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ABSTRACT

A procedure for determining the mean and covariance errors in
an aoh filter operating in artesian coordinates was found. The re-
sults obtained from this procedure were compared to an a-j3 filter
operating in polar coordinates.

Assuming that the input measurements in polar coordinates were
Gaussian distributed, it was shown that at the output of the coordi-
nate transformations the noise could be approximated accurately by
a Gaussian distribution for typical radar data. Closed-form solutions
under steady-state conditions were found for the output covariances
for the polar coordinate filter and for the Cartesian coordinate filter
when the target is stationary. These covariances depended upon a,
f3, and the measurement variances. For moving targets, the Cartesian
coordinate filter yielded output covariances which were nonstation-
ary. Their values depended upon a, j3, measurement variances, target
trajectory, target speed, and sampling time. The mean errors were
discussed. Under fading conditions both the mean and covariance
errors increased during the fading time.
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DESCRIPTION OF AN a-P FILTER
IN CARTESIAN COORDINATES

1.0 INTRODUCTION

In the last several years, there has been a considerable amount of interest in auto-
matic detection and tracking for search radar systems. Several systems exist with varying
degrees of automation such as MTDS, NTDS, and the SPS-33. Others are being proposed
such as the Gillfillan and APL systems for the SPS-48, the JPTDS program for the SPS-49,
and the AEGIS system. Even with these efforts there is still a need to improve system
performance under various conditions.

NRL Report 7434 recently studied the effects of maneuvering targets, measurement
noise, false targets, and fade conditions on the ability of an oa-0 filter operating in polar
coordinates to maintain a track (1). Even more recently NRL Report 7505 discussed the
ability of this polar coordinate filter to hand off its track from the search radar to the
track radar (2). In both of these reports a considerable amount of difficulty was en-
countered in either maintaining or handing off a track at close ranges when a polar co-
ordinate filter was used. This was due to large range and azimuth accelerations at the
close ranges. In the Cartesian coordinate system these large accelerations are not en-
countered. However, the nonlinear transformations encountered between the two coor-
dinates change the noise processes. It is the purpose of this report to describe analytically
the ou-0 filter operating in Cartesian coordinates and compare these results with the results
of the polar coordinate filter.

Section 2.0 describes the probability densities under the coordinate system transfor-
mations. Section 3.0 describes the general characteristics of the filter and the mean
errors between the predicted and true target's positions. Section 4.0 describes the covari-
ances at the output of the filter system. Section 5.0 studies the mean and covariance
errors under fading conditions and presents the results of a simulation calculating the
probability of placing the beam of the tracking radar on a target using the track set up
by the ca-03 filter. Conclusions are given in Section 6.0.

2.0 THE NOISE PROCESS

In the study of any filter it is essential to know the characteristics of the desired
signals and the noise which excite the filter. The mean motion of the targets is studied
in Section 3.0. The description of the noise processes proceeds as follows:

The block diagram of the filtering system is shown in Fig. 2.1. The polar coordinate
radar measurements are Rm in range and Om in azimuth, where Rm and Om are assumed
to be uncorrelated, Gaussian, amplitude-distributed random variables with means Sm. Rm

1
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Rm TRANSFORM TRANSFORM

Xm R Cos m LINEAR Rp VI2 y2

Sm Ym Rm Sin Y. FILTER Yp ep Tan-' Yp/Xp 0p

Fig. 2.1-Filter system

and variances a'2 In addition, the measurements are assumed to be independent
from scan to scan of the search radar. This section is concerned with determining ap-
proximate probability densities p(Xm, Ym), p(Xp, Yp), and p(Rp, Op).

2.1 Polar to Cartesian Coordinate Transformation

The probability density of the polar coordinate radar measurement is

1 1 (Rm--Rm ) ( + 2m)12'
p (R., Om) = 1Omexpj L 02 + ( 6 m.m)P ( m m) 2r o 69m am 2 2 2 U

Contours describing constant values of the probability density function are plotted for
two different cases in Figs. 2.2 and 2.3. Observing the central (10-8) regions of these
densities, one finds that this region appears to be a correlated Gaussian process in the
(Xm, Ym) coordinates. This observation is next investigated.

A cartesian coordinate system (p, q) is defined as shown in Figs. 2.2 and 2.3. For
an arbitrary point (Rm, m) in polar coordinates, the values of p and q in the p-q rectan-
gular coordinate system are found to be

p = Rm [2 - cos (Om - Om)] - Rm (2.2)

q = R. sin (m - 9m) (2.3)

with the aid of Fig. 2.4. For cases when (Om - 9m) is less than about 50, Eqs. (2.2) and
(2.3) can be approximated by

p = Rm - (2.4)

q = R ( - Om) (2.5)

with very little error. For example, if abm = 0.5 degrees, one would be at 10 Gom or in
the far tail region before the approximation begins to be significantly in error. Further-
more, if Rm does not significantly deviate from Rm, one can further approximate Eq.
(2.5) as

q = Rm (O - m).(

2

(2.6)
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e9,m) = 3xl1

&m = 450

>e = 2°

Rm = 5

Rm

1 2 3 4
Xm

Fig. 2.2-Constant contours of p(Rm, Om)
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Fig. 2.3-Constant contours of p(Rm, Om)
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a = 2R1 sin ((9m m )/2)

a = 90° - (m, jm)/2

POLAR

p = Rm(2Cos(9m8-m))- Rm

q = Rm sin(em- m)

Fig. 2.4-Geometry required to compute p and q
in terms of polar coordinates

For example, if aRm/Rm = 0.01 as would be the case for Rm = 4.18 n.mi. and URm of
250 ft, one would be in error by 1% at one standard deviation and 5% at five standard
deviations. At longer ranges the error is much less.

