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On the Entire Solutions of a Certain Class of
Nonlinear Differential Equations

CHUNG-CHUN YANG

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: By using the fundamental theorems of Nevanlinna theory for meromorphic
functions, one can determine whether the following type of nonlinear differential equation

p,,(z)fn(z) + P,,1(z)fp- (z) + ... + P1 (Z)f(z) + P((z) +f'(z)

= Qi(z)emP(t) + Qz(z)ekp(z)

has entire solutions or not, where p(z), Pi(z) (i = 0,1,2,...n) and Qj(z) (j = 1,2) are
polynomials, and m and k are integers.

Some problems on the distribution of values of meromorphic functions eventually lead to
the problem of whether certain differential polynomials (see Hayman [1]) in a given function
f (z) necessarily have zeros.

In this note we shall show how to use the Nevanlinna fundamental theorems of meromorphic
functions to determine whether a certain class of nonlinear differential equations has entire
solutions or not. Here and in the sequel it is assumed that the reader is familiar with the Nevan-
linna functionals T (r,f ), m (r,f ), S (r,f ), etc. We begin with the following:

THEOREM 1. Let p(z), Q(z) be polynomials. Then the nonlinear differential equation

f 3 -f' = p(z)e3z -Q(z)ez (1)

has an entire solution if and only if [p(z)] /3 is a polynomial and

(Z) = 1p/3 (Z) + p-3 (Z) p E (Z) ]

where c is a cubic root of unity. The solution, if it exists, is unique, i.e., f = cp l3(z)ez.

We shall need the following Lemma.

LENMA (CLUNIE, SEE HAYMAN [1]). Suppose that f (z) is meromorphic and transcen-
dental in the plane and that fn(z)p(f) = Q(f) holds, where p(f), Q(f) are differential
polynomials in f and the degree of Q(f) is at most n. Then m{r,p(f)} = S(r,f) as r- +oo.

Proof of the Theorem. By differentiating both sides of (1) we have

3f2 f -f" = H(z)e 3z - K(z)ez, (2)

where H(z) p'(z) + 3p(z), K(z) -Q'(z) + Q(z).
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From (1) and (2) we obtain

e 3 z =

and

eZ =

where

K(z) (f3 -f') - Q(z) (3f2f1 - f')
T(z)

H(z) (f -f ') - p(z) (3f2f_ - f")
T(z)

T(z) = p(z)K(z) - H(z)Q(z) * 0.

Eliminating e3
z and ez, we have

[K(z) (f3 - f ') - Q (z) (3f2f' -f")]T(z)

= [H(z) (f3 - f) -p(z) (3f2f'- fr)]3

= [f2 (H(z)f-3p (z jf ') + pf' -Hf ' 3,
so

f6(Hf- 3pf')3 + 3f4(Hf - 3pf')2-(pf"t-Hf')

+ 3f2(Hf-3pf ') (pf"-Hf')2 + (pf" -Hf ')3

= K(z)f 3 - 3QT2f 2f' + QT2f" - Kf' = p3 (f).

Thus

f3(f3(Hf- 3pfp )3 + 3f (Hf- 3pf ')2(pf" - Hf ') +3(pf"-Hf ')2 - (Hf - 3pf')

= p3(f ) - (pf"- Hf')3 Q3(f) .

We note m(r,
Hf-3pf'f and follow the argument of the proof of Clunie's

Lemma to conclude

m(r,a(z)) =S(r,f),

where

a(z) = f3(Hf-3pf ')3 I +3f (Hf-3pf ')2 (pf"-Hf') +3 (Hf- 3pf ')f (pf - Hf ') 2.

Thus

f3[(Hf-3pf')3+ 3 Hf - 3pf' Hf - pf (pf-Hf)
=a z)-3 f f I pf

=a (z) -3(pf -Hf') 2 Hf (4)pf

(3)
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By the same argument we can conclude from (4) that

m(r,b(z)) = S(r,f),

where b(z) = (Hf-3pf') 3 + 3(Hf-3pf') . Hf- 3pf (pf" - Hf'f f
Again by using Clunie's Lemma with respect to the function Hf - 3pf' and noting that

m(r, Pf"" 'f'i ) = S(r,f), we conclude finally

m(r,Hf-3pf') = S(r,f).

By noting that any possible solution f of (1) is entire, we also have

T(r,Hf- 3pf') = S(r,f).

