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THE ACTION OF DITHER IN DIGITAL MATCHED FILTERS

INTRODUCTION

This report aims at a detailed examination of how dither, a large, suitably fluctuating
component added to the input of a digital correlator or matched filter can eliminate cap-
ture of a weak signal by an unwanted stronger one.

Although there exists a large literature [1-3] on the use of dither with digital corre-
lators, to the author's best knowledge the only article dealing with the use of dither in
matched filters in the context of communications is the one by Cahn [4] which applies
game theory to determine the optimum distribution of dither against unknown interfer-
ence. This report analyzes the behavior of various correlators with specific dithers in cer-
tain specific environments.

In the next section the classical time-sampled correlator and the polarity coincidence
detector with and without dither will be described, and the action of dither will be quali-
tatively explained. The output signal-to-noise ratio (Sig/Noi)out for the classical correlator
and for the polarity coincidence detector with and without dither will be analyzed in the
third section for three types of interference: Gaussian noise, CW, and rectangular pulses.
Two types of dither will be considered: a random voltage with an amplitude uniformly
distributed between the plus-and-minus peak values and a sinusoidal voltage. We will see
that if the baseband signal consists of a sequence of bipolar pulses, and if the baseband
jamming has the same waveform but a larger peak amplitude, then the output from a po-
larity coincidence detector will consist of all interference and no signal. However, if a
dither voltage is added whose peak exceeds that of the interference, then the complete
capture of the receiver by the jamming is avoided. On the other hand, if the dither volt-
age is too large, then (Sig/Noi),ut will become degraded. Accordingly, in the fourth sec-
tion we analyze the situation in which the interference power is continuously measured
and the peak dither voltage is continuously adjusted so as to exceed the peak interference
by a given factor, say g, which at least exceeds unity. Graphs of (Sig/Noi)out resulting
from this procedure are given as a function of g for the different types of interference,
allowing a determination of the optimum value of g for each type of dither and a com-
parison of the stability of these optimum operating points. In general we will find that
uniformly distributed random dither is superior to the sinusoidal type, for the jamming
environments considered. For uniform dither at the optimum value of g, the value of
(Sig/Noi)out for the worst-case interference was 4.3 dB below the value which would
have resulted from the optimum classical correlator.

BACKGROUND

Consider a signal s(t) (Fig. 1) consisting of a sequence of N bipolar pulses, each of
width A:
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N

s(t)=S E
j=1

pig(t - tj)I (1)

where S = signal amplitude, yuj = ±1, g(t) = 0, t < 0 and t > A, and g(t) = 1, 0 < t < A.

-4-A-
-A-\ ---A--w

Fig. 1 -Signal waveform s(t)

Let n (t) designate the input noise or interference (sinusoidal, normal, or whatever),
and let s(t) designate a stored replica of s(t) with unit amplitude, so that s(t) = Ss'(t).
Then a functional diagram of a matched filter or correlation detector which corresponds
to coherent detection is as shown in Fig. 2.

s'(t) clock

Ss'(t) + n(t) I + n) s' I -A m-r I:

(Ssj+nj) s=S + 1

Fig. 2-Classical time-sampled correlation detector. The signal s(t) =
by Eq. (1), and Eq. (2) gives the detection statistic Zc.

Ss'(t) is given

Let nj = n (tj) and sj = s(tj); then the detection statistic for the correlation detector is

N
zc= .s 1 (S s I~Zc = E Si +nj) s.

j=l
(2)

Although the correlation detector is optimum (for white Gaussian noise), its imple-
mentation leads to many practical difficulties. An approximation to the classical correla-
tion detector known as the polarity coincidence detector (Fig. 3), or as a digital matched
filter, is adaptable to implementation by microelectronic techniques with the advantages
of increased reliability and decreased weight, size, and cost.

N
1 vZC f I,

j=1

r
N

j=1

sjnj

w

.
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limiter

s + n

SN

Zp= z: s sgn(sj+nj) l + +

i < E
Fig. 3-Polarity coincidence detector

The statistic zP obtained by a polarity coincidence detector is given by

N

Zp = N i] sgn sj sgn(sj+nj), (3)

j=1

where

sgnx=1 , x > 0,

=0, x= O

=-1, x < .

Since Eq. (3) indicates that the coincidence detector takes the correlation of the 1-bit
approximation of the input waveform with the stored replica of the signal, one expects
that its behavior will be less efficient than that of the classical correlator. However, this
may be more than offset by the capability of realizing a much larger storage capacity
(N bits) for a coincidence detector than for a correlator.

