horizontal
range, the above procedure ought to be repeated periodically throughout the flight.

Rapidly Spinning Rocket

Next the case of a rapidly spinning (compared to precession) rocket is considered.
The experiment zenith angle is easily found from the horizon sensor data. Then the azi-
muth angle can be found from the magnetic field equations.

The geometry of the situation is shown in Fig. 5. Circle C is the intersection of the
lateral rocket plane and the earth. The spin angle phase is set at -900 so that q' is zero
when the zenith angle of the experiment direction is maximum. The rocket altitude is H,
and Ro is the earth's radius. The rocket and experiment zenith angles are and E'

Then Eq. (7) becomes

Cos = -Sin cos qp. (44)

When the horizon is observed,

sin SE= R +H (45)

and

Cos = - (46)

12
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DIRECTION OF
MAXIMUM SE

IEARTH

Fig. 5 - Geometry of a horizon scan

Then the rocket zenith angle is

sin 0 = e H sec O
RO +H 'P. HI

(47)

where pH is the spin angle at the horizon. Knowledge of the spin rate is necessary to
find . Since the horizon points are normally outside the yaw cone, the spin rate must
be calculated by averaging the times between horizon scans. This involves some error,
since only two horizon scans are available in each spin cycle. Then if this rate is ,

'H = tH- (48)

where tH is the time it takes the sensor to scan from the minimum point on the lateral
plane to the horizon. If the minimum point is not obvious from the sensor data,'it must be
calculated from a combination of the spin rate and two horizon points. The zenith angle
of the experiment at any other time t in the spin cycle is then found via Eq. (44), with
' = At.

The rocket azimuth can be determined by use of the magnetometer equations, specifi-
cally Eqs. (14), (15), and, (16), with care exercised in referencing 'P to the line of nodes
instead of the minimum point on the lateral plane. Then Eqs. (5) and (6) yield the experi-
mental azimuth.

A useful quantity z, defined as the distance above the surface of the earth (or impact
parameter) that the experiment is looking, is shown in Fig. 6. Note that for any other
point in the spin cycle, Eq. (47) can be replaced by

(49)2R0( H -Z) se 'P.
sin 0 (Roe H) qe -

Then combining Eqs. (44) and (46) gives

13
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6' ~~~~~~~~ ~ ~~~~os 2V / 50
Z = -Cos 2 H 

6
E

'Of course the impact parameter is not defined if
H SE is less than 900 (or z is greater than H).

CONCLUDING REMARKS
R,

Euler coordinate systems and transforma-
X R tions have been used in the interpretation of

rocket aspect information. It has been found that
they greatly simplify the use of aspect sensor
data for three cases of interest. Formulas involv-
ing the attitude as a function of sensor outputs
have been derived and are easily programmable
on a computer.
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APPENDIX A

SOLUTION OF EQ. (17)

In this appendix the mechanics of solving Eq. (17) for
functions of aspect sensor outputs are given.

Since Eq. (17) is a homogeneous matrix equation, one
and eliminate the sixth row, thus giving

the angular coordinates as

can divide the rows by csc 0

o 0 B. -B

o 0 S, -S S2
Y I 

B1 B2

SI S2

0

0

o B3

o S3

-B 1 By B. 0

where X = sin /csc 0, X2 = cos qi/csc 0, X3 = sin k/csc a0 X4 = Cos O/CSC 0, andX = cos 0.
Note that csc 0 is always positive, since 0 is defined as being between 00 and 180 .

To solve Eq. (Al) the following steps are taken. First, to produce a zero in place of
B1 in the first column, multiply the third row by B2, multiply the fifth row by -B1, com-
bine the two, and substitute the result for the third row. Next, to produce a zero in place
of S1 in the first column, multiply the fourth row by B2, multiply the fifth row by - S ,
combine the two, and substitute the result for the fourth row. This yields

0

0

0 B. -By Bz

0 S,, -Sy S 3

o Q2 -B 1 BY

o Q1 -S 1 BY

B2

.-BIB. B2 B3

-sLB, B2 S 3

-B1 By B. 0

X1

X 2

X3

X 4

B3

S 3

B 3B2

SzB 2

0

(A2)

where

Q = B1 S1 + B2S2

and

= B 2 + B2

The last row in Eq. (A2) is redundant and can be neglected, and the result is a four by
four matrix equation:
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X3