Equations (2.4) and (2.6) are linear transformations and therefore p and q are
Gaussian distributed, at least to the extent in which the approximations are valid. By
rotating the (p, q) coordinates and shifting the mean, one obtains the (Xm, Ym)
coordinates

Xm - Xm =p cos Om - q sin Om (2.7)

m- Ym p sin Om + q cos Om. (2.8)

Again, these are linear transformations and therefore the variables (Xm, Ym) are Gaussian
distributed:

4
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p(Xm Yim) = 1
2 7 am UYM Hamne

(____ (XM - ) Xm)(Ym-Ym) (YM- Y.)
UX2M 2 pxmym Jx UYM + g

L mexx2 1 Ym)_]

(2.9)

where

a = aR COS2Om + (Km G )2 sin (2.10)

(jY2M 2D-~~~~~~~N 
em 0m sin + (mao 2 COS2Om (2.11)

Px [a - (Rmam)2 ] sin2O (2.12)
PXmYm - 2 0Xi aym

Xm = Rm COS OM (2.13)

F = ~m sin m- (2.14)

An independent procedure for obtaining Eqs. (2.10) through (2.14) is also shown in the
appendix.

The two density functions used in plotting Figs. 2.2 and 2.3 are approximated by
p(Xm, Ym) shown in Eq. (2.9), and the results are shown in Figs. 2.5 and 2.6. In
comparing Fig. 2.2 with 2.5 and 2.3 with 2.6, one finds that the central and near tail
regions of the two densities p(Xm, Ym) and p(R , Om) are essentially the same. The ap-
proximation begins to break down in the far tail regions. However, it is the central and
near tail regions which control the system. Any point in the far tail usually results in
saturation or in this case no target being accepted.

2.2 Effect of Linear Filter

Since p(Xm, Ym) is essentially Gaussian, the output of a linear filter is also Gaussian
distributed; i.e.,

5
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p(Xp, Yp) =
1

27r aXp ayp 1 - P
Xp Yp

- 2
(Xp - Xp (Yp - yp)+ (Y y Y)

Oxp JYP UY2P

X exp
1 - p2

Xp Yp

(2.15)

This is because the output of any filter can be written as a linear combination of the
inputs, and, since the sum of Gaussian random variables is Gaussian distributed, the out-
put of the filter is Gaussian. The means and covariances will be investigated in detail
later.

2.3 Cartesian to Polar Coordinate Transformation

Contours describing constant values of the probability density function given in Eq.
(2.15) are plotted for two different cases in Figs. 2.7 and 2.8. Observing these figures, it
appears that the central and near tail regions of these densities are Gaussian distributed in
polar coordinates. This conjecture is investigated. The (p, q) axis system is defined in
Figs. 2.7 and 2.8. The (Xp - Xp), (Yp - Yp) axis is rotated so as to coincide with the p-q
axis. Then,

(Y' - Yp)

4 X 3536

Xp = 3.536
a = 0081

3 aY = 0.162

p(Xp, Yp) = 5 x

1 2 3 4
Xp

Fig. 2.7-Constant contours of p(Xp, Yp)

2

0
0 5

7

F
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Xp = 3.536

Yp = 3536
ax= 0.188

3 cy = 0111
= -. 55

PxpYp

2

(Yp - Y)

Xp

Fig. 2.8-Constant contours of p (Xp, Yp)

p = (Xp - Xp) cos Op + (Yp - Yp) sin Op

q = -(Xp -Xp) sin Op + (Yp - Yp) cos Op .

(2.16)

(2.17)

For small angular and range deviations in the coordinates (Op, Rp), the approximations de-
fined in Eq. (2.4) and (2.5) are valid:

Rp - Rp = p

Rp(Op - p) = q 

(2.18)

(2.19)

Combining Eqs. (2.16)-(2.19), one obtains

Rp = Xp cos Up + Yp sin p

Op = (-Xp sin O + Yp cos p)/R p .

(2.20)

(2.21)

Since Eqs. (2.20) and (2.21) are linear transformations on Gaussian-distributed random
variables Xp and Yp, p(Rp, Op) is Gaussian distributed at least over the region in which the
approximation is valid:

5

2

0,

p(Xp, Yp)

8

>F



NRL REPORT 7548

p(Rp, Op) = 1
2 7r aR Cop _P /

F(R - 2 (Rp - Rp)(Op - 6p) ( _ )2
2 -

2pR pop UJR GOP + 
$ 1 aRP 2PaOP I

X exp 2 L j - (2.22)

where

2 = U2 cos2 0p + 2p yp PXpyp cos Op sin 0 p + sYip 5mO (2.23)

0X2 sin2S - 2a a sin cos Op + (
2 Xp si 2 Oxp -0YpP~ si OP a Cos p (2.24)

+0.5( 2p + aY2p) sin 20p + PxpYp oXp sYp co 2(2
PR~~O~ ( 0R~ GOP p X y

PRP O = _ (2.25)a9Rp ap Rp

P = k/2 + 2 (2.26)
p p

Op = tan-' Yp/Xp . (2.27)

The two density functions used in plotting Figs. 2.7 and 2.8 are approximated by
p(Rp, Op) shown in Eq. (2.22), and the results are shown in Figs. 2.9 and 2.10. In com-
paring Fig. 2.7 with 2.9 and 2.8 with 2.10, one finds that the central and near tail regions
of the two densities p(Xp, Yp) and p(Rp, Op) are essentially the same. Again as in Section
2.1, the approximation begins to break down in the far tail regions. However, these
regions are of little interest.

2.4 Discussion of Results

The section showed that if p(Rm, Om) was Gaussian distributed with small variances,
p(Rp, Op) was also Gaussian distributed over the central and near tail regions of the dis-
tribution. The means and variances after each of the coordinate transformations were
found. The means and variances following the linear filter will be investigated later.

3.0 FILTER DESCRIPTION

The a-23 filter is defined in this section and a few of its characteristics are shown.

9
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Pep ) = 3x 1-4

Fig. 2.9-Constant contours of p(Rp, Op)
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3.1 Filter Definition

The filter in the x

X(k)1

LVx (k)j

coordinate

(- a)

-0/T

[Xp(k + j/m)] = [1

is described by

(1- a) 1X(k -1 /
I+ [ X.(k)]

(143)1 LVx(k ) P~

Xk)
IT/m] , for j = 1, ... m .

LVx(k)j

(3.1)

(3.2)

(3.3)

(3.4)

Similarly, the description in the y coordinate is

FYk) ] (1 ) (1 a) k - 1 +0[Y~)
(k) -cx) (1- ) (k- 1)7 F

Y(k)
[YP(k + j/m)] [1 jT/m] , for j = 1,.. m .

VY(k)

Since the equations are identical in each of the coordinates, it is sufficient to show a few
of the characteristics in the x coordinate.

