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ABSTRACT

The Helmholtz or scalar wave equation (V2 + E)w-0is separable in oblate
spheroidal coordinates '7;€;‘f’ with solutions ¥ = § (Zh, 7) R (ih, —i&) ® (¢). The
subject of this report is a Fortran computer program called OBRAD which nu-
merically evaluates the radial solutions & (ih, —££). The printed outpur from
OBRAD coasists of radial functions of the first and second kind, R(le)’(z)
(ih, —i£), their first derivacives @ R’Enlg)’(”(ih, —1£)/3¢ , the separation constants
or eigenvalues 4,0 (G4), and an accuracy check. This report first describes the
input data cards and the output format. The theory of the oblate spheroidal wave
function is then discussed. A description of the principal internal features of
OBRAD is then given. Finally a computer listing of OBRAD is attached as an
appendix.

PROBLEM STATUS

This is an interim report on a continuing NRL Problem.

AUTHORIZATION

NRL Problem S0]1-28
Project RR 102-08-41-5225

Manuscript submitted July 9, 1969.
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A FORTRAN COMPUTER PROGRAM FOR CALCULATING THE OBLATE SPHEROIDAL
RADIAL FUNCTIONS OF THE FIRST AND SECOND KIND
AND THEIR FIRST DERIVATIVES

INTRODUCTION

The Helmholtz or scalar wave equation (V2 + k%) ¥ = 0 is separable in oblate
spheroidal coordinates, with soluton ¥ = S (n) B (£)® (9). The subject of this report i's
a Fortran computer program called OBRAD (OBlate RADial) which evaluates the
solutions R (£) in the radial spheroidal coordinate £. Although other methods of computing
the radial functions B, (f)(l)'(z) of the first and second kind and their first derivatives are
available, it will be the procedure of this report to obtain them from expansions in terms
of Bessel and Legendre functions.

Oblare spheroidal wave functions of the radial type constitute an essential element
in numerical calculations involving diffraction, radiation, and scattering of acoustic
waves, electromagnetic fields of circular disks and apertures, energy levels of certain
nuclear models, and the resonant behavior of certain spheroidal cavities. An extensive
list of references on calculations and applications of spheroidal wave functions is given
in Ref. 1.

The two independent solutions le (f)“)v(z) of the radial equation are characterized
by four parameters: £ (called X), M, H, and L. M is the integer separation constant re-
lating to the solution for the rotational angle @ . H is equal to kd/2, where d is the
interfocal distance, and % i's the propagation constant or wave vector magnitude LIS
For each choice of M, H, and X there will be a set of solutions to the radial equation,
each solution characterized by a separation constant or eigenvalue A. It is convenient
to order these eigenvalues in an ascending sequence and label them with integers L, be-
ginning with L = M for the smallest eigenvalue, L = M + 1 for the next one, etc. This
choice is made ‘so that the solutions reduce to that for a spherical coordinate system as
H approaches zero. In the spherical case the eigenvalues are simply given by L (L + 1).
For each choice of M, H, X, and L there will then be two independent radial functions.

Operationally the program OBRAD is divided into several parts. In the first parc
and H are set and the eigenvalues are calculated for the desired range of L. In the
second part, X is chosen, and the expansion functions, Bessel or Legendre, are obtained.
Finally for each choice of L the expansion constants are obtained and combined with the
expansion functions to give the radial functions and their first derivatives.
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INPUT
The input consists of five data cards:

Data Card 1: Format 814. This card contains the integer value M1 of the first ¥ de-
sired; IDM, the increment in ¥ used to generate higher values of M; NM, the number of
values of ¥ that are desired; L/, the initial integer value of L; IDL, the increment in L;
NL, the number of values of L that are desired; NH the number of values of H that are
desired; and NX, the number of values of X that are desired.

Data Card No. 2: Format D32.25. This card contains AH, which is the initial
decimal value of H.

Data Card No. 3: Formar D32.25. This card contains DH, which i's the increment
in H.

Data Card No. 4: Format D32.25. This card contains X/, which is the initial
decimal value of X,

Data Card No. 5: Format D32.25. This card contains DX which I's the increment
in X.

OUTPUT

The output consists of numerical tables, one page for each set of selected values H,
M, and X. Each table gives the radial functions of the first and second kind, R1 and R2,
their first derivatives, R1D and B2D, and the eigenvalue for all choices of L that were
requested. Only 18 significant figures are printed in the table, although 26 significant
figures are calculated and more than 18 of these may be accurate,

An accuracy check is included for the radial functions and their first deri vatives.
This is obtained by comparing the theoretical value of the Wronskian W (RD, (D] of
the radial solutions to the value actually calculated from the radial functions and their
first derivatives. It gives either the number of digits that agree in the theoretical and
calculated Wronskians (or one less, because of truncation error). When X = 0, either R(D)
or its first derivative is equal to zero. The Wronskian is then insensitive to inaccuracies
in either B(2) or its first derivative. In this case the accuracy is determined by sub-
tracting from 25 the number of significant figures that are inaccurate due to subtraction
errors {Ref. 11).

Experience has demonstrated that this program will deliver correct results if the
eigenvalues A 4 are correct and the Wronskians check as noted above, Examination of
the eigenvalues for continuity is a helpful check on their comectness.

A sample page of the cutput from OBRAD is presented in Appendix C.
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PARAMETER RANGES

To use this program effectively, it is necessary to understand the limitations on the
four parameters M, H, L, and X. The ranges that the program has been tested for are as
follows:

M = 0 through 10

H = 0.01 through 75

L = M through ¥ + 49
X = 0; 0.02 through 100

Limitations on parameters are as follows.

M: In general, accuracy is not much affected with increasing #. For this reason one
could reasonably expect good results for values of M greater than 10.

H: The range on H may easily be extended in both directions. Good results should
be obtained for values of H as small as 0.001. However, the accuracy may fall off for
values of H greater than 75, especially when X is small and L is large. Since the matrix
determination of starting values for the eigenvalues as programmed in OBRAD is in-
adequate for values of H greater than 75, a formula given by Meixner (2) is used in this
case.

L: The upper limit on L may be extended beyond M + 49. For H < 20, L can probably
be extended to M + 79. As H is increased from 20 to 75, the upper limit on L must be re-
duced from M + 79 to the present limit of M + 49. As was mentioned, a larger matrix for
computing eigenvalues would be required to extend the upper limit on L beyond this.

When the range is extended, the eigenvalues should be examined carefully for continuity. -
Since the difference between successive eigenvalues becomes nearly constant for large
L, thisis the best check on their validity.

