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ABSTRACT

A worldwide satellite navigation system (TIMATION) has been pro-
posed that will yield instantaneoys and continuous position fixes by suit-
able satellite configurations and navigator equipment. The TIMATION
project is conducted by NRL under the sponsorship of the Navy Space
Project Office (PM-16) and the Naval Air Systems Coinmand. This report
addresses the instantaneous position-fixing results obtained by using range
and doppler measurements obtained with the TIMATION II satellite and a
navigation recriver employing a relatively precise frequency standard. The
results are corrected for first-order ionospheric refraction and indicate a
two-dimensional position-fixing capability of 105 m RMS (60 m CEPj.

PROBLEM STATUS
This is an interim report; work continues.
AUTHORIZATION
NRL Problem R04-16

Project A370 538 265 2C1W 3411 0000

Manuseript received March 16, 1973.

ii



INSTANTANEOUS PCOSITION FIXING FROM MEASUREMENT
OF SATELLITE RANGE AND DOPPLER

BACKGROUND

A significant advantage of satellites as sources of navigation fixes is that it is possible
to determine a two-dimensional position fix from a single satellite almcst instantaneously
(1). Both the range and the doppler shift are measured simultaneously. This report pre-
sents the results of a large number of navigation fixes using the TIMATION II satellite.

, The technique, which provides the navigator an instantaneous position with measure-
ments from a single satellite, assumes that the passive user has four known parameters:

(a) navigator’s velocity, (b) time difference between satellite and user clocks, (c) frequency
difference between satellite and ground frequency standards, and (d) navigator’s height
above the geoid. If these parameters are not known, the navigator can make additional
measurements to determine the unknowns,

RANGE NAVIGATION THEORY

A method of describing the theory of satellite navigation is to compare it to celestial
navigation. Figure 1 shows the relationship between satellite range measurements and
celestial-navigation measurements. In this figure it is seen that the central angle, 0, is a
measure-of the distance of the navigator from the subsatellite point. This angle, which
is determined by measuring the three sides of the triangle formed by the positions of the
navigator, the satellite, and the center of the earth, is the same as the angle measurement
made in celestial navigation. However, the satellite provides greater accuracy, since the
central angle of the triangle can be obtained to greater precisior. by the three-side-measurement
method than by the direct-sighting method.

Fig. 1 — T'ransform from satellite ranging to celestial navi-
gation, A satellile range measurement can be converted to a
line of position. The measurement of range to the satellite is
analogous to the measurement of a zenith angle to a star
having the same geographica! position as the satellite, by using
a measurement of distance to measure an angle. In celestial
navigation, the observer measures the elevation angle (EL)
with a sextant. The angles § and EL are complements. The
elevation angle is also called the altitude angle in celestial-
navigation terminology.
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RANGE

Fig. 2 — The triangle used to convert each range
A measurement. to an anyle measurement for use with
celestial-navigation techniques,

R, +h

Since the range-measurement method is analogous to celestial navigation, the intercept
chart designed by St. Hilaire (2) can be used for both techniques. Figure 2 shows the tri-
angle involved. Line AB is measured by the ranging technique, AC is the radius of the
earth, and BC is the distance of the satellite from the center of the earth. Angle 6 can
now be determined from the cosine law. The complement of 0 is called the altitude angle
in celestial-navigation terminology; it is perhaps more commonly known as the elevation
angle (EL). The elevation angle, calculated from a range observation, can be used with the
observer’s assumed position (A) and the local hour angle of the observer and the satellite
to enter the HO214 tables (2) and to construct an intercept chart. The H0214 tables are
usually accurate to 0.1 n. mi., but occasionally the error may be as large as 9.3 n. mi.
This interpolation error is bypassed by calculating the required parameters for intercept-
chart construction without interpolation.

The angle « (Fig. 3), which is required in calculating the range azimuth line, is found
by using the spherical triangle ANG, where N is the North Pole, A is the assumed position
of the navigator, and G is the geographical position of the satellite. Then the angle @ may
be obtained by solving Eq. (1), which is the cosine-law equation for spherical triangles,
using the measured angle 0, the navigator’s colatitude AN, and the satellite colatitude GN
as the known guantities.
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Fig. 3 — Spherical triangle NAG, where N is the North Pole, A is
the navigator’s assumed position, and G is the geographical position of
the satellite. The arcs AN and NG are the colatitudes of the navigator
and the satellite G, respectively.

cos 6 = [cos (AN) cos (NG) + sin (AN) sin (NG) cos «] (1)

The azimuth angle A, from AN to AG is found by Eq. 2.