3.2 Frequency Response

Using z-transform analysis, we define the transfer functions (3) as

and for j= m we can

/ + - \

- X(z) -- c(z + a )
Xm(Z) z2 z(2- cx -) + (1-x)

Vx(z) _ (0/T) z (z - 1)
G = Xm(Z) Z2 - z(2 -a- 3) + (1 - )

define the transfer function

Xp(z) (c( +O)z z - a
Xm (Z) Z - z(2- cx-f3) + (1 -cx)

By placing z = ewT into Eqs. (3.5)-(3.7), the magnitude and phase, defined as

(3.5)

(3.6)

(3.7)

11
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magnitude 1Gj IGj

phase

IGpj

ox 0v OpI

can be found as a function of a, If, and cT. G and G, are plotted for a given case in
Fig. 3.1. This figure shows that X(k) is the result of passing Xm(k) through a low-pass
filter, and Vx(k) is the result of differentiating Xm (k). The frequency of the input signal,
the sampling time T, and the filter parameters a and control the filter's response.

It is useful to place Eq. (3.5) into the form of a classical second-order system (3):

-z (z + o ( )

G. = 0 . _. (3.8)
z 2 exp (-EwoT) cos WdT + exp (-2EwoT)

U)~

U)n_JD

U)

I I

0.25(2r) 0.50 (2ir)
wT

180 r-

U)

E)

a)

0 0.25 (2ff)

wT

90

0o

-9C
0.50(27r) 0 0.25 (27r) 0.50(27r)

CAT

Fig. 3.1-Frequency response of a-,B filter

Equating coefficients between Eqs. (3.5) and (3.8), results in

a = 1 - e-2tOT

[ = 1 + e_2tWOT - 2 e (A)OT cos WdT .

The inverse relations are

12

1.5

0
I.

05

0

90 

0 

-90 

-180 -
00.25(27r)

AT
0. 50 (27r)

'.5-

1.0 

0.5

(3.9)

(3.10)

r
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o/[ ] 0 1\2-1--a (3.11)
[~i ~,'i2- \2 1 2

d = cOs _1 2 a(3.12)

and

C( = d - 2 (3.13)

where , W(d, and coo, are the classic damping coefficients, damped natural frequency, and
natural frequency of a second-order system.

3.3 Errors Under Sinusoidal Excitation

A target having a circular motion is used to represent a turning target. The geometry
is shown in Fig. 3.2. The equations of motion are

Xm = Xm + IXmI Cos oot (3.14)

and

Ym = m + YmI sin wot (3.15)

v VELOCITY

g =NORMAL
ACCELERATION

( = 9/v
Ym / MI = v2

/g

ImI =V 2/g

Y

Xm Xm

Fig. 3.2-Target geometry
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The waveforms produced by the circular-motion target are passed through the filter de-
scribed by Eqs. (3.1)-(3.4). Since Xm, Ym and the operations are well defined, it is pos-
sible to obtain a closed-form solution for R(k + jm) and O(k + /rm). However, the
closed-form solutions are lengthy and involved. It is easier to simply compute numerically
the results under various conditions. The error between the predicted position XP(k + j/m)
and the true target position is computed as a function of time as shown in Fig. 3.3. The
envelope of the peak error is sinusoidal, as would be predicted from linear system theory.
In addition, the envelope of the lower peaks is almost sinusoidal and would be if j 0.
The error shown is valid only at the sample instants.

12 - 9 66 ft/s2

v 1100 ft/s
a= 0.5
3 0.2

8 T~4s
M 32

-4 45i \g iE
+

C
0 20 40 60 80 100 120 140 160

E A\ | TIME (S)

><4' -

-8

-12

Fig. 3.3-Error between predicted and true position for a circular-motion target

The errors between the predicted and true ranges and the predicted and true azimuths
are computed next. Various examples are shown in Figs. 3.4, 3.5, and 3.6. In these fig-
ures, we find that the amount of filtering affects the envelope of the peak error and the
ripple errors. Although not shown, the target trajectory and the sampling time also affect
the error.

3.4 Comparison of Mean Errors for Cartesian and Polar Coordinate Filters

The oa-P tracker in polar coordinates is described by

R(k) (1-a) (1 - )TR(k -1) 1 _
II I + [Rm(k)]V (k )]L-f/ T (1 -3) LV (k - 1)j I 3 (3.16)

14
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v = 1100 ft/s 3 = 1.0

g = 966 ft/s2 T = 4 s

R = 100,000 ft M = 32
a =0 I I

TIME (S)

Fig. 3.4-Mean error between predicted and true positions for a circular
target trajectory using an U-0 tracker in cartesian coordinates

v = 1100 ft/s

= 96.6 sf/
2

R = 100, 000 f t

I 1 4*0 I20 4

a = 0.56 T = 4 s
3 = 0.85 M = 32

60 80 100 .120

TIME (S)%
140 N 160

TIME (S)

Fig. 3.5-Mean error between predicted and true position for a circular
target trajectory using an a-fB tracker in cartesian coordinates

L(1- a) (1 - )T k -1) -

V0 (k) = L-'7T (1-a) V 0(k-1) + [ 0 (k)I

Rp(k + //m) = R(k) + (ji/m) T VR(k)

Op(k + /m) = 0(k) + (j/m) T V (k).
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v = 1100 ft/s

g = 96.6 ft/s 2

rv 9n -~n -f

T = 4s
M= 32

j 0.85 Ri

W O OCs 20 40 / 60 100 120 0

<S 4 TMS 

iii

0
W0

d 0 20 0 60 80 10 120 140 160
,Ti, -8 W TIME (S)

I-

Fig. 3.6-Mean error between predicted and true position for a circular
target trajectory using an a-, tracker in Cartesian coordinates

For the same circular flight path as shown in Fig. 3.2, the error between the true and
predicted positions in range and azimuth is computed and the results are shown in Figs.
3.7 and 3.8. As shown in these figures, the errors in the polar coordinate tracking system
at the near ranges are larger than the artesian coordinate ones. This is due to the large

v = I 100 ft/s

a = 96.6 ft/s2

100, 000 
:0.56

:0.85 T

20

T=4s
M= 32

I '/~/A ,
60 80 100 120 140 ij 60TIMESN~ Y\~

I I I

80 lop I2 
TIME (S) (I

140 160

Fig. 3.7-Mean error between predicted and true positions for a circular
target using an a-0 tracker in polar coordinates
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v = 1100 ft/s