X: The range for X was determined by the physical problem. X = 0 represents the
surface of a disk and is useful for this reason. The flattest near-disk that one might
consider would probably correspond to a value of X no less than 0.02. The upper limit
on X was chosen arbitrarily and could probably be extended with little difficulty to well
over 100.

ACCURACY CURVES

Several graphs of the calculated accuracy as a function of H and for a fixed value of
X are given below in Figs. 1 through 5. The arrow indicates the range of accuracy for
L=MtwL=M4+49 and for ¥ =0 to ¥ = 10. The lower accuracy usually corresponds to
higher L. For the parameter ranges listed above OBRAD will produce values for R(1)
and its first derivative that are accurate to at least 20 significant figures. When the
Wronskian check is less than 20 significant figures, it indicates lower accuracy only in
R(?) and its first derivative.
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COMPUTATION TIME

Using the CDC 3800 the compilation time of OBRAD is about 48 seconds. The
execution time varies, but if all SO values of L are requested, the average time will be
about 0.4 second for each set of R1, R1D, R2, R2D, and eigenvalue.

SOLUTION OF THE HELMHOLTZ EQUATION IN OBLATE SPHEROIDAL COORDINATES

Details of the oblate spheroidal coordinate system, which is an orthogonal coordinate
system, are given in Ref. 1. Brefly, the three oblate spheroidal coordinates are ¢, 7,
and ¢, where 0 < <, ~ 1 <7 <1,and0 <9< 2 7. The surfaces of constant £.
the radial coordinate, are represented in the zyz Cartesian system by the locus

x2+)’2 -1 12
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This describes an oblate spheroid whose interfocal distance is d. The surfaces of o
constant 5 , the angle coordinate, are represénted by the locus

x4y z
—_—_— el (2
a¥(,_, 2 <i)2 2
2) 77 2/ 1
Thi's defines a hyperboloid of one 'sheet whose focus is located a distance d/2 from the

origin of the Cartesian system.

The surfaces of constant @, the rotational coordinate, are half planes whose edge is
the 2 axis.

Any point in three-space can then be represented by the triad (¢, 9 , @).

The scalar wave equation (V2+%2) ¥ = 0 is separable in oblate spheroidal coordinates.
Adopting with slight modifications the notation of Morse and Feshbach (3), we write

) ) o cosme@
¥ = S(ik, ) R(ih, -i¢) sin mo ’ @
where
A= %‘— . 4

The angle function S and the radial function R satisfy the ordinary differential equations

2
Ed;[(l-r]z)%j‘]+(z4+h27)2—l—'?‘-q"z')S=0, (5)
2
}5[(1 +§2>%JV_ (A—h2 £ - 1?3)’“0- (6)

Here A represents a separation constant dependent on m, {, and A. There are two solutions
to both Egs. (5) and (6). Consider only the first solution &1 o Eq. (5). When A2 -0, Eq.

(5) reduces to the standard equation for the associated Lengendre function me (n) of the
first kind, where the separation constants are 4 = £ €@+1D;8=mm+1,.... Thus, for
each pair of integers m and £, both Eq. (5) and Eq. (6) have a solution only for special
values of 4 = A p (GR). For A £0 we can write

’,

SO Ghom) =) d, (iblm) P™ (5 . ™
n
The prime sign meansthatn =0, 2, 4, ... if | — mis even and 5 = 1,3,5,...if

! — misodd. Substituting Eq. (7) into Eq. (5) and using known recursion formulas for
Pé" (), one obrains the following three-term formula for the expansion coefficients:
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_(2m+n+2) Cm+n+]) Al d
2m+2r+3)(2m+2n+5) n+2

2
R o L PR

n(n—1) A2 -0
T @n+2n-3)2m+2n=1) b2 =0,

with the asymptotic relation

dn+2
7 im0 ©
and the normalization
2 1
X el - (10

n
A knowledge of 4 ) would then allow d,, to be calculated by an iterative process.

This program, however, is concerned with only the radial functions R(l) (¢h, — &)
and P( )(c %, ~ig). Using the general principle that any solution of the scalar wave
equation (say the angle function S) is a suitable kernel for the integral representation of
a second solution (say the radial function R(1)) the following expression for the radial
function of the first type R(!) is obtained by integration over §:

2 m/2 ’
B i) (B2 amem -t 0l g i
n (11)

where j is the spherical Bessel function of the first type.

Using a known recucsion formula {or the spherical Bessel functions, the derivative of
RV is obtained:

(ll)

2 m/2 ,
(ih, - z{)_%(%;—l) Zi"*‘m—e(—’%!z—ml!-dn(iblmﬂ)

n

(12)

X . A 1
"[(znffmmzl)fwm-z("f) D i (B0 Fg fren )]

Using an asymptotic form for the spherical Bessel function, we can find asymptotic forms
for the radial function of che first kind:

priis
L]
o
b+
£
L]

ry
-

iy}
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Y P ™ .
(1) (ap _ay . E=m)! ™ = C(2m)! 4, ({hlmt) A o

Rmz (Zh,. 7/0)- T (2m+1)!! N ¢ m = even,
. 13
=0, f—m = odd, (13

B o ) im0 om 1y g (ihlm) B+ 1

‘Té_c—'(?,h,—~20)=m (2m+3)” B Z-—m:odd, )
(14

=0, f—~m = even.
Here 2m + 1)!! = (2m + 1) 2m - (2m—-3)...(3) (1). Similarly the radial function of

the second kind anzl) (ik, — &) can be expanded in terms of Y (A€), the Neumann function
or spherical Bessel function of the second kind:

R(Z) (ih, ~4g) =§g—m)! (ﬁﬂ)mnz;“m_z(mzm)!
m 3 "

ml \" 7 - Al G GhlmD) y, (R &),
(15)
dﬁfnzl)(.h . )_(B—m)! {ﬁ_l_ m/zz,’;n+m-—t(n+2m)| d (ihlme
gz b i) = g 72 oy (a2 2m)! d, (shlmt)
X[Z:Enztnn?l yn+m-l(hf)‘%) yn+m+1(hf)—(Tm—yn+m(k§) .
£2+¢)
(16)

Since this expansion contains the Neumann function
values of A¢. A second method is necessar
kind for small values of A¢.

