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ABSTRACT

A conformal array on a surface of small curvature can be ap-
proximated by a number of planar arrays, several of which may be
excited simultaneously so as to achieve a performance similar to that
of a conformal array. Since the main beam of a planar array can be
steered to any direction in visible space, several arrays, each oriented
in a different direction, can be steered cooperatively to form a single
beam in a desired direction. A general formulation of the radiated
field of such a configuration of arrays is developed with the aid of
formulas which relate the components into which a vector is resolved
in one orthogonal coordinate system with those into which the same
vector is resolved in a second orthogonal coordinate system. This
formulation does not involve the integration of the current source but
is solely dependent upon the knowledge of the far-field expressions
of elementary radiators. By means of this formulation, it can be
shown that within each array the conventional row and column phase
setting can be used; each array, however, requires an additional phase
shift to compensate for the phase difference caused by its position on
the curved surface. As examples, the radiation patterns and polariza-
tions of multiple arrays of short dipoles are studies with the aid of
appropriate formulation. A comparison of the multiple planar array
with the conventional conformal array is also presented.
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PATTERNS AND POLARIZATIONS OF SIMULATED
CONFORMAL ARRAYS

INTRODUCTION

In recent years, considerable interest has been shown in conformal arrays. This type
of array has a variety of potential uses. For example, on an airplane or a missile, due to
the limitation of available space, it is often difficult to install a large conventional antenna.
However, a conformal array can be fitted onto some surface area of the vehicle body in
such a way that it does not interfere with the operation of the vehicle. Furthermore, be-
cause part of the vehicle body forms the ground plane of the antenna, the electrical inter-
ferance problem should be minimized. On the other hand, conformal arrays generally
have several drawbacks. First, the phasing\of such arrays is very difficult; except for a
few particular cases, there is no available approach for phasing such arrays. Second, the
switching of the beam of such arrays is exceedingly complicated. Moreover, the complex-
ity of the switching network usually introduces very high power losses into the system
and hence degrades its performance.

It is conceivable that, on a surface of small curvature, one may approximate this
conformal array by a number of planar arrays, several of which may be excited simultane-
ously so as to achieve performance similar to that of a conformal array. Since the main
beam of a planar array can be steered to any direction in real space, several planar arrays,
each oriented in a different direction, can be steered cooperatively to form a single beam
in a desired direction. With such an arrangement, the problem of array phasing is greatly
simplified. Within each array, the conventional row and colum phase setting can be used,
although each array requires an additional phase shift to compensate for the phase dif-
ference caused by its position on the curved surface. However, this correction is much
simpler than that required for a conventional conformal array, in which each element re-
quires this compensating phase setting. Furthermore, the switching\is greatly simplified,
as it involves only a few planar arrays, in contrast to the large number of elements among
which radiating power must be switched in the usual conformal array.

The problem was formulated in an earlier report [1] for multiple planar arrays of
vertical dipoles which might be used to approximate a conformal array of vertical dipoles
on a cylindrical surface. It was shown that a function giving composite array patterns
can be defined in such a way that the far field is the product of the functions of the ele-
ment radiation pattern and the composite array pattern. Numerical examples for this
kind of composite array were also presented, and properties of the far field were discussed.
The analysis in the earlier report is strictly valid only when the element pattern of each
planar array in the composite array is similarly polarized. The present report deals with
the general case where the polarization of the far field of each planar array may be dif-
ferent. The radiation pattern and polarization characteristics of arrays of short dipoles
are studied.
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2 J. K. HSIAQ AND A. G. CHA

SIMULTANEOUSLY EXCITED PLANAR ARRAYS OF ANTENNAS

When the field of a system of simultaneously excited planar arrays of antennas is
analyzed, it is convenient to write the field expressions in coordinate variables of different
coordinate systems. Figures 1 and 2 illustrate these various coordinate systems. Figure 
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Fig. 1-Geometry of multiple planar arrays of antennas.
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Fig. 2-A planar array of short dipoles.
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shows the position of each planar array relative to the origin of the unprimed coordinate
system. Figure 2 shows the lattice structure of the Qth planar array and its radiators.
One primed coordinate system is assigned to each planar array, e.g., (Qx yQ, ZQ) for the
£th planar array. One double-primed coordinate system is also assigned to the radiators
of a planar array, e.g., (", y", z) for the radiators of the Qth planar array. The primed
coordinate systems are useful since the array pattern functions for the planar arrays are
known in terms of the primed coordinate variables (', P). The double-primed coordin-
ate systems are useful since the element pattern of the radiators of the Qth planar array
may be known in a different coordinate system than the primed coordinates (', pt).