= «in—1 |5in (NG) sin a]
Ay = sin [ sin (AG) (2)

The range sensitivity, the rate of change of range in the observer’s horizontal plane, is
given by ihe factor 1/cos EL. The point of reference for the range measurements is the
calculated range obtained by using the navigator’s assumed position A and the satellite
position at the time of measurement, with a small correction for time aberration.

Once the range azimuth and the range sunsitivity are calculatec the intercept chart
can be constructed. Figure 4 shows a typical intercept chart for a satellite pass. The
distance from A to G is stated in either miles or microseconds, and the tick marks are
made along the azimuth line and are marked as shown. When the reading is made, the
appropriate poini on the azimuth line is found, and a perpendicular is drawn to the
azimuth line at this point. This line is a line of position, and the navigator’s determined
position is on this line, provided there is no instrument error. Figure 5 shows a perfect
fix. Figure 6 shows au intercept chart in which the fix is at the center of curvature of
the arc shown. The radius of the arc corresponds to instrument error in celestial navigation,
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PRECOMPUTED INTERCEPT CHART

~_ Fig. 4 — An example of an intercept chart for a typical
TIMATION II satellite pass. The chart is centered at the navi-
gator’s assumed position A, and the arrows point to the satel-
lite's shifting ground point G. The ranges are marked off in
milliseconds of time delay.
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Fig. 5 — A position fix obtained using range measure-
ments with no error. The lines of position intersect at the
navigator’s position,
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Fig. 6 — Intercept chart showing effect of clock
synchronization error on plot
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and in satellite navigation to a time difference between the navigator and satellite clocks.
Assuming that the satellite clock time is known, the error in the user clock can be found.
If time<difference measurements are made at two different locations, the separate user-
clock errors can be determined as referred to the satellite clock. The times at the two
locations can then be compared, and a time transfer via satellite can be accomplished.

DOPPLER NAVIGATION THEORY

An intercept chart can also be constructed to obtain a navigation position fix using
doppler measurements; however, the doppler azimuth lines do not point to the subposition
G of the satellite, One method of calculating the direction and senstivity of the doppler
is by using the range-doppler equations described in Ref. 3.

Figure 7 shows the doppler-frequency contours of a low-altitude satellite transmitting
at a constant frequency. The contours are due to the satellite velocity and the resulting
doppler. An observer located at a point in view of the satellite will measure the doppler
shift (Fig. 8) as the satellite passes by.

If the navigator knows his frequency as related to the satellite, he can determine
which of the constant doppler lines he is on, and hence construct a line of position as
determined by the doppler. Any user velocity will change the received doppler frequency
and, unless corrected, will introduce an error in the doppler line of position.

DIRECTION OF
SATELLITE MOTION

399.992 MHZ —»

399.995 MHZ *

400,000 MHZ

Fig. 7 — Received doppler frequency contours for a 400-MHz trans-
mitted frequency from a satellite in a 500-mile circular orbit. The satel-
lite is at the center of the circle and traveling from left to right.
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DOPPLER SHIFT (KiMz)

(SR N S S I S

9 o 1 12 13 14 15 16 17T 18 19
TIME (MIN)

+ Fig. 8 — Doppler frequency shift versus time for
a 400-MHz transmitted frequency from a satelli*e in
a 500-mile circular orbit

