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6 D. A. SWICK

2. ASYMPTOTIC DISTRIBUTION OF THE FINITE FOURIER TRANSFORM OF

A ZERO MEAN STATIONARY PROCESS

In this chapter we investigate the asymptotic variances and covariances of discrete finite

Fourier transforms (DFT (1.6)) and the bias in the periodogram (1.9) in one and two dimen-

sions. There are no new conceptual problems in considering higher dimensionality; the re-

sults can be extended by induction, but the notation required is cumbersome. In anticipa-

tion of the tests of hypotheses of later chapters and to clarify the notation, one- and two-

dimensional processes will be represented here by {n(t), t C T} and {n(x, t), x E X, t c T,

respectively. Under the null hypothesis of subsequent chapters, the process {y(t), t c T} of

Chapter 1, will be the two-dimensional process {n(x, t), x E X, t E T}. Since it will be clear

from the context whether the discrete or the continuous transform is intended, the tilde will

be dropped from the DFT. The vector X will be represented by X in one dimension, and by

(K, wJ)' in two dimensions. The letter n in parentheses or as a subscript is an index, and of

course not the same as the functions n(t) or n(x, t).

2.1 The One Dimensional Case

Following Shumway [37], we consider a collection {nr(t), t C T, r = 1,... ,R} of obser-

vations of a zero mean wide-sense stationary time series, where T = 0,1, . . . ,N - 1 . Let

the cross correlation functions be represented as

Rrr'(t-t') = E{nr(t)nr'(t')}

= 8rr' IL f ei(tt)f(co)d , (2.1)
-IT

where the spectral density f(c) is a bounded absolutely continuous function. (See (1.1),

(1.4), (1.5).) The DFT (1.6) of nr(t) is given by

er(n) nr(t) eiOnt
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ABSTRACT -
rr'

The discrete finite Fourier transform of a multidimensional stationary stochastic
process transforms a multivariate problem into an asymptotically univariate one. For a
one- or two-dimensional process it is shown that, under stated conditions, the correlation
between the real and imaginary parts of the transformed variables is

n
H O(T- 1 ,

j= 1

and that the variance of each is equal to

n
2f(K, ) + E O(Tj - 1 ,

2 j=1

where f(KCO) is the spectral density, Tj is the number of observations in the ith dimension,
and n = 1 or 2. The limiting joint distribution of a collection of two-dimensional period-
grams, defined as the squared modulus of the transformed variables, is shown to be that
of mutually independent chi-square variates. The discrete finite Fourier transform also
concentrates the information for discrimination between hypotheses for a class of processes
of interest.

Several techniques for testing hypotheses concerning multidimensional stationary
stochastic processes were developed. These were applied to thedetectionof two-dimensional
plane-wave signals imbedded in a collection of independent identically distributed noise
processes.

When the signals are common to all realizations, a likelihood ratio test can be applied
in the transformed domain. If the signal model includes an unknown epoch or phase which
varies from realization to realization, no true replications are possible, and the test must
be modified. The modified test has reasonable power at acceptably low test levels. How-
ever an ad hoc test, based on the asymptotic distribution of averaged two-dimensional
periodograms, is shown to be more powerful than the likelihood ratio test under the con-
ditions considered. It requires, however, that the signal components be isolated from each
other in wavenumber and in frequency, since it utilizes data from neighboring cells to
eliminate the unknown spectral density.

Analysis of variance and methods of multiple comparison have also been applied in
the transformed domain. With the model of signals with unknown phase differences, the
analysis is applied to the periodograms. The test is found to be robust to the resulting
non-normal (i.e., chi-square) population, at least when the spectral density is constant.
Non-constant spectral density results in unequal cell variances. In this case, the test with
a chi-square population is robust only to very moderate inequality of cell variances; the
test with a normal population is considerably more robust. When there are many signal
components, analysis of variance and multiple comparison tests are more powerful than
the ad hoc test. The latter, which considers each component independently, is less sensitive
to non-constant spectral density.



The results of computer simulation of the various tests considered are presented, as
is a table comparing their power at test levels , with 0.5 > ax > 10-6.

PROBLEM STATUS

This is an interim report on a continuing problem.

-AUTHORIZATION
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SOME APPROACHES TO TESTING HYPOTHESES FOR
MULTIDIMENSIONAL STATIONARY STOCHASTIC PROCESSES

1. INTRODUCTION AND OUTLINE 

To facilitate the discussion of hypothesis testing for multidimensional stationary stochas-
tic processes we consider some definitions. By an n-dimensional stochastic process (random

process) we mean a finite real-valued random variable y(t) for every fixed t in some n-
dimensional parameter set T. We will be primarily concerned with the discrete case, in which
Ti = 0, +1, +2, . . ., i = 1, . . , n. For n = 1, we have a one-dimensional random function,
or time series, although the parameter t may indicate ordering according to a spatial or other
dimension. (See, for example, Anderson [2], p. 1 or Hannan [15], p. 3). For n > 1 the
process may be termed a space-time series, if these are the parameters and it is desirable to
distinguish between them.

The dimensionality of a particular process is sometimes a matter of interpretation. A
collection of observations made at discrete points in space and in time, for example, may be
considered for some applications as a set of realizations of a one-dimensional time series.

For other applications it may be necessary or at least preferable to interpret such a collection

as a single realization of a multidimensional process.

The n-dimensional stochastic process {y(t), t E T} is said to. be strictly stationary if its
n-dimensional distribution functions are invariant under parameter translation (Rosenblatt
[30], p. 100). The process is said to be wide-sense stationary if for each t its mean is a con-
stant (which we take to be zero without loss of generality) and its covariance function

R(t 1 , t2) = Ey(t 1 )Y(t2 )} (1.1)

depends only on the vector difference T = t- t2 , i.e., R(t 1 ,t 2 ) = R(T). Such a process is
often called a homogeneous random field (Yaglom [48], p. 81, Cramer and Leadbetter [6],
p. 167) or a homogeneous random process (Hannan [15], p. 94). The terms multidimen-

sional stationary stochastic process, homogeneous random field, space-time series, or simply
process when no confusion can arise, will all be used interchangeably in the sequel, which
will deal exclusively with such processes. Examples are given by Cramer and Leadbetter

(ibid.).

The assumption of stationarity permits the spectral representation

1
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y(t) = (2ir)n Je' tdY(X) (1.2)

where the range of integration extends over the whole n-dimensional space of )i' (?1, - * * Xn)

in the continuous parameter case, and is [1-r,7r] for each 'i in the discrete case. (See, for

example, Doob [8], p. 481, p. 527). Here X* t indicates the inner product

IX t =' Btj + ... + Xtn-.

The Y(X) process has orthogonal increments, i.e., E{dY(Xl) dY( 2 )} = 0, X1 * X2, and

EldY()12} = dF()), (1.3)

where F(X) is the spectral distribution function, given by

R(T) = n felA TdF(C . (1.4)

When it exists, the spectral density is the derivative of the spectral distribution:

= anFX) (1.5)

Although there is a one-to-one correspondence between {y(t)} and {Y(X)}, in many

cases it is advantageous to consider the variables in the transformed space. Measurement,

computation, and interpretation of the spectral density rather than the covariance function

is often preferable (Blackman and Tukey [3], p. 6), and spectral analysis may be the most

relevant analysis (Jenkins [19], Jenkins and Watts [20]). For discrete data, with which we

will primarily be concerned, Shumway [36,37] points out that in most time series applica-

tions the number of replicated series is much less than the number of points in each series,

so that the sample covariance matrix will have a singular Wishart density and the classical

multivariate tests are not applicable. The discrete finite Fourier transform (DFT), defined

below, approximately diagonalizes the covariance matrix. In addition, it will be shown in

Chapter 3 that for certain models the DFT also concentrates the information for discrimina-

tion between hypotheses (Kullback [22], p. 5) in a particular region of the transformed

space. Some of the problems involved in estimating spectra from finite length records are

2
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discussed by Parzen 28]. See also Blackman and Tukey 13], Anderson [2], Chapter 9,

Hannan 15], Chapter V, and Jenkins and Watts [20], Chapter 6.

Consider a finite set of discrete observations, {y(t), t = 0,1,..., Tj -1, j 1,..., n}.

The n-dimensional DFT of y(t) is defined as

1 T I Tpj1'K I
Y(m) = [ T 12 Y (t)e-ikmt

jtj=0 tn=O
(1.6)

where

mn (T1, . . , MT,,) I

Mmn = (27r m T1T1, .. ., 2r m TI Tn t,

lim 2r mTj/T = Xj0, j= 1, . .. , n.

in'0
and

(1.7)

(1.8)

It will be shown in Chapter 2 that for n = 1 or 2, under stated conditions, the variance of

Y(m)isf(X) + O O(T-1 ),
j=1

where 0 () is defined in the Glossary, that

cov[3ia(miys(ml) =ft 0(Tf1), and that
j=1

COV[ YU(Ml), YU (n2) 3 1 t CDV[ Y& (I 3,YXm2 ) = o Tj-, ),

for m1 # m 2 . Here 6 and S refer to the real and imaginary parts, respectively. Extension

to higher dimensions is, in principle, straightforward but is notationally unwieldy.

3 r

~r
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On the lattice points (1.7), we define the n-dimensional periodogram of y(t) as

ITy(Xm) = Y(m)12 , (1.9)

where T' = (T 1, . Tn) and Y(m) is given by (1.6). This definition differs by a factor of

1/2 or 2r from the two most commonly used definitions. It is adopted so that

n

E{ITy(m)}= f(X)+ E (Tj-1)

If {y(t), t e T} is a Gaussian process, then Y(m) will have a complex normal distribution

(Goodman [11] ). Wahba [42] shows that if {y(t), t E T} is a P-variate zero mean Gaussian

process, it is possible to construct K sample spectral density matrices based on averages of

one-dimensional periodograms which converge jointly in mean square to K independent

complex Wishart matrices. (See Goodman [11].) Also considering Gaussian processes,

Liggett [24] shows that spectral analysis is asymptotically optimal in the sense that the

"expected cost" of a Bayes test based on a class of spectral estimates approaches that of

the Bayes test based on the original data.

The distributional properties of the one-dimensional periodogram have been-extensively

studied. See, for example, Hannan [14], Chapter III. ITy(Xm) is not a consistent estimator

of f(X), since 21Ty(Xm)/f(X) has a limiting chi-square distribution (Anderson [2], p. 474).

The usefulness of periodograms lies in construction of spectral estimates from functions of

sets of them (Hannan [15], p. 213). Walker [44] discusses the asymptotic distribution of

one-dimensional periodograms and of sets of one-dimensional periodograms. Olshen [26] ex-

tends some of the results of Hannan [14] and Walker [44]. The processes considered are

one-dimensional moving averages

00

y(t)= v(j)u(t-j) (1.10)
j =-00

of independent random variables, u(t), which obey a Central Limit Theorem. Further exten-

sions are given by Pagano [27], who discusses the two-dimensional periodogram. Based on

the work of these authors, it is shown in Chapter 2 that the joint distribution of a set of

two-dimensional periodograms tends to that of a set of mutually independent chi-square

variates. This result is used to justify the approximate test statistics employed in subsequent

chapters.

4
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The remainder of the dissertation is devoted to applications of these concepts to the detec- ,

tion of two-dimensional signals imbedded in a collection of two-dimensional independent iden-

tically distributed noise processes. Two models are considered here. In the first, two-dimensional c

plane waves are considered to be common to R realizations of the process. Walker [45] discussed

parameter estimation for a one-dimensional model, and Hinich and Shaman [17] have recently

extended this treatment to a general n-dimensional model with Gaussian errors. In Chapter 3,

the approximate likelihood ratio test developed by Shumway [37] is extended to the detection

of two-dimensional signals.

The second model considered is probably more realistic for many applications. In it, each

signal has an unknown uniformly distributed epoch or phase. Since the phase is different in each

realization, no true replications are possible. A modified version of the likelihood ratio test

meets with some limited success with this model, but both types of errors are increased.

In Chapter 4 an ad hoc test, based on the asymptotic distribution of Y(m), is developed.

Both computations of the distribution and the results of simulated tests are presented to show

that this nonlinear test can be more powerful than the likelihood ratio test, at least with ex-

tremely small type I errors.

Shumway [36] has applied regression and analysis of variance to the discrete finite Four

transform of a stationary normal one-dimensional process. In Chapter 5, analysis of variance

and methods of multiple comparison are applied to both transformed two-dimensional model

With the second model, "noise" having a chi-square distribution is employed. Monte Carlo

methods show that under the null hypothesis the resulting distribution is indistinguishable f

the central F distribution, indicating the robustness of the test for type I errors. The power of

the simulated test is compared to the power with the normal distribution, both calculated and

simulated. The results, with degrees of freedom for both numerator and denominator very large.

are at least in qualitative agreement with those of Srivastava [391, Donaldson [7], and Tiku [ 40

who consider only much smaller degrees of freedom and larger type I errors.

In the final chapter, a-comparison of the power of the various tests employed is made,

and the results are summarized. Certain terms that are used without definition and theorems

that are cited in the text are listed in the Glossary.
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ASYMPTOTIC DISTRIBUTION OF THE FINITE FOURIER TRANSFORM OF

A ZERO MEAN STATIONARY PROCESS

In this chapter we investigate the asymptotic variances and covariances of discrete finite

Fourier transforms (DFT (1.6)) and the bias in the periodogram (1.9) in one and two dimen-
sions. There are no new conceptual problems in considering higher dimensionality; the re-

sults can be extended by induction, but the notation required is cumbersome. In anticipa-

tion of the tests of hypotheses of later chapters and to clarify the notation, one- and two-
dimensional processes will be represented here by {n(t), t E T} and {n(x, t), x E X, t E TI,

respectively. Under the null hypothesis of subsequent chapters, the process Iy(t), t c T} of
Chapter 1, will be the two-dimensional process {n(x, t), x E X, t C T}. Since it will 1

from the context whether the discrete or the continuous transform is intended, t-
be dropped from the DFT. The vector X will be represented by X in one dimr

(K, W)' in two dimensions. The etter n in parentheses or as a subscript is an

course not the same as the functions n(t) or n(x, t).

2.1 The One Dimensional Case

Following Shumway [371, we consider a collection {nr(t),t £ T,r= 1,.

vations of a zero mean wide-sense stationary time series, where T = {o,1, ....
the cross correlation functions be represented as

RrI(-t') = E nr(t)nr'(t )}

= rr' 2I f eiw(t-t')f(w)d ,
7r

where the spectral density f (o) is a bounded absolutely continuous function.

(1.4), (1.5).) The DFT (1.6) of nr(t) is given by

IN-1
C'(n) = L/Z nr(t) jicnt
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= E,(q(n) -i er 3(n) ,n =0, 1, . .. , N-1,

Cn = 2rnNIN, lim Con = no 

N-1
ER(n) = Y. nr(fl cos cont

(2.2)

r-

(2.3)

(2.4)erj(n) = - N nr(t) sin c),t
VNt=o

When r r', COV(er,,ErT'), cov(eri.,er'4j), and cov(erR,er'&) all vanish. Forr=r',
Anderson [2], Theorem 8.2.9, p- 457 shows that (in our notation, dropping the subscript)

-cos [(co-w, 1 )(N-1)/2] f N W n D ( O w ' T~cEje6Z(n),ERjn )j =Cs 7r-~n)N 1j1 DN(C,-Con)DN(W-Ctn-)f(&j)dcw

COS[(con + CLn'l)(N-1)12]
+ c~s 4nrN J DN(W+ Gn)DN(-Cn')f(co)d&w, (2.5)

47rN [~~IT

cos [(&n -&o') (N-1)12] f' DN(CJ -Wcn)DN(c, -Wn") f(&)dci
47rN J-IF

cos(Cf+ xn')(N 1)j21 DN(C0+W)DN(CJ Cn'M(0)dW, (6

and

E{eR(n)e&(n, =} sin[(cos- i)(N -1)/2] f DN(O-wn)DN(w j-c w) f( w)dw

+ sin[Iwn+w.,)(N1)21 f DN(Co+Wn)DN(C0-&nw)fP()dGw, (2.7)
47rN J ,-

where

and

:

Eje-j(n)c-j(n')j =
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where

DN(W) sin(&N/2)
sin (co/2)

is the Dirichlet kernel. If n = n', we have

41N J FN(w-cn) f(w)dcw
7r

cos COn(N-1) fT
+ J7r~r -47NIT DN(CO -Wn)DN(co+&n)f(w)dwo , (2.8)

}= 4rN J FN(W-Wn)f(w)dcw
17r

cos wn(N1) rT
4CrN J DN(CO - Cn)DN(W + Con) f((w)dc, ,(2.9)

47rN f ~7r

and

E{ e(n)e&(n)} = sin rN J_1) DN(cio- WO)DN(C+ W)f(co)dw 
7r

where FN(W) =DN2 (co) is the Fejer kernel.

Since

(2.10)

(2.11)2irN j FN()dw)=l1,
1 r

lim FN(c) = 0, c * 0
N-. 2rN (2.12)

(see, e.g., Anderson [2], p. 461, Hannan [15], p. 507), FN(w)/27rN approximates the

properties of a Dirac delta function. Thus the first terms in (2.8) and (2.9) approximate

f(won)/2. Let the bias in this approximation be represented by

and

8

EJER'(n) =
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b(con) ~ 47Nf FN(j-Wn) f(W)dWo (.~) r
-T Mr

1 -r

4iN J FN(w-Wn) [f() -(cn)1 dcj (2-13)
-IT

using (2.11). If f (co) is a constant ("white noise") then clearly b(w) = 0.

Theorem 2.1. For lwl < r, if f(cw) is continuous on [-7r,ir] and differentiable on (-7r,7r),

then b(co,)= 0(1/N).

Proof. We have by the mean value theorem,

b(w.) = N fT FN(C - n)(W - n)d&),

where K = f'(v)/4rr < for some Iv < r. Thus

b(wn) = K f FN(X)XdX

N K 44 + f +;61 FN(X)XdX,

7r- CJn J-71 77 

where

0 < < r - Cn 

Now

K r- Wn K 7-0n in2(QN/2)
FN(X)XdX f sin2( Xd (N

N sin2 (71/2) Xd7= 0(i)

Similarly,
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K > 7 FN(X)Xdx = ° (0 )
-7r-w-n

while

K 
K j FN(X)XdX = 0

since the integrand is odd. Q.E.D.

This result appears to strengthen that of Hannan [15], p. 286, Rosenblatt [30], p. 171,

Shumway [36, 37], and others who indicate 0(lnN/N) convergence. This difference can have

serious practical consequences. If, for example, an accuracy of 0.01 in the spectral estimate

is required, 100 terms will suffice in one case while over 600 are necessary in the other. The

difference is due to the assumptions about f(w). I will comment further on it in section 2.3,

after considering a numerical check, the second term in (2.8) and (2.9), and the two-dimen-

sional extension.

The result was checked by numerical integration for several functions, f (w) and several

values of wn. Because of the rapid oscillation of the integrand, 2000 functional values were

used with the trapezoidal method. The value of

27fN J FN(X-Z)f(X)dX
7IT

was calculated for N = 100(100) 1000 and Z = 0, .357r, .6ir, .957r. The difference between

this integral and f (Z) was divided by 1/N and by In N/N. The computer printout of these

calculations is shown on pp. 30 and 31. In Fig. 2.1 f(x) = cos x, and in Fig. 2.2 f (x) = x

sin x. The numerical results seem to support the 0(1/N) bias shown for all functions satisfy-

ing the assumptions of Theorem 2.1.

We now consider the second terms in (2.8) and (2.9) and (2.10). If n = 0, then con = 0,

and these terms are identical to the first terms in (2.8) and (2.9), so that

Ir

E {c 2(°)} = 27rN j FN (w) f (w)d ( = f (0),

by a proof similar to that of Theorem 2.1, leading to an odd integrand, and e&(0) = 0 with

probability one.

10



FN(w-r) = sin2 [(w-7r)N/2]
sin2 [( -r)/2]

11~~~~~41

41

1 - cos[( -)N] _ 1 - (-l1)Ncos(Nco)
1-cos(cw-7r) 1 + cos 

cos [(N-1)1ir]DN(Cw-7r)DN(w+7r) = (-1 )N -I[cos(Nr) - cos(Nw)1
[ cos 7r - os W I

1- ( 1)Nos(Nw) FN(C-70
1 +Cosw N(W)

so that by a proof similar to that of Theorem 2.1,

E{e E 2(N/2)}= f(7r) + 0(1/N),

and e(N/2) = 0 with probability one.