The far field of a system of simultaneously excited planar arrays of antennas may be
written, omitting the time phase factor eiwt, as

L

2 {Q E ,; (P 2F) E Amne(2 Rkmn)OR}F (1)
Q=1 2=1 m,n

where

R1mn =mu +V 2 . (2)

In these expressions,

L = the number of planar arrays,

EQ = the electric field due to the Qth planar array,

&jw', ) = the element pattern of the Qth planar array,

k = the free space wavenumber,

AQmn = the complex excitation coefficient of the radiating element at the point
R + R and

R = unit radial vector.

In spherical coordinates,

R = (sin 0 cos p, sin 0 sin p, cos 0). (3)

For maximum radiation in a certain direction (O, wpo), the conventional row and column
phase setting can be used within each array to steer the beam in that direction. In addi-
tion to aligning the main beams spatially, one must also be sure that each EQ is in time
phase in the desired direction (n, po). This condition can be met if

Amn = (1 me (R +R mn)Ro) (4)

where

Bo = (sin 00 cos 7, sin 00 sin epo, cos 5),

3
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and (3 and (mn are constants to be specified soon. Substituting (4) in (1),

L
E= Ei A&;R(Oip)eR2-(R-Ro)

21

ax (i~mejkR Qmn (R-Ro )

mn

L , 

E &2& (02 j)e Q(RRo)f( 0, i) (6)
Q=1

where

fQ(ViQ VoQ) = E C2 mneikR~mn(RRO) (7)
mn

Note that f2(0Q, fp) is simply the array factor for the Qth planar array phased to have
maximum radiation in the direction Ro. The complex constants (i2 may be set to certain
convenient values that will cancel out any phase differences of the fields E. in the direc-
tion Ro. For instance, C2Q values may be set in the following way:

( = (-) phase of (, pQ)f2(0
2 , +Q). in the directionR . (8)

The constant a2mn is simply the amplitude of the excitation coefficient of the element
with the indices , m, n. Each element pattern E (,p', ) is assumed to be known in the
form

'S (OQ, ipQ) = 6aQ(0", ip")OQt + (0, " )9 (9)
2 Q~2 2 2' V (9

Two problems will have to be solved before Eq. (6) can be used. First, one must decom-
pose each set of unit vectors (', pQ") in terms of the unit vectors and p in order to
perform the vector addition of the 89's. Second, the double-primed and primed coordi-
nate variables 0p, Qp. P,2 etc, must be expressed as functions of the unprimed coordi-
nate variables 0 and p.

TRANSFORMATIONS OF COORDINATE SYSTEMS

The problem of coordinate transformation is to express a vector function V known
in the primed coordinate variables and unit vectors in terms of the unprimed coordinate
variables and unit vectors. That is, V is known in the form

V= V(0', W')O + V , (0', p')<', (10)

where Vi, and V, denote two functions of 0' and p'.

4
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We are interested in finding V in the form

V = V (d, 0)6 + V (So)o, (11)

where V0 and V denote two functions of 0 and p. Note that we have confined our-
selves to the discussion of radiation fields. Thus, the vector has no radial component and
is independent of the radius variable R.

In the following paragraphs, we will be dealing with a class of matrices known as real
orthogonal matrices. These matrices transform -a vector from\ one orthogonal coordinate
system to a second orthogonal coordinate system in the three-dimensional Euclidean space.
That is, if (, (3, ) and (', (3', j') are the two sets of unit vectors of two orthogonal
coordinate systems, then the components of a vector V in the two coordinate systems are
related by an orthogonal matrix DI:

IVI = DI * I V I, (12)

where I VI and IV I are the column matrix representations of the vector V in the two
coordinate systems,

V.

IVI = V0 (13)

VI

V.IV' = Vol. (14)

Real orthogonal matrices have two useful properties: first, the inverse ID'-1 of a real
orthogonal matrix DI is the transpose IDIT of DI, or

IDI1' = IDIT; (15)

second, the product of real orthogonal matrices is a real orthogonal matrix. These proper-
ties will be utilized in later discussions.