Unfortunately the coincidence detector suffers from the defect that a rectangular
jamming signal can completely capture the receiver, so that no signal output whatever
emerges. This is illustrated in Fig. 4, which depicts an input signal together with a
rectangular jamming signal of larger amplitude. Since InjI > IsyI, sgn (sj + nj) = sgn (nj),
and no signal information emerges. However, this defect can be remedied by introducing

3
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Fig. 4-Signal with rectangular jamming

a suitable noise or dither, in series with the input, as in Fig. 5.
by d(t), then the statistic for the detector in Fig. 5 is given by

N

Zd j E
j=1

If we designate the dither

sgn s sgn (sj+nj+di),

where d1 = d (tj).

d

limiter

s+n s+ n+d

clock

1 E
Zd = 'j-j

i

sgn(s+ n+d)

Fig. 5-Polarity coincidence detector plus dither (CW dither in the case shown)

(4)

S1

sgn(sj+nj+dj) sgn sj

12

l -
-
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We will use the output signal-to-noise ratio defined by

(Sig/Noi)out = Z2/(z 

as the criterion of performance and compute (Sig/Noi)out for the case that d(t) = A sin
co t and for the case that d (t) is uniformly distributed over the range -do • d (t) < do;
in the latter case we assume that the values of dj and dk are statistically independent for

k.

First we will give an intuitive explanation of how dither works. We assume there is
a rectangular jamming noise whose shifts of polarity occur randomly and whose amplitude
exceeds that of the signal (Fig. 4). Only two possibilities exist at each sampling instant
tj: either the jamming nj and the signal s have opposite polarities (Fig. 6a) or they have
the same polarity (Fig. 6c). In the first case an error inevitably results in the absence of
dither. Suppose, however, one has a dither voltage dj which can take on any value from
-B to B, where B = sj + nj1. Then if dj lies in the dotted portion of Fig. 6b, that is, if
sj + dj > -nj, then sgn (sj + nj+ dj) = sgn sj and what otherwise would have been an error
would be corrected by the dither. Suppose now that nj and sj have the same polarity
(Fig. 6c). In the absence of dither the receiver would read correctly. However the pres-
ence of dither could cause an error if d = -B, at which time sgn(sj + fj + dj) = 0. How-
ever the probability of this event occurring is zero. Accordingly, for the particular value

- nj

(a) '4 

I -' ,
(b) I ' >___ 

_1 Isi + ni
I -B I s11+1n11=B l

4- DITHER RANGE E-

I n,

(c) * 

I-n.-sj
In-jnj - Sj(d) I-P - - - - __ - - - - __ - -

I - ~~~(Sj +nj) InjI

(e) 4- - 4_ _ P_

'4- DITHER RANGE

Fig. 6-Diagram (explained i the text) of how dither reduces capture
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of B chosen, namely B = sjJ + InjI, dither sometimes corrects an error and never causes
one. Suppose now that the range of the dither voltage is increased, as in Fig. 6d and 6e.
In Fig. 6d, where n and s have opposite polarities, so long as dj lies in the dotted area,
what would have been an error without the dither will be corrected. In Fig. 6e, where sj
and nj are parallel, what would have been a correct indication without dither will become
a false indication if the dither falls within the dotted region. Obviously the net result of
the dither is helpful, but not to the extent it was in Fig. 6b. Subtracting the dotted
length in Fig. 6e from that in Fig. 6d will result in a net length equal to the dotted length
in Fig. 6b. However the net probability of error reduction is less than in Fig. 6b, since to
obtain probabilities one must divide the resultant dotted length by the overall length,
which is 2B in Fig. 6b and >2B in Figs. 6d and 6e. Accordingly the optimum range of
dither should be dl = Ini + IsI. This implies that the peak values of Is + Ini should be
measured, and d (t) adjusted accordingly.

In the following section we will compute (Sig/Noi),ut for the three detectors, namely,
the classical correlation detector, the polarity coincidence detector, and the polarity coin-
cidence detector with dither, for three types of jamming: CW or sinusoidal interference,
Gaussian noise, and rectangular randomly crossing pulses.