For 0 < co < r,

2irN J DN(CO- wn)DN( + n)f(w)dw 2irN

n-17 r-Un+77 - co -+7 7 0+ 717 
x {rW-7+ + *jO + f n + +n-7r -(t n 7 f Cn+77 o cj n-77 + fn+??0

X DN( -n)DN(CO + co) f(w)dw 

The magnitude of the first term of (2.14) is

1 D)Nn-N7 w
2irN r DN(J-cwn)D( + n) f (W)dw)

< K r
27rN J IDN(W - wn)IIDN(w+ w~n)Idcw = 0

NRL REPORT 7466

For n = N/2, Cn = T

and

(2.14)

(N)



by the second mean value theorem for integrals, where inf f (w) I 6 K < sup I f (c) I, with the

last equality following from

DN (CO) sin (&jN/2) < 1 fr0<5<IoI<
siin(w/2) Isin(6/2)I for0<6<Iw <AT

Similarly the 3rd, 4th, and 6th terms of (2.14) are 0(1/N). For the 5th term, we have

Wn+Z|2iN J DN(w- fl)DN(+fOn) f(w)dw

K 7

< 27rN IDN(W) 1l DN(W + 2Of I dw

< 2rN f IDN() Idw( = °(N ) (2.15)

where inf f(w) I < K < sup f (w)l, and K' < K/sin(6/2) for 0 < < Wn. The last equality

follows from Appendix 2A at the end of this chapter.

The 2nd term is similar, so that for 0 < w,1 < r,

2irN DN(W-wn)DN(wX+ Wo) f(w)d | O ( N (2.16)

Numerical integration of (2.15), illustrated in Fig. 2.3, seems to imply o (lnN/N) depend-

ence, not merely 0(lnN/N), but clearly not 0(1/N). (Minor discrepancies in this and subse-

quent calculations can be attributed to the inaccuracies of the numerical integration.) Nu-

merical integration of (2.14) for various f(w) and various Wn G (O, r) implies 0(1/N)

dependence, however. This is illustrated in Fig. 2.4 for f (co) = cos w and in Fig. 2.5 for

f(w) = w sin w. Since 0(1/N) clearly implies 0(lnN/N), these numerical results do not

violate (2.16). Analytic verification of 0(1/N) dependence follows from Lemma 8.3.4 of

Anderson [2], p. 471. The left hand side of (2.15) vanishes since the integrand is bounded

and i? can be arbitrarily small.

12 D. A.SWICK
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2.2 The Two-Dimensional Case

Consider a collection {nr(x, t), x E X, t E T, r = 1, .. ., R} of observations of a two-

dimensional zero mean wide-sense stationary stochastic process, where X = {0,1,... ,M-1},

and T = {0,1, ... ,N-1}. Let the cross correlation functions be represented as

Rrr'(X--X', t- t) = E{nr(X, t)nr'(X', t')}

= 5~r'(2)2 ff Jf1ei[K(X-x')+w(t-t)]f(K )dKd (2.17)

where the two-dimensional spectral density f(K, W) is a bounded absolutely continuous func-

tion with continuous first partial derivatives for K, X E [-7r,7r]. If x and t are space and

time variables, k = K/27r may represent wavenumber and f = /27r may represent frequency.

The two-dimensional DFT (1.6) of nr(X, t) is given by

M-1 N-1 i(Kmx+wnt)
er(m,n) = M\N E E nZAxt)e (IN 0t =0

(2.18)

where

Km = 21rmM/M K as M -*- Xn = 27rnN/N n, as N -- (2.19)

(2.20)
1 M-1 N-1

er, e(m,n) = E E nr(xt)cos(Kmx+Wnt),

M-1 N-1
Er,~m~) =1 x-o L~ nr(x' t)sin(Kmx +nt) - (2.21)

We extend the results of the previous section to two dimensions and consider unequal

wavenumbers and unequal frequencies. As in section 2.1, cov[erp,(m,n), er'bq(m', n')] =

and

= cra(mn) - icrj(mn), m = , ... , M - , n = , ... , N - ,
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cov[er(m,n), er'S(m',n') cov[erg(m,n), er&S(m',n')I = 0 if r 0 r'. If r = r', we drop

the subscript and have

Ejeq(m,n)ecR(m',n')}

-1 M-1 N-1 M-1 N-1 Ir = 1 E E S S X r rT f(K,c)ei[K(X-X )+C,(t -t')]dKdw
(27r)2MN x=O t=O =O t=O J

COS(KmX + wnt)COS(Km X' + COnt')}

1Tr 7r

4(27r) 2 MN 1 f1 (K W)

{[DM(K + Km)ei(K+Km)(M-1 )/2DN(W + n)ei(&+n)(N- 1 )12

+ DM(K - Km)ei(KKM)(M-1)12 DN(- Wn)ei(W-n)(N-1) 12

[DM(K + Km,)ei(K+Km)(M-1)1 2 D( + cn,)ei( n

+ DM(K Km,)e- i(K- Km)(M -1) 12DN( (- Wn') ei(WWnl)(N1)/2 dKd

COS[(Km -Km')(M-1)/2 + (C)n -wn')(N- 1)/2]
2 (2ir)2 MN

7T 7rf f DM(K -Km)DM(K -Km')DN(W - (n)DN(& - Wn')f(K, )dKdW

COS [(Km + Km ')(M-1)/2 + (Cwn + Wn')(N -1)/2]
2 (27r)2 MN

{ ,7T DM(K + Km)DM(K - Km ')DN(W + wn)DN(W - n')f(K,&))dKd, ,
-T - 7r (2.22)
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where DM(x) = sin(Mx/2)/sin(x/2) is the Dirichlet kernel. Here we have used the fact that

for real n(x, t), f(-K,- W) = f(K, W).
Similarly,

E {eS (m, n)eX (m', n' )}

M-1 N-1 M-1I N-1 7r Tr

(2ir)2M M-1 N-i M-1 rj ~ r ff(K,)ei[K(x-x')+w(t-t')]dKdwx=O t=O x'=o t'=O 47r f-7

sin(KmX + Wont)sin(Km'X'+ ~n't')}

COS[(Km Km')(M-1)/2 + (n -Cn')(N-1)/2]
2 (2T) 2 MN

f* f DM(K - Km)DM(K -Km')DN(W - n)DN(W -n')f(K,&.)dKdcO
-7r -iT

COS[(Km + Km )(M-1)/2 + (n + Wn')(N -1)/2]
2 (27r)2 MN

* 7 , Dm(K + Km)DM(K -Km')DN(W + wn)DN( -n')f(K,)dKdco,
7r -- 7T (2.23)

and

E 1E a(m, n)E (m', n')}

M-1 N-1 {r 7r

XN N J f' f(K, )e i[K (x-x )+ w(t-t' dKdw
x= t=0 7r -1r

2nM M-1 N-I

(27T )2 MN T t-o

COS(KmX + Wnt)sin(Km'X' + n't)}

sin (Km' -Km)(M-1)/2 + (n' con)(N 1)/2]
2 (27i)2 MN
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1r 1rf f DM(K - Km)DM(K -Km ')DN(W - wn)DN(J - Wn ')f(K,Cw)dKdw
_r T

sin [(Km +Km')(M-1)/2 + ( n +n w')(N-1)/2]
2 (27r)2 MN

7r ii

f f DM(K + Km)DM(K -Km')DN(W + wn)DN(w -wn')f(K,w)dKdw-
JT 'r (2.24)

For a single wavenumber-frequency pair, by putting m = m' and n = n' in (2.22)42.24) we

have

E leR2(m, n)3 =A + COS[Km(M-1) + wn(N-1)] -B, (2.25)

E{eg2 (m,n)= A- cOs[Km(M-1) + cXn(N-1)] B, (2.26)

and

E{e,(m,n)e&(m,n)} = sin[Km(M-1) + Cn(N -1)]- B, (2.27)

where

1 Ir 7r

A 2=)2 MN J f FM(K Km)FN(W-n) f(K)dKdW, (2.28)

B = 2 12 DM (K + Km)DM(K - Km)DN(w + Wn)DN(w -n)f(K, )dK
2(2i)2 M j__J I (2.29.)

and FM(x) = DM2 (x) is the Fejer kernel. Equation (2.28) approximates f (Km,n)/2, with

bias given by b (Km, Wn) = A-f (Km, n)/2. Since

1 7r 7f

(27r,2MN Jf FM(K-Km)FN(W- Wn)dKdw

21M J FM(-Km)dK 2irN J FN((w-win)d= 1,
-1T -7T



NRL REPORT 7466 17

by (2.11) we may write

1 fn f - Kr(KmWn 2(27)2MN f FM(K -Km)FN(W Wn)[f(K,w)- f(KmWn)I dKdw*

If Km I <r, I I < 7r and if f(K, W) is continuous and has continuous first partial

derivatives for K E [-7r,7r] and co E [-7r,7r], we have by the mean value theorem for a func-

tion of two variables

b (Km, Wn) 2(2j2MN f f FM (K-Km) FN( W-COn) [(K-Km)fK( ,fl)

+ ()-(Wn) f ( ,fl)] dKdw, (2.30)

where fK and f denote the partial derivatives of f with respect to K and co, respectively, and

I < ir, bill < iT. Using (2.11), (2.30) becomes

= fK( Qoq) T W + Q n)b(Km, Wn) 4M J FMKmKmdK 4r N J FN(wJ-con)(W -wn)dwj

= ( )+ (:)X (2.31)

as in the proof of Theorem 2.1.

By the second mean value theorem for integrals,

COn 0, 7r (with inf f(K, ) < K < sup f(K,CO))

K DK
B = - 2mN JDM(K + K)DM(K -Km)dK

(2.29) may be written for Km * 0, T,

r

DN( + OODN(W - cn)dco
7 

(2.32)

by Lemma (8.3.4) of Anderson [2], P. 471. This approach, applied to (2.22)-(2.24), shows

that for unequal wavenumbers and frequencies,

= k N(1 ). O W,



E{e6Z(m,n)ee7(m',n')I E{eS<(m,n)e&(m',n')} E{eeg(m,n)e&(m',n')}

(M) (N), m : m, n k W'.

Finally, if m m' and n # n' we have

2 mN FM(K-Km)dK DN(Cw-wn)DN(co- wn)dO =
(27r)2 M Jr f-T

so that

E{eaj(m,n)e6Z(m,n')} E{e(m, n)e&(m,n')} = () '

while

E {eg (m, n)e (mn)} ° 0 () ° () ' n 

Summarizing the main result of this section, by (2.25)-(2.27), (2.31) and (2.32), we

have

E{eaR2(m,n)} I E{e ,2 (m,n)} f(Km,,On)/2 + (M) + 0 (N-)

and

E{eR(m,n)e&(mn)} = 0M 0 (N) 

Thus if nr(X,t) is a Gaussian process, eR(m,n), e{(m',n'), e&(mn), e &(m',n'), m * m'

n * n' are asymptotically normally and independently distributed.

Numerical integration of (2.28) is illustrated in Fig. 2.6, p. 35. Here f(K, C) = COS(K -),

Km = .67r, cOn = 0, .357r, .6ir, and .957r, M = 1000 and N = 100(100)1000. The integral was

computed by the trapezoidal method using 2000 values of the integrand, [(Km, Wn) was sub-

tracted and the result divided by 1/M + 1/N and by 1/N. The results show 0(1/M) + 0(1/N)

dependence, as indicated by (2.31). By (2.32), (2.29) is the product of two terms like the

ones illustrated in Figs. 2.4 and 2.5.

18 D. A. SWICK



2.3 Lipschitz Conditions and Order of Convergence

By (2.13), the bias in the one-dimensional periodogram is""

b' 1 (T {sin[(- .n)N/2] 2 m
b(c2n) irN Jf sin[(w-Wn)/2 1 [f (W) -f( n)]d.

For Icon < r, if f is continuous on [-7r, 7] and differentiable on (-7r, 7r), we have shown in

Theorem 2.1 that b(con) = 0(1/N). Hannan [15], p. 286 states that if f E Lip 1 near Con,

b(,),) = O(lnN/N), and that this condition holds in particular if f is differentiable at wn.

His definition of a Lipschitz condition (p.513),follows that of Zygmund [49], p.4 2 who

defines the modulus of continuity as

W(, f) = supI f(X2 )-f(X1)I , for X1 ,X2 E [a, b], xj-X 2 1 6. (2.33)

If, for some a > 0, we have w(6,f) < C6°c, with C independent of , f is said to satisfy a

Lipschitz condition of order ax in (a,b), written f C Lip a.

Zygmund shows ((3.15),p. 91) that if f C Lip a, b(wo,) = 0(1/N'5) or O(lnN/N) accord-

ing as 0 < a < 1 or a = 1. The further restrictions that f be continuous and differentiable

were used in Theorem 2.1 to invoke the mean value theorem to show b(w,) = 0(1/N).

These restrictions imply f C Lip 1, but the converse is not necessarily true. Another common

definition of a Lipschitz condition (with constant K) is that

If(X2)-f(Xl) I< KIx 2 -X I (2.34)

This condition implies but is not implied by Zygmund's condition. The inequality (2.34) is

not sufficient to show 0(1/N) convergence as in section 2.1 but (2.34) in addition to the

assumption that f is monotonic would be sufficient. It can be shown (Royden [31], p. 108,

problem 16) that (2.34) implies that f is absolutely continuous and hence differentiable a.e..

Olshen [261 uses Zygmund's proof to show that if f E Lip a, a remainder term is

0(1/N) or (lnN/N) according as 0 < ax < 1 or a = 1. Pagano [27], generalizing Olshen's

work to two dimensions but using a Lipschitz condition similar to a two-dimensional exten-

sion of (2.34), claims 0(M-x + N-0) convergence, requiring only that a and 3 be positive

constants. If a = = 1, this result agrees with that of section 2.2, where, however, the two-

dimensional analog of the restrictions of Theorem 2.1 were imposed.

In the one-dimensional case, Rosenblatt [30], p. 171 seems to be too restrictive in re-

quiring that f be continuously differentiable to obtain O(lnN/N) convergence. Grenander and

NRL REPORT 7466 19
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Rosenblatt [13], p. 130, impose a restriction similar to (2.34), and thus could cite Zygmund

rather than Fejer [9] (see Appendix 2A) for the 0 (nN/N) result. Shumway [37] requires

that f be absolutely continuous and hence differentiable a.e.

2.4 The Asymptotic Joint Distribution of Two-Dimensional Periodograms

In this section we revert in part to the notation of Chapter 1, in order to avoid confu-

sion in subscripts. Let {y(x, t), x E Xt C T} represent a set of observations of a two-

dimensional zero mean wide-sense stationary stochastic process, where X = {o, 1, . . , M-1}

and T = {0,1, . . . N-1}. On the lattice points (Kmn), where Km and Con are defined by

(2.19), the periodogram of y(x,t) is given by (1.9) and (1.6) as

2M-1 N-1 2
IM, N y (Km , n) = IY(m, n) = y (x, t) ei(K mX+nt) (2.35)

X= tO

It has been shown in section 2.2 that

E{IAIN, y (Km, Wn )}= fy (Km, n) + 0 + (, )

if fy(K, W), the spectral density of y (x, t), is continuous with continuous first derivatives for

K [-ir,ir] and X C [-7r,r].

The process y (x, t) can be represented as a moving average (1.10)

Y(x, t) = E 7Q,k)u(x-j,t-k) (2.36)
j=-- k=-o

where

E E |z-y(j, k)2<. (2.37)
j=-oo k=-o

(See Doob [8], p. 498, Anderson [2], p.400). The residuals u(x,t) are orthonormal, that is

E{u(XIt)} = 0

var{u(xt)} = 1

cov{u(xt),u(x',t')}, = O x * x' or t 2 t' .

20

(2.38)
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Hence the covariance function of u (x, t) is

Ru(g,h) = E{u(x,t)u(x +g,t + h)} =6 go5ho , (2.39) t

where 6 jO is one if i = 0 and is zero otherwise, and the spectral density is

00 00

fu(KI CO) T h_ Ru(gh)ei(Kg+wh) = 1
g =- h =-oo

so that {u(x,t)} represents a "white noise" process. Using (2.36), (2.38) and (2.39),

E{y(x,t)} = 0, and the covariance function of y(x,t) is

Ry(gh) =E{y(x,t)y(x +g,t+ h)}

=E E LL 7y(j, k) -Y(j'k')E{u (x-j,t-k)u(x-j' +g,t-k' +Q)
j j' k k'

=Y(j,k)Y(j-g,k-h),
j k

independent of x and t, verifying the wide-sense stationarity of {y (x, t)}. The spectral den-

sity of the y process is

fy (K, W) E Ry(gxh)e-i(Kg+cjh)
g=-oo h=-oo

= E E E ETY(j,k)Y(j-gk-h)ei(Kg+wh)
g h j k

E~~ y (j,k)e i(K+Wh)kY(Pk')ei(Kj+Wkt)
j' k' j k

=r(Kco)1 2 . (2.40)

where
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oo 00

r(K,CO) = E E 'Y(jk)ei(Ki+Wk)
J=-oo k=-oo

Let the DFT (1.6) of y(x,t) be represented by Y(m,n). For fixed M and N, the

dependence of mm and nN on M and N, respectively (see (2.19)) may be suppressed. Since

for real y(x, t),

M-1 N-1
Y(M- m,N -n) = 1M Y L y(x,t)e-2i[(M-m)x/M+ (N- n)tN]

M-1 N-1
-aMV 1 E y(xt)e21ri(mx/M+ntIN)

-/Nx=O t=O

= Y*(mn), the complex conjugate of Y(m,n), these terms are redundant. Consider the set

of lattice points

Q= (m, n): m =0, ... , M- 1, n =1, *-- 21+ (m,n): m =0, *--, 2M n ° 2 

(2.41)

where M and N are assumed to be even for convenience. Then the transformed set of ob-

servations {Y(m,n): (m,n) Q} are a set of sufficient statistics. Within Q, define the set of

four points

D= {(mn) :(m,n) = ( jM/2,kN/2),j,k = 0,1}. (2.42)

Y(m,n) is in general complex for (m,n) E Q, but is purely real for (m,n) E D. This distinc-

tion will govern the degrees of freedom of the chi-square variates to be considered below.

Let the DFT of u (x, t) be represented by

I M-1 N-1
U(mn) = 1/N L1 u(xt)ei(Kmx+"nt) = U6Z(mn) - iU&(mn).

= t=o

Pagano [27] shows that if f(K,W) is continuous, if (2.36)-(2.38) are satisfied, and if the

random variables u(.,.) are mutually independent and satisfy the "central limit condition"

22
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U(O, ) N(O, 1),

then the random variables IM,N, y (Km Wn) are asymptotically independent and (in our

notation)

2323 C

>-

'I..
con!

t=

1 2 -D2 f (Km Cn) X2 , (m, n) GQD

IMNy(Km,WGn) (2.43)

f(Km, n) X1
2 , (m, n) E D,

where X 2 denotes a chi-square random variable with v degrees of freedom. We conclude

from (2.43) and Theorem 2 of Chernoff [5], section 2 that the ratio of independent sums of

periodograms has a distribution asymptotically proportional to the F distribution. This con-

clusion, and hence the conclusion that the type I error of tests based on such ratios converges

to the nominal type I error of an F test, also follows from Theorem 2.2 below, which is an

extension of the work of Walker [44], Olshen [26], and Pagano [27]. If asymptotic normality

can be assumed a priori, then the result follows from Theorem 8.10.2 of Anderson [1], p. 224,

which is an application of Chernoff's theorem.

Theorem 2.2. Let fy(Kj, Wk) OJ = 1, ... , Jk = 1, ... , K. Then as M -oand N oo,

the joint distribution of IMN, y(Kj, COO, i = 1, ... , Jk = 1, ... , K tends to that of JK mu-

tually independent random variables with

el IL(Kj ~X 2 (j,k) E Q-D

IMfN, y (Kj, C(,k ) 

fry (K,, (ok ) X 12 , (j, k) E D .

Proof. Let

M-1 N-1
SMN = T C(X,=O U(X, X

x= tO

where

J K
c(x, t) = , [a(j,k)cos(Kjx + cokt) + b(j,k)sin(Kjx + cjkt)],

j =1 k= 1
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with a(j,k) and b(j,k) arbitrary. Then

J K
SMN =v N21 21 [a(j,k)Ue(j,k)+b(j,k)U&(j,k)]

j=1 k=i

Let

sMN = E{SMN}

= kMN )
2 j~,

(',k)c=

M-1 N-I

= 21 c 2(x,t)
x=O t=O

K J K

L [a2(j,k) + b2 (j,k)] + MN2 2 a2(j,k) 
k=1 j=1 k=1
Q-D (jk) eD

Let (x,t) = c(x,t)u(x,t), and let G,t(-q) be the distribution function of (x,t). For arbi-

trary > 0, let

1
gMN(b) =2SAIN

1
2N

M-1 N-1

x=O t=O aI > SMN

M-1 N-1

2 2 c2(x, t)f
x=O t=O fuI)

where FX t(u) is the distribution function of u(x, t). Since

J K
Ic(x,t)l •21 21 [Ia(j,k)l + Ib(j,k)i] , and MN -MNgMN(6) O asMN -.

j=l k =1

Hence by the Lindeberg-Feller theorem (Lobve [25], p. 280), SMNISMN -. N(O, 1), so that

SMN / _ N (° 2
J K

j =1 k= 1
( jlk) (= Q-D

J K
[a2(j,k) + b2 (j,k)] + a2(j,k)

j.l =1
(jlk ) cE D

(2.44)

(2.45)

u2dFxt(u),
6SMN

I c(x,t) I

(2.46)

24
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using (2.45). Let 01IN(O) = EVOSAiN /N be the characteristic function of S1N/MN.