= 96.6 ft/s2

R = 20,000 ft
a = 0.56

I -)R;

T 44

0

h'i

hi

< 20 60 0 0 120' 140

0

i: 0 20 40 60 80 0 1 2012 140 160

2<-1 l TIM E (S) 

Fig. 3.8-Mean error between predicted and true positions for a circular
target trajectory using an a-f3 tracker in polar coordinates

accelerations set up by the trajectory in polar coordinates. At the far ranges we find that
the errors in either tracking system are nearly the same. This point can also be illustrated
by computing the errors using both systems for a constant-velocity, straight-line flight
path. For the Cartesian system in steady state the error is zero. Figure 3.9 shows a
typical error sequence for tracking in the polar coordinate system. Again, at the far
ranges the mean tracking errors are essentially the same for either system. At short
ranges the mean error in the polar system can become quite large due to the target mo-
tion and orientation with respect to the radar.

3.5 Discussion of Results

This section investigated the mean response of the filter. It was briefly described
how a, 3, T, target trajectory, and range affected the error between the predicted and
true positions of the target. It was found that o-0 trackers operating either in polar or
Cartesian coordinates, were essentially equivalent at the far ranges in the mean errors.
The mean errors in the polar coordinate tracking system were much larger than in the
Cartesian coordinate system at short ranges.

4.0 RESPONSE TO NOISE

This section is concerned with computing the covariances of the noise at the output
of the filter after the measurement noise described in Section 2.0 has passed through the
filter described in Section 3.0.
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a 1.0
R= 1.0
T= 4 s
v = 2200 ft/s

Ro - MINIMUM CROSSING
DISTANCE TO RADAR

R = 140,000 ft

zRo = 20, 000 ft

O -

0 4A

d -70.0 -52.5 -35.0 -17.5 0 17.5 35.0 \52.5
x AZIMUTH POSITION (Degrees)

-10

-15_

Fig. 3.9-Error between predicted and true target positions at sampling
instants T/m for a straight-line target trajectory (tracking in polar
coordinates)

4.1 Covariance Equations

Equations (3.1)-(3.4) can be written in the form (4)

W(k) = A W(k-1) + r V(k),

W(k) =

X(k)

V.(k)

Y(k)

Vy (k)

Xm(k)
V(k) =

Ym(k)]

(1 - ae) (1 - 3)T

-0/ T (1 - )

0 0

0 0

0

0

0

0

(1-a) (1-a)T

-0/ T (1 - )

a0d 0

3/T 0

0 a

(4.1)

The covariance equations can be written as

where

18
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P(k) = A P(k - 1) AT + Q(k)rT,

P (k)

P, "

Px,(k) Pxux

_ ,P,, (k) PIX V~

Pyx(k) pyux

Poyx(k) Pyt

= cov(X, V), etc.

(k)

X(k)

.(k)

C(k)

PX (k)

Jxy(k)

Pyy(k)

Plyy(k)

QX(k) Qy(k)
Q (k) =

Qyx(k) Qyy(k)

Q, (k) = cov(Xm, Xm) = 0x2

Qxy(k) = Cov(Xm, Ym) = Pxmym GXm Ym

Qyy(k) = Cov(Ym, ym) = Uy 

The covariance equations for the filter are

Pxx(k) (1 - o)2 2 )2

P.uv(k)j=-(1 - )/IT (1 - a) (1 -2 )
_Pvxux(k) (0/ T)2 -20(l - )/T

(1 - )2T2

(1 - a) (1 -

(1 - )2

PXX (k - 1) U2

X PxX(k-1) + oB/T [QX(k)]

PvxVx(k - 1) L(/T)2

where
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Xly (k)

p'xy (k)

Pyvy (k)

pVyVy (k)

(4.3)
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PYY(k) (1- )2 2(1- )2T (1- )2 T2

PyPy(k) = -0(1-az)/T (1- a)(1- 2) (1- )(1- )T

PIyvy(k) (O/T)2 -2Y(ly- O)T (1- I)2

PYY(k -1) a 2

X Pyvy (k -1) + a3/IT [Qyy(k)] (4.4)

PsvY (k- 1) (O/T)2

and

Py,(k) (1- a)2 (1- U)2 T (1- a)2 T (1- U)2T

PvY., (k ) :1-a/T (1 - a)(1 - 0) -0(1 - a) (1 - (x) (1 - O) T

PVyX (k) -0(1 - a)/T -(1 - a) (1- 0)(1 - a) (1 - a) (1 - P)T

Pvxv (k) (O/T)2 (-/T)(1 - 3) (-3/T)(1- ) (1- g)2

Pyx(k -1) a2

PV x(k - ) Oe/ T
x Y + [QXY(k)] (4.5)

Pvxy(k -1) a1/T

PVxVy (k -1) (O/T) 2

Forming the covariances of Eqs. (3.2) and (3.4) yields

2= Px(k) + 2(jm)TPvx(k) + (jlm) 2 T2Pvxvx(k) (4.6)

2= PYY(k) + 2(j/m)TPyvY(k) + (j1m) 2 T2PvYvY(k) (4.7)

PxpYp xp cyp = Py,(k) + (m)T[PvYx(k) + Pvuy(k) + (j/M) 2 T2PvxvY(k). (4.8)

For stationary noise inputs closed-form solutions can be found for Eqs. (4.3)-(4.5) by
placing P(k + 1) = P(k) and solving the resulting algebraic equations. However, it is easier
to obtain solutions by recursively solving Eqs. (4.3)-(4.5) until a steady-state solution is
obtained. It is necessary to eliminate T as a parameter by substituting Ay = VT and
Ax = V T into the original filter equations. The resulting covariance equations are of the
same form as Eqs. (4.3)-(4.8) with T = 1. (The covariances are independent of sampling
time.) Solving Eqs. (4.3)-(4.8) yields the following result:
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F = a2 l (k) = 2(k)/Qyy(k) = Pp~pap aypQxy(k) (4.9)

For all admissible a, , and j; for T = 1; and for F f (a, 3, j).

A simple procedure for determining the solution for stationary targets is next
described.

