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FOREWORD

Horace M. Trent, who died in December 1964, made a number of im-
portant contributions to graph theory and its applications. Much of this work
was related to or motivated by his long-standing interest in the four-color
problem. The present paper, the original version of which was completed on
January 27, 1963, represents his approach to, and attempt to prove, the four-
color conjecture. The original version was later revised to take into account
some deficiencies in the proof, and it is this version which is given here. There
still remained some doubtful points in the proof, however (see the historical
outline for details), so neither version was published at that time. Instead,
the author made numerous attempts, which continued until shortly before
his death, to correct and complete the proof. However, it was not possible
for him to complete this task in a systematic and satisfactory manner, but
merely in the form of isolated notes and comments. These are collected in
the appendix, and the reader may judge for himself to what extent they ful-
filled their purpose.

This manuscript is being published in somewhat the same spirit as the
recent excellent book by the late Oystein Ore on the same topic ["The Four-
Color Problem," Academic Press, 1967]. We feel that the approach and
methods used by Dr. Trent contain sufficient novelty and ingenuity to be of
interest and of possible benefit to those working in this and related areas.
The manuscript is also being offered to the scientific community as the final
work, although unfortunately incomplete, of an eminent mathematician and
physicist.

It is a pleasure to acknowledge the advice and assistance given us by the
author's widow, Eva Mae Trent, and by several former members of the Ap-
plied Mathematics Staff of this Laboratory, especially Alvin Owens, Betty
Anderson, and Violet Hicks.

Benjamin Lepson
Herbert A. Hauptman
Mathematics and Information

Sciences Division
15 May 1969
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PREFACE

According to Courant and Robbins*, the four-color problem was
probably proposed by Mobius in 1840. It was proposed again by De Morgan
in 1850 and by Cayleyin 1878. The problem may be stated as follows: Given
any linear graph which will map on a plane (or sphere), it is possible to assign
one of four colors to each face of the map so that no two faces colored alike
have a common edge on their boundaries.

In 1879 Kempet published a proof of the conjecture. However, in
1890, Heawoodt showed that Kempe's proof was defective, by use of a
counterexample that disproved one of Kempe's assertions. The portion of
this manuscript from Comment 18 through Lemma 24 is designed to take
care of the analog to Heawood's counterexample. In the same paper, Hea-
wood showed that five colors were sufficient to color a planar map.

The problem has received much attention in the intervening years.
Although a number of interesting results have been obtained since 1890, no
one has been able to exhibit a planar graph that required more than four
colors, nor has anyone been able to prove that four colors were sufficient in
all cases. The situation up to now is summed up rather well by Courant and
Robbins*, "Despite the efforts of many famous mathematicians, the matter
essentially rests with this more modest result: It has been proved that five
colors suffice for all maps and it is conjectured that four will likewise suffice."
This manuscript presents a new approach to and a partial proof of the con-
jecture.

Heawood's paper of 1890 included some other remarkable results. He
was able to define upper and lower limits for the number of distinct colors
needed to solve the coloring problem on a surface of any genus. Furthermore,
for all surfaces of greater complexity than the sphere, he was able to show
that the two limits were the same, provided it was possible to construct a map
in which there were this many faces each of which touched all others. In the
case of the sphere, however, Heawood's upper limit was six and his lower
limit was four. He used a separate argument to reduce the upper limit to five.
In a real sense then, a solution to the four-color problem amounts to showing
that Heawood's lower limit is also the upper limit. In this work, the concept
of the stably triangulated graph (the ST-graph) is introduced, and its proper-
ties are derived. It is shown that the arbitrary planar graph can be converted
to an ST-graph by the insertion of appropriate edges.

Next the notion of the valid edge labeling for an ST-graph is defined,
and algebraic conditions sufficient to insure the existence of a valid edge
labeling are obtained. It is shown that its existence implies the affirmative
answer to the four-color conjecture. Finally, an inductive, but incomplete,
proof is given that there exists a valid edge labeling for every finite graph.