ANALYSIS

Case 1: Classical Correlation Detector

From Eq. (2) the statistic for a classical correlation detector is

N

ZC= NS E (sj+nj)sj.

j=l

Further

N

Yc = SE si2 =S. (5)

and

N N

(Zc- )2 =N22 2E SjSf nkjf * (6)
j=l k =1

We are interested in evaluating the relative effectiveness of different detectors over a
whole class of signals, not just for a single signal. Accordingly we consider the s values
as random independent parameters which take on specific values for a given message, but
we will assume that over the entire set of possible messages the s values will take on the
two possible values ±S with equal probability. Accordingly s = 0 and - = sJsh = 0,
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j A k. Thus, since sj2 = S2 , sk = kjS 2 , where 6 ki = 0, j k, and kj = 1, j= k.
aging Eq. (6) over the s yields

N N N N

(ZCC)= N2 S2 / j SjSk nfj -N2 5 Unjnk = N -
j=1 k=1 j=1 k=1

From Eqs. (5) and (7) one has for any type of noise or interference

(Sig/Noi)out = c 2/(ZC-ZC)2 = NS 2/n2 = N(Sig/Noi)in,

where (Sig/Noi)in indicates the signal-to-noise power ratio at the input.

Case 2: Polarity Coincidence Detector

From Eq. (3) the statistic for a polarity coincidence detector is

N

zp = 2Z 1 sgn sj sgn (sj + nj) .
j=1

7

Aver-

(7)

(8)

(9)

Averaging Eq. (9) over the independent random variables sj, which take on the values ±S
each with probability 1/2,

N
z-p Sj = 21N j

j=1
[sgn(S+ny) - sgn(-S+nj)] . (10)

Averaging now over the nj (which all have the same distribution),

= = [Prob(S+n>0) - Prob(S+n<0) - Prob(-S+n>O) + Prob(-S+n<0)] . (11)

We assume that the probability density of the noise is symmetric about the origin, so that

Prob (n > -S) = Prob (n < S) (12a)

and

Prob (n < -S) = Prob (n > S) . (12b)

Use of Eqs. (12) reduces Eq. (11) to

zp = Prob(n<S) - Prob(n>S) = 1 - 2 Prob(n>S) . (13)

Consider now the square of Eq. (9), namely
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N N
Zp2 = 1 1 sgn s sgn sk sgn(sj+nj) sgn(sk +nk) (14)

j= =1

or

N"

Zp2 = 21 sgn 2 sy sgn 2 (sj+nj)
j=1

N N

+ 2 sgn sj sgn sk sgn(sj+fj)sgn(sk +nk). (15)
j= = 1

(j k)

When zp2 is averaged over s, and Sk.

N N

P 4N2 [sgn(S+nj)
j=1 k =1

(jok)

-sgn(-S+nj)][sgn(S+nk)- sgn(-S+nk)] . (16)

For S = 0 (and for S large) the double sum in Eq. (16) vanishes. Thus for small input
signal-to-noise ratios we may approximate

z 2 = 1/N, (17)

regardless of the distribution of the noise. Accordingly, for small signal power compared
to the interference,

2 z2
(Sig/Noi)Out = _ = N[1-2 Prob(n>S)] 2. (18)

(p-p2 ZP

We proceed to evaluate Eq. (18) for Gaussian-noise, rectangular-pulse, and CW interference.

Gaussian Noise Interference-For n (t) Gaussian (n2 OA,

Prob(n >S) n dx - erf(Sk/ an) (19)
-v/r n2 2

where
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erf(x)= Ai f e-t 2 dt. (20)

Substituting Eq. (19) into Eq. (18), we have

(Sig/Noi)ou = N erf2 (S/a ) (21)

Since

erf x 2x for x < 0.3,

(Sig/Noi)out= 2N S an 2 = 2N (Sig/Noi)in* (22)

For Gaussian noise, (Sig/Noi)out is 1.95 dB below that of a classical correlator, given by
Eq. (8).

Rectangular Pulse Interference-If n(t) is a sequence of random pulses with random
changes of polarity and whose amplitude .always exceeds that of s(t), then Prob (n>5) =

1/2 and Prob(n< -S) = 1/2. Substituting the value 1/2 into Eq. (18), we have

(Sig/Noi)out = 0 (23)

for rectangular pulse interference whose amplitude exceeds the signal. However, if the
interference amplitude is less than the signal, the interference produces no effect.