4.2 A Simple Stationary Solution

For the system shown in Fig. 2.1 the measurement means and covariances are trans-
formed into uXm, aym, Pmym, Xm, m by Eqs. (2.10)-(2.14). One then computes the
covariances at the output of the filter by Eqs. (4.3)-(4.8). The results Rp 2p, PRp p
Op, and Rp are then computed by Eqs. (2.23)-(2.27). If the target is stationary the input
process to the filter is stationary (Eqs. (2.10)-(2.14)), and therefore the output of the
filter has a stationary solution given by Eq. (4.9). In addition, Om = Op and Rm = Rp.
The output of the filter can then be written as

u2 = F 2 cos 2 p + F(R o)2 sin2 p (4.10)01; ~ Rm P" PmP

a2 = F 2 sin2 D- + F(RpaO )2 cos2 (4
YJp sin + (4.11)

PyPqxp a yP = 0.5 F xm aym (9 - (Rp arm)) . (4.12)

Substituting Eqs. (4.10)-(4.12) into Eqs. (2.23)-(2.27) results in

2 = F 2 (4.13)

a2 = F 2 (4.14)

PRP(OP = 0 (4.15)

Rp =Rm (4.16)

and

op =Om (4.17)

But this is the same solution as would have been obtained if the system shown in Fig. 4.1
had been used. The equations describing the system are

R(k) (1- ) (1- )T R(k -1) 1F=II 1+ [Rm (k) (4.18)
LVR(k T (1-f3) VR (k - 1L /T

21



BEN H. CANTRELL

Rm

LINEAR Fig. 4.1-Equivalent system to Fig. 2.1 under
FILTER linear approximations used in Section 2.0

L (k) -F (1-a) (1- a)T F (k -1) _ _
=I I + [Om (k) (4.19)

V(k) T (1-13) Vo (k -1) LT

Rp(k + j/m) = R (k) + (j/m)T VR (k) (4.20)

and

Op(k + j/m) = 0 (k) + (j/m)TV 0 (k) (4.21)

The covariance equations are formed in the same manner as before:

PRR(k) (1 - a) 2 2(1 - a) 2 T (1 - U)2 T2

PR VR(k) =-0(1 -a)IT (1 - ax)(1 - 20) (1 - oa)(1 - P)T

PVRVR(k) (O/T)2 -2,B(1 - O)/T (1 - g)2

PRR(k- 1) a2

X PRvR(k-1) + uOf/T [QRR(k)] (4.22)

PVRVR(k-1) (f/T)2

22
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P00 (k) (1 - a) 2 2(1 - )2T (1 - C)2T 

Po? v}(k) -0 (1 -a)IT ( - a) (1 - 2) ( - ) (1 - A) T

Pv V, (k) (/T) 2 -23(1 - [3)/T (1 - 0)2

POO(k - 1) / 2

X PfV, (k - 1) + a01BT [Q00(k)] (4.23)

Pve v(k - 1) ,(O/T)2_

2 = PRR(k) + 2 (jlm)TPRVR(k) + (j/M)2T2PVRVR(k) (4.24)

2 = P00(k) + 2(j/m)TPOv0 (k) + (j/m) 2T2Pv v(k) (4.25)

PRPOP = 0 because 0m and Rm are uncorrelated. (4.26)

Since Eqs. (4.3), (4.4), (4.6), and (4.7) are identical with Eqs. (4.22)-(4.25) in form,

02 = FaR (4.27)
Rm

2= Fa2 (4.28)

PRP0 = 0 (4.29)

Rp = Rm (4.30)

Up =Om (4.31)

Eqs. (4.13)-(4.17) are identical to Eqs. (4.27)-(4.31), a fact which shows that the system
of Fig. 2.1 is the same as that of Fig. 4.1. To justify this result the following argument
is given. The system shown in Fig. 2.1 is redrawn in Fig. 4.2. Recall that in Section 2.0
the polar-to-cartesian and cartesian-to-polar transformations were shown to be approxi-
mately linear over the region governing the means and covariances. The order of operation

Fig. 4.2-Filter system
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for linear operators can be changed, yielding the system shown in Fig. 4.3. For stationary
target case the two transforms cancel, yielding Fig. 4.1.

POLAR TO CARTESIAN 

CARTESIAN TO POLAR LINEAR
TRANSFORM ym TRANSFORM FILTER Op

Fig. 4.3-Interchange of linear operations

The value of F can be computed as follows: P(k) is set equal to P(k - 1) and the
resulting algebraic equations are solved;

PR R (k) P00(k) 2j - 33 + 2 2

2R 2 (4 - 2 - ) (4.32)

PRVR (k) ePV (k) _ 3 (2 - )
2R ao2 a(4 - 2cc-) (433)

PVRVR(k) PV V(k) f3[2cc2 - 3 +2,- a3]
a2 2 (4 - 2 - ) (4.34)

17 2 2 PRR (k) PRvR (k) 2 PR VR(k)
m 2 2 2 + (2j/m) R2 + (/m) 2 * (4.35)

The peak variance occurs for j = m. In Fig. 4.4, F is plotted vs a and for j = m. Ob-
serving this figure one finds that the amount of smoothing ( and (3) controls the peak
noise levels. In addition, the noise varies between each scan of the search radar from k
to k = 1. This is plotted vs j in Fig. 4.5 for large m. Observing this figure one finds that
the noise is nonstationary but periodic with time under steady-state conditions.

4.3 Some Nonstationary Solutions

A target is flown at a constant velocity in a straight-line trajectory as shown in Fig.
4.6. The measurement standard deviations are assumed to be am = 250 ft and om=
0.50. Equations (2.10)-(2.14) are used to obtain q~m' aYm' Pxmymg Xm, Ym in terms of
the measurement variances and target trajectory. Using these results with Eqs. (4.1),
(4.2), and (4.3)-(4.8), we find aP, ap, PRpOp, Rp, and Op. The results for several trajec-
tories and values of smoothing coefficients are shown in Figs. 4.7-4.12. In all cases only
the envelope of the peak noise (j = m) is shown. The covariances will have a ripple
between samples (k) and (k + 1). In addition the dotted lines show the covariances if the
target is stationary. Figures 4.7-4.12 show that the output noise processes are in general
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/ S~~~~~p

Xm 0m

TARGET TRAJECTORY
A- VELOCITY v

x

Fig. 4.6-Straight-line target trajectory
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Fig. 4.7-Covariance of predicted range
and azimuth for straight-line target tra-
jectoryXm= 2 n.mi.,a = 0.56,13 = 0.85,
v = 2000 ftls
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Fig. 4.8-Covariance of predicted range
and azimuth for straight-line target tra-
jectory Xm = 2 n.mi., v = 2000 ft/s,
a = 0.1, 3 = 0.005

nonstationary and depend upon the target
the filter parameters.