Then by (2.46) and the Levy-Cramer continuity theorem (Loeve [25],]p. 191), as M,N- e
rk_

OMN(0) 0(0)

for all real 0, where (0) is the characteristic function of a random variable distributed as the

right-hand side of (2.46). That is, using (2.44),

urn = un E ei~J K
lim EM- e ==1 v1 L lim E i (jk) + b(jk)U(j,k)]}

=<[ 2x~4( {- 2 EL [a (j,k) + b(j,k)] + 021 1 a2(Ik)}}.

(j,k)e Q-D (j,k)e D

The limiting joint distribution of Ug(j,k), Ua(j, k), j = 1, . . . , J. k = 1, . . . , K is
thus that of 2JK mutually independent random variables, each distributed as N(0, 1/2) if

(jk) E Q-D or N(O, 1) if (jk) ED.

The limiting joint distribution of IMN ,(j,k) = IU(m,n) 12, j = 1, . . ., J,k 1,...,K
is therefore that of JK mutually independent random variables, each distributed as 12 or

2~~~~~~~~~~~~~~~~~ 
X12 according as (j,k) C Q -D or (j,k) D. The conclusion then follows from (2.40) and
the fact that

IM,N,y(Kj,cSk) I(Kj,wk)1 2 IM N (Kj,Wk)

as is shown by Pagano [27]. Q.E.D.

Corollary. If (., .) is continuous, then the limiting joint distribution of Y(j,k), Y(j,k),
j = 1, . . ., J k = 1, . . , K is that of 2JK mutually independent random variables each distri-

buted as N(O, fy(Kj cWk )/2) or N(0, fy(KjWk )) according as (j, k) Q-D or (j,k) E D.

The proof follows from the above, from (2.40), and the fact that if (.,.) is continu-

ous, Y(j,k) converges in mean square to r(Kj,wk) U(j,k). (See Pagano [27].)

This theorem and corollary are the justification for the approximate test statistics used

in the following chapters.



APPENDIX 2A

ASYMPTOTIC BEHAVIOR OF THE INTEGRAL OF THE

MODULUS OF THE DIRICHLET KERNEL

This appendix follows Fejer [9].

Lemma. Let f(x) be an arbitrary function, finite and continuous on (a, b). Then

b 2 b

lim 1 f(x) Isin nxl dx = 1 f(x)dx .
n fa ar

Proof.

Let (j-1) 'h <a <j < (i + 1) < ... <k n 6b <(k+1) .

(j+1 )1r/n

f(x) Isin nx dx = r
k 7r/ n

f(x) Isin nx dx+ ... + f(x) Isin nx Idx+o(1) .
(k -1)ir/n

r(m +1)7r/ n
Now, fm+1)r

miT/n

1 (m+l)lr
Isin nx Idx = n f

M7r

(_l)M (M+1)7r
Isinx dx = n J lT

m7T

= -()M (-2 cos m7r) = 2 Vm.

Hence, by the second mean value theorem for integrals, if f(x) is integrable on (a, b),

Jb

a
f(x) sin nx dx = 2 (f + f2+ . * * + k -j) + o(1),

where mi < fi < Mi, i = 1, . .. , k -j, and mi and Mi are respectively the infinum and

supremum of f(x) on the ith interval.

26

Jb

Then J
a

sin x dx
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Since

rb litr/n

J f(x)dx = J
a a

J(j+1 )iT/n

f(x)dx + j~i~l
jiti n

kiT/n

f(x)dx +, + J
(k -1 ) /n

b

f(x)dx + J
k7r/n

by the first mean value theorem for integrals, it follows that

f(x) Isin nx| dx = 2 * n ( + + A -;) + (l)jb
Ja

=2frb
= J (x)dx + o () .

a

We now apply this lemma to evaluate the "Lebesgue constants" (Fejer [9], Zygmund

[49], p. 67), Ln.

Let

2 r r/2
Ln = - i

xn 2 f7r/ 2

0

2 r/2
A = J

isin(2n + )tI dt = Xn + n 
sint

I sin (2n +1) tI dt
t

(1 -

sin t ) Isin(2n + 1)tl dt .

By the lemma,

4 7rL/2
lim n = 2

n ) 00f7r JO

2727 ^r9

-

f(x)dx

Q.E.D.

where

and

(2A.1)

(2A.2)1 - 1 dt = 0(1) .
( sin t t )
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We can write

Xn = n + n,

2 f (n+l)17/(2n+l)

0

= J

(n+1)7r/(2n+1)

Isin(2n +)tI dt

t

I sin (2n +l) tI dt

t

2 r (2n+1) 7r/2

7r + )
(n+ 1) r

I sin t I dt
t

n+1

S7r lnn + 1 =ol

2 r (n+l) n Isin t 
V = J tdt

7r {J +
(n+1)7r 1 Isintl 

+ fnT 7rt d

(1i+ 1 + .. + 1 'sin tdt

( t t+1 + '-- t +n7r )snd

( + 1 + *- *+ + 1 nsin 7r t d t .2 1

7fo

The digamma function may be expressed as (Whittaker and Watson [46], p. 241)

F(x) C X + n x + n
F W ~n=l

where C is the Euler-Mascheroni constant.

where

and

(2A.3)

' Now

(2A.4)

28

07r
W
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Thus

+ 1 .*.* + 1 - r(x) n1 1
x x +1 x+fl 1(x) k~jj

k =1 k ( kk =n+l

r (X) + In n+o(1),

using (0.131) of Gradshteyn and Ryzhik [12].

Hence n = J( In n- rt)sin t dt + o(1)
0

= Inn +0(1).

By (2A.1)-(2A.5), we have

4L T ln n +0(1) ,

so that

Ln 1 nJ
n !i7rn I 7r

sin [(n + )t]

sin (t/2) dt = 0(ln n/n) .

Finally, letting N = 2n + 1 we have

27rN r
I DN(W) I dw = 0 (In N/N),

where DN(W) = sin (Nw/2)/sin (/2) is the Dirichlet kernel.

29 z

C-

r

c:.

r

x+ k

(2A.5)



Appendix 2B

NUMERICAL CALCULATIONS

2000 VALUES

I-F(E) I-F(Z)
N

1/N LN(N )/N

Z= 0. PI 0. PI

- .999916
-*999832
- .999747-.999663
- *999578
- *999494
-_999 409
- *999325
- *999240-.999156

.60 PI

*308990
*308964
*308938
*308912
*308885
*308860
.308834
*308808
*308782
*3087 56

-..217129
- -188707
- .175278
- -166848
- .160843
- .1 56246
-. 152556
- . 14949 6
- . 1 46895
- .1 44643

.60 PI

*067096
. 0583 14
054164

.051 559

.0 49703

.048282

.047142

.046197
*045393
*044697

-.453952
-. 4539 15
- .453876
-. 453838
- *453799
- .453761
-. 453722-.453685-.453646-.453608

.95 PI

.987742
*987524
.987571
.987364
*987394
.987210
.987212
*987062
*987022
*986923

-.098574-.085672
- *079574
- *075747
- .073021
- *070934-.069259-.067870
- .066689-.065666

.95 PI

.214485

. 186384

. 173143

.164795

. 1 58883

.1 54326

.1 50695

.147662

. 145099

. 142872

Fig. 2.1-Illustration of 0(1/N) Convergence of the Bias due to the
Feje'r Kernel, f(Z) = cos(Z)

30

I -F (E) I-F(Z)

1/N

.35 PI

LN (N)/N

.35 PI

100
200
300
400
500
600
700
800
900

1000

100
200
300
400
500
600
700
800
900

1000



NRL REPORT 7466

2000 VALUES

N

1/N

E= 0. PI 0. PI

1.386346
1.386308
1. 386301
1.386299
1.386298
1.386297
1.386297
1.386296
1.386296
1.386296

iz = .60 PI

.301041

.261 651
*243049
.231379
.223071
.216713
. 211613
*20738 6
.203795
*200687

.60 PI

- .061378
- 061209
-. 061152
-. 061056
-0 60982
-*060893
- .06081 5
-. 060728
-. 060649
-. 060563

.95 PI

-0 13328
-. 011 552

-.010721
- .010190
- 009813
-. 009519
- .009283
- .009085
-. 008916
-008767

.95 PI

-1. 408690

-1 * 408647
-1 * 408516
- 1. 40837 1
-1. 408223

-1. 408073

-1.407923
-1.407772
- 1. 407 621
- 407 469

- *305893
-*265867
-*246944
- .235063
- *226599
-. 220117
- .214915
- .2 10599
-*206930
- .203752

1 *663046
1.672814
1.669825
1.671407
1.670469
1 *671214

1.670695
1 .671209

1 .670821
1 .671267

Fig. 2.2-Illustration of 0(1/N) Convergence of the Bias due to the
Fejer Kernel, f(Z) = ZsinZ

31 c:
5-

rrtrr

F()=E SIN()

I - F(FZ)

LN(N)/N

I-F (F)

1 /N

.35 PI

I -F (.)

LN (N) /N

.35 PI

100
200
300
400
500
600
700
800
900

I 000

100
200
300
400
500
600
'700
800
900

1000

.361126

.315725
.2927 57
.2 78965
*268797
.261253
.255026
*2 50008
*245622
.241941
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2000 VALUES

I CABS)

1/N

2. 857030
3. 142686
3 -300262
3. 446217
3. 555307
3.581973
3. 647 627
3.622720
3. 7 469 62
4.0177 16

INTEGRALEABS(DIRICHLET KERNEL)]

I ABS)

LN(N)/N

*620396
.5931 48
* 578609
* 575188
* 572089
* 559952
* 556798
. 541949
.550830
. 581 624

Fig. 2.3-Numerical Integration of the Absolute Value of the
Dirichlet Kernel

N

100
200
300
400
500
600
700
800
900

1000

32
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-.r

2000 VALUES

INTo
N

I/N

-= *10 PI

F (X)=COS(X)

INT.

LN (N) /N

. 10 PI

-1.000083
-1 *000164
-1.000246
-1. 000327

-1.000409
-1.000491
-1.000572
-1.000654
-1.000736
- 1.000817

= .60 PI

- *999949-.999897
- *999845
- *999794
- *999 742-.999690
- .999638
- *999585
-999 533

-. 999 481

- .217 165
- .1 88770
- .1 75365
- .1 66959
- .1 60977
- 1 56402
- .1 52734
-. 149695

-. 1 47 11 5
- . 1 44883

.60 PI

- .217 136
- 188720
-. 175295
- . 1 66870
- .1 60870
- . 1 56276
- . 1 52591
- 1 49535
- . 1 46938
- * 1 44690

1.000047
-1.000095

1.0001 42
-1.000190

1.000236
-1.000284

1.000331
-1.000379

1.000426
-1.000473

.85 PI

.999543
-. 99911 5

.998658-.998229
*997773-.997341
.996889-.996453
*996005-.995564

.217157
-. 188757
. 1 7 5347
- . 1 66936

1 60949

- .1 56369
. 1 52697

- . 1 49654
1 47070

- . 144833

.85 PI

.217048
-. 188572

.1 75087
- .1 66608

.1 60553
- . 1 55909

1 52172

- . 1 49067
1 46420

- .144123

Fig. 2.4-Numerical Integration of Eq. (2.14) with f(ci) = cosci

INT.

1/N -

.35 PI

INT.

LN(N)/N

.35 PI

100
200
300
400
500
600
700
800
900

1 000

100
200
300
400
500
600
700
800
900

1 000
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2000 VALUES

INT.

F(X)=X SIN(X)

INT.
N

1 /N

i= .10 1

LN (N )/N

.10 PI

1.361562
1.3 61 51 6
1 36 1 500

1 .361 489
1.361 480
1 .361 471
1.361462
1.361454
1 . 361445
1.361437

i = .60 PI

.323354
*322946
.322625
.322318
.32201 5
. 321 71 3
.321 412
.321111
.320811
. 320510

.295660

.25697 1

.238701
*227238
.219077
.212832
*207 823
*20367 0
.200142
.197088

.60 PI

.07021 5
*060952
.056563
.053796
.05181 6
*050292
*049062
.048037
.047 1 61
.0 46399

-1.067288
1.067273

-1 *067145
1.067056

-1.066946
1.066850

-1.066743
1.066645

-1.066539
1.066440

.85 PI

1 * 524844
-1.524287

1.525236
-1 .525663

1.526375
-1.526897

1.527562
-1. 528110

1 * 528760
-1 . 52931 6

- 2317 59
.201436

- .187094
.1 78096-.171684
.1 66775

-. 162835
. 1 59567

-. 1 56789
. 1 54383

.85 PI

.33111 6-.287693
*267408

- .254639
.245611

- .238692
.233 177

-. 22860 1
.22 4739

-- 221391

Fig. 2.5-Numerical Integration of Eq. (2.14) with f(w) = csinci

INT. INT.

1/N

.35 PI

100
200
300
400
500
600
700
g00
900

1000

LN (N)/N

.35 PI

100
200
300
400
500
600
700
800
900

1000
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2000 VALUES F (, W )=COS (K- W), KM=1 .884954
rr

WN= 0. PI 0. PI

M=1000

I -F (K, W)

1/M+ 1/N

.35 PI

I -F (K W )

1/N

.35 PI

*308688
*308672
* 308658
*308646
*308636
.308628
*308620
.308613
*308607
.386 01

.60 PI

-. 998939
- *998887
-. 998843
_*998805
_*998772
-. 998743
- .998718

*998 696
.*99867 5
.*998657

*339557
*370 406
. 401256
* 432105
*462955
*493804
.524654
*555503
.586353
.6 17202

.60 PI

-1.098833
-1 * 198664
-1.298496
-1.398327
- 1 498158
-1.597989

1.69782 1

-1. 797 652
-1.897483
-1 .997315

-.706357
- .706320
- .706289-.706262-.706239

-. 70 621 8
- .706201
- .706185
- .7061 70
- .7061 57

.95 PI

--453548-.453487-.453498-* 453451
- *453459
- *453425
- *453429
- *453407-.453404-.453393

-*776993
.847584

- .918176
.*988767

-1.059358
-1 129949
-1.200541
-1.271 132
-1 .3 41724
-1.412315

.95 PI

_*498903
- * 544184
-. 589547
-. 634832
-. 680189
- * 72548 1
-*770830
- *8 16 132
-8 6 1468
- *906786

Fig. 2.6-Illustration of O(1/M) + 0(1/N) Convergence of the Bias
due to the Fejer Kernel in two dimensions

N

I -F (K. W ) I -F (K. W )

1/M+ 1/N 1/N

100
200
300

500
600
7 0r 0
800
900

1 000

WN=

M= I 000

100
200
300
400
500
600
700
800
900

1000
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3. APPROXIMATE LIKELIHOOD RATIO TESTS FOR TWO-DIMENSIONAL SIGNALS

3.1 Signals Common to R Stationary Noise Processes

Let { yr(x,t), x E X, t T, r = 1, . . ., R} once more represent a collection of observa-

tions, where X = {O, 1, . . .,M-1}, and T = {O, 1,.. ., N-1}. Let

yr(X,t) = s(x,t) + nr(x,t), (3.1)

where s(x,t) is a fixed signal common to all R replications, and nr(x,t) is a realization of a two-

dimensional zero mean wide-sense stationary noise process. It has been shown in Chapter 2

that the variance of cr(m,n), the DFT of nr(x,t), is [(Km,con) + O(M-1) + O(N-1), and that the

correlation between its real and imaginary parts is O(M-1 ) O(N-1), where f(Km,Cin) is a con-

tinuously differentiable spectral density. Km and Con are defined in (2.19). We assume that

nr(x,t) can be represented as a moving average as in (2.36), with r(KW) continuous, so that

by the corollary to Theorem 2.2, er(m,n) is asymptotically normally distributed.

Let S(m,n) represent the DFT of s(x,t). Then

Yr(m,n) = S(m,n) + r(mn),(mn)C Q, (3.2)

where Q is defined by (2.41). With D given by (2.42), and assuming the asymptotic distribu-

tion, the development given by Shumway [37] may be extended to two dimensions. The ap-

proximate joint likelihood of the RMN real observations

{Y r(m,n), Y&r(mn):(m,n) C Q - D, r = 1, . . ., R}

and

{YRr(mn)(mn) E D, r = 1, . . .,R}

may be written as L = LQD LD, where

36
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LQ-D = n [lTf(KmcOn)]VR exp{

m n

(m, n)CQ-D

1

f(M , COO

R

T lYr(mn) - S(m,n)12
r=l

1

ni [2,rf(jM/2,kN/2)V-R/2

k=O

R

ep 2f(jM/2,kN/2) E- 1Y{~i/,N2

Letting log L/aSa(m,n) = and a log L/aS&(m,n) = 0, we obtain

R

SR(m,n) = 7 Yr(mn) = Y(mn),
r=1

and

R

S§(m,n) = T Y~r(m,n) = Yj(mn),
r=1

so that

S(m, n) = S6?(m,n) - iS& (m,n) = Y (m,n) .

Similarly letting a log Llaf(Km, Wn) = 0, we obtain

R

f(Km,(Dn = R JYr(mn) - Y(m,n)12, (m,n) Q -D,

and

37 Z

(3.3) :

Gr

1

LD = n

j=O

- Sj(jM/2,kN/2)]2} (3.4)

(3.5)

and
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R
f(KmWOn) = E [Y,61(m,n) - YR(mn)] 2 , (m,n)CD. (3.6)

r=1

Assuming the asymptotic distribution, for (m,n) E Q - D,

V/[YR(m,n) - S(m,n)]
f(Kmwn) /2

2

and

NYR , (m, n) - S (m, n)]

f (Km, W n )1/2
2 1

are independent, each distributed as N(O,1), and are independent of R f(Km, n)l[f(Km, Cn)/21

which is distributed as X2 (2(R-1)), while vR[Yg(m,n) S(m,n)/[f(Km,Cn)]l/2 and

R f(Km,COn)/f(Km,&Xn) are similarly distributed when (m,n) E D. (cf. Wilks [47], p. 208.)

Thus, under the null hypothesis,

yj(m,n) RIY(m,n)12 (3.7)

IYr(mn) - Y(m,n)12

R-1
r=1

has asymptotically the F distribution with 2 and 2(R - 1) degrees of freedom when (m,n) G

Q - D, and 1 and R - 1 degrees of freedom when (m,n) G D. Under the alternate hypothesis,

f(m,n) has asymptotically the non-central F distribution with the same degrees of freedom

and non-centrality parameter

RIS(m,n)121[f(Kmwn)12], (m,n) C Q -D

62 (m,n) =

R [Se(m,n)j2/f(Km,wn), (m,n)CD. (3.8)

An analysis of power table, analogous to an analysis of variance table may be written for

each wavenumber-frequency combination as shown below.

38
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TABLE 3.1

ANALYSIS OF POWER AT WAVENUMBER Km

AND FREQUENCY w, m

Degrees oft
Source Power Freedom

Due to Signal RITY(m,n)12 d

R
Due to Noise L IYr(m,n)-Y(m,n)1 2 d(R-1)

r=

Total 2E I Yr(m,n)1 2 dR
r=l

td = 2 if (m,n)EQ-D,d=1 if (m,n)ED.

3.2 Plane Wave Signals

Let s(x, t) be a superposition of J two-dimensional plane wave signals of the form

J
s(x,t) = E Aj cos (Kjx + wj t - 0j) (3.9)

j=1

where Kj = 27rkj/M, kj C {O, 1, .. ., M/2} represents wavenumber, Wj = 2/N, fj C {O 1,

. . ., N/2} represents frequency, and Oj E [0,2ir] is an unknown phase. Parameter estimation

for n-dimensional plane waves has recently been discussed by Hinich and Shaman [17]. The

signal (3.9) may be considered either as a deterministic signal with unknown parameters, or as

a random signal conditioned on the random variables Aj and Oj. The stochastic signal model

arises naturally in many physical contexts as, for example, when the jth component at each

spatial point x represents the superposition of many plane waves of the same frequency with

uniformly distributed phases. Baron Rayleigh [29] showed in 1880 that the resultant ampli-

tude Aj has the distribution which now bears his name:

2 2dFA (A1) = A&eAj 2aijdAj, A.> 0,aU2.

where
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a 2 = nk Aj2k
k

and nk is the number of subcomponents with amplitude Ajk. The amplitudes Aj and phases

Oi are independent, and are independent of Aj, and Oj, for j' # j.