CW Interference-CW interference is given by

n (t) = J sin (cot + p), (24)

where p is uniformly and randomly distributed over the interval [-7r < p < 7r] . We let
cotj + = A, and we let Z = J sin Q. Then the probability density of Z is given by

P(Z) = I(J2Z2)I 2 IZI <J, (25a)

= 0 , IZi> J. (25b)

Therefore

Prob (n > S) 1 J dZ 1 -1 ar S/J (26)7r (j2 -Z2)1/2 -arsm2J

Substituting Eq. (26) into Eq. (18), we obtain

9
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(Sig/Noi) =4 N arcsin 2 (S/J). (27)

For S/J small, arcsin (S/J) S/J, so that

(Sig/Noi)out = TN (S2jr J2) = N(Sig/Noi)n (28)

Comparing Eq. (28) with Eq. (8), we can determine that for CW interference the polarity
coincidence detector has a (Sig/Noi)out which is 6.9 dB below that of a classical correlator.

Case 3: Polarity Correlation Modified by Dither

In considering polarity correlation modified by dither we consider first uniformly
distributed dither and then sinusoidal dither. We let d (t) be a random variable distributed
over the range -do < d(t) 6 do and let dj = d(tj) be independent of dk, for k j. The
detection statistic Zd for this case is from Eq. (4)

N

ZdK 2Z sgn(s 1 +n +dj), (29)
j=1

where s = sgn s. We let n + d = Hj. Comparing Eq. (29) with Eq. (9), we see that the
expressions become identical if H(t) replaces n(t) in Eq. (9). Making this substitution
into Eq. (18), we find that the general expression for (Sig/Noi)out is given by

(Sig/Noi)out = N[1- 2 Prob (H> S) 2 . (30)

Since H is assumed to be symmetrically distributed about the origin,

Prob(H>S) = Prob (H> O) - Prob(0<H<S) =-- Prob(0<H<S).

Thus Eq. (30) becomes

(Sig/Noi)out = 4N[Prob (O < n + d < S)] 2. (31)

If PH(z) designates the probability density of H, then the characteristic function of PH is
defined to be

eizt PH(z) dz = eint eid, (32)

since the dither and interference are independent. Therefore, by the Fourier integral
theorem,
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PH(Z) = 2 

Therefore

fSProb(O< H< S) =

Since eid and eitn are even in t (because n and d are symmetric about zero), and since
eiS = cos tS - i sin S with cos tS being even in #,

_ SProb(O< H< S)- = 
2;

e- e'- sin tS d .

Uniformly Distributed Dither-In the case of uniformly distributed dither

itd = 1 do e a sin d
do0

and Eq. (35) becomes

SProb (O < H<S) = --
'A;

e Tn sin tdo
tdo

sin S dt. (37)

Substituting u = tdo into Eq. (37), we obtain

Prob(O< H< S) = S - iunldo sin u sin(uS/do) du
iro0 u uS/do (38)

Since we are interested in small input signals, for which S/do << 1, Eq. (38) reduces to

P S eiun/do s dProb(O< H< S) = 7ro siu d (39)

We proceed to evaluate Eq. (39) for the cases when n(t) is Gaussian, random-rectangular-
pulse, and CW interference.

For Gaussian interference

eiunldo = 1 f eiunldo e-n2 /20n2 dneU n2/ 2 do(

N/27 an O

eiz e "eind . (33)

(34)

(35)

(36)

11

1 - - -i�s -1PH(Z) ClZ = �-7r An Ad e7 -i� d�.

(40)
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Substituting Eq. (40) into Eq. (39), we obtain

Pro Sd it; e-U2O2/2dO2 sin uProb (< H < S) 4F- f e 2 n1d du.
0

Integration of formula 508 in Peirce [5] gives

f e-a2 x sin bx d= T erf(b/2a),

which reduces Eq. (41) to

Prob(0<H<S)= S- erf(do/an\A).2d0

Hence from Eq. (31)

(Sig/Noi),ut= NS-2

For rectangular pulse interference (Fig. 4)

pn(x) = 2 6 (x-C) + - 6(x + C),

where C represents the pulse height and is the Dirac delta function. Thus

eiunldo = [eiu C/do + e'UC/do] = cos(uC/d 0 )

Substituting Eq. (46) into Eq. (39) and simplifying, we obtain

Prob(0< H< S) = S [sin(1 + C/do )u
27rdo 0 l u

+ sin (1- Cldo)ul du
du

From Peirce, formula 484,

sin au du

=0 , a= 0,

= -/2, a < .