Fig. 4.9-Covariance of predicted range
and azimuth for straight-line trajectory
Xm = 2 n.mi., v = 2000 ft/s, T = 8 s,
a = 0.56, j = 0.85

trajectory and velocity, the sampling time, and

A circular flight path is flown as shown in Fig. 3.2. The covariances of the predicted
range and azimuth are shown in Figs. 4.13-4.16 as a function of time for various condi-
tions. Again only the envelope of the peak variances is plotted (= m). At the far
ranges or low velocities the variances of range and azimuth approach the stationary solu-
tion values, although at the long ranges it was found that the correlation did not go to
zero but was a function of the turning motion. Again it is found that the covariances
can be a function of target trajectory, velocity, and range; sampling time; measurement
uncertainty; and filter parameters.

The effect of the faster sampler (j = 1, . .. m) is shown in Fig. 4.17. Observing this
figure one finds that the covariances ripple between the scan time of the search radar in
a similar manner as found for the stationary solutions.

2/R
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Fig. 4.10-Covariance of predicted range
and azimuth for straight-line trajectory
Xm = 30 n.mi., v = 2000 ft/s, a = 0.56,
( = 0.85
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Fig. 4.11-Covariance of predicted range
and azimuth for straight-line target tra-
jectory Xm = 30 n.mi., v = 500 ft/s,
a = 1.0, 3 = 1.0

4.4 Discussion of Results

The covariance equations were found for both the polar and artesian coordinate
filters. A simple closed-form solution was found for the covariances in both filters when
the target was stationary in space. For these cases the output correlation was zero and
the output variances only depended upon a, A, and the input measurement variances.
For nonstationary targets the Cartesian coordinate filter yielded output covariances which
depended upon a, f3, input measurement variances, target trajectory and speed, and
sampling time. In general the covariances increased as one came near the radar and
tended to approach the stationary target solutions at the far ranges except that the cor-
relation depended upon the turning motion.

5.0 COMPARISON OF POLAR AND CARTESIAN COORDINATE a-: FILTERS
OPERATING UNDER SHORT FADE CONDITIONS

This section is concerned with evaluating the tracking performance of the polar and
Cartesian a-3 filters for short fade conditions and for the track handoff problem. Section
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5.1 describes the mean errors due to short fades, and Section 5.2 describes the effects on
the covariances. Section 5.3 presents the results of the simulation on the track handoff
problem.

5.1 Mean Errors

The predicted value strategy used for processing information under fading conditions
is defined as follows. When a fade occurs the predicted position is set equal to the meas-
ured position. The a-3 filter equations in Cartesian coordinates given in Eqs. (3.1)-(3.4)
reduce to

X(k) [ 1 T] (k-1) 
V 1 - Lx | I I(5.1)

X(k)
Xp(k + j/m) [1 jT/m] (5.2)

Lvx(k)

FY(k) 1 F' T] FY(k )(
I I ~~~~~~~~) L ~~~~(5.3)

Vy (k)J L0 1J V(k-1)j

and

[(k)
Yp(k + j/m) = [1 iT/M] * (5.4)

Vy (k)

during the period of the fade. Otherwise they are the same as before. Observing Eqs.
(5.1)-(5.4), one finds that they are of the same form as Eqs. (3.1)-(3.4) except that
a = = 0. Therefore Eqs. (3.1)-(3.4) can be used to represent the system under fading
conditions, except that a and f3 are time varying between these set values and a = = 0.

In a similar manner the filter in polar coordinates is found to be represented by Eqs.
(3.16)-(3.19) with time-varying coefficients of a = = 0 and the original set values of a
and 3 corresponding to a fade and no-fade condition. Under fading conditions the polar
coordinate filter moves the target along curvilinear lines at the last known radial and
traverse velocities during the fade. The Cartesian coordinate filter moves the target along
straight lines at the last known velocity.

Several constant-velocity, straight-line target trajectories as shown in Fig. 4.6 were
flown. In all cases using the Cartesian coordinate filter, the mean error between the pre-
dicted and true target positions was zero under the fading sequences. By using the polar
coordinate filter, the mean error between the predicted and true target azimuths was
found under several conditions as shown in Figs. (5.1)-(5.4). A one in the fading sequence
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Fig. 5.1-Error between predicted and true target positions at sampling
instants ( = m) for straight-line target trajectory under fading conditions
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represents a fade, whereas a zero corresponds to no fade. In all cases the envelope of the
errors at sample instants (j = m) is shown, ignoring the ripple errors due to the faster
sampler. These figures indicate that the error becomes larger as the target comes closer
to the radar and when the filter uses heavier smoothing. In addition the error grows dur-
ing the time the fade is present. The reason this occurs is that the target is being pro-
jected along curvilinear lines during the fades and is moving in a straight line. The error
situation would be reversed if the target were moving along a traverse line rather than a
straight line.

A target is flown in a circular trajectory and the mean errors between the predicted
and true positions are computed for a given situation including a sequence of fades. The
results are shown in Figs. 5.5 and 5.6. These figures show that at least at the farther
ranges and short fading conditions the error is approximately the same using either the
polar or Cartesian coordinate system filter.

