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ABSTRACT

The TIMATION (Time Navigation) technique of passive ranging
canbe employedto provide a worldwide navigation and time-transfer
gervice, Passive ranging is accomplished by measuring the time
difference between electronic clocks located within the satelliteand
the navigator’s receiver. Navigation results were obtained with a
prototype system consisting of the TIMATION I satelliteand four
ground stations. The results indicatea CEP position-fixing capa-
bility of 33 meters (100 feet) using dual-frequency range measure-
ments. The analysis of the data includes ionospheric refraction,
instrumentation error, and the effect of satellite trajectory position
error in both the observed and predicted regions.

PROBLEM STATUS

This is an interim report un one phase of the problem;
work on this and other phases ir continuing.

AUTHORIZATION
NRL Problem R04-16
Project A3705382 852PR1F48232751

Manusoript submitted Oct, 18, 1972,
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RANGE NAVIGATION USING THE TIMATION II SATELLITE

INTRODUCTION

The TIMATION (Time Navigation) experiment for satellite navigation is now being
developed under the sponsorship of the Naval Material Cemmand, PM-16, When the
TIMATION I satellite was launched Sept. 30, 1969, the project was sponsored by the
Naval Air Systems Command. 'TIMATION II transmits range and doppler signaisnear 150
and 400 MHz. These signals can be used to correct range or doppler for first-order
ionospheric refraction, Four U.S,-based ground stations are used to track the satellite
and to collect telemetry iniormation from the sensors on board the satellite. Other
ground stations are used to control the satellite subsystems, including its ability to tune
(in phase and frequency) the on-board quartz crystal oscillator,

The overall physical configuration for TIMATIO! II is given in Fig. 1. TIMATION iI
is equipped with a high-preciston quartz crystal oscillator capable of frequency stabilities
on the order of a few parts in 1011 per day. TIMATION II is equipped with active ther-
mal control of the oscillator environment, which effectively eliminates oscillator fre-
quency fluctuationi due to temperature changes.

Ranging information is provided by means of coherent modulation of the carrier, with
modulation frequencies within the range from 100 Hz to 1 MHz, The range receiver
synthesizes a similar set of frequencles which are phase compared with the received
signal.

THE TIMATION II SATELLITE

The TIMATION II satellite has an overall configuration similar to the TIMATION I
satellite (1); hence only a summary of its features will be given in this report. The sat-
ellite weighs approximately 125 pounds and consumes an average of 18 watts of power,
turnished by solar cells and batteries, Two-axis gravity-gradient stabilization is pro-
vided by using an extendable boom. Temperature control is achieved by (a) careful de-
sign of the satellite (2) to provide a temperature range from 0°C to +20°C inside the
satellite, and (b) active temperature control of the quartz-crystal frequency standard to
maintain its external temperature to within a fraction of a degree, Linearly polarized
dipoles are used for the 150- and 400-MHz antennas. A separate telemetry antenna is
used, This antenna is mounted on the side and has more than 40 dB of isolation irom the
main antennas. In addition, a magnetometer is used to sense attitude changes of the
gatellite.

The frequency of the oscillator may be electromechanically tuned in discrete steps
of approximately 3.8 x 10-12 parts per pulse. The phase of its transmissions may be
advanced or retarded in discrete steps of 33.3 nanoseconds per pulse. These two features
provide control over the satellite clock synchronization and clock rate.

TIMATION II is in a 500-naut-mi, near-circular orbit which has an incliration of 70
degrees to the cquatorial plane. With this orbit, several passes of 12 to 16 minutes
duration each will be available during the day at each of the four TIMATION tracking
gtations. |

|
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Fig. 1 - The TIMATION I satellite
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TIMATION RANGING CONCEPT