Horace M. Trent

*Courant and Robbins, "What is Mathematics," Oxford: Oxford University Press,
pp. 246-248, 1941.

t A. B. Kempe, "On the Graphical Problem of the Four Colours," Am. J. Math. 2:193-
200 (1879).

t P. J. Heawood, "Map-Colour Theorem," Quart. J. Pure Appl. Math. 24:332-338 (1890).
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SOME LABELING THEOREMS FOR PLANAR LINEAR GRAPHS.
A CONTRIBUTION TO THE FOUR-COLOR PROBLEM.

APPROACH TO, AND PROJECTED PROOF OF, THE FOUR-COLOR CONJECTURE

Introduction

The concept of a stably triangulated graph (called an ST-graph) is developed and then defined formally. Next
it is shown that every planar graph can be converted to an ST-graph by the addition of extra edges. Then it is
shown that any ST-graph can be created by an ordered insertion of vertices having incidences of 3, 4, and 5. These
developments set the stage for an inductive argument later in the proof.

The concept of a valid edge labeling is introduced and defined. The conditions required to assure the existence
of a valid edge labeling are established as a set of algebraic conditions. These conditions are reduced to the existence
of a multilinear, characteristic polynomial which is subject to some side conditions. An inductive proof follows in
which it is shown that if every ST-graph with K + 2 vertices (K > 2) has a valid edge labeling, then so does a graph
with K + 3 vertices which is obtained from the graph having K + 2 vertices by the insertion of a vertex with incidence
3, 4, or 5.* Thus there would exist a valid edge labeling for every finite graph.

Given the foregoing result, it is shown that each vertex of an ST-graph can be given one of four labels such that
no pair of edge-connected vertices are labeled alike. The removal of the edges added in the first step (in order to
create an ST-graph) recovers the original planar graph for which the vertex version of the four-color conjecture
would be true.

The validity of the four-color conjecture for the faces of a planar graph would then follow easily by the prin-
ciple of duality.

It may be remarked that by far the greater portion of the proof is devoted to defining the problem algebrai-
cally and to proving the edge-labeling theorem by induction.

Throughout this paper when the word graph is used it shall refer to a finite linear graph, containing at least
four vertices, which can be mapped on a plane or a sphere.

Sections I and II are concerned with the labeling of edges, Section III concerns the labeling of vertices, and the
final section concerns the labeling of faces.

I. Stable Triangulations of Graphs and Some of Their Properties

Definition 1. The subgraph g of a graph G is a graph obtained by selecting a subset of the edges in G together
with their bounding vertices.

Definition 2. The subgraph G-g consists of those edges from G, not contained in g, together with their bound-
ing vertices.

Comment 1. It is clear from Definitions I and 2 that g and G-g can have vertices in common.

Definition 3. A subgraph g of a graph G is said to be K-vertex connected to (G-g) if it satisfies the following
conditions:

*The proof of the case for vertices having incidence 5 (Lemmas 17 through 25) appears to be incomplete. Most of the supplementary
notes given in the appendix appear to be a partially successful attempt to fill this gap. B.L. & H.H.
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HORACE M. TRENT

1. The subgraph g is connected and contains at least two edges,

2. Any simple path beginning in g and ending in G-g must pass through one of K vertices common to
g and G-g.

Definition 4. A graph G having the three properties

1 . G is connected,

2. Every face has three bounding edges,

3. Every connected subgraph g having two or more edges is at least 3-vertex connected to G-g,

is said to be a triangulated graph with stable faces. Hereafter, such a graph will be called an ST-graph; i.e., a stably
triangulated graph.

Comment 2. An ST-graph cannot contain a simple series connection; i.e., it cannot contain a vertex with only two
edges incident on it. This result follows from the fact that the two edges, together with their common vertex, con-
stitute a two-vertex connected subgraph. Thus every vertex in an ST-graph must have at least three edges incident
on it.

Comment 3. An ST-graph cannot contain a parallel connection; i.e., it cannot have two or more edges incident on
the same pair of vertices. This follows from the fact that if g is a subgraph of G consisting of the two parallel edges,
then g is two-vertex connected to G.