RANGE-DOPPLER NAVIGATION THEORY

An intercept chart for range-doppler position fixes can be constructed by combining
the intercept charts for range and doppler. The lines of position (LOP) of the ranging
case are spheres about the satellite position. These spheres result in circles when they
intersect the earth. When the ranging LOPs are combined with the doppler LOPs, Fig. 9
results. One can expand a small portion of Fig. 9 to give the combined range-doppler
intercept chart shown in Fig. 10. This technique can be used to provide fixes, especially
in the ranging case, to the operator who has minimum equipment. The intercept chart
for range is easier to construct, because the range contour lines are perpendicular to the
azimuth line between the navigator’s assumed position and the satellite ground point, while
the doppler LOPs are not (in general) orthogonal to the range LOPs,
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The sensitivity of the range-doppler selutions to errors in measurement depends on
the relative location of the satellite with respect to the navigator. The mathematical
equations used for the range-doppler solution, which are given in Ref. 3, depend on the
solution of a system of simultaneous nonlinear equations. The equations contain informa-
tion on the sensitivity of the sclution which can be verified by graphical techniques. Ref-
erence to Fig. 7 shows that the doppler contours are closely spaced for a navigator with
an elevation angle near the navigator’s zenith; the doppler contour lines are more widely
spaced and skewed for a low elevation angle. The numerical value of the sensitivity is
about 0.1 n. mi./Hz (185 m/Hz) for elevation angles near the navigator’s zenith and about
0.3 n. mi./Hz (555 m/Hz) for a 10-degree elevation angle. The range sensitivity is inversely
proportional to the cosine of the elevation angle and varies from 0.16 n. mi./usec (1 ' m/m)
at O-degree elevation angle to 0.32 n. mi./usec (2 m/m) at a 60-degree elevation angle.

A unique solution to the range-doppler equations for a two-dimensional position fix
may be obtained by using a reasonable estimate for the navigator’s assumed position within
an open region defined graphically in Fig. 9 by the satellite ground track and the horizon.
This estimate results in two open regions where a unique solution may be obtained, with
the satellite ground track as a dividing line. The numerical uncertainty in assumed position
may be gquite large (on the order of 100 to 200 km), except as the navigator’s position
approaches the satellite ground track, where the estimate must place the navigator on the
proper side of the ground track.

DIRECTION OF
SATELLITE MOTION

399.992 MHZ 400.008 MHZ

399.995 MHZ 400,005 MHZ

400.000 MHZ

Fig. 9 — Received range-doppler contours for a 400-MHz transmitted fre-
quency from a satellite in a 500-mile circular orbit. The satellite is at the
center of the circle and traveling from left to right,
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Fig. 10 — An instantaneous fix using range and doppler
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POSITION-FIX RESULTS

The results of 43 satellite passes taken at the Chesapeake Bay Division field station in
the summer of 1972 are presentad here. The passes were first processed using range-only
and doppler-only navigation solutions, then edited to remove spurious data; the remaining
data were matched, and 406 points of simultaneous range and doppler data were obtained.
This method yields an average of nine points of simultaneous range and doppler data per
pass. By making measurements at 150 and 400 MHz, the data were corrected for first-
order range and doppler ionospheric refraction.

Figure 11 shows the navigation fix results using range-only measurements. Each point
on Fig. 11 is the result of using an entire pass, with a range measurement (line of position)
taken every minute, In effect the ten lines of position are then averaged to obtain one
best point for each pass. The mathematical technique used for range and doppler is de-
scribed in Ref. 8. As shown in Fig. 11, the RMS of the range-only navigation is 64 meters
70 yards, 210 feet, or 0.035 n, mi,

?

Figure 12 shows similar results for the doppler-only navigation fixes. A doppler
count was taken for each minute of the pass. The time required for a count varied be-
tween one and three seconds. Experimental results on TIMATION II indicate that this is

8 . STATION CBD naNce MV« 150/400 CoR¥ , . O okl
3365 ~3682
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Fig. 11 — Station CBD navigation fix results
using range-only measurements
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Fig. 12 — Station CBD navigation fix results
using doppler-only navigatior fixes

near the optimum count time for short doppler frequency measurements., For times i
excess of five seconds, the nonlinear doppler correction becomes large, while for short
time intervals less than one second, the short-term frequency stability causes the measure-
ment noise to increase. Each count (one per minute) resulted figuratively in a line of
position, The doppler-only navigation program then calculated a best fix for the entire
pass. The RMS of the navigation fixes is slightly better than for the ranging case, with a
value of 39 meters, 43 yards, 128 feet, or 0.021 n. mi.