» its usefulness is limited to large
y to obtain the radial function of the second

Consider the special expansion of the oblate an

gle function first discovered by
Baber and Hasse (4): '

Sup Ghin) = e ) @T0 PR ). (17)
n=

When this is substituted into Eq. (5), and the recursio

n formulas of me (n) used, itis
found that the expansion coefficients Cf;."l

satisfy the three-term recursion formula

2 (n+m+1) (n+2m+1) @nt
(2n+2m+3) n+l

—[(n+m) (n+m+1) -Amg— 1;2]6;;*“ (18)

12k (n+m) gmt

= 0
2n+2m—-1 *-1 ’

with the asymptotic condition
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By substituting i £ for 5 and On .y, for P, one can obtain a series expansion of an
oblate wave function in the radial coordinate £. Noting that the asymptotic value of

@ (2), the associated Legendre function of the second kind, is

Q5 (2) = ~1—, (20)

gt+1

we can use Eq. (17) in its modified form to obtain an expansion of the radial function of
the thirdkind (= R(3) that will have a radial dependence eth/h¢ as ¢~ . Allowing for
appropriate constants, this procedure leads to the formula

ilhé~@e1)(n/2)) = 2m+1 @
RO)h,—i&) = e 2wt gt Om

mf m+n
n ar,

€& . @y

Now the radial function of the third kind is related to the radial functions of the first and
second kind by the formula

R3) - p(L), ;R (22)

Equation (21) can be separated into real and imaginary parts:

R = (a+ip) (y+i8), (23)
; —(@+1) (n/

where a+if3 = el[hg (1) (m 2)] (24)
> c 2m+ 1 &me

and yris = ) = G Oen GO (25
R=-m - m

We can now identify R - ay—f8 (26)

and R = 45+8y (27)
(1)

or - R - a5+/3[—R—:—B§]. (28)

The form given by Eq. (28) is used for R(?) to avoid computational difficulties associated
with y. R(?) can now be calculated using Eqs. (24) and (25) and the previously calculated
value for (1),

Similarly the first derivative of the second radial function R(?) is obtained:

drH P
iy +pvVv
Y K i J (29)
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o0 &mf ‘
where p+iy = Z L {Qn”'+m (Z &) [ic(:l +1n) +z'h-,
+
J

+z%’§—;‘) on, . <i§)}. (30)

When X = 0, asymprotic forms can be used for £(2) and dR(?)/ d£ which take advantage

of the loss of independence of R{1and £(2). These special formulas are obtained by rewriting

Egs. (4.6.15) and (4.6.16) in Flammer (10) to include dn(ib ]mf) satisfying Eq. (10).

DESCRIPTION OF THE COMPUTER PROGRAM OBRAD

The Fortran IV computer program used to calculate the oblate spheroidal radial
functions of the first and second kinds, their first derivatives, and the eigenvalues is
listed in Appendix B. Some details of this program are given below.

Expansion Functions

Several special functions are required: the factorial functions, the associated
Legendre functions of the second kind, and the spherical Bessel functions of the first
and second kinds.

1. The factorials are calculated in the main program in statement 96 + 2 lines through
statement 53. It was necessary to scale FACT (N + 1) = N! for N = 170 1o 296 to prevent
overflow, since the maximum exponent available on the CDC 3800 at NRL is 307.

2. The associated Legendre functions of the second kind, @7 (:X), where X is the
radial coordinate, is calculated in the subroutine QLEG. QLEG is called after M and X
have been set and when H = AH, the first choice for H, since @7 (iX) is independent of
H. It returns values of QF ((X) for N =0 to N = 126 + 2M. @7 (iX) is either purely real
or purely imaginary depending on whether N is even or odd respectively. Therefore when
N is odd, the real answer returned by QLEG must be multiplied by 7 to obcain Qr (2X).
For fixed M these values are stored for all choices of X in the matrix OUTPUT (N +2,
1X). Here IX indicated the specific X, and N + 2 is chosen so that the first element
stored in OUTPUT is @™, (4X). When M changes, QLEG is again called for each X when
H = AH.

Qfl (¢X) is calculated in the main program in statements 4 through S using @7 (1X)
and @7 (iX) in a backward recursion formula. QLEG uses limiting forms for @7 (iX) when
X =0. When X>0, Qg (iX) is calculated from a hypergeometric series, and Q) (iX) is
then obtained by a forward recursion formula. These expressions are given as Eqgs. 30
through 32 in Ref. 1 and Eq. 9 on page XVI in Ref. 5.

The output of QLEG was carefully checked for the entire range of ¥ and X necessary
for OBRAD and found to have an accuracy of at least 20 significant figures.
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3. The spherical Bessel function of the first kind is calculated in the subroutine
SBESF. SBESF is called after H and X have been set and when L is equal to L1, the
first choice for L. It returns values for ip (HX) for N =0 to N = 145, unless HX is greater
than or equal to 100 when it returns values for N = 0 to N = 145 + . SBESF calculates
7, (HX) by a series expansion when HX < 0.4, by a backward recursion relation when 0.4
< HX <100.0, and by a forward recursion relation when HX > 100.0. These expressions
are given in Ref. 6 as 10.1.2 and 10.1.19. The accuracy in j, (HX) i's greater than 20
significant figures for the entire range of HX necessary for OBRAD.

4. The spherical Bessel function of the second kind is calculated in the subroutine
SPHYN by a forward recursion relation given as Eq. 10.1.19 in Ref. 6. If X > 1.0 and
HX > 10.0, SPHYN is called after H and X have been set and when L is equal to L1. It
returns valuesof y_ (HX) for N = 0 o N = 143 + M. The accuracy in y, (HX) when
HX > 1.0 is greater than 20 significant figures.

Eigenvalues

Before the expansion constants can be evaluated, it is necessary to know the
eigenvalues or separation constants for which solutions to Egs. (5) and (6) exi'st.

Starting values or numbers agreeing to at least two places with the correct values
are obtained for the eigenvalues. These starting values are solutions to an eigenvalue
equation which when expressed in matrix form reduces to the problem of diagonalization
of the matrix. The eigenvalues chen appear as the resulting diagonal elements when
ordered numerically from lowest to highest. Although the exact determination of the
eigenvalues would require a matrix of order infinity, good starting values are obtained
using matrices of modest proportions. The minimum size matdx used in OBRAD is of
order 50, giving 50 possible starting values. When H < 20, all 50 values are adequate as
starting values, with the lowest eigenvalue corresponding to L = M. However, as H in-
creases, the order N of the matrix must al'so be increased to mainzain good starting values
for the 50 lowest eigenvalues. The order N as determined in statement 3 + 14 lines
through statement 3 + 18 lines is adequate to give good starting values for the 50 lowest
eigenvalues when H is less than or equal to 75.