Comment 4. The faces of an ST-graph are stable in the sense that no topological rearrangement of the graph on
the plane can change any of the three edges that bound the face. If this were not the case, then if an edge el
bounded face f1 in some mapping on the plane, another mapping would replace el by an edge e2 . This however,
would imply a parallel connection-between el and e2.

Definition 5. If two vertices in a graph are end points of the same edge, the vertices are said to be edge con-
nected.

Definition 6. If there are t edges which have a vertex v as one of their endpoints, then the vertex is said to
have incidence L and such a vertex is called an t-vertex.

Lemma 1. Let V be the number of vertices, F the number of faces, E the number of edges in an ST-graph
and letK=V-2. ThenF=2KandE=3K
Proof Since V> 4, K> 2, every edge is a boundary to two faces. Hence 3F = 2E, since every face is triangular.
Now let the values of E and V be substituted into the Euler relation

E+2 - F+V,

giving

-F+2 = F+K+2,

from which it follows that

F = 2K

and E =3K.

Definition 7. The integer K is called the characteristic number for the ST-graph.

Lemma 2. There is at least one vertex in an ST-graph with an incidence of S or less.
Proof This lemma follows readily from the relation for the average incidence on a vertex, a. The total incidence
provided by the edges is 6K, since each edge has two endpoints. Hence

6K _ 6
K+2 = < 6, K finite.

K

Since the average incidence is less than 6, and since the incidence on any one vertex is an integer, the lemma follows
immediately.
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Definition & Let e be an edge in an ST-graph which connects vertices vI and v2 and then let e be shrunk to
zero, thus making vI and v2 coincident. This operation creates two parallel connections, which are then removed
by deleting two edges. This sequence of operations is called removing a vertex. Clearly, it leaves the graph planar.

Definition 9. Let a sequence of vertices be removed, one after the other, from an ST-graph, subject to the
restriction that if a three-vertex exists, it is removed before a four-vertex and all four-vertices in turn are removed
before a five-vertex is removed. Such a sequence is called an ordered removal of vertices.

Lemma 3. If the characteristic number for an ST-graph is greater than 2, then two two-vertices cannot be
edge connected.
Proof Assume the converse. Since every face is triangular, there must be a subgraph as shown in Fig. 1, where vI
and v2 are the two 3-vertices under discussion. Since K > 2, there is at least one
vertex external to the subgraph. (Then in order for every face to be triangular,
there must be two edges connecting V3 and V4 .) But this is not an ST-graph, and
the contradiction proves the lemma.

V3

Comment 5. If K = 2, then the unique ST-graph with this characteristic number
has four 3-vertices and each is edge connected to the other three.

Lemma 4. An ordered removal of K - 2 vertices from an ST-graph whose VI V2

characteristic number is K produces an ST-graph at every step in the sequence
of removals.
Proof The limitation to (K - 2) removals assures that the last step in the se-
quence leaves K = 2. Since a removal leaves a planar graph, it remains only to be \/
shown that the ordered removal of a vertex from an ST-graph leaves an ST-graph V4

There are three cases to be considered. Fig. l-Two edge-connected
three-vertices

1. Let the vertex to be removed, say v, be of incidence 3, and let
the edges incident on v be el, e2 , and e3 . Let the vertices at the other ends of
el, e2 , and e3 be vI, v2 , and V3 , respectively. By Lemma 3, the incidence on v1 , v2 , and V3 must be 4 or greater.
Now let el be shrunk to zero, thus making v and vI coincident, after which e2 and e3 are deleted in order to remove
the two parallel connections created by shrinking el. Now each incidence on vI, v2 , and V3 has been reduced by 1
and hence is 3 or greater in each case. Finally, it must be shown that no two of these incidences is 3 unless the
characteristic number of the resulting graph is 2. But this requirement is equivalent to asserting that no pair of ver-
tices in the set v1 , v2 , and V3 had incidences of 4 in the original ST-graph unless its characteristic number was 3.
Assume, therefore, that vI and v2 , say, are four-vertices in the initial graph. Then a direct construction shows that
this condition can be satisfied only if the characteristic number of the given graph is 3, in which case V3 has an in-
cidence of 4 as well. Hence, if the, characteristic number for the given graph is 4, or more, no pair of vertices from
the set vI, v2 , and V3 can have incidences of 4 or less. It follows that the removal of a three-vertex leaves an ST-
graph in every instance.