- The TIMATION II satellite carries a highly stable crystal oscillator, from which nine
modulation frequencies of the two carriers of 150 and 400 MHz are obtained, The modu~
lation frequencies are 190 Hz, 312.5 Hz, 1 kHz, 3.125 kHz, 10 kHz, 31,250 kHz, 100 kHz,
312.5 kHz, and 1 MHz, The transmitted modulation frequencies can be received and phase
compared with a similar set of coherent tones synthesized from an oscillator, or “clocs,”
at the receiver site, This system is thus a frequency interferometer which wiil measure
the time difference between the received signal and the local time with ambiguities of 80
milliseconds, based on the highest common divisor of 12,5 Hz, and which has an accuracy
based on the precision of the phase comparison of the highest tone (1 MHz), m the system,
the resolution of the phase comparison is 1 percent of a period, giving a time resolution
of 10 nanoseconds when using the 1-MHz tone. The error of the time comparison of the
received and local signals is slightly more than 10 nanoseconds, due to phasemeter zero
adjustment, nonlinearity, differential phase shift in the receiver, noise, and other lesser
factors, This measurement may be converted to ranging information by multiplying by c,
the speed of light in a vacuum, This conversion shows that 10 nanoseconds is within 15
percent of 10 feet, This ranging information, which depends on the navigator’s position,
also includes information on the time difference between the satellite clock and the
navigator’s clock,

The actual time difference between the received signal and the local reference is the
time difference between the satellite oscillator, or “clock,” and the ground clock, plus
the propagation time required for the signal to propagate from the satellite to the receiver.
The time indicated by the components of the received signal is subject to some error due
to the dispersive effect of the ionosphere.

~ The user’s time base is obtained from the user’s frequency standard, using suitable
countdown and comparigon circuitry, The timing requirements for the ground-station
clock are higher than for the user’s clock, The ground stations are equipped with cesium-
beam frequency standards which are kept in time synchronization with the UTC time base,

The system user, or navigator, is not required to have a frequency standard of the
same precision as required for use in the satellite. For example, guartz-crystal frequency
standards with stabilities on the order of a few parts in 1010 per day would be suitable
for use by a TIMATION II user.

SATELLITE TRAJECTORY CALCULATIONS

The satellite trajectory computation is made by the Naval Weapons Laboratory (NWL),
using doppler tracking data obtained from the TRANET tracking network, The orbit
determination is performed on the NWL computer using their ASTRO (3) program, which
performs a statistical estimate of the dynamic and observational parameters of the state
variables at epoch, The force model accounts for accelerations from the following .
sources: (a) earth gravitational accelerations, (b) sun and moon gravitational accelerations,
(c) solar and lunar tidal bulge effects, (d) atmospheric drag, and (e) radiation pressure,

The earth’s gravitationa! acceleraiion includes coefficients for the earth’s gravitational
potential as a function of longitude as well as latitude, Other parameters, such as drag
and the positions of the tracking stations, are included in the model, A weighted least-
squares estimate is then performed based on observational data, obtained over time arcs
ranging from two to four days,
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The first-order ionospheric refraction can be measured by means of the dual fre-
quencies in the TIMATION II satellite. With the inclusion of the ionospheric refraction,
NWL determines the position of TIMATION II to +10 meters during the observation span.
The positional accuracy outside of the observed data span remains near +10 meters for
extrapolations on the order of 12 to 24 hours. Beyond one-day extrapolations, the error
may grow rapidly.

For operational purposes the satellite ephemeris would require updating on a fre-
juent basis, However, for the purpose of analyzing the Timation system performance,
the analysis is done using the satellite trajectory during the observed data span. This
choice minimizes the contribution of satellite positional error to the total navigational
fix error,

RANGE NAVIGATION TESTS

- Range observations on the TIMATION I satellite are taken at four receiver sites—
Ft. Collins, Colorado; Perrine, Florida; Chesapeake Bay, Maryland {CBD); and Naval
Research Laboratory, Washington, D.C. These data are read at one-minute intervals
and sent via phone lines to a time-sharing computer service, where it is stored for pro-
cessing. Some initial preprocessing and internal system checks utilize the time-shared
computer, but the range-navigation computations are made ou the large NRL computer,
The computations include a least-squares solution (4) which uses the range measurements
for each pass to solve for latitude, longitude, and clock correction, The latitudes and
longitudes are compared to the surveyed values for the receiving sites to determine
navigational accuracies. The clock corrections are used to study the satellite and station
os.illator behav.or and to make time transfers and station synchronizations between
pairs of ground stations,

. The following criteria are followed for data selection, For the range-navigation
solutions, only those passes meeting the following restrictions are used: (a) maximum
elevations between 15 and 70 degrees, (b) symmetrical data, and (c) at least two minutes
of data on both sides of the point of closest approach.