If we let a = Aj cos j and b = Aj sin j, then

J
s(x,t) = E [aj cos (Kjx + wj t) + bj sin (Kjx + cojt)]

j=1

where a and b are distributed independently as N(O,auj). This signal process is wide-sense

stationary with correlation function

Rs(xr) = E[s(x+X,t+ )s(x,t)]

JE2j COS (KjX + W1 T) . (3.10)
j=1

Eq. (3.1) represents a set of observations at discrete spatial and temporal points of a con-

tinuous space-time phenomenon. For a finite set of (x,t) pairs to properly represent a con-

tinuous function, it is necessary that the latter vanish for values of its arguments outside of

finite intervals. Thus (3.1) represents a sampled version of a truncated continuous space-time

function. Then

0 o X T

f f 1Rs(xT)IdXdT = J J 1R,(XT)IdXdT

-00-00 -~x -T

J
< 4 X T E oj <

j=1

so that R,(Xr) is absolutely integrable. The signal spectral density function (1.5),

00 00

Fs" (K, Cd) =f e ( KX )'R,(X)dXdr,

40
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exists and is bounded and continuous, by an extension of the Corollary on p. 188 of Looeve

[251. In connection with the discrete representation, it is useful to consider the idealized -

situation in which (3.10) is valid for all X and . In this case a signal spectral density func-

tion does not exist in the ordinary sense, but by (1.4)

Rs(XTr) = J e ( 2X7rT)dFs(K,w)

-IT -T

where the spectral distribution function

I

F8 (K,W) = 2 2 E U2 1jl,KI < K < KI+j, I < 1X1w < w+j

j=-J
jpO

is a two-dimensional step function, a generalization of that considered by Anderson [2], p.

385.

Substituting (3.9) in (3.1) and transforming, we have

M-1 N-1 -7im1~tN

Yr(m,n) = \w L E Yr(x, t)e(m/Mn/N)

- s/ 1 F.j eif E E e2 7i(kj-m)x/Me27i(fj-n)t/N

j=l x=0 t=O

M-1 N-1
+ eioj L E e2Ti(k+m)x/Me27Ti(fj+n)t/N + e(mn)

x=0 t--0

= Ai[e"j 6kjm. fjn + e 6kj,M-m fj ,N-nI + r(m,n),
j=1

m = . . ., M -1; n = O.. , N -1; r = 1, , (3.11)



where the Kronecker deltas are to be considered mod M or mod N. As before, the Yr(m,n)

are independent for (m,n) C Q. For each (m,n), S(m,n) = 0 under the null hypothesis.

Under the alternate hypothesis m = kj and n = fj for one and only one j, so the notation

may be simplified with (3.11) replaced by

Yr(m,n) = B(m,n) + r(mn) when (m,n) E Q -D, (3.12)

where B(m,n) = (1/2) /M1N Aje-Oj for some j E {1,..., J}.

The points (m,n) C D are of no practical consequence, since they can be examined by an

analysis at a different sampling rate. For testing, we consider the data array to be relabeled to

yield the 2M'N'R real variables Y6 {r(m, n), Yr(m, n), m = 1, . .. , M' < M, n = 1, . .. , N' <

N/2, r = 1, . . ., R, but will drop the primes on M and N.

The difficulty in detecting a signal depends on its strength relative to that of the noise,

parameterized by the signal to noise ratio. For a deterministic (or conditional) sinusoidal sig-

nal component of amplitude A, the signal to noise ratio is independent of wavenumber and

frequency and is defined as

A 2 /2
S/N =

(27r)2 Jff(14w)dcdw
-7r -7T

A2 /2 A 2/2
R(0,0) var[n(x,t)]

M-1 N-I

1 M N IS(m,n)12

m=O n=O (.3t _ , ~~~~~~~~~~~(3.13)
M-1 N-I
1 ~ f(I~rn,cOn)

MN f
m=O n=O

where

7T 7r

R(Xr) E[n(x + X,t + T)n(x,t)] = J J ei(KX+WT)f(K ,w)dKdcOI(27r)2

-7r -IT
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is the correlation function of the noise. The non-centrality parameter (3.8) for a particular -

(m,n) cell is MNR times (S/N) times the ratio of the average spectral density to that of the

particular cell. The factor MNR may be termed a "processing gain."

For stochastic sinusoidal signal components with uniformly distributed phase and ampli-

tude Aj having a Rayleigh distribution with parameter aj, the signal to noise ratio may be de-
fined equivalently as

E(Aj /2) 2 - Rsi(O,0) var [sj(x,t)]

1 J R(O,O) R(0,O) var [n(x,t)]
(27rT)2 f f f(K, o)dKdwl

-Ir _r

1 M-1 N-1 M-1 N-1

MN var [S(m,n)] MN E p(m,n)
m=O n=O m=O n=O (3.14)

1 M-1 N-1 M-1 N-1

MN7~ Z I var [e(m,n)] M
m=O n=O m=0 n=O

where R((x,r) is the jth component of (3.10), and p(m,n) = (MN/2)a ;kjm fjn is the variance

of S(m,n). In the last two forms of (3.14), we have var [S(M - m,N - n)] = var [S(m,n)] and

var [e(M - m,N - n)] = var [(m,n)].

With the stochastic signal model or the deterministic or conditional signal models, the

DFT transforms a multivariate problem in the space-time domain into an asymptotically uni-

variate problem in the wavenumber-frequency domain. The total effect of signal energy and

noise energy and hence the discrimination information (Kullback [22], p. 9, Kullback [23],

p. 92.4) from R replications is distributed over the entire M X N array in the space-time do-

main. In the wavenumber-frequency domain however, the effect of signal energy but not the

effect of noise energy is concentrated, so that the information for discrimination in favor of

H1 against Ho is also concentrated. Thus the DFT not only yields noise variables which are

asymptotically uncorrelated, but also concentrates the discrimination information for these

models. The asymptotic independence of the e(m,n) shown in Chapter 2 and the inherent in-

dependence of the S(m,n) from signal components with differing values of = 1, ... , J.

allow the consideration of MN independent hypothesis testing problems in the wavenumber-

frequency domain. With these models, the problems of interest are detection of the indepen-

dent signal components and not the estimation of the waveform (3.9). Thus there is no need

for the inverse transform to the space-time domain. After detection, estimates of the com-

ponent waveforms are available without the inverse transform.



D. A. SWICK

3.3 Simulated Tests in the Common Signal Case

A computer simulation of the approximate likelihood ratio test developed in section 3.1,

using the plane wave signals of section 3.2 has been made. Simulation was performed in the

wavenumber-frequency domain, starting with (3.12). There were several reasons for this start-

ing point rather than (3.1), the primary one being cost. Available computer time can be spent

either on the two-dimensional transformations or in obtaining more replications in the interest-

ing regions of extremely low probabilities. If a suitable correlation structure in the space-time

domain were postulated, it could be simulated using (2.36) or by the two-dimensional inverse

transform of the corresponding spectral density. The latter would be followed by a re-trans-

formation for the analysis. In some applications it is desirable to analyze data that has already

been transformed for other purposes. Since the analysis of power at each wavenumber-fre-

quency cell provides the desired information, no transformation is required in this simulation.

Finally, since an array of convenient size to simulate is but a small scale model of realistic

arrays of interest, reality is closer to the asymptotic approximations than to a space-time simu-

lation of this small scale model. I therefore chose to asssume that we have reached "asymp-

topia" in the wavenumber-frequency space, and test the procedure from this point. Since the

theory is exact, simulation serves as a check on the computations and a reference for the ap-

proximate procedures to be considered later.

Some signal detection applications require a test level smaller than that of the usual F

tables. (Type I errors less than 10-4 are not uncommon.) Furthermore, Pearson-Hartley and

Fox charts for the power of the test exist only for test levels higher than those of interest.

Thus the tables had to be extended.

A computer program for the central and non-central F distribution was written, using

brute-force numerical integration of Eq. (10) of Anderson [1], p. 114. Up to 100 terms of

the sum were used for each non-central density point, 1000 terms were used in the trapezoi-

dal method of numerical integration for the central F, but 10 terms seemed to suffice for the

non-central integration. Within the range of the available tables and charts, spot checks

showed agreement with my calculations.

An independent test was simulated at each of the 256 combinations of M = 8 wave-

number points and N = 32 frequency points. A pseudo-random sequence algorithm written

by F.M. Young (private communication) was used to simulate uniformly distributed random

variables. This algorithm combines subsequences to yield a psuedo-random sequence length

on a small (Honeywell 1648 with 16 bit words) computer much longer than the standard

algorithms found on larger machines. A very long pseudo-random sequence length was found

to be necessary in order to reliably simulate the extreme tails of the F distribution. N(O,1)

random variables were obtained via the Box-Muller [4] transformation. Independent and
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uniformly distributed random variables to represent the phase 0 for each of the assumed
signal components were simulated by a separate copy of the pseudo-random algorithm. This

permits testing different "signals" with the same "noise" and vice-versa, if desired.

Fig. 3.1 is a typical computer printout of the results of one run of this simulation. The

format was designed to display the results of all 256 tests, rather than 256 separate results in

the form of Table 3.1. Eight replications of the 8 X 32 data array were generated in accord-

ance with (3.12), assuming a white Gaussian noise process with f(Km,CWn) 1. The numbers

labeled "INIT." are the initialization parameters of the pseudo-random generators and are

printed to allow re-generation of either the "signal" sequence or the "noise" sequence. They

are either specified in advance, or are related to prior computation time and time of day. For

23 of the 256 cells, identified by "*", the null hypothesis was in fact false. Signal com-

ponents with a signal to noise ratio (3.13) of 0.01566, or -18.05 dB were added to the noise

in these cells. The resulting non-centrality parameter is 64. J (m,n), given by (3.7), has 2 and

14 degrees of freedom, and was computed for each (m,n) combination. A transpose of the

matrix (5'(m,n)) is shown in the figure. The ">" symbol identifies those which fall in

the rejection region of a test of size a = 10-6. Thus an entry of a number not followed by

either symbol identifies correct rejection. The "*" symbol alone indicates a type II error

(miss) and "*>" indicates detection, both at the 10-6 level. A type I error (false alarm)

would be identified by ">" without the asterisk, but none have occurred in this run.

Theoretical probabilities and observed relative frequencies are tabulated at the bottom of

the figure. "ALPHA" represents the level of the test, with .4 > a > 10-6. "FR.FA" indi-

cates the relative frequency of type I errors at each of the above test levels. "PR(D)" and

"FR(D)" represent the probabilities and relative frequencies of detection, respectively, at each

of the above test levels.

Fig. 3.2 is a portion of the printout of 100 similar runs in succession, with a slight change

in format. Since the object is to tabulate the results of a large sample, the run number, coor-

dinates and 5f value are printed for only those (m,n) for which Jf(m,n) indicates rejection at

a = 106, with the symbol ">" indicating rejection at a = 10-6 as well. Hl(m,n) is indicated by

*m,n. All the entries shown in the figure indicate correct detection, most at the level a = 10-6.

Theoretical probabilities and observed relative frequencies are again tabulated at the bot-

tom of the figure, with the same notation as in Fig. 3.1. There are now 23300 samples for

which Ho is true, -and 2300 samples for which H1 is true. The results show good agreement

with the theory.

Some results of simulation with non-white noise are shown in Figs. 3.3 and 3.4. The

noise spectral density was
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SIGNALS COMMON TO 8 REALIZATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)
INIT. N: 3388 1062 3389 1062 P: 3391 1062 3392 1062

23 SIGNAL COMPONENTS: SN=0.01566 (-18.05 DB)

F (MN)
N\M 1 2 3 4 5 6 7 8

1 0.72 2.37 0.02 0.47 0.32 1.20 3.18. 0.03
2 4.94 0.93 3-81 50.97*> 0.05 0.86 1.41 0.16
3 0-21 0.41 1.04 0.26 2.34 0.30 0.87 0.14
4 0.20 0.62 3.14 4.17 0.46 0.15 0-58 0-38
5 0.62 0.33 1.08 1.57 43-12* 1-51 1.61 0.82
6 2-16 2.73 2.63 0.20 0.20 0.71 0.20 0.02
7 0.21 1.03 0.85 0.11 65.13*> 0.54 0.00 0.10
8 0.58 0-19 0-64 0.51 2.67 1-84 0-22 0-15
9 1.86 1.36 37.14* 1.77 0-46 25-11* 0-50 0-03

10 0.95 0.19 1.96 0.13 0-53 1.64 2.81 2.66
11 0.10 1.19 1.84 0.26 5.06 0.56 0.69 0.12
12 1.16 1-84 17.42* 0.19 2-20 0-06 1-54 2-09
13 0.90 2.23 0.41 0.97 53.33*> 0.09 0.44 0.45
14 1.02 2.66 1.08 0.89 0.38 30.67* 0.44 0.20
15 0.29 1.83 1.65 0.38 0.77 1.19 5.21 2.63
16 0.57 0.02 29-72* 1.87 1.02 2.58 6.95 0.39
17 0.93 0.41 0.44 1.55 0.30 2.75 0.62 0.14
18 0.94 0.26 0-02 0.05 0.44 0.24 47-88*> 1-78
19 0.65 0-80 21.20* 0.26 0-43 0.21 0.64 0.60
20 0.59 0.80 1.26 2.44 5.60 33.24* 0.61 0-09
21 0-03 0-07 1.21 0.54 0-44 0.91 1.45 0-70
22 1.19 0-23 3-74 0.45 0.44 2-10 21.79* 0-38
23 0.42 23.51* 4-74 0.67 0.45 0.77 1-89 0.04
24 0.29 2.75 0.76 0.32 1.27 1.45 0.84 0.53
25 0.14 5.18 0.83 0.51 1.20 0.05 0.55 10.23
26 20.24* 0.98 1.92 49.76*> 2.48 27.82* 0.49 21.14*
27 2.95 0-36 0.97 0.49 0.41 0.21 0.53 10-06
28 3.85 1.01 1.08 0.85 0.33 0.19 0.57 2-35
29 2.23 2.61 0.07 0.36 20.27* 3.13 0.03 55.61*>
30 17.86* 0.85 0.82 0.96 0.48 0.68 0.06 0.17
31 0.20 0.34 0.80 0.21 0-20 0.40 0.16 1.34
32 0.07 0.04 0.07 13.90* 1.36 1.28 52.63*> 2.67

PROB. FALSE ALARM (TYPE I ERROR) 233 SAMPLES

ALPHA: *40 .30 .20 .10 .05 .01 .0010 .00010 .000010 .0000010
FR.FA: 0.35 0.27 0.21 0.09 0-05 0.01 0-0000 0-00000 0-000000 0-0000000

PROB. DETECTION (POWER OF TEST) 23 SAMPLES

PR(D): 1.00 100 1.00 1.00 1.00 1.00 0.99 0-90 0.63 0.30
FR(D): 1.00 1-00 1.00 1.00 1.00 1.00 1.00 0.87 0-52 0.30

Fig. 3.1-Simulation of Likelihood Ratio Test for Signals Common to

R Replications: Results of One Run, White Noise
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SIGNALS COMMON TO 8 REALIZATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=1 .0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)
INIT. N: 1751 11922 1752 11922 P: 1753 11922 1754 11922 -

23 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB) G

E(M.,N.F): F(MN)>F(.00001s2,14)]

RUN M, N: F M, N: F M, N: F M, N: F

*3, 16 40 .52
*2.23 44.55>
*7, 32 54.50>
*3, 9 73.38>
*4,26 38.89
*1,30 54.58>
*7JI8 93.65>
*4,26115.46>

*3 9
*3 19
* 5,29

*3 12
*1,26
*4, 32
*6, 9
*4,26
* 4 32
*6 9
*6,20
*7. 32
*6 9
*6,26

43. 13
51 - 74>
65. 64>

32.33
32.01
48.81>
97.07>
53.74>
33- 17
49.43>
38.96
74.84>
30.29
38.07

*7. 18 32.06
*1i26 74.47>

*3,16 45.76>
*6,26 35.91
*7,32 48.39>
*3,1 9 42-95
*6,26 46.27>

*5, 13
*7.22
*8,29

54. 45>
34.09
33-78

*6,14 77.58>
*6,26 54.94>

*3,12 49.15>
*6,26 80.88>

*5,13 63.85>
*2,23 57.68>

*3.19 96-80>
* 130 49-.44>

PROB. FALSE ALARM (TYPE I ERROR)

ALPHA: .40 .30 .20

23300 SAMPLES

.10 .05 .01 .0010 .00010 000010 .0000010
FR.FA: 0.40 0.30 0.20 0.10 0.05 0.01 0.0009 0.00004 0.000000 0.0000000

PROB. DETECTION (POWER OF TEST) 2300 SAMPLES

PR(D): 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.90 0.63
FR(D): 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.90 0.62

0.30
0-31

Fig. 3.2-Simulation of Likelihood Ratio Test for Signals Common to

R Replications: Summary of 100 Runs, White Noise

1 *5 5
1 *3 19
1 *5,29
2 *4 2
2 *3 19
2 *8,26
3 *5 7
3 *6,20
3 *4.32
4 *4. 2
4 *6, 14
4 *2,23
4 *1,30

M,-N: F

35-09
29.58
42-27
52.42>
52.21>
57. 76
54.07>
60.7 1>
40.05
31.32
47.60>
50.25>
38. 06

32.46
67. 1 8>
86-67>
50.40>
41 * 40
53.03>
56. 00>
59.05>
42.43
56. 72>
76. 70>
42.69

*6 9
*6 20
*130
*5 5
*7,22
* 5 29
*3 12
*7.- 22
*7,32
*5. 5
*3, 16
*1,26
*4, 32

*5. 7
*6 20
* 5,29
*5 7
*6 14
*8 29
*5 5
*7 18
* 8.26
*5 5
*2, 23

31.79
43.68>
51.23>
33.67
35- 50
31.06
30. 97
64. 85>
42-08
66.02>
29. 67
93.27>
35.15

35.01
32- 60
44.34>
47 09>
54. 56>
77. 67>
51 .36>
42.64
56.47>
63. 66>
41.92

*3 12
*7,22
*4,32
*5 7
*2. 23
*8.29
*6, 14
*2,23

*5. 7
*7, 18
*4,26

*6. 9
*2,23
*8,29
*3 9
*7.22
* 130
*3 9
*3 19
*4 32
*5. 7
*1,26

30 . 43
66.15>
33 - 48
47. 90>
42.64
96.08>
73.32>
36.48

32-82
60 70>
52.28>

34-80
63.09>
60. 12>
36- 20
56.54>
62.89>
35- 30
81 .54>
38-78
41 01
33.68

97
97
97
98
98
98
99
99
99

100
100
1 00

*5 5
*3, 16
*8,26
*5 5

R'*5, 13
*8,26
*4 2
*6, 14
*6.26
*4 2
*7,22
*4 32
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SIGNALS COMMON TO 8 REALIEATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=F(KW)=1+.25*COS(K+PI/4)*COS(2W)

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN
INIT. N: 3388 1062 3389 1062 P:

(8 X 32 COMPLEX
3391 1062

VARIATES)
3392 1062

6 SIGNAL COMPONENTS: S/N=0.01566 (-18-05 DB)

N\M I

1 0.72
2 4.94
3 0.21
4 0-20
5 0.62
6 2.16
7 0-21
8 0-58
9 1.86

10 0.95
11 0.10
12 1.16
13 0.90
14 1.02
15 0.29
16 0.57
17 0.93
18 0-94
19 0.65
20 0.59
21 0-03
22 1.19
23 0.42
24 0.29
25 0.14
26 0.25
27 2- 95
28 3.85
29 2.23
30 0- 42
31 0.20
32 0.07

2 3

2-37
0.93
0.41
0.62
0.33
2- 73
1.03
0.19
1.36
0.19
1.19
1 .84
2.23
2. 66
1 * 83
0.02
0.41
0 .26
0-80
0.80
0.07
0-23
1.96
2.75
5.18
0-98
0.36
1.01
2-61
0.85
0-34
0.04

0.02
3.81
1.04
3 - 14
1.08
2.63
0.85
0.64
3.73
1.96
1.84
4.18
0.41
1.08
1.65

31.89#
0.44
0.02
0.11
1.26
1 -21
3.74
4.74

37.19t
0.83
1 92
0.97
1.08
0.07
0.82
0.80
0.07

F (M, N)
4 5 6

0.47
1.89
0.26
4.17
1.57
0.20
0.11
0.51
1.77
0.13
0.26
0-19
0.97
0.89
0.38
1 -87
1 -55
0.05
0.26
2.44
0.54
0.45
0.67
0.32
0.51
0.22
0.49
0.85
0.36
0.96
0.21
1 49

0-32
0.05
2 -34
0.46

48.95*>
0.20
3 -32
2.67
0.46
0.53
5.06
2 20
0.11
0-38
0.77
1.02
0.30
0 44
0-43
5- 60
0. 44
0 44
0.45
1 .27
1.20
2- 48
0.41
0 .33
3.87
0-48
0.20
I 36

I 20
0-86
0.30
0.1 5
1 51
0.71
0 54
1.84
2.37
1.64
0. 56

29.24*
0.09
0. 62
1.19
2.58
2.75
0.24
0-21
0.56
0.91
2 - 10
0.77
1 - 45
0.05
0.79
0.21
0.19
3- 13
0.68
0.40
1.28

PROB. FALSE ALARM (TYPE I ERROR) 250 SAMPLES

ALPHA: .40 .30 .20 .10 .05 .01 .0010 .00010 .000010 .0000010
FR.FA: 0.37 0.29 0.22 0.10 0.06 0.01 0.0000 0.00000 0.000000 0.0000000