The matrix elemeats 4 are obtained in statement 3 + 19 lines through statement 43.
Subroutine EIGEN, which diagonalizes the matrix 4, is then called. Details of the matrix
and its diagonalization are given in Ref. 7. EIGEN returns the N diagonal elements in
ascending numerical order. LF — 1 + M of these, where LF is the highest L desired, are
now used as starting values in a variational procedure devised by Bouwkamp (8) and
Blanch (9). (When H is greater than 75, good starting values are obtained instead from a
formula given by Meixner (2). This formula is programmed in statements 35 through 37.)
This variational method adds corrections to the starting values, the corrections becoming
successively smaller as the correct eigenvalue is approached. Good starting values are
necessary to assure the convergence to correct eigenvalues. Convergence is assumed
when the relative contribution of the correction is less than 10~24. Because of the
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limited word length in the CDC 3800 at NRL a more stringent test does not give more
accurate eigenvalues, but the corrections oscillate around 10~25. This vadational method
is programmed in statement 6 + 3 lines through statement 22 + 1 line.

Expansion Constants

1. The first expansion constants that are used d, (thlml) are calculated in statement's
31 through 32 + 1line. These calculations make use of the single subscripted variable
ENR that has been obtained above in the eigenvalue correction. Although the method is
disguised by the intermediate variable ENR, basically the expansion constants dp
(2h|ml) (called DLIST(])) are calculated using Eqgs. (8) through (10). Here the index J
runs consecutively from 1 to 72. For example, DLIST (3) represents ds (¢h|ml) when
L — M is odd but d4(ih|mb) when L — M is even.

2. The expansion constants G”:‘E /@Tlm, used in the calculation of the radial function

of the second kind, are obtained in statements 252 through 291.

First uncorrected values RATIO (J) are successively calculated by use of the reverse-
recursion form of Eq. (18) until they begin to decrease (J = IND + 1). Here RATIO
(123 + 2M) is chosen equal to 0, and RATIO (122 + 2M) is chosen equal to 1.

Next using the fact thae @=L /@mL - ARATIO (1) = 0 and @rt /@t - ArRATIO
(2) = 1, true values ARATIO (J) are obtained by use of the forward recursion form of Eq.
(18) until J = IND + 1.

Finally RATIO (J) is corrected by matching to ARATIO (J) at J = NI + 1.

Evaluation of the Radial Fuactions

The expansion constants and functions are now combined to give the radial functions.
The radial functions of both kinds and their first derivatives are calculated for X = 0 in
statement 237 through statement 246 + 3 lines. For X £ 0 the radial function of the first
kind and its first derivative are calculated in starements 211 through 236 using the
expansions given in Egs. (11) through (14) and the radial function of the second kind
and its first derivative are calculated in statement 291 + 1 line through statement
311 + 1 line using Egs. (28) and (2).

A Wronskian check is made on the two radial functions and their first derivatives in
statements 311 + 2 lines through 311 + 4 lines. Here the calculated Wronskian CWRON
is compared to the theoretical Wronskian TWRON to give the number of significant figures
that agree NIAC. When X = 0 the accuracy is determined instead by subtracting from 25
the number of accurate figures that are lost during subtraction of nearly equal numbers,

When X > 1.0 and XH# > 10.0, Egs. (15) and (16) are also used to calculate the radial
function of the second kind and its first derivative. This is done in statement 311 + 7
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through statement 324. A Wronskian check is made using these values, yielding the
integer IAC.

IAC is now compared with NIAC in order to choose between the two sets of values
for the radial function of the second kind and its first derivative. If IAC > NIAC, the re-
sults obtained using Eqs. (15) and (16) are printed. 1f NIAC > 1AC, the results of Egs.
(28) and (29) are printed instead.
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Appendix A

Major Calculation Blocks of OBRAD Listed According to Statement Numbers

Calculation Block Statement Number
From To
Calculate factorials *96 + 2 53
Read data 1 3+3
Do loops
Set M 3+4
Set H 3410
Calculate the starting eigenvalues
by Subroutine E1IGEN 3+ 14 7
by Mcixner's formula 35 37
Sec X 38
Generate Q's Using
Subroutine QLEG 38+5 5
Set L 6+1
Correct the eigenvalues 6+3 22 +1
Calculate constants 4 : 31 32+1
Calculate radial functions R1,
R1D, R2, R2D for X =0 237 246 + 3
Calculate R1, R1D using SBESF 211 23
Calculate @ ratios 252 . 291

Calculate R2, R2D
by use of Q functions 21 +1 311 + 1

Decide whether to use
Neumann functions to calculate R2, R2D 311 +5
*Note: The symbol 96 + 1 signifies statement number 96 plus one line.

14
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Calculation Block

Calculate R2, R2D by

means of spherical Neumann
functions, subroutine

SPHYN

Calculate Wronskian
(plus accuracy check)

Decide to print out
final result based on
Legendre function approach
or on Bessel function approach

Final prntout

From

311 + 7

311 + 2
and 324 + 1

324 +3

326+ 1

15

324

311 +5
324 + 2

<

o«
.
e
o
(e

o

L]
e




Appendix B

LISTING IN FORTRAN IV OF OBRAD,
A PROGRAM TO CALCULATE OBLATE

SPHEROIDAL RADIAL WAVE FUNCTIONS

AS COMPILED FOR CDC 3800

17
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e
PROGRAM OBRAD et
TYPE pouBLE AA'AAAOAHoAQ'ARATIOvARGQARRAYQATERMQBLISTQBOOKqCLO
ICOEFFXvCOEFFE0COEFF3'CORA0CORBQCWQ0NQDEQDHQOL'DLISTQDN'DXQEI0520 T
zEa‘EJNOEMOENR!ENQC.ESTORE'ESUM.EYEOFACT'FN!'FNEOFNMQGLISTIHIPIC &
3OUTPUTOpApEROch'pEN'pLe!pL9OpLAOPLBQPLCOPLD'RI!REORBORADIORADIDO
4RADZ|RADZD'RATIOORSTORE!RSUM!S!SSUM]OSUBSUMCTEMPQTERMOTERMI|TERM2.
5TERM30TWRON|W1XCXXlXL'XXOEIG000CRADEOCRADZDQDWQFSTRATODRATIOQDNEG
OIMENSION A(BOOBO)0AQAT]0(250’0ARQAY(250)OBLlST(Zso)OBOOK(ZSO)0
lCOEFFl(ZSO)0COEFF2(250)|COEFF3‘250)ODLIST(EOO)ODN(ZOO)QEIGKBO)t
2ENQ(250)oFNM(ZSO)QGLlST(250)00UTPUT(X70040)lPAPEQ(ESO)opCL(ZSO)O
3PEN(250)!RAT]O(ESO)OQ(EOO)|AIG(BO)ODRATlO(BO)
COMMON FACT(300)
86 FORMAT(IXOI302X05(DE4017QIX)01le3)
B7 FORMAT(1H]+S6X+*0BILLATE RADI AL FUNCTIONS*4,// /447Xy % =¥ ¢FSe 119X
1¥#X =% 4F642+19X 1 ¥M =*0]30///03X1*L*|13X|*R]*923Xt*RID*QZZXO*PZ*O
223X ¥R2D%* ¢+ 18X+ #E ] GENVALUE #* 1IX HACCER,/)
90 FORMAT(814)
S6 FORMAT(D32,25)
pl=3c141592653589793238&6264340
FACT(1)=1,0D
DO 51 JU=x14170
51 FACT(J+1)=UnFACT(U)
FACTUI71)=FACT(171)%(]1,D~300)
DO 853 J=171¢296
53 FACT{JU+1)=U%FACTI(Y)
1 READ 90 4M1s1OMoNMeL T+ 1DL s NL s NH»NX
IF{EOF+60) 502,43
3 READ 96+« AH
READ 96+DH
READ 96+ X1
READ 964+DX
DO21IM=1 ¢ NM
M=M14+(IM=-1)%]IDM
EM=M
IF(L1eLTeM) Li=z=M
LF=L1+(NL=-1)*1DL
H=AH~DH
DO21H=1 eNH
H=H+DOH
AA=—-H*H
AAAzAARAA
N=N1=LF~M+1
IF(HeGTa754D) GO TO 35
IF(HeGTW420,D) N=N14+(H-20,D) /2.0
IF(NeLTeS0) N=5S0
IF{N«GT.80) N=80
D04t U = 14 N