Navigation solutions are performed using three different combinations of range data:
(a) 400-MHz data only, (b) 400- and 150-MHz dat2, and (c) 400-MHz data using a theoret-
ical model of the ionosphere and troposphere to determine refraction effects. Use of 400-
MHz data with no refraction correction results in a navigation fix which may be in error
up to several hundred meters, due to ionospheric refraction. When the 400-MHz data are
corrected using a theoretical model of the atmosphere (5), more accurate results are ob-
tained. The Chapman model, which is used for this purpose, uses the method of ray
tracing called the “linear layer” method. This method involves two principal ideas - first,
tracing the ray through the troposphere, and second, tracing the ray through the
ionosphere. For the theoretical correction, a table of range-error values for the 150~
MHz and 400-MHz frequencies at different elevation angles was calculated and included
in the navigation program, For the required elevation angle, an interpolation is done
to find the corresponding range error. A more accurate way to remove the first-order
ionospheric refraction effects is to combine the 150-MHz and 400-MHz range measure-
‘ments (4). This procedure will be referred to as the dual-frequency-correction method.

In addition to inclusion of corrections for the refractive effects of the atmosphere,
the frequency differences between the oscillator in the satellite and the oscillators at the
ground stations are computed and izcluded in the navigation solutions, For the time span
covered in this report, the difference in frequency is +8 parts in 10 10,
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Two stations use the dual-frequency method of refraction correction, CBD had the
first 150-MHz receiver; then in April 1971 a 150-MHz receiver was installed at Colorado.
The Colorado receiver was subsequently moved, in September 1971, to Florida,

RANGE NAVIGATION RESULTS

The statistical measures used for computing the navigational accuracies of a set of
passes are the circular error probable (CEP) and the root mean square (RMS), The CEP
is defined as the value of the radius of a circle that contains 50 percent of all data samples.
In this report, TNAV, or total navigation error, is defined as the square root of the sum
of the squares of the errors in latitude and longitude for a given pass—that is, the differ-
ences in latitude and longitude between the computed and the surveyed position of the
station antenna,

A summary of navigation results is given in Tables 1 through 4. Included are re-
sults from the four field stations previously mentioned, One location, included in Table 1,
but not mentioned earlier, is Fort Valley, Virginia, The CBD station was moved to this
site for approximately one month near the end of 1970, This move is of significance as a
reference point in discussing the CBD navigation results. In Figs. 2 through 4, three time
spans are covered, They are (a) before moving to Fort Valley, (b) the time at Fort Valley,
and (c) the time after leaving Fort Valley, These three groups of graphs include all the
observed data covered in Table 1, An analysis of these navigation solutions shows that
the best results were obtained while at Fori /alley. This outcome is possibly due to the
lack of electronic interference at the Virginia site, On examining just the CBD data, the
time prior to the move to Fort Valley produces better navigations than the period after
returning to CBD. One possible reason for this is a change of the 150-MHz receiver; a
new one was installed at CBD after the station was reopened, Another possibility is the
increased interference observed from newly activated transmitters located near the CBD
gite,

Each of these three time spans is represented by three graphs (Figs. 2 through 4).
Consistently, navigation fixes using the dual-frequency method are an improvement over
the navigation solutions using only the theoretical models, and both of these results are
better than the results using no ionospheric correction. To further illustrate the im-
portance of the need for a correction for lonospheric refraction, consider the first graph
of each set (400-MHz range, no correction), On these graphs, approximately 75 percent
of the passes within a circle scribed with a radius {"NAV) equal to 150 meters are night
passes, This fact illustrates that the effects of the ionosphere are less at night than
during the day, resulting in more accurate nighttime navigations, Use of the Chapman
model brings the day passes toward the origin to a greater degree than the night passes.
The results show that in the second graph (400-MHz range, navigation with refraction
correction) of each set, no distinction exists between the TNAV'’s of the day and the TNAV’s
of the night passes, When the dual-frequency method is used, all the passes are brought
closer to the crigin, The results again show no discernible difference between night and
day passes,

