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A NUMERICAL CALCULATION OF THERMAL BLOOMING
OF PULSED, FOCUSED LASER BEAMS

Peter B. Ulrich
Optical Sciences Division

I. INTRODUCTION

A numerical calculation of the thermal blooming of pulsed,
focused laser beams is described in this Report. This theory is
complete in that it self-consistently takes into detailed account
the hydrodynamic processes in the absorbing gas. For simplicity,
only the case of a Gaussian initial beam, with no wind and no
turbulence is considered. More realistic situations are now under
investigation and will be covered in future Reports.

Previous work on this problem is based upon models which
sacrifice self-consistency in order to make the solution achievable
by analytic methods. The present study will allow an assessment of
the validity of this earlier work to be made.

Self-consistent investigations of steadyS time-independent
propagation have been made by several groups. ,4,5 The steady state
is achieved after transients have decayed and only if there is a
steady wind relative to the beam to sweep out the heated air. The
present work can be used to study the transient response of a CW beam
after turn-on and before the steady state is reached.

II. WAVE OPTICS

The wave optics theory as discussed in reference (4),is used here.
If the times considered are restricted to be less than the transit
time of a sound wave across any part of the beam then wind can be
ignored and, unlike the problem of reference (4), this problem has
cylindrical symmetry and the equation for propagation of light of
amplitude, , becomes,

il + 1 + 15 + k2(n 2 _1) t=O, (1)

where z is the range, r measures distance radially from the beam axis,
k is the radian number (/c), and n (r,z,t) is the index of refraction
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(n = 1 for a vacuum). In equation (1), a term c2 8- has been dropped.-

This is tantamount to assuming an infinite speed for light velocity and2 
neglects retardation of the effects of the beam.

It is convenient (and in some cases, necessary) to transform (1). .1

The transformations and the utility of each are given here6

(A) r/a
0

This normalizes the transverse dimension to a characteristic size i+N
describing the extent of the initial intensity distribution. In all...

cases studied here a is the radial distance at which the intensity
of the initial Gaussian-distributed beam is down by a factor of lite, at
z = 0.

(B) 5=z/ka 2
0

This converts the range into a fraction of the far field distance

for a collimated beam. For focused propagation the utility of the
transformation is that it simplifies the equation.

(C) -r/D(C) where (C) = 2 + (1 2

and f f/ka f being the focal point.

This transformation has the effect of making the extent of real

space under study proportional to the size of the vacuum beam. r(O)Vff
is the trajectory of a light ray in a diffraction limited Gaussian

beam.
C

| ~~(D) Z= ():
D(C')

0

This further converts the range so that for equal size steps in Z,

the smallest steps in occur at the waist of the vacuum beam. This is
desirable since most of the effects occur in this region of high in-
tensity which, therefore, must be sampled with high frequency.

2 ___ C( f>
(E) 1%rZ) = d f(Z)-ra exp [- i e - D(Z)

This phase and scale transformation removes the rapid phase
oscillations in the radial direction and offsets the intensity behavior

of the vacuum solution so that just the effect of interest, the de-

parture in propagation from the unperturbed beam, is studied in detail.

Under the operation of these five transformations, Eq. (1)

becomes,

2



2i F3 ~ I,...2 2 2 2-(2
2i + z z r + k a (n - )D(Z) = 0.

r r 0 2

The beam intensity is given by,

2 ~1
I(rZ t) = (3)rra0D(Z)

where P is the beam power and X is the linear absorption coefficient.
2

For n = 1 the vacuum solution to (2) for an initial Gaussian
focused distribution is,

2_ (I - C(Z)/) - iZ) /2~~~(rZ) _____ e r 4
VD(Z)

where,

5(3 tan [Z -tan l/f + / 5
CM~~I / (5)

III. HYDRODYNAMICS

The laser beam is the heat source which gives rise to perturba-
tions of the hydrodynamic quantities. Since the Fresnel approximation
is predicated upon very slow variation of the beam in range it follows
that the changes in the gas variables will be slowly varying in z as
well. Axial fluid flow which is induced in one direction is almost
exactly cancelled by flow in the opposite direction. The simplifica-
tion of dropping the z-dependence of the density, pressure and velocity
of the gas leads to the following linearized set of hydrodynamic
equations for the symmetric problem.