D041 I = 14N
41 A(l«JYy = O,

DC4a2 1 = 1N

XL =M+ 1 =1

42 ACTal) eXLE(XU410) +AAR (2o¥XLE(XL4+10) =2 e XEM¥EM—14) /((2e%XL-10)%*
1 (24%XL43e))
NM2 = N-2
DOA3 1 = 14NM2
XL 2 M 4 1 - 1
AC1a142) = (AAZ(24%XL+3¢)1% SORTC((XL42e+EM) ¥ (XL+1¢+EM) ¥
TAXLA20=EMI R (XL+1e=EM) ) /((2¢¥XL+54 1% (2¢¥XL+1 0)))

43 AC14241) = A(14142)
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ANORMI =AA
ANORM2 =l FR{LF4+14)
CALL EIGEN(ALAIGININT » ANORM] ¢ ANORM?2)

DO T7I=1+N1

T EIG(II=AIG(1)

35

11

10

12

GO TO 38
DO 37 L=t 14LF+2

P=2e®{(L~M)/2)+M+1 0
E1GIL=Mt1) =M HI2 #HH¥P— o S* (PRP-MAM+] ) —P* (PEP-MAM41) /(84 *H)

|~(5.*P**4+10-*P*P+1.—2.*M*M*(3.*P*p+l.)+M**4)/(64.*H*H)
2-P*(33.*p**4+1IQ.*P*P+37-2.*M*M*(23.*P*P+25.)+13.*M**4)/(512.*H**3
3) —(63.*P**6+340.*P**4+2390*P*P+14o“lO-*M*M*(lOa*P**4+23.*P*P+3-)
A+ XMERAR (13 ¥PAPI6, ) 2o #MEXE) /{1028, %HI%4)
S—P*(527.*P**6+4139-*9**4+5221.*P*P+1009.—M*M*(939-*P**4+3750.*P*P
6+1591-)+M!*4*(465.*P*P+635«)—53.*”**6)/(8192.*H**5)
IF(2%((L-M)/2)aNEL-M) EIGIL-M)=EI1G(L-M+1]1)
EIGIL-M+2)=EI1G(L~M+1)

DO2IX=1 ¢ NX

X=X1+{1X~1)%0X

XX=X%#X+1 4D

ARG=H*X

IF(HoeNEsAH OR«XeEQsO+D) GO TO 6

LQ=125+2%M

CALL OLEG(M«LQ+XeQ)

DO 8l1=1+L0

OQUTPUT(TI+141IXY=0Q( 1)

IF(MeEQeDa4S

OUTPUT(1e1X) =0,D

GO YO &

OUTPUT(lolX)=-X*OUTPUT(2aIX)/EM+(EM“I-D)*OUTPUT(30IX)/EM

PRINT 87sHoiXeM

DO21L=1 +NL

L=Li+(IL-1)*IDL

PLB=2 4D*EM+1 4D

IFC=0

TUCT=(L~-M) /2

IRIO=TUCT+1}

IR=IRIO+1

CL=EIG(L-M+1)

IF(2%JUCTNEL(L-M)) GO TO 10

1D=2

iIB=75

ICz2uM

GLlST(l)=EM*(EM+1nDl+AA*(PLB-2-D)/((PLB—Z.D)*(PLB+2.D))

GO TO 12

10=3

IB=74

IC=2%M+1
GLIST(I)=(EM+I-D)*(EM+2¢D)+(6.D*EM+3.D)/(PLB*(pLB+4aD))*AA
LIM=150

118z18~1

DO 131=1DelLIMs2

EYE=1]
BLIST((I-lD+2)/2)=EYE*(EYE-l-D)*(PLB+EYE-1cD)*(PLB+EYE-2oD)*AAA/
1((PLB+2.D*EYE-4.D)*(PLB+2.D*EYE)*(pLB+2oD*EYE—ZoD)*(PL8+2|D*EYE~

22.D}Y)

13 GLIST((I—ID+4)/2)=(EM+EYE)*(EM+EYE+1.D)+.SD*AA*((lnD)-(pLB*PLB—ZoD

17

I*PLB)/((PLB+2.D*EYE—2-Di*(PLB+2oD*EYE+2-D))f
ENR{1)}=CL-GLIST(1)
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DO 181=1+1UCT

ENR(I+1)=-BLIST(I)/ENR(I)I-GLIST(1+1)+CL
ENRCIB)=~-BLIST(IB)/(GLIST(IB+1)-CL)
1P=11B8+1IR

DO 19 1=1R411B

1PI=1P~1

ENR(IPI)=‘BLIST(]P])/(GLIST(Ipl+1)—CL+ENQ(lpl+l))
ENRC=-BL]ST(IRIO)/(GLIST(IR)-CL+ENR(IR))
DE=ENRC*ENRC/BLIST(IRIO)

CORE=DE

DO 20 I=IR, 18

DE=ENR(T1)*ENR(IY/BLIST(]) *DE

CORB=CORB+DE

IF (DABS(DE/CORB)4LTs1eD~27) GO TO 23

CORA = 1D

DE=14D

DO 26 1=1+1UCT
DE:BLXST(IRIO‘!)/(ENQ(IRlO—I)*ENR(IQIO-I))*DE
CORA=CORA4DE

IF (DABS(DE/CORA)¢L.T41+D~-27) GO TO 27
DL=(ENRC~ENR(IR10) )/ ({CORA+CORB)