In general it appears that at the farther ranges where the near effect accelerations
are not present in the polar coordinate system, the mean errors in either filter system
under short fading conditions are nearly the same. The polar coordinate filter performs
better for constant-velocity targets moving in the polar directions, whereas the Cartesian
coordinate filter performs better for targets moving in straight lines.

v=1100 WST = 4 s
g= 96 ft/s2 M = 32

FADE SEQUENCE
R 100, 000 ft (1000100010---)

4 - a=0.56
/ =0.85 l/v/v /V

L ° 0 20 40 60 100 r20 140 160
z \\A>>\~20 \ .10 \16\CD

Z ,\-~ TIM~S)\r
< I MI r~~~~~~~~~~~~~~~~~~\ 

F
U

0

0

L

T

N

Fig. 5.5-Mean error between predicted and true positions for a circular
target trajectory using an U-0 filter in cartesian coordinates under fading
conditions
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Fig. 5.6-Mean error between predicted and true positions for a circular
target trajectory using an a-d filter in polar coordinates under fading
conditions

5.2 Covariance Description

Under fading conditions and using the predicted position strategy as outlined in Sec-
tion 5.1, the covariances are described in the same manner as in Section 4.0 except that
when a fade occurs at and 3 are set equal to zero. A constant-velocity target is flown in a
straight line and the covariances are computed under a fading condition for two cases as
shown in Figs. 5.7 and 5.8. The Cartesian coordinate filter is used and the envelope of
the covariances (j = m) is shown. The covariances increase during a fading condition.
The convariances were computed using the polar coordinate filter and are shown in Fig.
5.9. Unlike the Cartesian coordinate filter, in this case the covariances are independent of
target trajectory, speed, and sampling time.

A circular flight path is flown and the covariances are computed using the polar and
Cartesian coordinate filters. The results are shown in Figs. 5.10-5.12, which show that
the covariances increase as the target fades.
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Fig. 5.7-Covariances of predicted range and azimuth for
straight-line target trajectory Xm = 30 n.mi., = 2000 ft/s,
T = 4, a = 0.56, = 0.85, for fade sequence (10001000100....)
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Fig. 5.8-Covariances of predicted range and azimuth for
straight-line target trajectory Xm = 2 n.mi., v= 2000 ft/s, T=
4, a = 0.56, 3 = 0.85, for fade sequence (10001000100....)
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Fig. 5.9-Covariances of predicted range and azimuth for a
filter in polar coordinates operating under fading conditions
(1000100010...), a = 0.56, = 0.85

-50 -25 0 25 5C
9p (Degrees)

Rcvp

O--
0I

I I - 1 I I
-50 -25 0 25 50

ep (Degrees)

NEb

Nba

1/

0 80 160 240 320
TIME (S)

Fig. 5.10-Covariances of predicted range and
azimuth for circular flight path Rm = 21.2
n.mi., m = 450, v = 2000 ft/s, T = 4 s, 3-g
turn, a = 0.56, = 0.85, under fading condi-
tions (10001000100...), (X-Y) track
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Fig. 5.11-Covariances of predicted range and
azimuth for circular flight path Rm = 210.2
n.mi., m = 45, v = 2000 ft/s, T= 4 s, 3-g
turn, a x 0.56, j3 = 0.85, under fading condi-
tions (1000100010...), (X-Y) track
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Fig. 5.12-Covariances of predicted range and
azimuth for a filter in polar coordinates oper-
ating under fading conditions (10010010...),
a = 0.56, = 0.85
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5.3 Track Handoff Problem

In this section, the abilities of the polar and Cartesian oak filters to perform the track
handoff problem are compared. Since the details of the track handoff simulation are
given in Ref. 2, only the basic facts will be presented here.

The geometry of the situation is shown in Fig. 5.13. The coordinates of the target
at time t = 0 are (xo, yo, ho), its height when crossing the y axis is hf, its ground speed is
v, and its heading is A. The radar coordinates are (0, 0, hr).

TARGET

TARGET FLIGHT PATH - |

if r
A 

RADAR XI

Fig. 5.13-Geometry of radar and target

The simulation is run in the following manner: The target is assumed to be detected

on every scan of the search radar. Initially, three target positions are generated, and the
a-3 filter is initialized. After each additional detection, the ca-f3 filter is updated and is
used to continuously estimate the target's coordinates. Starting with the third sample, the
center of the tracking scan pattern is centered on the predicted position of the target.
The search pattern of the tracking radar is initialized, and during each update time, the
program calculates whether or not the target is located within the acceptance beam of the
tracking radar (Section 5.4). The simulation continues until the target crosses the y axis.
The output of a single case is a series of correct and incorrect handoffs between the
search and tracking radars. Many cases are runs, and the probability of handing off as a
function of range is estimated.

The initial simulation was run with the following target parameters: xO was uni-
formly distributed between 121,600 ft (20 n.mi.) and 122,600 ft, yo = 0, ho = 10,000
ft, hf = 5000 ft, A is uniformly distributed between 5.90 and 6.10,* and V is uniformly
distributed between 2100 and 2300 ft/s. The radar is at a height of 80 ft, has a range
resolution of 250 ft and a scanning rate (update time) of 4 s, and measures the azimuth
position with a standard deviation of 0.50. The deviation accuracy of the radar will be
varied in the simulation. It will have a standard deviation of 10, or else the radar (a 2-D
radar) assumes that the elevation of the target is always 120 (the bottom of the 240 scan
pattern of the tracking radar is set on the horizon). The filter parameters are a = 0.6
and ,5 = 0.9 for range, a = = 0.5 for azimuth, and a = 0.56 and j = 0.85 for X and Y.

*This makes the target pass within 2 mi of the radar.
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For each of the two elevation accuracies and two filters, 50 cases were run; and the
probability of the target being in the beam of the tracking radar on the last scan pattern,
vs the target range, is shown in Figs. 5.14 and 5.15. It is obvious that one can hand off
targets at closer ranges using the X-Y filter. This is because of the large accelerations in
the R-O coordinate system for crossing targets.

o 4 x 240 SCAN PATTERN (8 SEC);
ELEVATION ASSUMED TO BE 120

4 x 6 SCAN PATTERN (4 SEC);
ELEVATION ACCURACY = 1.00

AZIMUTH ACCURACY= 0.5°

UPDATE TIME = 4 SEC

PRELIMINARY RESULTS
RADAR RANGE EQ. NOT INCLUDED

TARGET VELOCITY = 2200 FT/SEC
PASSED WITHIN 2 MILES OF SHIP
STARTS AT 10,000 FT; ENDS AT 5000

l l l l l
20 30 40 50 60 70 80 90 100

RANGE IN KILO FEET AT WHICH LAST SCAN WAS BEGUN

Fig. 5.14-Probability of handoff using R-0 filter

0 4 x 240 SCAN PATTERN (8 SEC);
ELEVATION ESTIMATED TO BE 120

C 4 x 6 SCAN PATTERN (4 SEC);
ELEVATION ACCURACY = 1.00

0O 10 20

X-Y TRACKER
UPDATE TIME = 4 SEC
AZIMUTH ACCURACY = 0.5°

NO RADAR RANGE EQ.