Conservation of mass,

P+ OV+0(6)
at Po kdr r =

Conservation of momentum

6V + I F3O= (7)at p br

Conservation of energy

p ypQ V + (y - 1) aI(rzt) (8)

3
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where P.,,P are small departures from ambient values pv 0(
0 ),~

and y is the ratio of specific heats. The right hand side of (8)

represents the energy absorbed per second per unit volume 
by the-

intervening gas, and (3) supplies the beam intensity, I.

An additional transfonnation is applied to this set.

(F) w tin 
>fD(Z)

This transformation allows time to elapse at each range 
in

:~~~~ ~ A.i .. .-.--

proportion to the vacuum beam size at that range, a V(z) Th is I --

is desirable since effects develop more rapidly for smaller 
beams,

all else being constant, due to the larger intensity. In thisway

isTadequate sampling in time assured.

With these changes the hydrodynamic set becomes, 
- -_

a+ P I . (IQ) 
0

T r r

-~~~~~~~~~~~~~~~~~~a -s -Kl 
T r r

aT Ypo + )=(Y ) I 5v-Z) Ad

where the original symbols for the hydrodynamic quantities 
as functions

of the transformed variables should cause no confusion.

The induced change in refractive index of the gas 
is related to_

the density change by the Lorenz-Lorentz law, 
;-

n -1= 3Np (it) A

where N is the refractivity. 
-

IV. COMPUTATIONAL DETAILS

Two alternatives have been considered for the integrationtof

Eqs. (9) through (12) together with (2). They differ in the order in

which the time and range integrations are accomplished.

The first integrates in range, updating the gas variables 
at each

step, all at a fixed time. The process is then repeated through the

new values of hydrodynamic variables. This process of alternating

4
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beam propagation in range and evolution of the gas in time is repeated
until times of interest have evolved. The beam is seen to pass through
a series of static representations of the gas, each separated by a
time At, chosen small compared with hydrodynamic times which are of
the order of the local beam size divided by the speed of sound.

When the total time span of interest is less than the time for
sound waves to travel between any two ajacent range points, then one
can safely reverse the order of time and range integration; i.e., time
is evolved to the final time of interest at each range point before
propagating the beam to the new range point. This method9, was used
in a preliminary study7 of the transient response of the atmosphere to
collimated beams. This latter method which was chosen for this work
as well, is used to advantage when the time to be studied requires less
steps in time than the range to be studied requires in range steps.
This can be seen by reference to Table I where the storage locations
required for each method are enumerated.

The table assumes that central differencing in range and time is
used. This explains the entries of the number 3.

TABLE I

ENUMERATION OF STORAGE REQUIREMENTS
FOR ALTERNATIVE COMPUTING METHODS

Method I

(march in z,
Variable fixed t)

Method II
(march in t,
fixed z)

r z t r z t

Red nr 3 ° nr 3 nt

Im§ nr 3 0 nr 3 nt

p nr nz 3 nr ° 3

v nr nz 3 nr 0 3

p nr nz 3 nr 0 3

(6 + 9n )n (6nt + 9)n

(nr n, nt = number of samples in r,znt respectively).

5
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The two methods-are seen to require comparable storage when

nz - nt. This condition is met when studying pulses of a few hundred

microseconds or greater at modest ranges or when the focusing is not

too great. For times much longer than this the inclusion of wind

becomes necessary. Wind introduces an assymetry which effectively

replaces nr by nr2/2 in the above enumeration making storage require-

ments prohibitively large.

The stability of the central differencing of the wave optics

equation was reported in reference (4). The symmetry of the present

problem does not change those arguments. It was found for the

hydrodytami set that forward differencing in time was unstable as

well, and that central differencing (two-point prediction) produced a

stable algorithm. The stability of the hydrodynamics is discussed in

Appendix A. Appendix B is a flowchart of the main program of the pulse

code.

b

Ft

V. ACCURACY CHECKS
-4-

I'

2
Computer solutions of (2) with n = 1 were compared point by

point with expression (4) for all ranges and radii. Agreement was

always better than one part in 103 in amplitude, v. This was true

even for cases of extremely large mirrors (1 meter diameter) and short

focal lengths (tens of meters). This success is due to the trans-

formations described in Section II. The initial surfaces of constant

phase for a focused Gaussian beam are approximately spherical surfaces

centered at the focal point. In the original coordinate system the

values of the amplitude are specified on planes perpendicular to the

z-axis and not on the surfaces of constant phase so that the amplitude

goes through oscillations. The phase grows with the square of the

radius of the mirror so that for large mirrors extremely fine sampling

is required to faithfully sample the transverse oscillations. The

transformation (E) removes this phase throughout the path so that the

real and imaginary parts of the amplitude are Gaussian in radius, and

hence easily sampled to produce the accuracy noted above. Any further

phase changes will be induced by refraction through the thermal lens

and this is expected to be an effect free from rapid oscillations in

radius.