CL=CL+0OL

IF(DABS(DL/CLYeLTe1eD-24) GO TO 22

IFC=zIFC+1}

IF(IFCeLTo50) GO TO 17

CONTINUE

EIG(L-M+1)¥=CL

AR=1D
DN(1)=(‘ZOD*EM+ZDD*AR-1-D)*‘E-D*EM+200*AR+1QDJ*ENR(l”/
1U(2.D*EM+ARI ¥ (2 ,DXEM+AR=1,D) ¥AA)

W=DN( 1) *¥FACT(2#M+ID+1)/FACT(ID+1})

D0O30JU=241B

AR=1D+2%(J=-1)
DN(J)=DN(J~I)*((2.0*EM+2'D*AR~1cD)*(Z.D*EM+2.D*AR+l-D)
1*ENP(J))/((2.D*EM+AR)*(2.D*EM+AR—1‘D)*AA)

DW= DN(J)*(FACT(Z*(M+J)+ID-1)/FACT(ID+2*J—1))
IF((2¥(M+I)+1ID-1)1.GTa170) DW=DW#¥*1 ,D+300

W=W+DW
DL[ST(I)=FACT(L+M+1)/(FACT(L—M+1)*(W+FACT(IC+1)))
DO32J=14+70

DLIST(J+1)=DN(J)I®DLIST(1)

DLIST(72)=0D

IF{XeNE+OeD) GO TO 200

DRATIO(1)=0.D

DNEG=DLIST( 1)

00 33 I=1M
DRAT1011+I)=“(1+l+ID—2oD)*(I+l+lD—3.O)*AA/((4*I+ID+ID-M~M—

1500)*(4*I+ID+ID-M—M—3-D))/((I*l+lD—M~4-D)*(I+l+|D—M“300)—CL+(ZoD*
2(1+1+ID—M-4cD)*(l+l+lD—M-3oD)—M*M‘M*M—1oD)*AA/((4*I+ID+ID—M—M—9-D)
3*(4*I+ID+ID—M—M~500))+AA*(l+l+lD*M-M~QoD)*(l+1+lD—M—M—SoD)*
4DRAT10(I)/¢(4*1+ID+ID—M~M—1I.D)*(4*1+!D+!D-M—M—9-D)))
DNEG=DNEGH*#DRATIO( 141
TERM:FACT(M+M+]D+ID—3)/(2.0**(XD-Z)*FACT(M+ID”1))

FSTRAT=TERM*DL IST({1 )

TERM2=DABS(FSTRAT)

DO 34 1=2471
TEQM:-TERM*(M+M+X+!+ID+ID—6)*(M+M+!+I+XD+ID—7)/(4-D*(l-l)*(M+X+ID
1-3))

TERMI=TERM®DL 1ST( 1)




34

200

201

203

205

206
207
208
209

210

214
21%

216

217
219

230

231
232
233
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TERM2=DMAX1 (TERM2+DABS{TERM] ) )
FSTRAT=FSTRAT+TERM]
1AC=26-DLOGI0({TERM2/DABS(FSTRAT))
IF(1AC«GT25) 1AC=2%

GO TO 237

E1=DSIN(ARG) /(HRXFACT(M+1))
R1=DCOS(ARG)/(H¥FACT(M+1))

GO TO (2014203¢2054206)2L.~(L/4) %441

E2 = - R}

R2 = EJ

GO TO 207

R2 = - RI1

E2 = - EI

GO TQ 207

E2 = R1

R2 = -~ E1

GO TO 207

R2 = R1

E2 = E1

GO TO (208120912081 209) 1 M~(M/a)%4+1

E3 = R2

R3 = « E2

GO 7O 2i0

E3 = =« R2

R3 = E2

IF(LeNESLTY GO TO 211

LNE=145

IF(X®*HeGE«100+D) LNE=LNE+M

CALL SBESF(ARG«LNE+ARRAY)
PLA:DSORT((XX/(X*X))**M)*FACT(L—M+1)/FACT(L+M+1)
1A=}

IF(2#JUCTeNE« (L=M}) TA=1A+]

IC=1A4+142-M

IF(X¥H.GE+10040) 1C=1C+M=~4g

SUBSUM = O.D

DO 217 K = 1Ay 1Ce 2
IBOX3=1ABS((K+M=l_ =1)/2)
BOOK(K):DL[ST((K+x)/2)*ARRAY(K+M)*(FACT(K+2*M)/FACT(K))
IF({K+2%M)aGTe170) BOOK (K ) =BOOK(K)#] ,0+300
IF(Z*(IBOX3/2)oNE-IBOX3)BOOK(K)=-BOOK(K)
SUBSUM = BOOK (K) 4+ SUBSUM
IF{DABS{BOOK(K) /SUBSUM) «LTe1eD=-27) GO TO 219
CONTINUE

RAD 1 =PLA®SUBSUM

SSUM1=0,D

DO 234 K=1A+ICy2

IBOX3=TABS{(K+M-L~1)/2)

10S = (K + 1)/2
PCL(K)=DLIST(XDS)*(FACT(K+2*M)/FACT(K))
IF((K+2¥M) 4 GTa170) PCLIK)2zPCL(K)#*#] (D+300
1F (2% (1BOX3/2) «NE ¢ 1BOX3) PCL(K) ==PCL(K)
PLDEK4M=1

IFI(K+M=1)4,EQeQ) 230+231

PEN (K) = = ARRAY (2}~

GO TO 232
PEN(K):(PLD*ARRAY(K+M—1)—(PLD+1.D)*ARRAY(K+M+1))/(2.0*PLD+1.0)
PAPER (K) = PCL (K) * PEN (K)

SSUML = PAPER (K) + SSUM1
IF(DABS({PAPER(K)/SSUM] ) ¢LT41eD~27) GO TO 236
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234 CONTINUE
236 RADID:(H*SSUMI‘EM§SUBSUM/(X*XX))*PLA