Coordinate transformations involve either a linear translation or a change of orienta-
tion of the coordinate system (Fig. 1). The only translations involved in the present
problem are in moving the origins of the primed coordinate systems back to the common
reference point, the origin of the unprimed coordinates. or the far field, the only effect
of this translation is to introduce the phase factor ejkRQ ( RO), which appears in Eq. (6).
The functional dependence of a field vector V on the coordinate variables and unit vec-
tors is not altered by coordinate translations. This fact is illustrated in Fig. 3, where, for
clarity, the translation R' between the two coordinate systems is assumed to be in the xy
plane. Let P be the field observation point; then it can be seen that if the field point P
is truly at infinity, one would have

5
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R'=R-R' R

0' =0 (16)

and

6' = (17)= ,;.

The field vector V in terms of 0, p, 0, p can be obtained by substitution of Eqs. (16) and
(17) in (10). Since V is independent of R', it is obvious that the functions V. and V in
Eq. (11) are identical to the functions V,, and V,' in (10). For example, the radiation
field of a short dipole lying along the z' axis and at the origin of the primed coordinate
system in Fig. 3 is given by

E =Eo(t, R') sin 0'O'

R') _ jw7ISei' [t-(R'IC)]Bo (t, R ) - jc4eC R

(18)

(19)

where I is the current and S is the length of the dipole.

z R

,-R
z P

x

Fig. 3-Translation of a coordinate system.

Substituting Eqs. (16), and (17) in (18) and (19) and using the far-field approximation
R' = R for the denominator of (19),

9, = f
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E = [E(t, R) sin 0o] ekRhR. (20)

Note that the factor inside the bracket of Eq. (20) has a form identical to that of (18).

From the above discussion, we conclude that, with the inclusion of the exponential
factor ejkR2 (A O), the translation R has no other effect on Eq. (6); this factor will be
ignored in later discussions.

The second transformation is one in which the orientation of the coordinate system
is changed. In classical mechanics problems the transformation formula has been set up
using matrices. Three independent parameters are needed to specify the orientation of a
rigid body. These are known as Eulerian angles. The transformation is described by the
three angles, as explained in the following paragraphs.

The change of the orientation of the coordinate system is accomplished by three suc-
cessive rotations about the three coordinate axes. These rotations are shown in Fig. 4.
The first rotation is for an angle ty about the y axis. The orthogonal matrix between the
primed and the unprimed coordinate systems for this rotation is

cos t 0 sin tY

IAI 0 1 0 . (21)

-sin ty 0 os 

The second rotation is for an angle tz about the z-axis. The orthogonal matrix for this
rotation is

cos tz -sin tz 0

1B= sin tz cos tz 0 . (22)

0 0 1

The third rotation is for an angle t about the x-axis:

1 0 a

ICI 0 cos tx -sin tx (23)

sin tx cos t

In all three rotations the angle of rotation is positive when the rotation is counterclock-
wise with respect to the axis of rotation. The overall transformation may be written as

[DI = ICI IBI IAI. (24)

One should note here that the order of matrix multiplication is not commutative;
thus, the sequence of these transformations is not interchangeable.

7
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Fig. 4-Rotations of coordinate systems.
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Note that matrices IAI, BI, ICI, DI are real orthogonal. Thus,

WI-' = DIT. (25)

Multiplying Eq. (12) by IDL-1 , one obtains

IV'I = IDI-' IVI. (26)

By the use of IDI and ID T, a vector decomposed in one rectangular coordinate system
may be decomposed again in a different rectangular coordinate system. To treat radiation
fields, however, one would also have to deal with components in spherical coordinates.
The spherical coordinate components and the rectangular coordinate components of a
vector are also related by real orthogonal matrices, as follows:

Vr

V

V
(P

V

VY

V

IDPR I =

= IDR I=IPR I

Vx

V
y

V

zr

V

V

(p

(27)

(28)

(29)

sin 0 cos p cos 0 cos *p -sin o

sin sin ep cos B sin cos p

cos 0 -sin 0 0

IDRP I = IDPR 1-1 = IDPR IT

Substituting Eq.
obtain

(27) and (28) in (12), and if V is the radiation field, also in (10), we

VR

V

V

= iDRPI IDI IDpRI

0

V,9,(OF,OI ~p) (31)

where IDpR is given by Eq. (29), with (', ') replacing (0, v'). It is used since the first
transformation is from the primed polar coordinates to the primed rectangular coordinates.
Equations (6) and (7) can now be rewritten in the matrix form with the aid of (31) and
(12), respectively:

where

and

(30)