During the course of the computation the integrated intensity is

checked for constancy,

I' w'| 'rg = constant, (131)

a

at each z-plane for all time. This condition is obeyed to better than

I part in 103 and even this error can be largely attributed to edge

effects; the integration is not over an infinite path but typically

carried out to six e-folding distances in radius.

6
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The hydrodynamic accuracy is checked at selected Z-planes for all
times by separately monitoring the right and left hand side of the
integral form of the continuity equation,

a pdV - V- (14)

where V is a volume element and ds an outwardly directed surface
element. In the computer code the integration is taken over a cylinder
of unit length in Z so that (14) becomes, in scaled variables,

r

fp( P(rit) rddfrt -rp vq) (15)

The numerical integration is done by the trapezoidal rule. The re-
lation is checked for each r-value sampled. Agreement is found to
better than % which is the limit of accuracy of the trapazoidal
integration for the step size in radius used.

For very short times and at ranges near the laser face the
density changes are essentially due to the vacuum beam. A perturba-
tion theory expression for p should apply,

P ( - )Mt3v21i 12/6 (16)

where Tv is given by Eq. (4). Agreement with this expression is
achieved for small enough step size, so that this expression is used
as a very sensitive criterion for choosing accurate step sizes for the
whole time evolution.

A wave optics perturbation calculation predicts that the ratio
of on-axis intensity at the end of the pulse of length t at the focal
point to the vacuum intensity there is given by,

12 2 4 2

2 - 1 Log 9 + ) 3N (y - )at E k ao (17)
1%] \ 1 6 2 TT f2

where E = Pt, the total energy delivered. This behavior is confirmed
qualitatively only for beams which are not strongly focused since the
perturbation theory assumes refraction due to the undistorted beam.

VI TYPICAL RESULTS

The program, at its present stage of development, provides plots
of the beam intensity vs. radius normalized to the vacuum intensity

7



(T 0), for selected times at selected ranges. Figures 1 and 2 show

typical output for a beam focused at 3 kilometers with an initial

half-meter diameter (a = 17.68 cm) and a power sufficient to supply
700 joules in 70 microseconds. t

The ranges shown are z = 2.584 km in Fig. I and z 3.0 km, the £
focal point, in Fig. 2. Note the enhanced intensity off-axis at 70

microseconds at the 2.584 km range. The beam is not strongly focused U!
at this range and this behavior is in qualitative agreement with.

collimated beam predictions ' . The intensity maximum at this point
causes local heating with a concomitant drop in density. The light

rays passing through this region will be refracted both away from and

into the center of the beam to-produce the smooth wide distribution at

the focal point as is seen in Fig. 2 at about the same time.

Fig. 3 is a plot of intensity vs radius for the same beam as

portrayed in Figs. I and 2 except the curves are for different ranges

at the same 70 microsecond time. The development of the off-axis

intensity at 2.5 km and the subsequent broadening of this peak is

clearly evident.

VII. CONCLUSION

This report has summarized the development of a computer program

for studying the self-consistent time dependent propagation of focused

laser beams in gases leading to thermal blooming. This work represents

a significant extension of earlier analytic work and establishes the

foundation for a realistic study of propagation effects in situations

of practical interest.
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LiiI- (f 3KM)2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. 1. Plot of normalized intensity vs radius for a half-
meter optics laser beam focused at three kilometers, for
three times after arrival of leading edge of pulse at
z = 2.584 km.
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Fig. 2. Same beam as shown in Fig. 1 but at z = 3.0 km, the
focal point.
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Fig. 3. Log-Log plot of absolute intensity in KW/cm 2vs radius
for three ranges, z . z 2.5 km and z = 3.0 km,- all
at 70 microseconds after arrival of pulse at each range.
Also shown is the vacuum profile at the focal point,
3 . km. This all for the same beam as appears in
Figs. and 2.
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Appendix A

STABILITY ANALYSIS

The numerical stability of Eq. (2) is covered by the analysis of -4.