TARGET VELOCITY = 2200 FT/SEC
PASSED WITHIN 2 MILES OF SHIP
STARTS AT 10,000 FT; ENDS AT 5000

l 1 - I 1 … l l l l

30 40 50 60 70 80 90 100

RANGE IN KILO FEET AT WHICH LAST SCAN WAS BEGUN

Fig. 5.15-Probability of handoff using X-Y filter
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5.4 Discussion of Results

The mean errors in the polar and Cartesian filters were found to increase during fades
unless the target was moving at a constant velocity along the polar or cartesian coordi-
nates, respectively. For short fades at the longer ranges, there seemed to be very little

difference between the mean errors in either system. The covariances increased during
fading conditions.

One can hand off targets at closer ranges using the X-Y filter. This is because of the

large accelerations in the R-O coordinate system for crossing targets.

6.0 CONCLUSION

This report describes an approximate analytical procedure for determining the errors in

an ox-: filter operating in Cartesian coordinates. These errors are separated into mean and
covariance errors and are compared to the errors in an a-4 filter operating in polar coordinates.

The polar to Cartesian and Cartesian to polar coordinate transformations are shown

to be approximately linear over the space in which the central and near tail regions of
the probability density lie. Since the measurement probability density is Gaussian, it is
shown that the probability densities after the transformations can be approximated with
a high degree of accuracy with Gaussian densities as long as the far tail region is of little
concern. Using this result, we find the covariances at the output of the filters. Closed-

form steady-state solutions are found for the covariances in the polar coordinate filter
and for stationary targets using the Cartesian coordinate filter. These covariances depend
upon a, 3, and measurement variances. For moving targets, the Cartesian coordinate filter

yields output covariances which are nonstationary. Their values depend upon a, j3, meas-
urement variances, target trajectory, target speed, and sampling time. In steady state and
for the far ranges, the output variances using the Cartesian coordinate filter approach the
variances obtained from the polar coordinate filter. At the near ranges, the covariances
are in general larger in the Cartesian coordinate filter as compared to the polar coordinate
filter.

At the far ranges the mean errors using either filtering system are essentially the
same. But at the close ranges the mean error in the polar coordinate system is in general
larger than in the Cartesian coordinate filter.

In the study on the effects of short fades using the predicted target strategy, it was
generally found that both the mean errors and covariances increased during the time of
the fade.

In the study of the track handoff problem it was found that one could hand off
targets at closer ranges using the X-Y filter. This is because of the large accelerations in
the R-0 coordinate system for crossing targets.
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Appendix

CALCULATION OF MEANS AND COVARIANCES OF RADAR
MEASUREMENTS IN TERMS OF CARTESIAN COORDINATES

A radar measurement is given in range R and azimuth 0, where R and 0 are assumed
to be uncorrelated, Gaussian-distributed random variables with means 0 and R., and
variances aR and aq. The problem is to determine the means and covariances of the
two quantities X and Y defined as

X = R cos 0

Y = R sin 0 .

In the calculations the following two facts are used extensively. The approximation

_2g2 E~~C (- 2, ) 2
e-2 90= + T.. N! - - 2 u

N=1

(Al)

(A2)

(A3)

is used because the azimuth standard deviation a0 in radians found in
is small. The integral

00

typical search radars

eCb2X2 bX d = '/~T , wb214a2cos bX dX = , where a > 0 (A4)

is used in each of the calculations.

The major steps in the calculations are the following.

Mean of X, X

X = E[R] E[cos 0]

E[cos0 = 1
A/E adr '9

where E[R] = R

o cos 0 e-(1/2)[(0_a)U0) 2 dO

_00

Change of variable w = 0 - 0

E[cos0] = _0 J [cos w cos - sin X sin 01 e(-12)(w/ao) 2 dw
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E[cos0] =2 co S Go cos , e(1v/ oo)2 w2 dw

E[cosO] =eo Cos2 0

X = e-'2 cos D; for smalla, X=R cos0

Mean of Y, Y

Similar to calculation of X

Y = R e-(JOI sin 0; for small , Y = Rsin 0

Variance of X, VAR X

VarX = E[X2 1 - (E[X])2 = E[R2] E[cos2 0] - X2

E[cos 2 0 = 1 f cos2 0 e (1/2)[(00)ae) 2 dO

E[cos 2 0] = 1 X j I e-(1/2)[(OU)lu0)2I dO
2 ,/ -7 ao _.

+ 1 x 1 J cos 20 e(1/2)[(0-0)/ao) 2] dO
2 N/ f27 -a 0

Letc = - 0;

E[ccos2 0] = 1 1 cos (2ca + 20) e 1/2)(Io) 2 dwj

E[cos 2 0] = 1 + 1 1 (cos 2 cos 20 - sin 2 sin 20)

x e(-112)(w/Io)2 dw

2 01=1 2 coS 2 scS2 (1 / e/- ) cE[cos 1+ scos 2w e aO 
2 2 /-7 a f.

45

Eq. (2.13)
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2 1 1 2a2E[cos 0] e co 22

E[R2 ] = aR + (R)2

Var X = E[R 2 ] E[cos 2 0] - () 2 ; for small ao

Var X = aR cos 0 + (R) 2 ao sin2e Eq. (2.10)

Variance of Y, Var Y

Similar to calculation of Var X, for small 00

Var Y = R 2sin 2 + () 2 2 cos 2 0. Eq. (2.11)

Covariance of X and Y, Cov XY

covXY= E[XY] - E[X] E[Y] = E[R2 ] E[cos sin0] - XY

00 )

E[cos sinO] =2X 1 sin 20 dO

Cj 0 ~ 2 

00

E[cos0 sinO] (sin 2w cos 20
2 / a -2r10f

+ cos 2w sin 20) e(-1/2)(/ao)2 dcw

E[cos0 sin 0] sin 20 f cos 2w e-(Ilao /2) C2 dw
,/-2a7 __o

1 -2a2 E[cos0 sinO] = 2 e 0 sin 20
2

E[R2] g R + (R)2

covXY = E[R2 ] E[cos0 sinO] - XY; for small a,

a2 - 2
cov XY = sin 20 - sin 20. Eq. (2.12)