9
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ER(0 so)

EOt (0, ep)

E (0, sp)

and

= E, &R.eikRQ(RRo)fO (0p Q )IDh ID22 i IDQR s P
9

f 2( 2 c>t9Q s(pQ) = E amneijk(ID1Q21RQmn)-(R-Ro)

mn
(33)

where IR'mnI is the matrix of R' in (xQ, y', z') coordinates. The matrix D is the
transformation matrix from (x£, y[ ZQ) to (x, y, z), and D1 2 is the transformation matrix
from (XQ, y9, ZQ) to (x, y, z). Equations (32) and (33) give the formal solution of the
radiation field of multiple planar arrays, on the assumption that the double-primed and
primed coordinate variables , ', p, etc., are functions of the unprimed polar
coordinate variables 0 and p.

Next, we consider relations between coordinate variables under coordinate trans-
formations. The relations between rectangular coordinate variables are obtained by sub-
stituting the position vector R for the vector V in (26):

IR'= ID 1L-1 RI, (34)

where

and

x

IR = y'

zR

x

IRI = y 

z

(35)

(36)

(37)

The relations between polar coordinate variables are found by substituting

x sin 0 os s

y = sin 0 sin s

z cos t

and

0

It ( it it)

&'Q (O 2Q )

(32)

10
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x sin ' cos p

Y = sin O'sin (38)

z CosO',

in Eq. (34) and solving for 6' and p'.

By the use of the three Eulerian angles, the following can be shown:

0' = cos~1 Z'(0, p), (39)

iP' = tan- Im , (40)

X'(O, up) = sin 0 Cos Cos. cos sin 0s c +sin tz + cos 0 sin, y cos tz, (41)

Y'(6, p)- sin 0 cos p (cos ty sin tz cos tx + sin tY sin tx)

+ sin 0 sin p cos tz cos tx - cos 0 (sin tY sin tz Cos X

- cos ty sin tx), (42)

and

Z'(0, Ap) sin 0 cos 0 (cos ty sin tz sin tx - sin ty cos tx)

- sin 0 sin cos tz sin tx + cos 0 (sin ty sin tz sin t.

+cos tY cos tx ). (43)

The ambiguity in the value of the arc tangent function in Eq. (40) is resolved by apply-
ing the same set of rules that one uses to determine the value of tank1 (y/x), where x and
y are the rectangular coordinate variables.

THE RADIATION FIELD OF A HORIZONTAL SHORT DIPOLE

In Fig. 5a, let z be the elevation axis; then the dipole lying along the x axis may be
referred to as a horizontal dipole. The far field of a dipole is commonly expressed in the
coordinate system shown in Fig. 5b and is given by Eqs. (18) and (19). The far field of
the horizontal dipole may be obtained from Eq. (18) by the use of coordinate transforma-
tion formulas. The primed rectangular coordinate system in Fig. 5b is obtained from the
unprimed rectangular coordinate system in Fig. 5a by a simple rotation of -90 degrees
about the y axis. From Eq. (21), use of the Eulerian parameter ty = 90 degrees, gives

0 1

IDIIAl= 0 1 0 * (44)

-1 .

al
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I

x

y

(a)

I
./J' y

x

(b)

Fig. 5-A short dipole in two coordinate systems.

The relations between the rectangular coordinate variables are from Eq. (34)

fx = - z

Y = Y, 

z = x.)

(45)
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The relations between the polar coordinate variables can be obtained from Eq. (45):

z x
Cos0O' = I R-= i 0 os p

I x

Cs = =

cos - sin 0'

I y
sm~ R' sin0O'

cos2 f

- cos 0

V1 - sin 2 0 cos 2 0

sin 0 sin p

A/1 - sin 2 0 cos 2 p

(46)

The matrix form for E in the primed polar coordinates is

El,

Ed,

E ,

0

E0 (t) sin6'

0

(47)

Carrying out the successive matrix multiplication in Eq. (31) by means of (29), (30), (44),
and (47), we get

Er sin 0 cos o sin + sin 0 sin , cos O sin Cos 0 Cos Ot Cos t

E = - cos 0 cos o sin ' + cos 0 sin p cos ' sin ' + sin 0 cos ' cos p'

E sin p sin ' + cos p cos ' sin '

If we now substitute Eqs. (46) in the above expression to get rid of
variables, we obtain

the primed coordinate

Er 0

E6= - E(t) cos 0 cos p

E E0 (t) sin p

E = E0 (t) (- cos 0 cos fp6 + sin W).