GO TO 2s2
237 D0 239 I=24M
239 PLB=PLBX¥(2#M-2%143)
PLC:FACT(L-M+1)*FACT(E*M+1)*DLIST(l)*H**M/(FACT(L+M+!)*PLB)
GO TO (240v242'2440246)c(L*M)-((L—M)/4)*4+l
240 RADI=PLC
RAD1D=0,D .
QADZ=(M+M—1)*PI*FACT(M+1)*FACT(L-M+1)*(H/ZoD)**M*FSTRAT*FSTRAT
1/(+FACT(M+M+1)*FACT(L+M+1)*Z-D*H*DNEG)
RAD20=14D/(HXRAD1)
GO TO 326
242 RAD!1=0,D
RAD!D=PLC*(2-D*EM+1.D)*H/(ZoD*EM+3-D)
RADZ2=~14D/t{HX¥RADID)
RAD2D= (M+M~3J*(M+M-l)*FACT(M+l)*FACT(L~M+X)*Pl*(H/Z.D)**M*
lFSTRAT*FSTRAT/(FACT(M+M+l)*FACT(L+M+I)*Z-D*H*H*DNEG)
GO TO 2326
244 RAD1==-PLC
RAD1D=04D
RADE:(M+M—1)*PI*FACT(M+1)*FACT(L-M+1)*(H/2.D)**M*FSTRAT*FSTRAT
l/(—FACT(M+M+l)*FACT(L+M+1)*ZoD*H*DNEG) .
RAD2D=1+D/(HXRAD1)
GO TO 326
246 RADL1=0.D
QADID=—PLC*(2.D*EM+1.D)*H/(Z.D*EM+3-O)
RAD2=~14D/(H*RADID)
RADZD:—(M+M-3)*(M+M—I)*FACT(M+1)*FACT(L—M+!1*Pl*(H/2oD)**M*
IFSTRAT*FSTRATI(FACT(M+M+l)*FACT(L+M+1)*Z.D*H*H*DNEG)
GO TO 326
252 MA=2%¥M4+123
GO 70 256
254 MA=MA~20
256 JS:=MA~M=p
S=J8
RATIO(MA)=0.D
IMA = MA - 1t
RATIO (IMA)Y = 1,0

00 253 J = 1 IMA

[=1MA=U+1
COEFFI(!)=2.D*H*(S+EM+1-D)*(S+2.D*EM+1oD)/(EuD*S+2-D*EM+3.DJ
COEFF2 (1) = (S + EM) * (S + EM + 1.0) ~ CL ~ R # H

COEFF3 (1) 2 2.D*H*S*¥(S 4 EM)/Z{2.0%S + 2,D%EM ~-1,D)

253 S = 5 - 1,0
ARATIO (2) = 1, D
ARATIO ( 1) = 04 D

269 00O 280 !=z14JS
K=JS=1+14M
FNI = COEFF1 (K + 1) * RATIO (K + 2)

FN2 = COEFF2 (K + 1) ® RAT1O (K + 1)

270 RATIO (K) = (FN{ =~ FN2)/COEFF3 (K + 1)
IF(DABS(RATIO(K))~GT.!.D+300) GO TO 254
IF(DABS(RATIO(K+1))oGT'DABS(RATIO(K))) GO TO 272

280 CONTINUE
IND=xk
GO TO 274

272 IND=K+1

274 IF(IND.LTs2) IND=2
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281 DO 289 JU=1.K ol
10 = U 41 o

FN1 = COEFF2 (J) ®* ARATIO (1))
FN2 = COEFF3 (J) % ARATIO (1J - 1)
ARATIO (1J + 1) = (FNI 4 FN2)/COEFF1 (J)
289 CONTINUE
RATIO(1)=RATIO(IND)/ARATICCIND+1})
DO 291 I=IND+MA
291 ARATIO(1+41)1=RATIO(1)Y/RATIOC(})
RSUM=0UTPUT (34 [ X)*ARATI0(3)
ESUM=0UTPUT (24 I X)
RSTORE==OUTPUT (24 IX) *( (EM+1 +D) ¥ARATIO! 3)+H)
ESTORE=EM¥OUTPUT (14 IX)/XX+0UTPUT (3 [ X) *ARATIO(3 ) #H
IF(MeEQ40) ESTORE=ESTORE+] +D/XX
DO 306 K=4.4MA
AR=K
TERM1=0UTPUT (K IX) ¥*ARATIO(K)
TERM3=-ARATIO(K ) R(EM+AR=2,D) ¥OUTPUT(K=14 1 X} /XX
IF(2%(K/2)+EQ.K) GO TO 304
RSUM=RSUM+TERM1
ESTORE=ESTORE+TERM] #*H
RSTORE=RSTORE4+TERM3
IF(ABS(TERMI /ESTORE ) «L. Te1eD~27¢ AND ¢ ABS{TERM3/RSTORE ) e LT o1 eD-27
1:AND+ABS{TERMI/RSUM) o.Te1eD~27) GO TO 309
GO YO 306
304 TERM2=TERM] ¥X¥(AR=~2,D) /XX
ESUM=ESUM+TERMI
RSTORE=RSTORE~TERM] *H
ESTORE=ESTORE+TERMZ2-TERM3
306 CONTINVE
309 RSUM = (RAD] + €3 * ESUM)/R3
RSTORE = (RADID + E3 * ESTORE}/R3
311 CRADZ2=R3*ECSUM+EI*¥RSUM
CRAD2D=R3*ESTORE4+E3I*RSTORE
TWRON=1¢D/ (H¥XX)
CWRON=RAD1*CRAD2D~-CRAD2*RAD 1D
NIAC=-DLOG10(DABS( ( TWRON=CWRON) /TWRON)+1 ¢D~26)
IF(XalEeleDeORe (X*¥H) sLES+10,0) GO TO 325
1IF(LeNEelL1) GO TO 313
LNE=z1414M
CALL 'SPHYN( ARG +LNE s FNM)
313 JUN=1
IF (2% ((L-M)/2)eEQe (L=M)IIN=0
RAD2=04D
315 K=1+JN/2
TERM =FACT(JN+2*M+I)/FACT(JN+1)*DLIST(K)*FNM(JN+M+1)
IF ((IN+2EMEL) 4 GT4170) TERM=TERM® 1 «D+300
IF (A% ( {UN+M-L)/4) ¢ NEo ( IN+M=L})) TERM =-TERM
RAD2=RADZ2+TERM
[IF(KeLTsS) GO TO 316
IF (DABSITERM /RAD2)+L.Tet1eD=-27)) GO TO 318
316 IUN=JUN+2
GO TO 315
318 RAD2Z2=RAD2*PLA
PLO==EM/ (X% %#3+X)
RAD20=04D
IN=UN=2*% (JN/2)
320 K=1+JN/2
EJNzUN
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PLB=H/(2,D¥EJIN+2 ,D%EM+1 o D)
TERM =FACT(JN+2*M+1)/FACT(JN+1)*DLIST(K)*(PLB*((EJN+EM)*