PROB. DETECTION (POWER OF TEST)

PR(D#): 1.00 1.00 1.00 1.00 1-00 1.00 1.00
FR(D#): 1.00 1.00 1.00 1.00 1-00 1.00 1.00

PR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 0.99
FR(D*): 1-00 1.00 1-00 1.00 1.00 1-00 1.00

PR(Dt): 1.00 1.00 1.00 1.00 1.00 1.00 0.96
FR(Dt): 1-00 1.00 1-00 1.00 1.00 1.00 1.00

2 SAMPLES EACH

0.98 0.85
1-00 1-00

0.90 0.63
1.00 0.50

0.78 0.44
1.00 1.00

Fig. 3.3-Simulation of Likelihood Ratio Test for Signals Common to

R Replications: Results of One Run, Nonwhite Noise

48

7

3 - 8
I .41
0.87
0 * 58
1.61
0.20
0.00
0.22
0.50
2.81
0. 69
1.54
0.44
0.44
5.21
6.95
0. 62
1.09
0 64
0. 61
1 .45
0.39
189

81. 54#>
0. 55
0.45
0 . 53
0. 57
0 03
0.06
0.16

49.56t>

8

0-03
0. 1 6
0 I '
0.38
0-82
0.02
0.10
0. 15
0-03
2. 66
0. 12
2.09
0.45
0-20
2. 63
0.39
0.14

.78
0. 60
0.09
0.70
0-38
0.04
0.53
0 23
2.00

10.06
2-35
0.39
0. 17
I.34
2. 67

0.54
0.50

0.30
0.50

0.17
0 * 50
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SIGNALS COMMON TO 8 REALIZATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=F(Kh )=1+.25*COS(K+PI/4)*COS(2W)

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)
INIT. N: 1751 11922 1752 11922 P: 1753 11922 1754 11922

6 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

[(MPNF): F(MPN)>F(.00001;2,v14)]

RUN M, N: F M, N: F

#3 16
#7,24
*3.24
*6 12

*6 12
#3 16
#7,24
#3 16
#3 16
#3 16
*6, 12
#3 16
*6, 12

51 *69>
55- 12>
40. 59
73.35>

57.29>
48.26>
54- 16>
38 26
39.2 7
59.51>
43. 13
34. 63
38 - 51

M. N: F

#7J24
t7,32
#7,24
#3 16

#3, 1 6
#7,24
t7J32
t3,24
#7,24
#7,24
#7,24
t 3,24
#3 16

30 41
41.07
93. 47>
30 * 89

33.74
44.83>
41.75
51.91>
82.68>
54.36>
39.59
29.44
52.59>

M, N: F

49
e--

rr
;p

M, N: F

t7J,32 43.58>

*7-32 33.21
t3J24 29.67 #7,24 35.47

t7,32 29.54
t7,32 66.96>

t7, 32
#7,24
t3,24

34.59
30*27
33.71

t7,32 41.10
#7-24 62.03>

*5J 5 38.79
*6, 12 39.87
*5, 5 60.74>
*5, 5 84.96>
*5. 5 32.51
*5, 5 50.95>
*5, 5 60.02>
*5, 5 67.47>

*6, 12
#3, 16
#3 1 6
#3, 16
*6, 12
#7,24
#7,24
*6, 12

33.22
29.40
45. 59>
41 . 09
38 - 68
40 . 13
46.82>
34. 17

#3 16
13,24
t3.24
#7,24
#3 1 6

50.96>
36.98
52.38>
77 .92>
80.22>

17,32 105.29>
#3,16 53.11>

#7,24 52.74>
#7J24 30.90

13,24 58.85> #7,24 31.36

13,24 40.94 #7,24 29.79

PROB. FALSE ALARM (TYPE I ERROR) 25000 SAMPLES

ALPHA: .40 .30 .20 .10 .05 .01 .0010 .00010 .000010 .0000010
FR.FA: 0.40 0.30 0.20 0.10 0.05 0.01 0.0009 0.00004 0.000000 00000000

PROB. DETECTION (POWER OF TEST) 200 SAMPLES EACH

PR(D#): 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.85
FR(D#): 1.00 1.00 1.00 1-00 1.00 1-00 1.00 0.98 0.89

PR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.90 0-63
FR(D*): 1.00 1.00 1.00 1.00 1-00 1.00 0.99 0-91 0-68

PR(Dt): 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.78 0.44
FR(Di): 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.77 0.47

0 . 54
0.60

0.30
0.36

0.17
0.19

Fig. 3.4-Simulation of Likelihood Ratio Test for Signals Common to
R Replications: Summary of 100 Runs, Nonwhite Noise

1 *6 12
2 #3 1 6
3 *6 12
4 *5 5
4 t7,32
5 *5 5
6 *5 5
7 t3,24
8 *5 5
9 *5 5

I0 *6, 12
11 *5, 5
12 *6, 12
13 *5, 5

36 63
70*62>
55. 72>
41.22
34.33
45.22>
41.80
68-77>
34.77
36.55
37 - 39
39.59
37 . 52
34.36

93
94
95
96
97
98
99

100
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f(K,(C) = 1 + COS (K + 7r/4) cos (2c)/4 . (3.15)

Six signal components with the same signal to noise ratio as before (-18.05 dB) were added,

two each in regions of low (f = 0.75), medium (f = 1.0) and high (f = 1.25) noise spectral den-

sity. These are indicated by the symbols "#", "*" and "T", respectively. The respective non-

centrality parameters are 85.33, 64 and 51.2. Figure 3.3 is a computer printout of a single

run, and Fig. 3.4 is a portion of the printout of 100 successive runs. The notation is that of

Figs. 3.1 and 3.2, except that the probabilities and relative frequencies of detection are listed

separately for signals in each of the three types of noise regions. The agreement is quite satis-

factory.

3.4 Signals with Unknown Epochs

In many applications to periodic phenomena, the assumption of a fixed signal common

to all replications is not valid if "replications" are to be obtained over successive spatial or

temporal intervals. The epoch of an otherwise fixed signal may vary in successive realiza-

tions. For periodic signals, the relative phase between realizations or the epoch of each

realization depends on the signal frequency. This is not a serious problem if a hypothesis

test for a single specified frequency component is to be made. In general, however, the

alternate hypothesis is composite and the problem becomes more difficult.

In view of Fourier's theorem and its various extensions, a fairly general model for two-

dimensional periodic signals is a more realistic version of the model used in section 3.2. Con-

sider a signal component represented by s(x, t) = A cos (KX + cot) for continuous x and t,

where

K = 21r(k + k)IM, I5k | < , k =0.., M/2,

and

c = 27r(f + f)IN, I5f I < , f 0.., N/2. (3.16)

Observations at discrete spatial and temporal points x 0, . .. , M - 1, t = 0, . . , N- 1 yields

yj(x, t) A cos [2r(k + 8k)x/M + 2r(f + 6f)t/N- ] + n(x,t) , (3.17)

where 0 is the phase relative to the origin of observations. Consider R realizations, obtained

during successive time intervals.

50
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Then

yr(x, t) = s (x, t + (r-1) N) + n r(X, t)

= A cos [21r(k + 6k)x/M + 2r(f + b)t/N + r] + r(X,t), (3.18)

where ar = 27r5 f(r -1) - , r = 1, ... , R.

If Ok and 5 f are both zero, i.e., if the signal is a member of the basis set used in the

DFT, then (3.18) reduces to a special case of the model considered in sections 3.1-3.3. In

general, it cannot be assumed that the signals are members of the basis set, so that we no

longer have a fixed signal common to all realizations, and no true replications are possible.

In this section, we will attempt to make reasonable estimates of the unknown ar In the.

next chapter we will eliminate this unknown, thereby altering the problem.

Since wavenumber resolution and frequency resolution are limited to Ak = 1/M and

Af = 1/N respectively, we may write

Yr(X, t) = A cos (27rkx/M + 27rft/N + ar) + nr(X, t) (3.19)

In obtaining (3.19) from (3.18), we are ignoring the effect of non-zero k and f on wave-

number and frequency, but not on phase. Non-zero k and f means that signal energy will

be distributed over the entire wavenumber-frequency space, rather than being concentrated in

a single cell. In general, if Sr(m, n) * 0, a signal effect may be expected in three adjacent

cells when k and 6 f are not zero. For the weak signals which are of primary interest, the

signal effect beyond these four cells may safely be ignored. It is notationally convenient to

maintain the fiction that the energy from each signal component is concentrated in a single

(m, n) cell. Signal detectability on a cell by cell basis will of course require greater signal

energy when that energy is spread over a cluster of four cells.

Generalizing to J signal components, the model becomes

J
Yr(X, t) = L Aj cos (27rkjx/M + 2rfjt/N + ajr) + nr (x, t) 

j=1

(3.20)
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The DFT is as in (3.11), with 0= r 2ir Af(r-1)-o replacing-4j. With the same simplifica-

tions as (3.12) when the null hypothesis is not valid it yields

Yr(m, n) = B(m,n)ei r(m~n) + er(m,n) when (m,n) e Q -D, (3.21)

whereB(m,n) = (1/2)xfMKAje "'j and 13r(m,n) = Cr+ j = 27r8jf(r-1), for somej E

{1, ... , J}. As in section 3.2, we consider the data array to be relabeled to yield the

2M'N'R real variables

Y~r(m, n), Yr(m, n), m = 1, * * , M < M, n = 1, . .. , N' < N/2, r = 1, . .. , R. but drop the

primes on M and N when testing hypotheses.

Letting Yr(m, n) Yr(m,n)e Pr(mn), (3.21) becomes

Yr(m, n) = B(m, n) + er(m, n) (3.22)

where

Cr (m, n) = 66'r (m, n) -i egr(m, n),

e66?r(m, n) = ER r(m, n) cos i r(m, n) -e~r(m, n) sin Pr(m, n),

and

edr(m, n) = eRr(m, n) sin mr(m, n) + Qr(m, n) cos r~M, n) .

Then eRr(m, n) and elr(m, n) are each distributed as N(O, (1/2) f (Km, Cn)), and

cov (ER'r (m, n), Sr (m, n) ° () ° N)

Equation (3.22) has the same form as (3.12) and (3.2), so that

B(m,n) B6{(m,n) + iB,(m,n) Y'(m,n) = T Yr (mn) e (3.23)
r =1

by (3.5). If one is willing to accept a less powerful test and pay the price of increased com-
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putation, a modification of the development of section 3.1 can be applied even though 4,

Or(m, n) is unknown. Consider replacing (3.23) as an estimator of B(m, n) by

B(m, n) = Y,.(m, n)eiTr(mn) (3.24)

with 'yr(m, n) to be chosen. Then

BR(m, n) [,Y(m, n) cos ' (m, n)- Yr (m, n) sin 'Yr(m, n)] (3.25)
r=1

is normal with mean

1 ~R
E{BR I = RT [(B cos r-Ba sin Or) cos r + (B6 sin Or + Ba cos r) sin 'yr]

r=1

[B, COS ('yr -3 r) +B& sin (yr -3 r)
RE

and variance f(Kmn, &~)/2R, and

B (m, n) R [Yr (m, n) sin 'Yr (m, n) + Y&r (m, n) coS Yr (m, n)] (3.26)
r=1

is

Nt R [Bq sin (Yr - 9r) - B COS (r - 9r) f) 

Signal power at the point (m, n) is given by R B(m, n) 12 and estimated by R B(m, n)I 2,

where R IB (m, n) 1 2 [f (Km Wn )/2] has the non-central chi-square distribution with 2 degrees

of freedom and non-centrality parameter

62ff(m, n) = RE2 {B6 (m, nf)}/[f(KmWn)/2] + RE 2 {B&(im, )}/I f(Km, w0)/2]

R JI {[R COS (Yr -Or) + [R Esin( r- r) f/2) (3.27)



RI B(m,n) 121[f(KmX n)/2]

by the Cauchy-Schwarz inequality. The probability of "false alarm" (the size of the test) is

independent of Yr (m, n) (chosen in advance) but the probability of detection (the power of

the test) is quite sensitive to choice of 'Y (m, n). At each point (m, n) let 'Yr, - (r - 1)x

= kx. Then by (3.27), the effective signal power density is reduced by the factor

B-i 1~2

P(Rx) = BE coskx + [R L sin kxT R0

1 F1 ( 2sin ] Fcos x/2-cos (R+ )x
R- 2 + 2 sin x/2 cos Rj + k2 L 2 sin x/2 sin X

(See e.g., Tolstov [41], p. 98.) After straightforward manipulation, this becomes

P(R,x) = (1-cosRx)csc2 x/2 . (3.28)

For fixed R, P(R,x) is an even function of x, monotonically decreasing for 0 < x 6 ir/2R,

P(R,x) > csc2 (7r/4R)/2R2 > 8/ir 2, and lim P(R,7r/2R) = 8/7r2. Recall that Mmr(i,fl) =
R -oo

27r byf(r-1) where I jf 1/2. Let 'Y1 (m,n) =0 1 (m,n) = 0. For allR and all 6jf (E[-1/2,

1/2], there exists an integer k C [-R,R] such that 2R jf - 1/2 < k < 2R bjy + 1/2. For

this k, if yr = kr(r - 1)/R for r > 1, then

'Yr Or1 I_71X =r 1 I k-2R6jI 7r/2R 

The signal power, and hence the signal to noise (power) ratio, will be reduced by a factor of

at most 8/ir2 > .8 (at most 1 dB), compared to the ideal situation of known 3r(m, n).

If we choose 'Yr = kir(r-1)/R for the k C [-R,R] which maximizes IB(m,n)12 (see

(3.24)), the probability of false alarm will of course be increased. We can compensate for

this by choosing the nominal level of the test, a, low enough so that an adjusted level, a',

is as desired. The power (in both the statistician's sense and the physicist's sense) remains as

before, including the "penalty" factor of 8/7n2 for quantizing the analysis. For each value of

k, the statistic

54 D. A. SWICK
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R IBk(m, n) 2
Yk (m, n) = ' R

1~~~~~~~1EIYr (m, n) -Bk (m, n) (R 1)c

where Bk(m,n) is given by (3.24) with Tr = k7r(r- 1)/R, and Yr(mn) = yr(mn)e i7r(mn),

has asymptotically the F distribution with 2 and 2 (R - 1) degrees of freedom under the null

hypothesis. Under the alternate hypothesis, fk (m, n) has the non-central F distribution with

the same degrees of freedom and non-centrality parameter given by (3.27) and bounded be-

low by

Sk 2(m n) > (8/r2)R|B(m,n)12/[f[Km,Con)/2].

Let 5f'(m,n) be the corresponding statistic for the k which maximizes B(m,n)12. If the

yk were independent, and if T = max (k) (neither of which is claimed), then we would
kE[-R,R ]

have

= P[f > Fa;V1,v2]

= P[max (LR, ... , R) > Fa;vlv2]

= 1 -P[5-R 6 Fa;V1iV2 . Y R Fa;V1yV2l

= 1- (1- )2R+l.

The required low adjusted test levels, a', thus require, a fortiori, extension of F tables to even

lower levels, a. Calculations using the computer program mentioned in section 3.3 revealed

that acceptable probabilities of detection still exist, even at the low adjusted test levels (false

alarm probabilities).

3.5 Simulated Tests of Signals with Unknown Epochs

That some limited success can be achieved with the above procedure is indicated by com-

puter simulation. As in section 3.3, simulation was performed in the wavenumber-frequency

domain, using (3.21)-(3.26). Fig. 3.5 is a typical computer printout of the results of one run,

assuming a white Gaussian noise process with f(Km ,wn) 1. The notation is the same as that

of Fig. 3.1, and the identical pseudo-random "noise" sequence was used. As before, "*" iden-

tifies those cells in which the null hypothesis was not true, with the signal to noise ratio the



same as in Fig. 3.1. Bk(m,n)12 was computed for each of the 17 values of k in [-8,8], for

each of the 256 cells, and Y'(m,n) computed for each of the largest Bk(m,n)J2. A transpose of

the matrix (f'(m,n)) is shown in the figure. The ">" symbol identifies those ' which fall in

the rejection region of a test of size a' = 1 - (1 - a) 1 7 = 10-4. (None did in this run. See

Fig. 3.6.)

Theoretical probabilities and observed relative frequencies are tabulated at the bottom of

the figure. "NOM.ALPHA" represents the nominal a, with .4 > a > 5.9 X 10-7, "MAX.P(FA)"

represents the level of the test, a' = 1 - - a) 17 , with 1 > a' > 105, the "REL.FR.FA" in-

dicates the relative frequency of type I errors at each of the above test levels. "NOM.P(DT)"

represents the probability of detection for known 13r(m,n) at each of the above test levels, cal-

culated from the F'2, 14;64 distribution, while "PR.D:-1 DB" was calculated with a noncen-

trality parameter of 50.8, corresponding to a -19.05 dB signal and "PR.D:-2 DB" was calculated

with a noncentrality parameter of 40.32, corresponding to a -20.07 dB signal. "REL.FR.DT"

indicates the relative frequency of detection obtained.

Fig. 3.6 is a portion, including the tabluation of probabilities and frequencies, of a print-

out of 100 similar runs in succession. Although the type I errors are close to the expected

values, the observed relative frequencies of detection are lower than expected, but still within

an acceptable range.

It must be noted that this approach assumes that the signal components are sufficiently

stable in frequency to warrant R "replications" (as well as that the noise is stationary during

the observation time). If this is the case, increasing N, the number of time samples, with con-

sequent increased frequency resolution (and fewer "replications") may be desirable. In fact,

if a single M X RN transform is feasible, the version of the problem of unknown epochs con-

sidered in this section disappears. In that case, R adjacent frequency "columns" yield the de-

sired replications. If the size of the transform is limited, as it might be, for example, if the

analysis must be in "real time," or if the analysis is on already transformed data, this approach

may be useful. It must, of course, be compared with alternate techniques. If successive real-

izations result from observations at different spatial points (different arrays) the phase differ-

ence between realizations is completely unknown, and may be eliminated by the procedure

considered in the next chapter.
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SIGNALS WITH UNKNOWN EPOCHS, SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 6 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX
INIT. N: 3388 1062 3389 1062 P: 3391 1062

VARIATES)
3392 1062

23 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

2 3

3 37
2.96
4.41
7.32
6.11
6.42
3.44
2.51
5.03
3.49
3-80
3.43
5.74
4.35
9-21
3.90
4.39
3 60
4.46
5.01
3 74
2 32
4.10
2 89
4.86
18.02*
2 -07
9. 11
4.24

24.72*
3 . 43
2 29

2.86
4.17
8.82
5.64
3.57
4-48
2-56
3-83
1-74
7-05
2.94
2.42
3.64
4.51
5-03
2.18
6.60
2.77
2.00
4.28
4.81
4-83

11 32*
3 -20
7.21
8-15
3.80
5.18
4-13
8-14
4-05
4.10

4.12
3.11
6. 53
3.36
4-46
4.54
4.17
4.43
19.99
6.49
9.10

23.72
2. 80
7 -45
3.19
28.81
2 87
5.34
12.72
4.53
2.37
3-34
5.15
2.55
2.66
3.23
4.41
2 50
6.58
2.36
2.54
8.56

F' (M.N)
4

7.25
20. 00*

3 3.94
s 3.92

2.04
3-57
4.00
3-48

* 2.65
4.39
5.41

* 3.86
4-82
3.29
3.64

* 3.31
3.91
3.13

* 10.04
4.30
3.95
2.14
2 63
2.29

10.32
18-39*
13-64
4-16
3.71
2 -27
3. 65

24.84*

5

5-26
10.76
3.62
3-79

29.74*
13.55
24.18*
1 .95
3 -24
2-62
7. 1 4
2.79

22.63*
2.69
2.13
3 - 58
3.97
9.36
3.42
4. 41
2 63
3 -23
4. 41
3.12
6-09
3-48
6.09
4.79
8. 10*
8-87
5.44
3-84

6

4- 17
2.34
7-48
4.93
3-58
5-83
3-52
4-30

21 .45*
3.80
3. 10
3.52
7. 10

16.20*
5.22
5-33
2-78
4- 18
4.87

13.98*
3.54
4-26
3 -89
7.80
2.64

28. 66*
3.75
3.34
5.53
6-05
3-87
4. 