(49)

(50)

PLANAR ARRAYS OF SHORT DIPOLES

In this section, we will consider using planar arrays of short dipoles to approximate a
conformal array of short dipoles on a cylindrical surface. The geometry of the problem
is shown in Fig. 1. The elements of the £th array are symmetrically placed about the

(48)

or

13

sin 01 = V1 - in2 0
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reference point I'. The elements are short dipoles oriented in the direction either of the
XQ axis or the z' axis shown in Fig. 2. Use of the element pattern functions in Eqs.
(50) and (18) shows that the double-primed coordinates are obviously the same and are
the primed coordinates for both these cases. The Eulerian parameters between the
(x, y, z) coordinates and the (x'2, y, z') coordinates are tX = Q = ° Z = 

[(Q - )(27r/L) + (r/2)]. Thus,

IDI =

Cos

0

- sin S2 0

Cos SZQ .

0 1

(51)

It is easy to see that, for this
field expressions:

simple rotation, the following relations hold for any far-

0' = 0

9

(52)

TZQ}

and

(53)f Q = XP 

Since the vectors O' and p are identical to 0 and p, one can use Eq.
(32) for the vector addition process. Thus,

(6) in place of Eq.

E = E aQ[2Qo(O , p)OQ + 8 (0;, )' IejkRQ'(RIRo)f ( f 9 ).
2

The excitation coefficients are assumed to have uniform magnitude of
tern function f,(0, p) is obtained from Eq. (34) as

1. The array pat-

(55)
M N

f2 (0, ) = E E.

m=-M n=-N
where

m d

I R mnI = O

nd.

By carrying out the matrix multiplication and rearranging terms, it can be shown that

f2(0, ) = fX(0, OP)f2Q(0, p)I

(56)

(57)

where

(54)

14
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M

fx2(0, p) = 1 + 2 E cos mkdx [sin 0 cos ( - tzp) - sin 00 cos (9o - tzq)] and (58)
m=1

N

f&Q(0, p) 1 + 2 L cos nkdz(cos 0 - cos 0.). (59)
n=1

By substituting Eqs. (18), (52), and (53) in (56), the radiation field for a system of planar
arrays of vertical short dipoles is shown to be

E=EO(t) sin 0 eJk Q (Ro)f 2 (O2 ,,cp2 ) oj. (60)

By substituting (50), (52), and (53) in (54), the radiation field of planar arrays of hori-
zontal dipoles is shown to be

EE(t) - cos 0 cos (p - tz)eJR2 (RRot(d )] 0

+ E0 (t) sin (p - t', )e f2 (0, )] . (61)

When both (55) and (56) were obtained, the complex constants ik in (6) were set equal
to 1.

NUMERICAL CALCULATIONS

For the multiple planar arrays of vertical dipoles, one can define a composite array
function A(0, p) as follows:

L
A(0, e = ekR2(RRof 2 (a~p (62)

2=1

The radiation field is then, from Eq. (60),

E = [E0 (t) sin 00] A(0,p). (63)

This composite array function was calculated for different parameters in an earlier report
[1].

In the case of multiple planar arrays of horizontal dipoles, the far field can not be
factored into the product of an array function and an element pattern function, as can
be seen from Eq. (61). This is characteristic of multiple planar arrays where the element
polarization differs from one array to another. The radiation pattern and the polarization
of the multiple planar arrays shown in Fig. 1 were calculated for both cases. Each planar

15
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array is assumed to be a linear array in the direction of the x' axis. In one case, the ele-
ments of the arrays are short dipoles lying parallel to the z axis, and Eq. (62) was used to
calculate the array pattern function of the composite array. In another case, the elements
of the arrays are short dipoles lying parallel to the x' axis of each array, and the far field
components EO and E were calculated using Eq. (61). Note that if there are more than
two elements along the z. axis, the only modification to the present calculation would be
to multiply the radiation field by the factor fz 2(0, f) in Eq. (54). It is obvious that
fz (0, p) is simply the array factor of a linear array in the direction of the z axis.