Now if Hf - 3pf' # 0, then from (3) we would have

m(rf 3(Hf- 3pf')3 ) = m{ra(z) - 3f (Hf- 3pf') 2(pf" - Hf')

+ 3 Hf 3pf' * (pf-Hf')2}

m{ra(z)-3f (pf"-Hf ') (Hf-3pf')2 Hf-3pf ' pf"-Hf }

' (2+o(1)) T(rf),

except on a set of r values of finite length.
Thus

T(rf 3(Hf-3pf')3) c (2 + o(1)) T(r,f)

except on a set of r values of finite length. This is impossible since

T(rf 3 (Hf- 3pf')3) ' T(rf3 ) - T(r,(Hf- 3pf')3 )

- (3-o(1)) T(r,f). Hence

Hf- 3pf' 0. (5)

From (5) and the definition of H(z) we get f(z) = cplI 3 (z)ez where c is a constant and
is not equal to zero. By substituting this expression into Eq. (1) it is easy to verify that

Q(z) = c[P 1 3 (z) +1P-p21 3 (z) p' (Z)]and c3 =1.
I 3

Hence the theorem is proved.

Remark. Observing the above argument, one can show that the nonlinear differential
equation R(z)fn(z) - f'(z) = T(z) eKz - S (z) eLz has no meromorphic function solution,
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where R (z), T(z), S (z) are rational functions and K,L are integers, unless KIL = n or LIK = n,
and if the solution exists, it must be of the form f (z) = u (z) emz, where u (z) is a rational func-
tion and m is an integer.

The identical argument can also be used to show:

THEOREM 2. The following nonlinear differential equation

PI(z)f3 +P2(z)f+ P3(z)f' = Qi(z)e3 z + Q2(z)ez,

where pi(Z), p2(Z), p3 (Z), QI(Z), Q2 (z) are polynomials, has no meromorphic function
solution other than one of the form p(z)ez where p(z) is a rational function.

Remark. The argument of this paper does seem to work for the following more general
class of nonlinear differential equations.

Pn(z)f"(z) +pn-2(z)fn- 2(z) + > + ... +p0 (Z) +f'(z)

= QI (z) emP(z) + Q2 (z) ekp(z)

where p(z) isapolynomial,m,k areintegersand pi(z) (i=0,1,2,...n-2,n),Qj(z) (j=1,2)
are rational functions.

More generally, by putting

f (z) = g(z) P- -, (z)

one also can determine whether the following type of differential equation has entire solutions
or not:

p, (z)fn(z) + Pn1(z)fn-,(z) + Qn-2(f) = Qi(z)emP(z) + Q2(z) ekP(z),

where Qn-2 (f ) denotes a differential polynomial in f of degree at most n -2 with polynomials
as coefficients. If the solution exists, it must have the form f (z) = A (z) + B(z) etP(z), where
A (z),.B (z) are rational functions and t is a rational number.

THEOREM 3. The following class of nonlinear differential equations

p0(z)fn(z) +pI(z)fn-(z) + ... +p,1(Z)

f- (z) + uVn-2(f) + IT,,-3(f) + ... + 7 1 (f)+ p(z) (6)

has no transcendental entire solutions, where p(z), pi(z) (i = 0,1,2,...n) arerationalfunc-
tions and 7rm(f) denotes a homogeneous differential polynomial of degree m with rational
functions as coefficients.

Proof of the Theorem. Assume f (z) is a transcendental entire solution of Eq. (6). Then,
by a result of Varliron [2] we have

m (r,po (z) fn (z) + p I(z) fn-, (z) + ... + p(z)

= T(r,p0(z)fn(z) + p, (z)f n- (z) + ... + p(z))

- nT(r,f) + 0 log r as r -- + -o.

4
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But

m(rfn- (z) + lTn-2(f) + gn-3 (f) + ... + 7rq(f) + p(z))

•m(r f(fn- 2 + fr + *-- + fl )) ogr

m(rf) + m(rffn-2 + z2 () + + _ (f)
ff

m(rf) + m(rj(fn-3 + 7 2(f) + + + 2(f )) + S(rf)

m(r) + m(rf) + m(r fn-3 + +77 .. + + 7jf))+ S(rf)

(Here we use the fact that m(r, f7f)) = S(r,f).) By repeating the argument we can deduce

that

m(rfn-I(z) +rn-2(f) +...+wi(f) + p(z)) - (n-1) m(r,f) +S(rf). (8)
Expressions (6), (7), and (8) will lead to a contradiction. Hence (6) has no transcendental entire
solutions.
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