PROB. FALSE ALARM (TYPE I ERROR) 233 SAMPLES

NOM-ALPHA: .40 .30 .20 .10 .05 .01 .001 6E-5 5.9E-6 5.9E-7
MAX.P(FA): 1.00 1.00 .98 .83 .58 .16 .017 ;0010 .00010 .000010
REL.FR.FA: 1.00 1.00 0.99 0.84 0.56 0.13 0.009 0.0000 0.00000 0000000

PROB. DETECTION (POWER OF TEST)

NOM.P(DT):
PR.D:-IDB:
PR. D: -2DB:
REL.FR.DT:

1.00
1 .00
1 .00
1 .00

1.00
1.00
1 .00
1.00

1 .00
I *00
1 .00
1 .00

1.00 1.00
1-00 1.00
1.00 1.00
1.00 1.00

23 SAMPLES

1.00
1.00
0.99
1.00

0-99
0-96
0.89
0.91

0-86
0-70
0.52
0.43

Fig. 3.5-Simulation of Modified Likelihood Ratio Test: Results of One Run
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N\M

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3 1
32

7

3-92
3-84
3.16
2.42
3-01
1 94
3-98
5-90
2 - 50
2.71
9-66
4-56
4. 68
3- 16
4. 19
6 54
2.80

20. 49*
2 -27
2.99
3.07

24. 53*
2-27
4.21
I 69
5- 19
3-00
4.63
3.78
3.18
3-08

19.36*

8

5.01
2-97
3.24
3.0b
2. 66
3.03
3. 64
8.86
3.69
4-37
6.35
3.82
4-08
3.25
5.45
4. 41
2. 7 5
2.35
5.06
7. 18
3. 11
3.98
3-22
5. 66
4.87

15.29*
5.05
3. 66

20. 63*
4.37
5-26
3. 18

0.55
0.36
0-21
0.00

0.24
0.13
0.06
0-00
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SIGNALS WITH UNKNOWN EPOCHS, SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)

INIT. N: 1751 11922 1752 11922 P: 1753 11922 1754 11922

23 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

[ N.F' ): F' (MN)>F(5.9E-5;2. 14)]

RUN F, N: F'

1 *5, 7
1 *7,22
2 *4, 2
2 *7,22
2 *8,29
3 *4, 2
3 *7,18
4 *4, 2
4 * 7, 18
4 *6,26
5 *5, 5
5 *3,19
6 *4, 2
6 1.23
6 *4,32

21 .92
64.67>
60.49>
24.29
32.19>
30 1 6
21.92
35. 76>
42. 56>
29 56
24.96
22 .3 g
3 8 .91>
25.36
30 86

M N: F' F, N: F' M, N: F' F, N: F'

*3. 16
*1,26
*5 7
*1,26
* 1,30
*5 5
*3, 19
*5, 5
*3, 19
*8,26
*5, 7
* 4, 26
*5, 5
*2,23
*7,32

25.04
84.97>
22.55
26. 52
60.93>
22.67
22.72
4F. 30>
21 . 67
40. 58>
33.36>
44.25>
34.13>
23. 43
27 .80

*7, 18
*8,29
*3, 9
*4,26

*5, 7
*6,20
*3, 9
*7,22
*8, 29
*6, 9
*5,29
*3, 12
*4,26

48. 05>
22. 13
24.67
39. 40>

38.36>
26.43
39.85>
23 69
21.34
36.21>
28.23
64.82>
22.06

*3,19 33.95> *6,20 23.66

*6, 9 35.81> *3,16 54.13>
*6,26 21.44 *5,29 22.45

*3, 9
*7,22
* 5,13
*2, 23
* I , 30
*6, 14
* 4, 32
*5, 13
* 5,29

22.12
2 5. 66
23. 42
22 97
37.35>
34. 67>
25. 55
21 .89
21.15

*3,12 59.07>
*7,32 31.45
*6, 14 22.58
*1,26 66.24>
*4, 32 29. 06
*3, 16 30.02

*3, 16 24. 08
*1,30 21.90

*7,18 33.65>
*7t,32 24.15
*5, 7 26.76
*2,23 23.39
*4,32 39.17>
*3, 9 22.51
*6,26 28.08
*3, 9103.84>
*7,22 26.07
*5,13 22.66
*4,26 32.51>

*6,20 42.70> *1,26 27.63 *4,26 32.31> *5,29 62.36>

1, 13
*F, 26
*7, 32
*6, 9
*8,26
*6, 9
*2, 23
*3, 19
* 4, 32

30 .26
44. 70>
27-.22
46.02>
30 36
52.38>
27. 08
73-12>
35. 66>

*3,16 34.34> *6,20 30.21
*5,29 22.42 *8,29 25.74

*3, 12
*8,29
*3, 16
*5,29
*6,20

25.84
24. 11
32. 18>
30 59
25.80

*3, 19
* 1.30
*7 18
*7,32
*7,22

26.94
24.57
28.71
24.65
24. 16

PROB. FALSE ALARM (TYPE I ERROH)

NOM .AlPHA:
VAX.P(FA):
REL.F R.FA:

40
1 .00
I 00

.30
1 .00
1 .00

.20

.98
I .00

.10

.83
l. F 7

.05
58

0. 57

.01

.16
0. 14

PROB. DETEC'IION (POWER OF TEST)

NOM.P(DT):
PR.D:-IDB:
PR. D: -2DB:
REL.FR.DT:

I .00
1.00
1 .00
1 .00

I .e
I .00
1.00
1.00

I .00
1 .00
I .00
I .00

1 .00
1.00
I .00
1.00

I .t
1 .00
1.00
1 .00

1.00
1 .00
0 .99
1 .0

23300 SAMPLES

.001

.017
0.012

6E-5 5.9E-6
.0010 .00010

0.0006 0.00004

2300 SAMPLES

0.99
0.96
0.89
0.91

0.86
0.70
0. 52
0.46

0. 55
0.36
0.21
0. 17

Fig. 3.6-Simulation of Modified Likelihood Ratio Test:

Summary of 100 Runs

58

96
96
97
97
97
98
98
99
99

1 00
00

*7,22 21.69
*1.30 22.03

*2,23
*7,32
*3 19

32.44>
21.24
26.33

*2,23 36.10>

5.9E-7
.000010

0.000000

0.24
0.13
0.06
0.06
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4.n

4. AN AD HOC TEST FOR SIGNALS WITH UNKNOWN EPOCHS

When the epoch or phase of a signal varies between realizations, the identical signal is not

common to all observations and no true replications are possible. Classical techniques involv-
ing averaging cannot be extended to this situation without difficulties. As in section 3.4, we

have

y(X,t) = sr(x,t) + nr(X,t), (4.1)

x =O. 1, M .. ,M-1; t = O. 1,. . ., 1; r = 1, .. , and

Yr(m,n) = Sr(m,n) + er(m,n) (4.2)

m =O, 1, . .M-1; n =, , . . .,N-1;r=1, . . ., R in place of (3.1) and (3.2).
If Sr(m,n) Sr'(m,n) when r - r, observation of one provides no information concerning the
other, so that averaging over r may not be desirable.

One approach to the problem involves consideration of a single M X N space-time series.
Various solutions in terms of orthogonal expansions of the signal and noise functions are pos-
sible, see, e.g., Selin [35], Helstrom [16], Wainstein and Zubakov [43]. For some problems
of practical interest this array may be too large for the discrete Fourier transform (DFT) using
existing computer technology. If the transform is feasible, smoothing over R adjacent fre-
quency "columns" may produce consistent estimators.

M one-dimensional time series of N points with a common signal may be obtained by in-
corporating the time delay corresponding to a particular direction of arrival into each spatial
sample. A separate analysis for each direction of interest using the one-dimensional DFT is

then possible. (See Shumway [37].) This approach provides a one-dimensional concentration
of information in the frequency domain, but does not permit any systematic use of informa-
tion from analyses at nearby directions of arrival. Furthermore, unless M series of length RN
are considered, R repetitions of the "experiment" provide the same problem of phase differ-
ence as in the two-dimensional approach. The additional repetitions may be used to provide

estimators of the spectral mass function of a stochastic signal and spectral density function of
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the noise for use in the empirical Bayes method (see Shumway and Saikia [38], Saikia [32],

or Hoch [18]), but this does not seem to be the optimum use of current data.

In section 3.4 we attempted to make reasonable estimates of the unknown epochs and to

correct for them. In this chapter we eliminate the unknown parameter and consider a test

based on those aspects of the signals which are common to all realizations.

4.1 Distribution of the Test Statistic

From (3.21), we have

Sr(m,n) = B(m,n)eipr(mn), (4.3)

where B(m,n) =KiMNAje-ijI2 when m = kj and n = fj for some j E {1, . . ., J}, and is zero

otherwise, and (r(m,n) is an unknown which depends on r = 1,..., R. For all (m,n), Sr(m,n)

averaged over the unknown fir(m,n) vanishes:

1 f 2 d = d J eir dIr = 0

0 

but

ISr(m,n)12 = IB(mn)J 2

is independent of r. Thus if Or is eliminated, a sample of size R provides R times the mean in-

formation concerning IB(mn)12 as in a single observation. (Kulback [22], p. 13). The hypothe-

sis Ho:Sr(m,n) = 0, r = 1, . .'., R may be replaced by the equivalent hypothesis Ho: IB(mn)12

= 0. For a deterministic signal, or a conditional model, Yr(m,n) = Yr6z(m,n) - iYrS&(m,n) is

asymptotically distributed as N(O,f(Km ,wn)) under Ho and as N(Sr(m,n), f(Km ,cn)) under

H1. Hence 2f-1(Km ,Cn)jYr(rn,n)j 2 has the central chi-square distribution with two degrees of

freedom under Ho and the noncentral chi-square distribution with two degrees of freedom and

noncentrality parameter 2f-1 (Km ,wn)IB(m,n)12 under H1 . Letting

R

IY(mn)12 = R-1 lYr(mn)12
r=1

we have
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U(mn) = RIY(m,n)12 XR(O) underH 0U~m n) f(Km, wn) { 2 2R2(KmCA~n) UX2Rf-'(Km,Un)LB(m,n)1 2 ) underH 1 . (44) 

This statistic depends on the unknown spectral density f(Km ,n). In some situations,

analysis of variance applied to prior data may be used to obtain an estimator of f(Km,Wn), as

in the empirical Bayes approach [38,32,18]. In many applications, however, the assumption

of stationarity is valid only over short time periods, so that appropriate prior data may not be

available. If (Km,co,) varies slowly, the asymptotic independence of Yr(m,n) and Yr(m',n')

for m / m' or n * n' suggests using data from adjacent cells. One may either estimate

f(Km , Cwn) in the spirit of empirical Bayes, or form an independent chi-square variable to ap-

proximately "Studentize" U(m,n). Let i << M and << N, let

(m,n;y,v) ={(,):m-,u < < m + nn- v < < n + v, # (m,n)}, (4.5)

and let Hi(m,n), i = 0, 1 be the null and alternate hypotheses respectively for the (m,n)th cell.

(When the signal components are not members of the basis set used in the DFT, adjacent cells

as well as (m,n) itself must be excluded from 2. See the discussion following (3.19).)

If Ho(t,#) is true for all C E2(mGn ),

V(m,n) = E U()
(r,)EQ2

has the central chi-square distribution with 4R(t + 2v + v) degrees of freedom, and is asymp-

totically independent of U(m,n). Under these assumptions,

S (m,n) = 2U( + 2 + ) U(mn) (4.6)

has approximately the central F distribution with 2R and 4R(p + 2 + v) degrees of freedom

under Ho(m,n), and the noncentral F distribution with these degrees of freedom and noncen-

trality parameter 2Rf' (Km, W)IB(m,n)12 under Hl(m,n).

If Ho(m,n) is true but H1 (¢,t) is true for some (,)C(mn;pv), then 1/f(m,n) has a

noncentral F distribution with V1 = 4R(p + 2p + v) and V2 = 2R degrees of freedom. The

false alarm probability (type I error) is then
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P[5:(msn) > =avl P [fm)< F,> < a (4.)

i.e., less than the nominal false alarm probability a. If H1(m,n) is true and H1 (,) is also

true for some (,t)Gn(m,n;v), then the probability of detection will also be decreased, since

both U(m,n) and V(m,n) will have a noncentral chi-square distribution. It happens sufficiently

often in practice to be of interest, however, that signal components are isolated from each

other in wavenumber and in frequency, so that for sufficiently small P and v,

Hl(m,n) = Ho(t),V (at) C 2(m,n;pv) . (4.8)

4.2 Simulated Examples

A computer simulated test of this procedure has been made. Each signal component was

confined to a single (m,n) cell in the wavenumber-frequency space, and was isolated from other

signal components in accordance with (4.8). To make room for more signal components in

this relatively small (8 X 32) array, we take p = = 1 in (4.5), and assume the data to be

periodically continued in m and n.

Fig. 4.1 is a typical computer printout of the results of one run of this simulation. Eight

"replications" of the 8 X 32 data array were generated in accordance with (4.2), assuming a

white Gaussian noise process with f(Km ,cn) 1. The figure shows a transpose of the (J(m,n))

matrix whose elements are given by (4.6), and have 16 and 128 degrees of freedom. Signal

components with signal to noise ratio, defined by (3.13), of 0.01566 or -18.05 dB were added

to the noise in 16 of the cells, identified by "*". The resulting noncentrality parameter is 64.

The ">" symbol identifies those Jfwhich fall in the rejection region of a test of size a 10-.

Most entries in the table, having neither symbol, indicate correct rejection. An entry with an

asterisk alone, as in (5,5) indicates a type II error (miss) at the level a = 1o-6(Flo-6;1 6,128 = 4.32).

A type I error (false alarm) would be indicated by ">" alone if there were any; "*>" indi-

cates correct detection.

Theoretical probabilities were calculated using the program mentioned in section 3.3. For

small type I errors the power of this test is greater than that of the procedure of Chapter 3,

even in the case where the frequency difference and hence the difference in phase between

realizations is zero. (Compare the theoretical probabilities in Fig. 4.1 with those of Fig. 3.1.)

This does not violate the optimality of the T2 test (Anderson [1], Theorem 5.5.3, p. 116)

since this test depends on IY(mn)12 rather than Y(m,n). Theoretical probabilities and observed

relative frequencies are tabulated at the bottom of Fig. 4.1. There are 240 cells in which

Ho(m,n) is true. Of these, 112 are isolated, that is Ho(t,) is true for all (a) e 2(m,n;1,1).
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AD HOC TEST
SPECTRAL DENSITY = 1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN ,
INIT. N: 3388 1062 3389 1062 P:

( 8 X 32 COMPLEX VARIATES)
3391 1062 3392 1062

16 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

1 2 3

I 49
0. 5 5
I . 41
0.99
I.95
1 40
0.93
0.96
0 56
0.98
0.90
0 .29
1.06
1.25
0.99
0.80
0 68
0.78
O. 99
0 62
0. 57
0 37
0. 70
0 . 47
0.79
3- 18*
0 . 56
0.36
0. 54
0 66
0.70
I 49

1.19
0. 89
1 .24
0 . 53
0.72
0 . 4 1
1 7 5
0.93
0 . 49
0 73
0 84
0 . 62
0. 40
0.60
0.91
I .13
0.36
0.76
0.79
1.27
0.97
0-95
5.08*>
0.97
0 4 1
I * 8
0.97
0.96
1.16

1 1.1 4
1 .115

F(M.N)
4 5

O. 46
1.34
1 GO
I * 86
0.79
1 63
0. 55
0.35
5.69*>
0.73
0.61
7. 56*>
0.31
0-84
0.73
4.13*
1.11
0.61
3.77*
0.29
1 .33
0 . 56
0 59
0 .7 1
0 . 66
0.35
0.49
2.18
0 .71
0.95
0. 57
0 . 4,

0.19
1 .79
0. 57
0.34
0.61
0.85
0 . 60
0.91
0.49
0. 50
0.46

* 47
0.70
1.16
0 . 63
0. 61
0.76
0.7 1
0.98
0.70
0.77
0.38
1 .61
I .33
0.53
5.50*>
0.43
0 33
0.91
0.85
0. 44
6.76*>

0.80
1 .00
1 02
1.15
4.31*
0 52
0. 62
0.80
0.74
0.21
1.13
0. 5
0 83
0. 99
0.66
1 - 13
1.08
0.85
1.11
0. 53
2 00
1.16
0. 53
0 38
1 02
0-81
0.89
0.34
5.36*>
0 44
0.55
0 45

PROB. FALSE ALARM (TYPE I ERROR) 240 SAMPLES ( 112 ISOLATED)

ALPHA: .40 .30 .20
ISO-FA: 0.41 0.28 0.21
TOT.FA: 0.24 0.15 0.10

.10 .05
0-11 0.08
0.05 0.04

.01 .0010
0.02 0.0000
0.01 0-0000

PROB. DETECTION (POWER OF TEST)

PR(D): 1.00 1.00 1.00 1.00 1.00 1.00 0.99
FR(D): 1.00 1.00 1.00 1.00 1.00 1-00 1.00

16 SAMPLES

0.95 0.85
0.94 0.75

Fig. 4.1-Simulation of Ad Hoc Test: Results of One Run, White Noise

63

N \ i

Mr

7 8

2
3
4
5
6
7
8
9

10
1 1
12
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32

6

1.21
1-09
0.98
0.81
0.54
1.01
1.20
0.49
6.65*>
1.15
0.83
1.03
0.87
3. 59*
0.22
0.56
0.76
0 56
0.45
1.15
0 44
0.47
1 . 10
1.08
0 87
0.87
0348
0.96
0.59
0.61
0. 68
0. 55

1.04
0. 62
0.90
0.61
1 - 48
0.78
1.35
0 28
0.36
0. 60
0 60
0.64
0.84
0.85
0.84
0. 97
0 67
5.67*>
0 41
1. 50
0.42
6.08*>
0 39
1.07
1.00
0.79
1.17
0.91
0. 51
0.78
0.98
3.69*

0. 85
0 76
0.91
0.74
0.95
0.57
0. 69
2 00
I .31
1 49
0.66
2.15
1 . 27
1.21
0.83
1.24
0.59
1.10
0. 49
1. 58
1.07
0.49
0.72
1.84
0.50
0.57
1.26
0.39
6.79*>
0.42
0.81
0.37

.00010
0.00000
0. 00000

.000010
6.000000
0000000

.00000 10
0 . 0000000
0.0000000

0.71
0. 62
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The relative frequency of false alarm for these is shown in the row labeled "ISO.FA:", and

the total relative frequency of false alarm for all 240 is shown in the row labeled "TOT.FA:".

"PR(D):" and "FR(D):" refer to the probability and relative frequency of detection, respec-

tively, both at the levels indicated by the label "ALPHA:" above for the 16 cells for which

Hl(m,n) is true.

Fig. 4.2 is a portion of the printout of 100 similar runs in succession. Here, to avoid ex-

cessive data printing, the run number, coordinates and 5: value are printed for only those (m,n)

for which (m,n) indicates rejection at a = 10-5, with the sumbol `>" indicating rejection at

a = 10-6 as well. H(m,n) is indicated by *m,n. All the entries shown in the figure indicate

correct detection, most at the level a = 10-6.

Theoretical probabilities and observed relative frequencies are again tabulated at the bot-

tom of the figure,with the same notation as in Fig. 4.1. There are now 24000 samples for

which Ho is true, with 11200 of them isolated, and 1600 samples for which H1 is true. The

results show good agreement with the theory.

Some results of simulation with non-white noise are shown in Figs. 4.3 and 4.4. The

noise spectral density was

f(K,C) 1 + cos (K + cos (2co)/4.