2. Let the vertex to be removed, say v, be of incidence 4, let the edges incident on v be labeled el, e2 ,
e3, and e4 in a clockwise direction, and let their second endpoints be V1 , V2 , V3 , and V4 , respectively. Since the re-
moval is ordered, the incidence on each of V1, v2 , V3 , and V4 must be 4 or greater. Now let el be shrunk to zero,
thus making e2 and e4 parts of parallel connections. Now remove e2 and e4 . The incidence on vI and V3 has not
been changed by this operation, and hence is 4 or greater for both vertices. The incidence on v2 and V3 has each
been reduced by 1 and hence may be 3 or more. If, however, one or both of these is now of incidence 3, this does
not violate the conditions for an ST-graph, since v2 and V4 are not adjacent. Hence, if the removal is ordered, it
can always be done and the result is an ST-graph.

3. Let the vertex to be removed, say v, be of incidence 5. Let the edges incident on v be labeled el,
e2, ... e5 in a clockwise direction, and let their second endpoints be V1 , v2 , . . ., v5 , respectively. Since the re-
moval is ordered, the incidence on each of V1 , V2 ,.. ., v5 must be 5 or greater. Now shrink eI to zero, making v
and v1 coincident. Follow this by a removal of edges e2 and e5 in order to eliminate parallel connections. At the
end of this process, the incidence on vI has been increased by 1, the incidence on each of v2 and v5 has been re-
duced by 1 and the incidences on V3 and V4 remain the same. The process, therefore, can create no vertices with
incidence less than 4; consequently, the result is an ST-graph.

Finally, it is to be noted that if a removal is ordered and if it is made on an ST-graph, the result is an ST-graph
in every possible case.
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Definition 10. Let the operations defined in Definition 9 be applied to an ST-graph in the reverse order. The
result is an ST-graph containing one more vertex. This operation is called an ordered addition of a vertex.

Lemma 5. Any ST-graph with characteristic number K > 2 can be created by the ordered addition of K - 2
vertices in turn, each of which has an incidence of 3, 4, or 5, starting with the ST-graph with characteristic
number 2.
Proof The proof is constructive. All that is needed is to reverse the ordered removals implied by Lemma 4.

Definition 11. If all of the edges which connect vertices v, and v2 are deleted from a graph, the two vertices
are said to be disconnected.

Theorem 1. Let U be a planar linear graph containing at least four vertices. Then an ST-graph G can be created
from G such that (a) the number of vertices in G is the same as in G and (b) no pair of vertices that is edge con-
nected in G is disconnected in G.
Proof The proof is based upon a constructive process which at each step neither adds nor removes a vertex, nor
does it disconnect an already connected pair of vertices.

Step 1. Remove all loops from G; i.e., all edges whose endpoints are coincident. The result leaves the graph
planar. Call it G".

Step 2. In every parallel connection in G", remove all but one edge. The result is a planar graph. Call it Go',
where the subscript suggests that the result may contain subgraphs g and Go-g, which are not connected.

Step 3. If two disjoint subgraphs exist, select a vertex in each subgraph in such a way that an edge connecting
them can be mapped on the plane. Clearly, this can always be done. Repeat the process until the graph becomes
connected and call the result G1', where the subscript suggests that subgraphs g and G1

1 -g may exist, which have only
one vertex in common.

Step 4. Identify any subgraph g which has only one vertex, say v, in common with G1'-g. This subgraph con-
tains at least one edge and hence at least two vertices. Thus it contains at least one vertex other than v. The same
condition holds in GI'-g. Next note that it is meaningful to speak of the outside boundaries of g or Gl'-g as they
are mapped in any specific fashion on the plane. The vertex v will be on these boundaries. But each boundary will
contain at least one other vertex. Join two such vertices with an edge. Clearly, this edge can be mapped on the
plane. Continue this process until every subgraph is at least two-vertex connected. Call the result G2'.