Substituting Eqs. (48) into Eq. (47) and the results into Eq. (31), we obtain

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48a)

(48b)

(48c)

erf2 (d 0 / anVr2-) .
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(Sig/Noi)out = N(S/do) 2 , C/do < 1,

= N(S/2do) 2 , C/do = 1,

=o , C/do>1.

(49a)

(49b)

(49c)

Equations (49) point out what we discussed qualitatively. Equation (49a) indicates
that if the maximum excursion of the dither exceeds the interfering pulse amplitude, then
capture is prevented. (Actually, the dither peak must exceed the signal magnitude plus
the interfering pulse magnitude, but in the approximations made we neglect the signal
with respect to the interference.) Equation (49c) indicates that if the maximum excursion
of the dither is less than the interfering pulse amplitude, capture occurs. The singularity
of Eq. (49b) has zero probability of occurring and drops out of the subsequent analysis
because we will be considering do to just barely exceed C rather than to equal C.

For CW interference

n(t) = J sin(cot+ep),

pN(z) = 1

7r=

= 

(50)

IZI < J,

Izi > J,

(51a)

(51b)

and, from Magnus and Oberhettinger [6], p. 117,

eiun/do 1
e iT~~~7

J e iuz/do

fj J -Z2 dz = Jo(Ju/do) 

Substituting Eq. (52) into Eq. (39), we obtain

Prob (0 < H< S) = d
irdo

From Magnus and Oberhettinger, p. 36,

00; sin bxJo(ax) X dx = /

= arcsin b/a,

Accordingly

Prob(0<H<S)= S
2d 0

S . do
= d arcsm ,

(55a)

J> do . (55b)

(52)

47 Jo(Juldo) sin u du . (53)

a< b, (54a)

a> b. (54b)

13
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Substituting Eqs. (55) into Eq. (31), we obtain

(Sig/Noi)out = N(S/do) 2

= 4N()2

(56a)

arcsin2 (do J), J> do . (56b)

Sinusoidal Dither-In the case of sinusoidal dither

d (t) = A sin [coot+ p(t)],

where p is constant over the time interval covering a single observation but varies randomly
and uniformly within [-ir,7r] from observation to observation.

Using the same reasoning already employed in Eqs. (50) through (52), we have

eid 7f eZ dz = Jo(At) .-A 2- (57)

Substituting Eq. (57) into Eq. (35), we obtain

Prob(0< H< S) =S Jo(Ai) e7 s to d.

Letting u = AS in Eq. (58), we have

Prob(O < H< S) = ETA Jo(u) eiunlA sin(uS/A) duuS/A (59)

Similar to our treatment of Eq. (38), expanding Eq. (59) to the first term in the small
quantity S/A, we reduce Eq. (59) to

Prob(O< H< S) = S- f Jo(u) eiun/A du,

which we proceed to evaluate for the three types of interference.

For Gaussian noise, from Eq. (40),

eiunIA = e-u2an2/2A2

Substituting Eq. (61) into Eq. (60), we get

Prob(O<H< S) = S - Jo (u) UOOn22A2 du.

f C (58)

(60)

(61)

(62)

14
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From Magnus and Oberhettinger [6], p. 35,

J (u) Cp 2U2 du
f o

00 2p 11 2 1, 4P )

where, from p. 87 of the same reference,

1FI(1/2,1,2z) = ezIO(z) ,

so that

Jo (u) eP 2 2 du =2 e1/8P2 IOL- ,

and, from Eq. (62),

2e/4 Un2
Prob(0< H< S) = se-A Io (A2/4un2 ) -

Substituting Eq. (64) into Eq. (31), we obtain

(Sig/Noi)out = 2NS2

For rectangular pulse interference, from Eq. (46)

eiun/A = cos uC/A .

Substituting Eq. (66) into Eq. (60), we get

Prob(0< H<S)= -T Af
0

From Magnus and Oberhettinger, p. 37,

I oo Jo(u) cos uCIA du = 1,

Jo(u) cos uC/A du .

C/A < 1,

Accordingly, from Eq. (31),

_4NS
2

; r2A2 

= , C/A > 1.

(63)

(64)

-A/2, 2A2

e n2~ i 0
2 (A2 /4agn2 ) (65)

(66)

(67)

(68a)

=0, C/A>1. (68b)

C/A < 1 (69a)

15
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Thus we corroborate that CW dither whose maximum exceeds the interfering pulse mag-
nitude prevents capture by the interference, although with a (Sig/Noi),ut which is 4 dB
below that for uniform dither.