Six signal components with the same signal to noise ratio as before (-18.05 dB) were added,

two each in regions of low (f = 0.75), medium (f = 1.0) and high (f= 1.25) noise spectral

density. There are indicated by the symbols "#", "*" and "t", respectively. The respective

noncentrality parameters are 85.33, 64 and 51.2. Fig. 4.3 is a computer printout of a single

run, and Fig. 4.4 is a portion of the printout of 100 successive runs. The notation is that of

Figs. 4.1 and 4.2, except that the probabilities and relative frequencies of detection are listed

separately for signals in each of the three types of noise regions. The agreement is satisfactory.
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AD HOC TEST
SPECTRAL DENSITY = 1.0

SIMULATED ARRAY= 8 X 64 L-IIIH 8 REPS/RUN .
INIT. N: 1751 11922 1752 11922 P:

65 
: 2

C-r

rr.t:

( 8 X 32 COMPLEX VARIATES5
1753 11922 1754 11922

16 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

E (M,N.F): F(MN)>F(.00001;16. 128)]

RUN M. N: F

1 *5, 5
1 *7, 18
1 *4,26
2 *5, 5
2 *7, 18
2 *4,26
3 *s, 5
3 *7, 18
3 *4,26
4 *5, 5
4 *3,16
4 *1,26
5 *5, 5
5 *3, 19
5 *5, 29
6 *5, 5

4.34>
4. 54>
8. 76>
4.27
6.20>
5.80>
8.94>
s. 47>
6. 10>
s. 56>
6. 26>
6.90>
6.16>
5.23>
7.71>
6.1 1>

M, N: F

*3, 9
*3, 19
*5,29
*3, 9
*3, 19
*8,29
*3, 9
*3, 19
* 5,29
*3, 9
*7, 18
*8, 29
*3 9
*7,22
*8,29
*3, 9

6. 54>
5 75-
5.41>
6.51>
4.63>
5.71 >
5.70>
6.70>
6. 84>
4.82>
5. 58>
5. 68>
4. 64>
5.65>
5.39>
4. 85>

M. N: F MN N: F

*3, 12
* 7, 22
*8,29
*6, 9
*7,22
*7,32
*3 12
*7,22
* 4, 32
*6, 9
*3, 1 9
*4, 32
*6, 9
*2,23
*7,32
*6, 9

6. 67>
6.38>
6. 54>
5.24>
4.27
7.84>
4.35>
5.69>
6.41>
5.25>
4. 16
6.13>
4.69>
5.08>
4.86>
5.17>

*6, 14
*2,23
*4, 32
*3, 12
*2,23

*6, 14
*2,23

*3 12
*7. 22
*7 32
*6 14
*1.26

*3 12

4.94>
s. 62>
6.72>
5. 50>
7.48>

M N:

*3, 16
*1;26
*7, 32
*6, 14
* I, 26

5.13> *3.16
4.38> *1.26

6.86> *6, 14
4. 10 *2,23
5. 56>
5. 44> *3,16
5.30> *4,26

4.04 *5, 29
4.41> *3 9
3.82 * 7.18
4.68> *4,26
5.90>
5.40> *3. 9
7.10> *2,23
6.62>

4.85>
5.27>
6.78>
4.40>

*8,29
*6, 9
*3,19
*5,29

6.09> *3,12
6.64> *1,26

4.33>
6.14>
4.23
6.85>

*4, 32
*3, 12
*7,22
*8,29

5.10> *7,18
4.61> *5,29

4.04
6.87>
5. 10>
5. 18>

*1,26
*7, 32
*6, 14
*2,23
*4, 32

6.54> *3, 19
4.56> *8,29

PROB. FALSE ALARM (TYPE I ERROR) 24000 SAMPLES (11200 ISOLATED)

ALPHA: .40 .30 .20 .10 .05 .01 .0010 .00010 .000010 .0000010
ISO.FA: 0.40 0.30 0.20 0.10 0.05 0.01 0.0003 0.00000 0.000000 0.0000000
TOT.FA: 0.23 0.16 0.10 0.05 0.02 0.00 0.0001 0.00000 0.000000 0.0000000

PROB. DETECTION (POtJER OF TEST) 1600 SAMPLES

PR(D): 1.00 1.00 1.00 1.00 1.00 1.0E 0.99 0.95 0.85
FR(D): 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93 0.84

0-71
0.72

Fig. 4.2-Simulation of Ad Hoc Test: Summary of 100 Runs, White Noise

F

6.05>
4.29
5. 99>
5.75>
5. 63>

5.00>
4.92>

5.51>
4.33>

4.42>
5. 1 5>

98
99
99
99
99

10 0
100
100

*4,26
*5, 5
*3, 16
*1,26
*7, 32
*5 5
* 7.22
*4,32

7.23>
7. 54>
5.45>
5. 13>
5. 53>

5. 40>
5.95>
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AD HOC TEST
SPECTRAL DENSITY = F(K,W)=+.25COS(K+PI/4)*COS(2W)

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN ,

INIT. N:

6 SIGNAL

12559 13034 12559 13034 P: I
( 8 X 32 COMPLEX VARIATES)
2561 13034 12561 13034

COMPONENTS: S/N=0.01566 (-18.05 DB)

1 2 3

I 79
0-81
1 13
0 . 64
1.25
I 16
I .08
I .39
0.90
0.90
I . 50
0 45
1.86
0.62
0.97
1-21
0.69
1.20
0.70
1.07
1 -30
0.71
1 .08
1 69
0.78
0.72
0.69
0-89
0.60
1.85
1.02
0.94

0.74
0.61
0.94
0-40
0.92
0-85
0-78
0.62
0.88
0-89
1-59
0.55
1. 34
1.34
0.66
0-45
0.41
2.12
1 -45
0.43
1.26
0.88
0.74
0.60
0-83
1.21
1.36
1.13
0.79
0.42
1 .00
0.48

0.87
0.95
1.15
1.24
1. 44
1 .69
1.47
0-85
1.E3
1.04
1.16
0-48
0.72
0.62
0-89
5.21#>
0.56
0.64
0.61
0.92
0.99
I 1 4
0-81
3.03t
0.92
0.95
0.73
1.40
1.80
1 .09
1.01
0.98

F(MN)
4 5

0.69
1 .45
1.34
0.76
0.46
0.47
1.05
0.75
0.74
0.67
1.74
0.90
1.50
1.08
0.52
0.61
0-47
1.19
0.77
1 .40
1 .00
1.01
0.71
1-25
0.96
0.61
0.96
0.75
0.77
0.68
0.81
0.96

0. 60
0.82
0.97
0.32
6.76*>
0.55
1.45
0. 54
2.03
1 .28
0.63
0.37
0. 51
1.10
1.10
I 56
0. 59
0.70
1 .28
1 .30
0.75
0.82
0.83
0.84
0.95
1.22
1 .23
0.92
0.72
1 .13
1.22
1 *59

6 7 8

0.43
1 *45
1.16
0 59
0.44
0.33
I1.45
0-96
0.33
0.58
0.77
6.03*>
0.65
0.89
1.26
0.77
0.77
1 46
I- 80
0. 40
1 .53
0.66
0.78
0.99
0.43
1.12
1.06
0.72
0.69
1.71
0.48
0.63

0. 54
1 17
1 .22
1.25
1 * 47
0.93
0.74
1 .24
0.85
I 30
0 65
0.77
0.52
1 .06
1.05
0.99
1.11
1.12
0.93
0. 62
1.08
1 .17
0.69
4.77#>
0 . 61
1 .00
0.92
1.95
0.45
0.96
0.67
5.30t>

0-40
I . 50
1I.00
0.92
1 .1 8
0.. 69
0.86
0-93
I1.02
1.09
0.71
0.46
1.11
1 .64
0.79
0. 76
I 54
0.80
0. 59
1 .24
1.00
0-93
0 - 40
0.85
0. 50
0.87
1 *34
0.83
0.97
I *30
0-94
0.66

PROB. FALSE ALARM (TYPE I ERROR) 250 SAMPLES ( 202 ISOLATED)

ALPHA: .40 *30 *20
ISO.FA: 0.42 0.31 0.19
TOT.FA: 0.34 0.25 016

.10 *05 .01 .0010 .00010 000010 .0000010
0.09 0.05 0.00 0.0000 0*00000 0.000000 00000000
0.08 0-04 0-00 0.0000 000000 0-000000 0-0000000

PROB. DETECTION (POWER OF TEST)

PR(D#): 1-00 1-00 1.00 1-00 1.00 1-00 1.00
FR(D#): 1.00 1-00 1.00 1.00 1.00 1.00 1.00

PR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 0-99
FR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PR(Dt): 1.00 1.00 1.00 1.00 1.00 0-99 0.94
FR(Dt): 1.00 1-00 1.00 1.00 1.00 1-00 1-00

2 SAMPLES EACH

1-00 0-98
1.00 1-00

0.95 0.85
1.00 1.00

0.82 0.64
0.50 0.50

0-94
1.00

0.71
1I 00

0-44
.0 * 50

Fig. 4.3-Simulation of Ad Hoc Test: Results of One Run, Nonwhite Noise

N\M

1
2
3
4
5
6
7
8
9

10
1 1
12
13
1 4
1 5
1 6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
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AD HOC TEST
SPECTRAL DENSITY = F(K.W)=1+.25*COS(K+PI/4)*COS(2W)

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN ,
INIT. N: 4259 13973 4259 13973 P:

( 8 X 32 COMPLEX VARIATES)
4261 13973 4262 13973

6 SIGNAL COMPONENTS: S/N=0.01566 (-18.05 DB)

[(M,NF): FN)>F(.00001s 16, 128)3

RUN M, N: F M, N: F M, N: F M, N: F M, N: F

7.82> *6, 12
4.87> *6, 12
3. 97
4.97> *6, 12
4. 14
3 - 88 *6, 12
4.60>
8.42> *6, 12
4.95> #7,24
5.95> *6, 12
4.17 *6,12
4. 00 #3, 1 6
5.24> *6, 12
4. 98>

5. 96> #3,16
6.29> *6, 12
4. 04 #3, 1 6
4.76> *,3,16
7.1 4> *6, 12
5. 93>
6.32> *6, 1 2
4.13 *6, 12

3 -88 #3, 16
3-94 #3, 16

4.22 #3, 16

5-86> #3, 1 6

4.26
6.80>
4.29
4.37>
6. 63>
4. 90>

5. 59>
5. 58>
5.25>
5.96>
4.36>
4. 91 >

#3, 16
t7,32
t3,24
#3, 1 6
t3,24
#3, 16

#7, 24
t3,24
#3 1 6
t 3,24
t 3,24
#3, 1 6

6. R 5> #3,16
5.68> #3,16

7.10> #7,24
4.89> t3,24

4.48> t3,24

6.27> t3,24

4.92>
5.69>
3.93
5.79>
8.20>
5.49>

5.93>
4.35>
4 . 60 >
5-85>
5.29>
4.02

t3,24

#7, 24
t 3, 24
#7, 24
t 3, 24

#7, 24
#7,24
#7, 24
#7,24
t 3, 24

6.05> 3,24
4.12 :7,32

5.63>
3.97 #7,24

4-63> #7,24

5.22> #7,24

4-78> #7,24

7.26>
5.96> #7,24
5.75>
4.41> #7,24

8. 19>
4. 55>
7.04>
6. 45>
6.81>

:7, 32
:7, 32
t7, 32
t7,32
#7, 24

5.63> #7,24
5. 31 >

PROB. FALSE ALARM (TYPE I ERROR5 25000 SAMPLES (20200 ISOLATED)

ALPHA: .40 .30 .20 .10 .05 .01 .0010 .00010 .000010 .0000010
ISO.FA: 0.40 0.30 0.20 0.10 0.05 0.01 0.0009 0.00010 0.000000 0.0000000
TOT.FA: 0.34 0.25 0.17 0.08 0.04 0.01 0.0008 0.00008 0.000000 00000000

PROB. DETECTION (POWER OF TEST)

PR(D#): 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR(D#): 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 0.99
FR(D*): 1.00 1.00 1.00 1.00 1.00 1.00 0.99

PR(Dt): 1.00 1.00 1.00 1.00 1.00 0-99 0-94
FR(Dt): 1.00 1.00 1.00 1.00 1.00 1.00 0-97

200 SAMPLES EACH

1.00 0.98
1.00 0.97

0.95
0 . 98

0.85
0.88

0-82 0.64
0.88 0-.75

Fig. 4.4-Simulation of Ad Hoc Test: Summary of 100 Runs, Nonwhite Noise
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:Z�
C'n
r-
:Z.
C.n
C.l�

�r

rr,

1 *5, 5
2 *5, 5
2 t7,32
3 *5, 5
3 t7, 32
4 *5, 5
4 t7,32
5 *5, 5
6 #3, 16
7 *5, 5
8 *5, 5
9 *6, 1 2

10 *5, 5
10 t7,32

94
95
96
97
98
98
99

100

*6, 12
*5, 5
*6, 12
*6, 12
*5, 5
t 7, 32
*5, 5
*5, 5

4.39>

7.75>

8.36>

6.08>

4. 98>

5.26>

4.84>
4.02
5.19>
3.90
5.61>

5.82>

0.94
0.85

0.71
0.72

0.44
0 . 57
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5. ANALYSIS OF VARIANCE AND METHODS OF MULTIPLE COMPARISON

The model represented by (3.1),

Yr(X, t) = (x, t) + nr(x, t), (5.1)

x = O, 1, M-1;t= , . . ., N -1; r = 1, ., R is a special case of a two-dimensional

extension of a general linear model considered by Shumway [36]

J 00 00

yr(X,t) = X Xrj(x-u, t-V)j(U,v) + nr(Xt) . (5.2)
j=1 u=-A v=- 0 0

Here {Xrj(x,t), r = 1, .. , = 1, . . ., J} is an R X J matrix function of fixed space and

time invariant observables and {jP(x,t), i = 1, . . ., J} is a J X 1 vector of regression functions.

In the present application, the regression functions are the signals (3.9)

.sj(x,t) = Aj cos (Kjx + cjwt- 0j) . (5.3)

As in previous chapters, the error series nr(X,t) is assumed to be a realization of a two-dimen-

sional zero mean wide-sense stationary noise process.

The transformed observations are given by (3.12):

Yr(m,n) = B(m,n) + r(m,n) (5.4)

when (m,n) E Q, where B(m,n) = \/ Aje-'j/2 when m = kj and n = f; for some

j G {1, . . ., J}, and is zero otherwise. Since the variance of er(m,n) is f(Km,&)n) + O(M1) +

O(N-1) as has been shown in Chapter 2, if f(Km, wn) is constant ("white noise") and if the

signals are common to all R realizations, then the assumptions underlying the analysis of

variance (Scheffe [33], p. 55, p. 106) are asymptotically satisfied by the real and imaginary

parts of (5.4).

68



NRL REPORT 7466 69

5.1 The One-Way Layout, Common Signal Case

As in previous chapters, we consider the transformed array relabeled to yield M'N' asymp-

totically independent complex variables, and again drop the primes. Consider first the case c

0j = O. = 1, . . ., J and for r = 1, . . ., R, let

Ur = (Yrbq(,),..., YrgT(lN), Yrg(2,1), .. , Yrg(2,N),. A, Yr6Z(M,1),..., YrZ(MIN))', (5.5)

(5.6)

and

er = (Er6{(1,1), .. ., erR(1 N), ErR(2,1), . . ., Er(2,N), ..., Ee, (M,1), .. ., Er((M,N))'. (5.7)

Then for each r the M X N matrix of observations {Yr6?(m,n), m = 1, . . ., M, n = 1, . . ., N}

has been "strung out" into a MN X 1 (column) vector Ur. Letting U' = (Uj, . . ., UR) and

e = (el, . . ., e) we have

U = X + e,

with X given below.

The problem is now in the form considered by Scheff6 [33], Chapter 3, with the MN X

MNR matrix

11 ... 100 ... 0

X = .O* 0 1 1 ... 1

0 * * 0 00 ... *0

00 -...

1 ... 

1 1... 1

of rank MN, so that all parametric functions are estimable (Scheff6 [33], p. 56). The test

statistic

SSH

(MN-1)
SSe

MN(R -1)

(5.8)

P
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has the central F distribution with MN - 1 and MN(R - 1) degrees of freedom under the null

hypothesis, where

M N

SSH = R L [Y.4{(m,n) -, yfl 2

m=1 n=1

M N

Ye = MN q Z Y.4(m,n)
m=l n=l

and

M N R

SSe = E [Yre4 (mn) - Y.6R(m,n)] 2

m=l n=1 r=l

Here the dot replacing a subscript has the usual meaning of average. Let

M N

B.. = MN T B(m,n)
m=1 n=1

Under the alternate hypothesis, 5f has the noncentral F distribution with noncentrality param-

eter 6 given by

M N

a262 = R E E [B(m,n) - B..] 2

m=1 n=1

where a2 (Km, cin)/2 . As in (3.9), we consider J signal components. Let

J
B(m,n) = B 6 mkj 1 nfj , (5.9)

j=1

where kj and fj are the coordinates of the signal components. Then
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M N J -

B..= B 6 mk 6 nf1 = MNJMNf Y T M
M=1 n=1 j=1 r

so that

a252 R E E FBi 'mkj
6 nfj - M-

m=1 n=1L j=1

RJB2 (MN-J)
MN (5.10)

Computer simulation has met with excellent agreement and some results will be shown

later. Since the theory is well established (cf. Scheff6 [33], ibid.) this simulation serves

merely as a check of the simulation procedure itself and the F-distribution calculations. The

only unusual features are the degrees of freedom. As in previous chapters, an 8 X 32 array

with 8 observations per cell was used. This results in MN - 1 = 255 and MN(R - 1) = 1792

degrees of freedom. To calculate the upper alpha points, FV1 V2 was approximated by

Z = 2In Fv1 ,P2 - N(p 1,P2 ), (5.11)

where p' = (v2 - l )/2 and /U2 = (1 + 1V2 )/2. (cf. Kendall and Stuart [21], p. 379). The

noncentral FV1,V2;6 was approximated by

FV1 P2;6 t ape V F~lt2 ' (5.12)

where c 1 = V1 + 2 and c2 v1 = v + 22 (Scheff6 [33], p. 414).

5.2 Robustness of the F-Test

With the same considerations as in section 3.4, we have from (3.21) for signals with un-

known epochs

Yr(m,n) = Sr(mn,) + er(m,n) (5.13)

when (m,n) Q where Sr(m,n) = B(m,n)ei(mn) as in (4.3). Let
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Ur(m,n) = IYr( (m, n)12 , (5.14)

and let

1 f21T
Zr (m, n) = 2 r Ur(m,n)d3r

0

= 1l~r f {ISr(m,n)12 + 2kSr(m,n)er*(m,n) + Ier(m,n)2}dtr

0

= IB(m,n)12 + le,(m,n)12 , (5.15)

with the dependence on r vanishing as in section 4.1.

Let p(m,n) = B(m,n)12 (which is zero unless m = kj and n = fj for some j E {1, . . J)

and let

vr(m,n) = Ier(m,n)12 (5.16)

Then (5.15) becomes

Zr(m,n) = (m,n) + vr(m,n) , (5.17)

which has the same form as (5.4). Now, however, 2vr(m,n)/f(Km,cn) is asymptotically distrib-

uted as a chi-square variable with two degrees of freedom, by Theorem 2.2.

There have been many investigations of the effect of non-normality on the type I error

of the F-test, and some on the effect on the power of the test. See Scheffe [33], Chapter

10, Srivastava [39], Donaldson [7], and the recent paper by Tiku [40] and the references

contained therein. In the present case, robustness of the test to type I errors is illustrated in

Fig. 5.1 which shows both sides of the empirical distributions resulting from 1000 replications

of a simulation of (5.4) (normal population) and (5.17) (chi-square population) under the null

hypothesis. Each replication simulated an 8 X 32 array with 8 observations per cell. A chi-

square test and a Kolmogorov-Smirnov test of these empirical distributions both show that

neither of them differs significantly from the central F distribution with 255 and 1792 degrees

of freedom. The computed chi-square values with 19 degrees of freedom are indicated by

"X t 2(19)"; 1f000 times the computed Kolmogorov-Smirnov values are indicated by

"K - S X 31.62."
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ONE-WAY ANALYSIS OF VAkIANCE
SPECTRAL DENSI1Y=2.0

255. 1792 DF PN INI'I.= 303*4300 1000 RUNS

N(0.1) POPULATION, HO TRUE

.001660

0 30
.31
.29

P AV. MSE= 1.000129

0 20
.20
.20

0.10
.10
.11

21.4000

0.05
-05
*06

.025
.02
.03

K-S X 31.62=

CHI-SOUARE (2) POPULAIION, HO lRUE

AV. Y...= 2.001504

0 .30
.31
.29

2 AV. MSE= 3.995411

0-20
. 20
.19

0.10
* 09
11

0.05
.05
.05

.025
.02
.02

21 .0800 K-S X 31.62= * 54

Fig. 5.1-Empirical Distribution of the Test Statistic with Normal and
Chi-square Populations

AV. Y.*=

ALPHA:
NO. >F:
NO .<F:

0 * 50
* 50
* 49

0 * 40
39

*39

Xt2( 19)=

0.01
.01
*0 1

.001
0.
.00

E-4
0.

*00

ALPHA:
NO. >F:
NO. <F:

0 * 50
* 50
* 50

0.40
40

*38

Xt2( 19)=

0.01
.01
*0 1

.001
.00
*00

E- 4
0.

0.



Monte Carlo methods were also employed to determine the power of the test of the

model represented by (5.17). Again, an 8 X 32 array with 8 observations per cell was simu-

lated, with 100 replications per point. One signal component was included, and its signal to

noise ratio (3.13) was varied. Some results are shown in Fig. 5.2, where power is plotted as a

function of signal to noise ratio, S/N. The solid curves are computed for the normal distribu-

tion using (5.12). The + sign indicates simulation of (5.4) with a normal population, while the

---x---x curve is the result of simulation of (5.17), with vr(m,n) distributed as f(Km,Wn)/2

times a chi-square variable with two degrees of freedom, with f((Km, Wn) 1. These results

imply that as the level of the test is decreased, the power of the test with a chi-square popu-

lation does not decrease as rapidly as that with a normal population. At very low test levels

the power of the test using (5.17) is greater than that using (5.4) at all signal to noise ratios.

The integration indicated in (5.15) disposes of the cross-product term and the dependence

on r = 1, . . ., R. Since such integration cannot be carried out /in practice, the test was also

simulated for Ur(m,n), given by (5.14). The results, indicated by-o o in Fig. 5.2, gen-

erally fall between the other two curves. The cross-product term, with its dependence on r,

acts as additional noise and decreases the power slightly when the signal to noise ratio is high.

For very weak signals and low test levels, the power may be increased slightly.