1 FNM(JN+M)-(EJN+EM+]oD)*FNM(JN+M+2))+pL9*FNM(JN+M+I))

IFCOINL2E¥ME 1) eGTe170) TERM=TERM#1 +D+300
IF(A*((JN+M-L)/4).NE.(JN+M‘L)) TERM z-TERM
RADZ2D=RAD2D+TERM

IF(KeLTeS) GO TO 322

[F (DABS( TERM 7RADZD) «L.Ta (1 4D=27)) GO TO 324
IN=UN+2

GO TO 320

RAD2D=RAD2D*PLA

CWRON = RAD1 * RADZ2D - RAD2 * RADID
lACt-DLOGlO(DABS((TWQON—CWQON)/TWRON)+I00—26)
IFC(1AC.GT«NIAC) GO TO 2326

RADZ2=CRAD2

RAD2D=CRADZ2D

TAC=NIAC

IF(TACLLT0) 1AC=0

PRINT BG;L.RADIqRADleRADEtQAoaDOE!G(L-M+l)0IAC
CONTINUE

GO TO 1

END

SUBROUT INE SBESF({XHsL JeRAY)
DIMENS ION RAY(250)

TYPE DOUBLE CP‘FACTORAYQSUMOTERM'TKOTMOXHCXIQZZH
COMMON FACT(300)

L =0

IF (XH.GEesaD) GO TO 4
22H=XH#XH/24D

00 3 N=L.Ly

TM=FACT(N+1)¥(xH +XHY¥EN/FACT(NSN+2)
IF(N.GT484) TM=TM#% 1 ,0-300
IF{TM,EQ.04D) GO TO 8

SUM=1.0

TERM = 1,.,D

DO 2 1=1.50

XI=I®{N+N+1+1+1)

TERM==TERM¥Z2H/X1

SUM = SUM + TERM
lF(DABS(TERM/SUM).LT.]00-26) GO TO 3
RAY(N+1) =TM®SUM

RETURN*

N=170

IF(XHeLT4100.D) GO TO 20
RAY(1)1=DSIN(XH) /XH
RAY(2)=(RAY(1)-DCOS(XH),/XH

DO 11 K=1. 4
RAY(K+2)=(K+K+1)*RAY(K+1)/XH~QAY(K)
RETURN

IF(XHeGTe104D) N=210
RAY(N+1)=1,D-250

RAY(N42)=0,0

I -N

M -1
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DO 5 Kxk=1+M

K = =KK

TK=K+K+1
RAY(K)=TKX*RAY (K+1) /XH-RAY(K+2)
CP=DSIN(XH)/ (XH#RAY (1))

IF(DSINIXH) oL.Te14D=2) CP=(DSINIXH)/XH-DCOS(XH) } Z{XHXRAY(2))

DO 6 L=1+LY

RAY (L )=CP®RAY(L)
DO 9 J=NslLJ
RAY{J+1)=0,D
END

SUBROUTINE SPHYN({XsN+ARR)
DIMENSION ARR(250)

TYPE DOUBLE X+ARRTKPI1
ARR(1)=-DCOS(X) /X
ARR(Z2)=ARR( 1) /X~DSIN(X) /X

DO 2 K=1«N

TKP1=K+K+1
ARR(K+2)=TKP 1 ¥ARR(K+ 1) /X-ARR(K)
END

SUBROUTINE EIGENCAsVALUNINT s ANORM] ¢ ANORMZ Y
DIMENSION A(80480)+VALUCB0) «DIAGIB0)+Q(80)VALL(8S)
NN=N-~2

DO 160 1=14NN

I1=1+2

DO 160 J=I1.N

Ti=Al(lal41)

T2=A(1+J)

IF{T2¢EGeD,) GO TO 160
T=14/SORT(T1%T14+T2%T2)
SIN=T2*T

COS=Ti1*T

DO 105 K=14N
T2=COS*¥A(K¢ 141 )14+SIN*A(KJ)
AlKsJI=COSK¥A(KIJY=SINZFA(KsI+])
AlKs 1#1)=T2

DO 125 K=14N

T2=COS*A(141 +KI4SIN¥A(JK)
A(JIK)I=COSHA(JKI-SIN*A(I+1+K)
ACT+14K)=T2

CONT INUE

DOISI=14N

DIAG(1)=A(1s1)
QEI1YI=A(1+1=1)%A(1es1~-1)

VALL (1)=ANORM1

VALU( 1) =ANORM2

I1=1

MATCH = N
TAUs(VALL(I)I+VALU(T1)) /2
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IF (MATCHNE«I~1) LATCH = MATCH

MATCH = ©

T0=0,

Ti=1.E-100

D0O20J=14N

T2=(DIAG(IY~TAUI*¥T]1=0(J)*TO

IFC(TIuNE«Oo) e AND e ( (T2%T1) 4 LEeOs)) MATCH=MATCH+1]
TO=T}

Ti=Te -
DO2SK=1 ' MATCH

VALU(K)Y=TAU

NATCH=MATCH+1

DO 30 K=NATCH:LATCH

IF{TAU,GT.VALL(K)Y)Y VALL(K)=TAU
IF((VALU(I)—VALL(I))oGTo(loE~4)) GO TO 18

I=1+41

MATCH = N
IF(1eLEWN1Y GO TO 40
END

SUBROUT INE QLEG{MyLNs X+ Q)

DIMENSION Qt200)

COMMON FACT (300) )

TYPE DOUBLE BE.CCEF.O!.DK.DM'DN.FLCT.GAsC.SUMcTERMthXAiYAquZA
DM=M

NN=0

YA=DSORT{X%X+14D)

ZA=(YA+X) ®{ YA+X)

XA=0425D%# (YA+X)

Zz24D/(YA+X)

LNM={ N+ 1

DO 135 N=NN.LNM

DN=N

BE=DN+14.D

GA=DN+1 45D

IF(N+GT+84) GO TO 500

COEF=Z*XA**(-N)*(FACT(N+1) /EACT(NEN+2) #FACTI(N+1))
GO TO 510 -
COEF:Z*XA**!—N)*(FACT(N+1) *(loD'BOO)*FACT(N+1)/FACT(N+N+2))
SUM=TERM=1,4D

DKz==14D

DK=DK+1 4D

IF (DK eGTeS000.) GO TO 135S
TERM=—TERM*(DK+.SD)*(BE+DK)/((DK+I-D)*ZA*(GA+DK))
SUM=SUM+ TERM

IF(ABS(TEQM/SUM).GTo1.5—27) GO TO 130
QIN+1)==~COEF%®SUM

DO 30 1=14M

Dl=1

DO 30 N=NN,LN

ON=N
Q(N+1)=—((Dl+DN)*Xf0(N+l)+(DN~DX+2.D)*Q(N+2))/YA
DO &0 nN=NNWLN

IF((Z*((N+11/4)).NE.((N+1)/2)) QI(N+1)==Q(N+1)
IF{2¥%(N/2)NEN) QIN+1)=~0(N+1)

Ev D
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Appendix C

SAMPLE OUTPUT FROM OBRAD
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