The following parameters were used:

Aperture length along the x axis = OX

Element spacing = 0.4X

Number of elements of each array = 23

(On, {PO) = (900, 00)

Note that there is no element at either end of each aperture. Figure 6 shows the
array pattern function vs the angle p in the xy plane for multiple arrays of vertical
dipoles when the planar arrays 1, 2, and 3 in Fig. 1 are excited simultaneously. Figure
7a shows E vs the angle p in the xy plane when only the planar array No. 2 is active.
Figure 7b sows the same when the three planar arrays 1, 2, and 3 are active. Note the
improvement in the directivity of the composite array by having three active planar arrays
as compared with just one active array. The half-power beamwidth is about 60 in Fig. 7a
and about 20 in Fig. 7b. The more interesting comparison is between Fig. 7b and Fig. 7c,
which shows E vs p in the xy plane for a conformal array of 76 equally spaced, horizon-
tal, tangential, short dipoles on the arc ABCD (Fig. 1). In both Figs. 7b and 7c, the half-
power beamwidth is 2 degrees and the sidelobe level is 13 dB. Patterns were also calcu-
lated for the conformal array and the multiple planar arrays for scanning angles ot, = 100,
200, and 300 in the xy plane. In all instances, the beamwidth and the sidelobe lerel are
the same as in Figs. 7b and 7c. It is, therefore, concluded that the performance of a con-
formal array on a cylindrical surface can be closely matched by a small number of multi-
ple planar arrays having roughly the same total number of elements and occupying roughly
the same space.

0

-10

D-20

Z,-30

I-q

C

cc-60
C

-70

-80 T ~ . ,T~' Il
10 20 30 qo 50 60 70 80 9o100 110 120 130

RZIMUTH RNGLE IN DEGREES

Fig. 6-Composite array pattern function for the
multiple arrays of Fig. 1, vertical dipole case.
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LU

-- 0

aE:

10 20 30 40 50 60 70 80 90 100 110 120 130
AZIMUTH ANGLE IN DEGREES

(a)

a

-10a
0-20

Cr,-50~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T 08 0 8

cc:-60 

-70

-80 

I a 20 30 4 0 50 60 70 80 9010 213la s
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(c)

0~

a:

CC -60
a:

-70

10 2 3 0 50 6 0 0 9
RZMT RNGE INtEGEE

RZIMUTH NGLE IN DEGREES

(c)

Fig. 7-Far-field patterns of the multiple arrays of Fig. 1,
horizontal dipole case. (a) Planar array No. 2 is active.
(b) Planar arrays 1, 2, and 3 are active. (c) A conformal
array of 76 active elements on the arc ABCD.
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So far, we have ignored the other component, E0 . The reason is that E = 0 in the
xy plane ( = 90'), as can be seen from Eq. (61). The far field is thus horizontally
polarized in the xy plane. The crosspolarized component E0 becomes more important at
large elevation angles (smaller 0). It can also be seen from Eq. (61) that E is always in
phase with E if fQ (0, p) is real, or if each planar array is symmetrically excited relative to
the center element of the array. The exact value of the crosspolarized field E, depends
on 0, *p, O, and <o for a given composite array and can be calculated from Eq. (61). For
example, Fig. 8 shows the two components E0 and E on the conical surface 0 = 800 for
the multiple planar arrays used in calculating the data shown in Fig. 7b.

(a)

50 40 50 60 70. 80 90 100 
RZIMUTH NGLE IN DEGREES

(b)

Fig. 8-Far-field patterns on the conical surface o = 800
for the multiple arrays in Fig. 1. Planar arrays 1, 2, and 3
are active. (a) E%. (b) E0 .

CONCLUSIONS

It has been demonstrated that the radiation characteristics of a conformal array on a
cylindrical surface can be closely matched by a number of planar arrays approximating the
cylindrical surface. It is expected that the same technique will be applicable to many
other types of conformal surfaces. The phase setting and switching problems of the
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multiple planar arrays are considerably simpler than those encountered with the conven-
tional conformal array. As a result, the multiple planar arrays would have a less compli-
cated switching network and lower power losses than a conventional conformal array. It
is also worth noting that the present formulation, which is based on vector decomposi-
tion, also provides a very efficient numeric algorithm for calculating the far field of many
complex radiating structures. By means of this approach, the structures are broken down
into pieces and are treated as arrays of elementary radiators. The computation efficiency
of the present approach results from making use of known pattern functions of elementary
sources. In this way, the time-consuming numerical integrations and differentiations that
one normally encounters in far-field calculations are greatly reduced.
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