Figure 13 shows the results obtained for 406 range-doppler position fixes using data
corrected for first-order ionospheric refraction. Each point corresponds to the intersection
of a single range line of position and a single doppler line or position. The navigation
algorithm used is described in Ref. 3. As expected, the nuimber of points is greater than
those shown in Fig. 11 and 12. The RMS of the range-doppier position fixes is greater
than the RMS of either the range-only or doppler-only position fixed. The expected ratio
is approximately 2.1 for a Gaussian distribution [(numbe: of minutes per pass)/2]1/2. The
actual measured ratio is 1.6 for ranging and 2.7 for doppler (Table 1), The RMS of the
instantaneous range-doppler position fixes is 106 meters, 115 yards, 344 feet, or 0.057 n. mi.
Figure 13 shows the results for the instantaneous position fixes., The distribution of the
fixes indicates a tendency toward larger longitude errors. Figure 14 gives 406 range-doppler
position fixes without the ionospheric-refraction correction. The RMS of 161 incters indi-
cates that the dominant error for this case is due to ionospheric refraction. The errors are
again greater in longitude than in latitude.
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Fig. 13 — Station CBD navigation fix results for 406 range-doppler
position fixes correcied for ionospheric refraction
Table 1
Two-Dimensional Navigational Accuracy
for 43 Passes at CBD
Passes 3365 through 3682
Mean Navigational Error
Measurements CEP RMS
(meters) | (meters) Lat. Long.
(meters) (meters)
Range Rate 36 39 —3 1
Range 57 64 —11 6
Range-Range Rate 60 105 -3 —2
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Fig. 14 — Station CBD navigation fix results for 406 range-doppler
position fixes without corraction for ionospheric refraction

It is instructive to look at the fixes on an individual pass. Figure 15 shows a pass
using 400-MHz for ranging and doppler without correction for ionospheric refraction. It
is seen that the points are not randomly distributed; they follow a somewhat smooth curve,
with the best points near the center of the pass, corresponding to the points which have
the 90-degree crossings for the two LOP’s, the minimum ionospheric effect, the minimum
atmospheric refraction, and the minimum range-rate, giving the optimum range readings.
Figure 16 is for the same pass as Fig. 15, with the inclusicn of the ionospheric-refraction
correction, which results in improved position fixes. The distribution of the navigated
points in Fig. 14 .can now be explained by the systematic error introduced by lack of
ionospheric-refraction correction, which appears to create random scatter in the composite
of all 406 points,

Instantaneous position fixes for the remaining 42 satellite passes are given in the 84

charts in Appendix A. Comparisons can be made between position fixes calculated with
and without an ionospheric-refraction correction for the range and doppler measurements.

CAVEATS

It should be realized that for all of these fixes the optimum conditions were assumed.
The satellite orbit was computed after the fact, giving an orbital accuracy of 10 m, the
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satellite clock was corrected using data taken both before and after the navigation fixes,
and the satellite frequency was likewise known from both pre- and post-fix data. In addi-
tion, the ranging data were obtained using sidetones up to and including 1.0 MHz, for
which the range resolution is approximately 10 feet. The doppler equipment used is capa-
ble of a frequency resolution on the order of 1 X 1011,

CONCLUSIONS

Near-instantaneous navigation fixes can he achieved using simultaneous range and
doppler measurements at 150 and 400 MHz from the TIMATION II satellite, with an
RMS accuracy of 105 m. An RMS accuracy of 161 m may be achieved by using the
400-MHz range and doppler measurements: in this case the principal error source is iono-
spheric refraction. The position fixes exhibit a tendency toward larger longitude errors
than latitude errors. The position fixes with the largest error occur at the beginning or
end of the satellite pass.
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Fig. 16 — Station CBD navigation fix results for the same satellite
pass given in Fig. 15, but with the inclusion of correction for iono-
spheric refraction



Appendix A

NAVIGATION FIX RESULTS FOR 42 SATELLITE PASSES

RANGE-DOPPLER NAVIGATION FIX RESULTS USING 400-MHz
SATELLITE TRANSMITTER FREQUENCY WITHOUT CORREC-
TION FOR IONOSPHERIC REFRACTION (UPPER CHARTS)

RANGE-DOPPLER NAVIGATION FIX RESULTS USING 150- AND

400-MHz SATELLITE TRANSMITTER FREQUENCY TO CORRECT
FOR IONOSPHERIC REFRACTION (LOWER CHARTS)
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