In Tables 1 through 4, the navigation runs are in groups of 75 passes or less, There
are two reasons for this, First, the navigation program was written so that it cannot solve
more than 75 passes at a time, Second, the magnetic tapes that store the trajectory in-
formation contain approximately 200 passes, and only one tape can be used per computer
run, Not all of these 200 passes are taken at each station, and of the ones taken not all
can be used in the navigation runs, From the 20C, perhaps less than 75 can be used; of if
more than 75, the data must be divided into two runs, Examples of typical navigation runs
over the time covered by this report are given in Figs. 5 through 8,

freuclts —
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The criteria used in selecting acceptable passes were mentioned previously in this
report, First mentioned were requirements for maximum and minimum elevation angles,
CBD will be used as an example here (Table 5). Any of the other stations would show
similar results, The data again are separated relative to the move to Fort Valley,
Virginia. The data are separated according to maximum elevation angle within each
time span for the three corrections used, The first separation is by thirds; under 30 de-~
grees, and over 30 degrees and under 60 degrees, and over 60 degrees. These divisions
do not alter the navigation results. The answers are independent, within the limits or-
iginally set, of maximum elevation angle.,

From November 1970 through July 1971, navigation solutions were made using a pre-
dicted orbit, in addition to the observed orbit from which the previous results were ob-
tained, The orbit is determined by data from the 15 TRANET tracking stations, For the
observed region, crbit fits of ten meters or less are realized, The uncertainty in the
position of the satellite increases as a function of the length of time into the predicted
orbit region., This uncertainty shows up in poorer navigation solutions,

_ The satellite trajectory data sent from NWL consists of two days of observed data,
followed by seven days of predicted data. During this nine-month period the trajectory
was sent every fourth day; in the navigation runs a cycle of two days of observed data,
then two days of predicted data were used, When computing an orbit, the fit of ten meters
no longer holds in the predicted region, A graph depicting the increasingly poorer answers
is presented in Figs. 9a and 9b, These examples show how TNAYV increases as a function
of time into the predicted region, The stations used in this example are NRL and Florida.
The days in these graphs were chosen because for each two-day period, at least four passes
were taken at both of the stations, The same days are used to illustrate the similarity in
overall slope for each two-day run, For each station the four passes used are not nec-
egsarily the same, which indicated that the trajectory for this predicted period is the
reason for the resulting increased navigation errors.

Figure 10 is used to cumpare the navigation error resulting from the use of orbital
data in the observed and predicted regions, In making the comparison of observed versus
predicted data, it is useful to know the orientation of the satellite velocity vector at the
time the satellite is at maximum elevation with respect to the ground station, The TIMA-
TION II satellite has an inclination of 70 degrees, and the ground stations are located at
mid-latitudes (30 to 40 degrees), These parameters result in a north-to~south orientation,
with a small east component, of the velocity vector of the satellite at the maximum eleva-
tion point. The positional error due to the use of predicted satellite trajectory has its
largest error component along the track of the satellite orbit, which results in a navigation
error that dispiaces the station along the direction of the velocity vector and appears pri-
warily as a latitude error of the station. A cross-track error appears primarily as a
longitude error. The observed data span shows cross-track, longitude errors, In the pre-
dicted region, the predominant .rror is along-track, or latitude, errors. These errors
are summarized in Table 6, For all the stations and all the corrections, the CEP’s of
the longitudes and latitudes are given for both the observed and predicted regions. These
CEDP’s were calculated by taking the magnitude of the error in latitude or longitude for all
the passes and computing an average. When these results, for the observed and the pre-
dicted time spans, are compared, the latitude CEP consistently shov/s the greater change.
Figure 11 combines the CEP’s of latitude and longitude to give graphic representations of
these changes, When comparing the predicted to the observed runs, the similarities are
evident at all the stations for the corrections used,
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CONCLUSIONS

Of the three navigation solutions calculated, the solution using the dual-frequency
ionospheric correction provide the best navigations, with an average CEP position-fixing
capability of 48 meters. The single~frequency method, using & theoretical ionospheric
model, is next best, with an average CEP position-fixing capability of 68 meters. The
least acceptable results use the simple single-frequency solution, with an average CEP
position-fixing capability of 156 meters, The best navigation results were from the dual-
frequency solution at Fort Vulley, Virginia, with a CEP position-fixing capability of 33
meters. The navigation errors caused by use of a predicted orbit are a result of the
uncertainty in the position of the satellite, especially along the track of the orbit., This
bias results in more latitude than longitude error. The accuracy of the navigation solu-
tions is independent of their maximum elevation angles.
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(b). Predicted data, all stations, single
frequency withno iono sphere correction

3

(a). Observed data, all stations, single
frequency with no ionosphere correction
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Fig, 11 - Combined latitude and longitude CEP’s for observed
and predicted data, all stations, and all corrections
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