As a check on the computation, a case similar to those studied by Donaldson [7] was

considered. Donaldson used Monte Carlo techniques to compute the power of the F-test with

normal, exponential, and lognormal populations. All of his distributions had a mean of 10

and a variance of 100 under the null hypothesis. Since this is not possible with N(O,f/2) and

(f/2)X2 populations, I can only qualitatively match his results under the conditions of this

section. One thousand replications of a simulated 2 X 2 array with 4 observations per cell

were taken for each point, with [(Km , W) 200. The resulting curves, shown in Fig. 5.3a

are similar to the curves of Donaldson's Fig. 2. Here power is plotted against 0, where

= (El Ia2 (5.18)
jl e

is used by Donaldson to indicate the degree of inequality between means. In (5.18), I=MN, A is

the grand mean of all cell populations, pj is the mean of the jth population and a 2 is the popula-

tion variance, estimated by SSe/[I(R - 1)1. The difference between Fig. 5.3a and Donaldson's

Fig. 2 can be attributed to the differences in these parameters. The same data are plotted in

Fig. 5.3b as a function of signal to noise ratio in decibels, rather than the empirical parameter

0. The relative positions of the two curves in the region of strong signals is reversed, with the

resemblance to Fig. 5.2 obvious.

D. A. SWICK74



NRL REPORT 7466

1.0e-

R=8

I=256

cx710-

C4

:30
Al

-10 dB

1.0
,/0

"I

11/

H

:t|I=
foI

1y

.8

.6
256

:

0
P,

.4

.2

-10 dB
0 _
-30

-0 - o - 2

Fig. 5.2-Power Curves

1.T

75

'ZI
c-
r-
:X.
0-11

Ir.

.8 

.6 L

0 .4
A4

+

.2 

oL
-30 -20

S/N

1. 0,-

S/N
-10 dB

.8 L

6

0P.,

.4 _

I

/ 0o

I,

,1 /

1 1

il

C.2_

O0
-30

R=8
I=256

a-10-4

-10 dB-20
S/N

* N(0,1)

-20
S/N

2
x(2

/ 't.
1//

0

- -d

.1
I

10-3



D. A. SWICK
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Fig. 5.3-Power Curves for the case M=N=2, R=4 I

76

R = 4

= 4

a = .01

1.

05

p..3
P,

i



Non-constant spectral density ("nonwhite noise") means unequal cell variances. Scheff4
[33], p. 343 shows that the type I errors will be increased. Moderate robustness to unequal

variances with normal populations is indicated by Figs. 5.4 and 5.5. As in Fig. 5.1, these fig-

ures show the empirical distributions resulting from 1000 replications of a simulation of an

8 X 32 array with 8 observations per cell of (5.4)(normal population) and of (5.17) (chi-

square population) under the null hypothesis. In Fig. 5.4, (K, W) = 1 + .025 cos (K + r/4)

cos (2w). Both the chi-square and Kolmogorov-Smirnov tests indicate that neither of the em-

pirical distributions differs significantly from the central F distribution with 255 and 1792

degrees of freedom. In Fig. 5.5, f(K, W) = 1 + .1 cos (K + r/4) cos (2w). Here the empirical

distribution with a normal population remains indistinguishable from the central F distribution.

Both the chi-square and the Kolmogorov-Smirnov tests show, however, that the differences

between the empirical distribution from a chi-square population with unequal variances and

the central F distribution are highly significant. The differences appear to be mainly at large

values of alpha. Further simulation, not shown, indicates that the test with normal popula-

tions is insensitive to unequal variances at least to the extent caused by the spectral density
given by (3.15) and used again in Chapter 4, namely f(K,W) = 1 + .25 cos (K + r/4) cos (2w).

5.3 Multiple Comparisons

As with any application of analysis of variance, rejection of the null hypothesis can be

followed by tests of multiple comparisons to determine the statistical significance of the sources

of variation revealed by the data. See Scheff4 [34,33], p. 68, Gabriel [10], and their refer-

ences. Specifically, determination of the subgroup of cells in the wavenumber-frequency space

contributing to rejection of the null hypothesis is equivalent to detection of the corresponding
signal components. We consider estimable functions of cell means

M-1 N-1

= E E c(m,n)B(m,n)
m=O n=O

(5.19)

and, in particular, contrasts, where

M-1 N-1

E c(m,n) = 0 .
m=O n=O

(5.20)

The function 4I is estimated by

:2

-I

rrc.
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ONE-WAY ANALYSIS OF VARIANCE
SPECTRAL DENSITY=1.00I1+.025 COS(K+PI/4) COS(2W)]

255., 1792 DF PN INIT.= 324.5172 1000 RUNS

N(0,1) POPlJLATIONP HO TRUE

AV. Y...=

ALPHA:
NO. >F:
NO. <F:

0 * 50
. 50
. 50

.000227

0 * 40
. 4 1
* 1

0 30
.31
.30

0 AV. SE=

0 *20
.21
*23

0.10
*10
*10

0 *05
.05
.05

*499630

.025 0.01
.03 .01
.03 .01

Xs2( 19)= 21. 2000

CHI-SOUARE (2) POPULATION,

AV. Y.. .= 1.000689

ALPHA:
NO.>F:
NO. <F:

0.50
. 53
* 4 7

0 40
* 43
.39

0 30
*34
*29

0.20
.22
.19

0.10
.11
.10

K-S X 31.62=

HO TRUE

J AV. SE= 1.001621

0.05
.05
.05

.025
*02
*02

0.01
.01
.01

1 5. 3200 K-S X 31.62= *92

Fig. 5.4-Empirical Distribution of the Test Statistic with Normal and Chi-square

Populations, Nonwhite Noise
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ONE-WAY ANALYSIS OF VARIANCE
SPECTRAL DENSITY=1.00E1+.1 COS(K+PI/4) COS(2W)]

255, 1792 DF PN INIT.= 408.5172 1000 RUNS

N(0, 1) POPULATION. HO TRUE

*000059

0 30
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.31

, AV. MSE=

0 * 20
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.21
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*11
*11

0.05
.05
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Xt2(19)= 8.7200

CHI-SQUARE (2) POPULATION.

AV. Y.. .= 1.001109

ALPHA:
NO. >F:
NO.<F:

0 50
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0 40
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.30

0.30
.37
*22

0.20
.24
. 1 4

K-S X 31.62=
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J AV. MSE= 1.003052
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Fig. 5.5-Empirical Distribution of the Test Statistic with Normal and Chi-square

Populations, Nonwhite Noise

AV. Y.*=

ALPHA:
NO .>F:
NO. <F:

0 50
*50
. 50

0.40
* 41
41

0-01
*02
.01

.001
.00
.00

E-4
0.
0.

-32

Xt2( 19)=

.001
.00
.00

E-4
0.
0.
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M-1 N-1

4 = E c(m,n)Y.(m,n) (5.21)
m=O n=O

in the case of signals common to all realizations, and by

M-1 N-1
1 = E E c(m,n)U.(m,n) (5.22)

m=O n=O

when the signal epoch varies with realization, where Ur(m,n) is given by (5.14). In the first

case, the variance of ' is given by

M-1 N-1
V = var () = L L c2 (m,n) var [Y.(m,n)]

m=O n=O

C (5.23)

where

M-1 N-1
C = E c 2 (m,n)

m=O n=O

and is estimated by V = s2 C/R, where 2 = MSe. Following Scheffe [33], we say that 4' is signif-

icantly different from zero if and only if 1+ 12 > S2 , where S2 = (MN-l)Fa;MN-,MN(R-1)
Multiple comparisons were simulated along with the analysis of variance for both the

normal population (Yr(m,n))and the chi-square population (Ur(m,n)). The sum of all cell

means which exceeded a preset "threshold" was considered as an estimable function. Con-

trasts were formed between all cell means which exceeded (the same) preset threshold and all

other cell means. It was found possible with a signal to noise ratio of 0.015 (-18 dB) to set

the threshold so that it was exceeded by few if any means of cells in which the null hypothe-

sis was true. Some results will be shown in Table 6.1, where the power of various tests will

be compared. The power depends, of course, on the number of signal components as well as

the signal to noise ratio of each component. The power is very low for a single (-18 dB)
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signal component, but can be unity at test levels down to a = 10-6 if the number of signal
components is large.

For the normal population, little difference at all test levels was found between the power

of the test using this estimable function and that using this contrast. For the chi-square popu-
lation (treated as if it were normal) the test of this estimable function was more powerful at
all test levels than that of this contrast.

5.4 The Two-Way Layout

Since the models under consideration result in a two-dimensional array of data, it seems
natural to consider analysis of variance of a two-way layout. Here, however, a significant row
effect ("wavenumber effect") or column effect ("frequency effect") has a physically meaning-
ful interpretation only under certain unusual circumstances. It may happen that the hypothe-
sis of no interactions is rejected, but the hypotheses of no main effects are accepted. In this
case we conclude that there must be differences in the main effects, but that the data are in-
sufficient to reveal these differences when the effect of the levels of one factor are averaged

over the levels of the other. (Scheff6 [33], p. 94.) A significant interaction may be inter-
preted as detection of a two-dimensional plane wave with wavenumber and frequency com-
ponents corresponding to those responsible for the interaction.

The power of the interaction test of the two-way layout has also been calculated and the
test simulated. Some results will be presented in Table 6.1, where they may be compared

with those of the one-way layout and with other tests. In general the one-way layout produces
a slightly more powerful test both for the normal and the chi-square populations. In all of the
two-way layout results shown in the table there was not more than one signal component in
each row and in each column. With more than one component in a row or column, the power
of the interaction test decreases. Thus the one-way layout is clearly preferable.

C_
r-
:r--
fe�

�r.

rr,
t=
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6. SUMMARY AND CONCLUSIONS

Several techniques for testing hypotheses concerning multidimensional stationary stochas-

tic processes have been developed. These were applied to the two-dimensional discrete finite

Fourier transforms of space-time series. The justification for this is the asymptotic normality

and independence of the transformed variables.

It was shown that the correlation between the real and imaginary parts of a transformed

M X N space-time series is O(M-1 )-O(N-1), and that the variance of each is equal to (1/2)f(K,co) +

O(M-1) + O(N-1), where f(K,Cw) is the spectral density. The limiting joint distribution of a col-

lection of transformed variables was shown to be that of mutually independent normally dis-

tributed random variables. It follows that the joint distribution of a collection of periodo-

grams, defined as the squared modulus of the transformed variables, tends to that of mutually

independent chi-square variates.

In addition to transforming a multivariate problem in the space-time domain into a uni-

variate problem in the wavenumber-frequency domain, the discrete finite Fourier transform

also concentrates the information for discrimination between hypotheses for a class of processes

of considerable practical interest.

When the space-time series under consideration consists of two-dimensional signal func-

tions imbedded in and common.to all realizations of a stationary noise process, a likelihood

ratio test can be applied in the transformed domain. If the signal model includes an unknown

epoch or phase which varies from realization to realization, no true replications are possible,

and the test must be modified. If one is willing to pay the price of increased computation and

increased errors of both kinds, the modified test has reasonable power at acceptably low test

levels. However, an ad hoc test is at least as powerful at all test levels and is considerably more

powerful at very low levels.

The ad hoc test is based on the asymptotic distribution of averaged two-dimensional

periodograms. The test statistic is "Studentized" by use of data from neighboring cells to

eliminate the unknown spectral density. Thus it requires that the signal components be iso-

lated from each other in wavenumber and in frequency, a case which occurs sufficiently often

to be of interest.

Analysis of variance has been applied to the two-dimensional wavenumber-frequency variables,

both as a one-way layout and as a two-way layout. Since the row and column effects of the
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two-way layout have meaningful physical interpretations only under unusual circumstances, D

the one-way layout seems a priori to be preferable. It is in fact at least slightly more powerful 

than the test for interactions in the two-way layout in all cases considered, and clearly more

powerful when there are many signal components in a single row or column. e

Unlike the ad hoc test which considers each cell separately, the power of the analysis of

variance test depends upon the relative number of signal components in the wavenumber-

frequency matrix. With more than two components, the power of the analysis of variance test

of the entire array exceeds that of the ad hoc test for each component. As with any applica-

tion of analysis of variance, rejection of the null hypothesis can be followed by multiple com-

parisons to determine the source of the rejection.

An estimable function consisting of the sum of all cell means which exceed a preset

"threshold" was found to produce a test slightly more powerful than that yielded by contrast-

ing all such cell means with all other cell means. With the test conditions used in the simula-

tion, it was found possible to set the threshold so that it was seldom exceeded by cell means

for which the null hypothesis was valid.

When signals have varying epochs or phases, the two-dimensional periodogram is indepen-

dent of this unknown parameter. Analysis of variance and multiple comparisons have been ap-

plied to the periodogram in this case. The tests were found to be robust to errors of both

kinds with this non-normal (i.e., chi-square) population.

Table 6.1 shows a comparison of the power of some of the tests considered. In it, all

simulated tests were of an 8 X 32 wavenumber-frequency array with 8 observations per cell.

This represents an approximately 8 X 64 array of space-time observations. All signal com-

ponents had a signal to noise ratio of 0.0156 or -18 dB, and the noise spectral density was

identically unity. There were 2300 samples in each simulation of the first two tests, 1600 in

the third, and 100 in each of the others. The same pseudo-random sequence was used to simu-

late tests 1-3, and the same sequence was used for corresponding items in tests 4-11.

The analysis of variance tests with normal populations were found to be reasonably robust

to non-constant spectral density (unequal cell variances). With chi-square populations, only a

very modest inequality in variances could be tolerated with acceptable type I errors.

For many signal components, each common to all realizations, the analysis of variance and

multiple comparison tests seem to be preferable. When the signal component epochs or phases

vary with realization the ad hoc test is better since it is more robust to non-constant spectral

density. It requires the signal components to be isolated from each other, however, while

analysis of variance does not.

Tests for the situation when these assumptions are not valid, in particular for non-station-

ary processes, remain for future work.



D. A. SWICK

0o " I I
I I

co C9 co O LO o

(O (O r- C 00 O

O co - to c

r4 1 r 4 r s 

o~a 0o l 

OO4 r r4 1; r41

00 II 00 C C 

1; 1; 1-4 14-4 ;-

o 00 00 l C

00 00 00 i 

00 00 00o o

00 00 00o o

~Q.)
.0

0 C

u Q4
Z J

0
1-4 C

r- Ns

0

CO

0

0
zs

_ _ _ _ _ IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ & _ _ _ _ _ _ ±

rI 01D I 0 1
0 co I 0 I

1-4

co ) 00 to Lo 0 O
O.~~~~ O. 10 kDsD0.O

0 C9 00 O 0
co crco co 0 0 o

c-cO 00 00 0 C C Cq ccci 00 00oo 
.-4 .4 

-it- 00 t- 00 00O
00 0 0

e, o~r 0O 00C 00CDC

coco oL 0 C. O 0 0

00 00 00mC)OC)C
t Co 00 O 0 0 O

O CO 0 0CD0 0
00 00 O O O 

OO 00 0C)0 0 0

oo 0 0 0 00 

oma~ 00 00 00

r o O CO O O CD
4r4 r4 r-4 r4 r.4 o

a.)Q

0 0
0.

CZ 5
>) 0

o
oF a

-4- 4 -4

o o 00 0 z~~~0

o 0 0
C0 C) 0

C- - ~ CZ

ca a a
COC1 m It

84

LO

to

'-4

0

co
0
'-4

ri
0

to

0

O

IQ

a

co

CoH

co

0

¢
z

160
pq :

cn:
E-
Cj)

0

;4 �; ;� ;� ;4 ;4
P-4 QCA aw P�4 P. P�4



NRL REPORT 7466

III

O I
0 1
C)

m I r-4 I M I
Hi ci I M I

CLO ) o C co 0 oo
00 co co m o 0 

t~~~~ .c9 (LOCS 00 00 ° °

x-4 Ce cc 00 

0 L N0 oG 00Cfl ~ ~~-4cci 0cc L- oo(M C)

LO cciz-0 0o0c
-4 -4

I 0:, 0 Um

H oo D'c o s cc 

N4 s oa> 0 0 0 0. O

-4 -4-4 -14-4

do c
Cl Om 0o 00 00o.o

0 0LO 0

,- ri i-I 4- r-I i-I

(n 6) - o - -4-

Q Q Q4..~~~~~~~~~~~~~.

0 0 0 0
0 0~ a 04

0 0 0 0

H -4 Cl co

a

CZ
z

.0V

0
z

_ _ _ _ LI 

tz- to
co cc 0 0

-4 -4

t cc 0 0
,Ir CYD 0 0)

-4 -4
00 't C) C

LO cc 0 0c c 00

C~00 0 0D

0 C 00

-4 -4

LO 0) 0 0)
-4 -4 -4

cc 0) 0) 0

-4 -4 -4

cc 0) 0) 0

00 0 0) 0

m ~ C)

-X r4 -4 -4V. C

O0 0 0 0
04 0 0 0

C: U2 U 

c. c

o 0 0

S S S 
0 0 0 

oo Co o 

c r * o - o - o

o D Cl c 

o

-4

e-
85 2

I-

-0
r
r-
0
I

-4

LO~



D. A. SWICK

co 0c 0 OCD - 0 o
i-4 1-4

to o cc 0 0

o iC Oo 0. 0
-~~~~~~~~~~~~~-

o d: 00o 

o 10 0 O

o~~~~~~~~~~~~~~r- r o iO

LO cc 0 0) 0) Lo C $ 

N v 0 O O

1- 4 -4

cc C0 0 0

00 0) 0

rH T- r-

r4I ,4f iq i-4

:z E- V :-

rz4 04 0

i, 0 0 0 0

o -
CI) CI Gl C Q

cd 8 8 8 8

6 0 

C

0
-

0

H:4
.a

n"

¢4

0 0

o o

o o

00 LO~1

Cli

Ci

10

C.,4~~~~~~~~U
CZ CZ)

t u:~~t
o o

- .0

N6 0 )

o C9)Clo t'

cct

86

'-4l

C.,

z0r-
3
0

u
CD

E-



NRL REPORT 7466

00 LO~1
I:-

s r~~~~I-

t ~~oo
LO r-

C9000

I:- 0

M L-CO Co

Co 00
00 0

NO CO

N o

tl~ oq

1:- 00

r xC
L- 00

;4o

.. 4 ..

4-

a)

0
0~

E
0
(L)

CC

-

.00
---

C.

'4-'
C)

CC

M,

Q

(L)

0

0
C

9b

C)

'

0: 0
- =C

0u 0

o C) o

o -o U

2-

- C) C

C .0
U'r 

.0 C-.C 

0.'- C)

4C) C)] * 0

~ C
C) C)

0. E - _

G) A u C-

87

I1r

CDco

In

0

C-I

0I0
C--irH

CI

0

Crt

c

LO

dv

.-
0

CO

H~

C)

Co0

M

pA4

¢L.

pv

u

43

C)

.0

0

DC
35

C)

0

C)
C)

.)

0

0

CC

.0

C)

0r

C)

o:C)

xU'
C)

, C)

zo

Iii

'-

.0

*0

.0

C 

C)

0 0

o 

0 
0 b

tC

O. .0E
EC - -co

E~ c 

00 X 
CC

C) .n3

ua C2m CC 

CL CC 0
.0- 

3' .4.

U' CC- -

C:- 0 
-o ¢ 
0 0

U

C7
r-i



GLOSSARY

Absolutely Continuous Function: A real-valued function f defined on [a,b] is absolutely con-

tinuous on [a,bj if, given e > 0, there is a > 0 such that

n

LIf(X) -f(Xi) I < 
i=1

for every finite collection {(xi,x'j)} of nonoverlapping intervals with

n

L xi-Xil < 

Epoch: Phase relative to an origin. See phase.

First Mean Value Theorem for Integrals: If f(x) is continuous on [a,b], then

b

b f(x)dx = f(c)(b -a),

where a < c < b.

Frequency: A measure of the rate of repetition of a periodic function, equal to the reciprocal

of the period.

Mean Value Theorem: If f(x) is continuous on [a,b] and differentiable on (a,b), then f(b) -

f(a) = (b - a)f'(c), for some c between a and b.

Mean Value Theorem for a Function of Two Variables: If f(x,y) is continuous and has con-

tinuous first partial derivatives for x E [a,b] and y C [c,d], then there exists and 1

such that f(b,d) - f(a,c) = (b - a)fx(,71) + (d - c)fy(Qn) where f and fy denote the

partial derivatives of f with respect to x and y respectively, and E (a,b), 7 C (c,d).
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Noise: Error process, an undesired stochastic process.

Order Symbols 0, o, : f(x) = O(g(x)) if f(x)/g(x) remains bounded as x tends to its limit. If 

f(x)/g(x) tends to zero, then f(x) = o(g(x)), while if f(x)/g(x) tends to unity, then

f(x) g(x).

Phase: The angle KX + St + 5 in a plane wave s(x,t) = a cos (x + St + 5). The epoch, ini-

tial phase, phase constant, or phase relative to an origin is 5, often called simply the phase.

Plane Wave: A wave in which the disturbance is constant over all points of a plane perpendicu-

lar to the direction of propagation.

Second Mean Value Theorem for Integrals: If f(x) and g(x) are both integrable on (a,b) and

f(x) is always of the same sign, then

| f(x)g(x)dx = K f(x)dx

where inf g(x) < K < sup g(x).

Signal: A function of space and/or time potentially conveying information.

Wave: A disturbance propagating as a function of space and time.

Wauenumber: A measure of the rate of (spatial) repetition of a spatially periodic function,

equal to the reciprocal of the wavelength.

White Noise: An error process with constant spectral density.
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