X4

X5LB2

-B3

3
3
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SL2

0o
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O B. -By B2 X2 B3

o S, -SYi3 S 3

(A3)
Q2 -BBy -B 1 B BB3 X4 B 2B2

Q1 -SBY -SBx B2 S3 5 32 B2

Next, to produce zeros as the first three elements of the first column of Eq. (A3), multi-
ply the third row by Q1, multiply the fourth row by - Q2, combine the two, and substitute
the result for the third row. Again the last row can be neglected, and the result is the
three by three matrix equation

B., -B y B's -X3' B3

SK -sY S K = S3

Q4 Q6 Q7 X 5 Q3

where

Q3 = B2 (B2 Q1 - S 2 Q2)

Q4 = By (-BQ, + S 1Q2)

Q6 = B (-BQ 1 + SQ 2 )
and--

= B2 (B3Q1 - S 3 Q2 )

Following the above procedure, one can again generate zeros on the first two ele-
ments in the first row of Eq. (A4), thus yielding the two by two matrix equation

Q Q] K] [Q:2] (A5)

where

Q5 = B3S - B.S3'

Q8 = -ByS , + SBx ,

Q9 = B2 S - S2 B ,

Ql = -SyQ 4 - SQ 6

Q1 = SQ 4 - SQ 7
and

12 = S 3 Q4 - S3 Q3

Equation (A5) then yields

.,X5 Qgl o (A6)

and

17
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Q12 - Q1 x5 (A7)

4 Q, o (A7Q

From the third row of Eq. (A4),

Q3 - Q6X 4 - Q7 X5 (A8)

Q4

From the fourth row of Eq. (A3),

SB 2 + SB y 3 + SBxX4 -B 2S3X5 (A9)

and from the fifth row of Eq. (A2)

BIX 2 BYX 3 B- X4 (A10)
Xi B2

Since X5 = cos 0, then csc can easily be found and the angular rocket coordinates
determined. Then X, Ap, and 0 can be substituted into Eqs. (5), (6) and (7) of the main
text to find the experiment orientation.

A special case of this method must be considered. If 0 = , then csc 0 becomes
infinite and the above solutions are not correct. When this case occurs, the experimen-
tal zenith angle is 900 and the azimuth angle consists of a rotation about the x axis. The
transformation matrix in this case becomes

Cos E Si n WOE 

0 0
A = -sinl ¢9 cos f (All)

where X is the experimental azimuth measured from the x axis. Equation (9), in com-
ponent form, yields

B_, = By cos E + B2 Sin fE' (A12)

By = -B1 sin OE + B2 Cos E' (A13)

and
B = B 3 . (A14)

Solving these for Cos OE and sin kE gives

cOB = 1 + Y By2 (A15)Co E B 2 + B 2

1 2

and

B2 Cos E - By
sin E 9 (A16)

Note, however, if B, = 0, then Eqs. (A12), (A13), and (A14) reduce to

18
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BY
cos E B

B.,
sin E --

and

19

(A17)

(A18)



APPENDIX B

DETERMINATION OF MAGNETIC FIELD COMPONENTS USING
LESS THAN THREE MAGNETOMETERS

Specific (although often-occurring) problems with respect to complete magnetome-
ter and sun sensor coverage are considered in this appendix.

The magnetometer coverage is frequently limited to two perpendicular sensors with
one aligned along the rocket axis and the other in the lateral plane. The magnetic field
component, say B2, along the third mutually perpendicular axis can be found from the
fact that the scalar product of the magnetic field and solar vectors is a constant. Then
with S, B1 , and B3 given,

B 2 =
B S - B 1 - B3S 3 (Bi)

S 2

B S can be determined by knowledge of the external field. Obviously Eq. (Bi) does not
hold if S2 = 0. Then

B2 = ± B2- B2- B2 (B2)

where the ± ambiguity is normally easy to resolve by examining the data. If two of the
magnetometers are absent, Eqs. (Bi) and (B2) can be combined to produce two possible
solutions. One of the solutions often turns out to be obviously false.

It is noteworthy that three mutually perpendicular magnetometers are self-
calibrating. However, if less than three are available, one must resort to the use of
magnetic field tabulations.*

*J.C. Cain, S. Hendricks, W.E. Daniels, and D.C. Jensen, "Computation of the Main Geo-
metric Field From Spherical Harmonic Expansions," NASA Report X-611-64-316, Oct.
1964.
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