For CW interference, with n (t) = J sin(wt + p), we have from Eq. (52)

eiunlA = o(uJ/A) (70)

Substituting Eq. (70) into Eq. (60), we have for S/A small

Prob(0< H< S) = -W- JO (u)Jo(uJ/A) du ,

=- r Jo(u)Jo(uA/J) du,7rJ J

From Grobner and Hofreiter [7], p. 202, formula 2(a), and 
p. 106,

4r JO(u)Jo(bu) du = F(1/2,1/2,1,b 2 ) = 2 K(b),7T

where F designates the hypergeometric function and K(b) is the
of the first kind:

7r/2
K(b) =

dp
%1- b2 sin2 f 

J + S < A ,

A +S<J.

(71a)

(71b)

Magnus and Oberhettinger [6],

0< b< 1, (72)

complete elliptic integral

(73)

From Eqs. (72) and (73)

Prob (O < H < S) = 2S K (J/A ),

= 2S AK(A/J)

S + J < A ,

S+ A< J.

From Eq. (31)

(Sig/Noi)Out = 4N [ 2 K(J/A)1 S + J < A ,

= 4N[T2J K(A/J)] S +A< J.

The (Sig/Noi)Out formulas for the various cases have been collected in Table 1.

(74a)

(74b)
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J.J. FREEMAN

COMPARISON OF (Sig/Noi)0 ,t FOR VARYING DITHER AMPLITUDES

Table 1 shows that rectangular wave interference whose peak amplitude exceeds that
of the signal will completely suppress or "capture" the signal of a polarity coincidence de-
tector with no dither. However the addition of dither whose peak exceeds that of the
interference eliminates capture. On the other hand values of peak dither exceeding the
necessary threshold by too much will decrease (Sig/Noi)out. For the dither to be large
enough to avoid capture and yet not so large that the (Sig/Noi)out is unnecessarily de-
graded, it is necessary for the receiver to continuously monitor the interference power
and to adjust the peak dither voltage to be a prescribed factor, say g, of the interference
peak, the factor at least exceeding unity. Thus, if P is the measured interference power,
to avoid capture we attribute it to rectangular pulse jamming and infer that P = C2 ,
where C is the pulse height (Fig. 4). Thus we choose do = gC = gxN/P7g > 1, for the case
of uniform dither, and we choose A = g,\IT for the case of sinusoidal dither. Since it is
apparent from Table 1 that for large enough dither (Sig/Noi)out decreases as the dither
increases, for each type of interference and each type of dither there is a value of g which
maximizes (Sig/Noi)out. Since we are interested in insuring that the system performance
always meets a minimum specification, we define the optimum value of g as that value
which maximizes the minimum (Sig/Noi)out.

To determine the (Sig/Noi) ut values which would occur by choosing the peak values
of dither according to do = gaIY, A = gYP', we substitute these values, as well as a = .
J2 = 2P, into the formulas of Table 1, obtaining Table 2. Figures 7 and 8 graph (Sig/Noi)out/
(NS 2 /P), the signal-to-noise ratio divided by that of the classical correlation detector, as
a function of g for the different types of interference for uniform dither and for sinusoidal
dither respectively.

Figure 7 shows that with uniform dither the minimum (Sig/Noi)out is maximized
by choosing g = 1.36, where the minimum (Sig/Noi)out equals 0.37 NS2/P, which is
4.3 dB below the theoretical optimum. Figure 8 shows that with CW dither the mini-
mum (Sig/Noi)out is maximized at g = 1.12, where (Sig/Noi)out = 0.32 NS 2 /P, 0.65 dB
below the (Sig/Noi)out value at the optimum point for uniform dither. However, for
uniform dither the (Sig/Noi)out curves for both rectangular waveform and Gaussian
interference are above those for CW dither, and most important the optimum value of
g for CW dither is fairly close to the capture point (g = 1), in contrast to the situation
for uniform dither. Accordingly one must conclude on grounds of stability of perfor-
mance as well as superior (Sig/Noi)out that uniform dither is superior to CW dither.
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1.1 1.2 1.3

g _

1.4

Fig. 7 - Plot to determine the value of g at which the minimum (Sig/Noi)out
of a polarity coincidence detector with uniform dither divided by the output
signal-to-noise ratio of a classical correlator is a maximum
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Fig. 8 - Plot to determine the value of g at which the minimum (Sig/Noi)out of a
polarity coincidence detector with CW dither divided by the output signal-to-noise
ratio of a classical correlator is a maximum
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