reference (3). The stability of the set (9) through (11) is discussed 7-- 4
here. Round-otf errors are propagated by the same equations with the s;-
right hand side of (11) set equal to zero. Using central differences :
throughout gives for the error terms, p e, v, and p , 

Pe 4,t+At) - Pe(r,t-At)

2At

ve(r,t+At) - ve ,t-Lt)
26t

= - 0

= F
PO 

ve r+ rvt) - ve(-rPt) +
2AT

PeCr+6r't) - Pe r-&r.t)l
2Ar _-

Pe( 5t+At) - Pe ar,t-t)
2t

veG+Art) - ve-rrrPt)
LYPo 2Zr

+ ve(r.,t)j(A3)
r

A Fourier-Bessel decomposition of the dependent variables is made,

Pe(rn) = kdkR(k,t) J(kr) (A-A) -

~~~~~~~~~~~~~~~ _ 

O D 

v C( -t) 1 kdkV(k,t) (k)r) (S) -
o 4-if

k k

'P , t) = kdkP(kt) J (k r)

where J1(k') is used in (A-5) since v(Om> is set equal to zero for

all T so that ve(OT) is identically zero; i.e., there is no error in

v(rt) at the origin. (No confusion should arise here with the use.
of k as a transverse mode number and the wave number of the optical
beam in the main text).

Substituting the above decompositions into the a)yorithm (A-1Z2, 3)
and Taylor expanding the Bessel functions to order (Ar)3 gives,

R(k,tt+At) - R(k t-tq=_ p V(k, t) (A-7
2At o

(A-6)

.: . n - .,.D

, . +Su

: .t I'dC

1:_ i Rei:

.ur tnv.
.. . _

S > . ay

| | . .t :9

_ . . A � j

T::; rf

. si...#$

s rS

:. A:CH

.Nq

! .+ .
.. .1

F

i

:

!
Sh ;

i :

t) i o
1:: :

i
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V(k,t+At) - V(k,t-At)

2At

P(kt+At) - P(k.t-At)

2&t

= + k P(k,t)

pO

-yp 0 kV(kl-t)

A Fourier decomposition
frequency is studied to
of each mode associated

in time is made and
determine potential
with the transverse

the Imaginary part of the
exponential growth or decay
wave number, k.

Thus, let,

R(k t) = ak)eiWt (A-10)

V(kt) = (k)elWt (A-ll)

P(kt) = 6(ke (A-12)

These quantities are substituted into (A-7,8,9) to get a set of
homogeneous linear equations for a, 9, and . A necessary and sufficient
condition for a solution is the vanishing of the determinant of the
coefficients.

2iSirAt

0

0

2p kAt

2isirujt

2ypkAt

0

-2k At

2isinuAt

= (A-13)

One solution is = 0
satisfy

which is always stable. The other two modes

sin2WAt = C 2k2At2 (A-14)

2
where, cs - Ypo/Po

Now let w = + in so that Imw = > 0 predicts damping of errors,
exp(-Tt). Equating real and imaginary parts gives the dispersion
relation,

13
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(A-9)



n ~fAt cosh (kAt) (A

Now r is zero until c kAt > 1; at that point
s

k + V(l += aIk= c At== c>

so the positive branch of (A-15) is chosen and r>, predicting damping.
of errors and a stable algorithm.

By way of contrast the use of forward differencing in time leads
to the following dispersion relation,

igAt - At =ln ( + c k At 2 > ± itan (c(k t) ( 7

Equating of real and imaginary parts gives Ivw = r < 0, and thus,.

growth of errors. Forward differencing is unstable.
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APPENDIX B

FLOW CHART OF MAIN PROGRAM

PROGRAM PULSE

II READ data

IPRINT dataI

CALL START
Gives hydro variables
at t=O, tAt, all r.

- CALL GR.
Calculates
prints inte!
intensities,

]

| tAt

t--t+At

tYe
final?

Yes

15

CALL PLOTS(1)
Initialize system
plotter

Initialize counters
I Calculate constants I

T
CALL INITIAL
Gives amplitudes, 0,
at z=O, all r and t

V
CALL INTENSMi)
Calculates intensities
at z=O, all r and t.

V

AFIX(2)
and
grated
all t.

CALL HYDROWt)
Calculates hydro
variables using
two previous time
values, all r.

CALL SCRUB
Shifts hydro
variables back one
location in time

V

CALL EULER
Calculates amplitudes,
A at z=Az, all r at
time t.

-
-l

_ . . . _

1

. . .

.

... . _

_ .
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