Step 5. Identify any two-vertex connected subgraph g and let v, and v2 be the vertices which it shares in com-
mon with G2'-g. It is assumed that if v, and v2 are edge connected, that edge is a part of G2 '-g. Note that g is con-
nected and contains at least two edges; hence, it contains at least one vertex other than v, and v2. Of course the
same condition holds in G2'-g. Next note that G2'-g has a face with v, and v2 on its boundary. This face contains
at least one other vertex, for otherwise there would be a parallel connection between v, and v2. Call this vertex V3.
Now consider G2' and its face, which contains v1 , V2 , V3 , and edges from g on its boundary. There is at least one
vertex in this boundary which is in g; this by virtue of the fact that g contains no edge which connects v, and v2 .
Call this vertex in g, V4 . Finally, join V3 and V4. Clearly, this edge maps into the plane and does not create a par-
allel connection. The subgraph g is now three-vertex connected. This process is repeated until no two-vertex sub-
graph exists. Call the result G3'.

Step 6. The faces in G3' are now identified. Let f1 be such a face with £ (2 > 3) edges on its boundary. Let
the vertices on the boundary of f1 be labeled v, v2 ,.. ., vy in a clockwise fashion. Now select 2 - 3 distinct pairs
of vertices, vi and vj (j > i), subject to the conditions

I1. j:*i + 1, (i= 1, . . ., (k- 13),

2. j#$ R if i = 1,

3. If the pair v,, and vp (P > a) has already been selected subject to 1 and 2, then
if i < a, either j < a or j > f,
if a < i < P, j < J
if i > jl; j •2

4
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Now connect each pair of vertices by an edge. The conditions on the vertices assure that the edges will map into
the plane. That this is always possible is clear from the one set of choices i = 1 and j = 3, 4,... (2 - 1) in turn.

This operation triangulates f1 . The process is repeated until all faces are triangular. Call the result G. It is an
ST-graph, since the conditions of Definition 4 are satisfied. Furthermore, the conditions required by the theorem
are satisfied at each step.

II. The Edge Labeling of ST Planar Linear Graphs.

Definition 12. Let there by three different, but not necessarily unrelated, kinds of labels, say a, b and c; let
f be one face of an ST-graph with bounding edges eI, e2 , and e3 ; and let the label a be assigned to one of these
edges, the label b to a second, and the label c to the third. This operation is called an edge labeling of a face.

Definition 13. Let one face of an ST-graph be given an edge labeling. Select a second face with an edge al-
ready labeled i (i =g, b, or ), and label the remaining edges so that each of the labels a, b, and c has been used in
the region. In this fashion, continue labeling edges which bound new regions, each edge being assigned one and
only one label. If it is possible to assign labels to edges so that each of the labels a, b, and c appears somewhere on
the boundary of each and every face, the ST-graph is said to have a valid edge labeling.

Comment 6. It is to be observed that the first step in the labeling process possesses two ambiguities. First of all,
there is no requirement as to which edge is labeled a; in fact, this choice is arbitrary. Assume that the label a is
assigned to some edge. The second ambiguity now appears, for the label b can be assigned to either of two edges.
Note that one choice for b makes the ordered sequence of labels (a, b, A) proceed, say, counterclockwise around
the face, while the second makes the sequence proceed clockwise. Thus the assignment of b establishes an orien-
tation for the face. Actually, it is the orientation assigned to each face which is important, as we shall see later;
the assignment of the label a to the first face is completely arbitrary and of no basic significance.

The foregoing ideas will now be reduced to an algebraic form.

Definition 14. Let X be a multiplicative linear operator such that, in any one face, if 2 (2 = a, b, or D is the
label assigned to an edge, X *£k is the label assigned to the adjacent edge on the boundary of the face in a counter-
clockwise direction.

Definition 15. Let 2 (2 = a, b, orb) be the label assigned to an edge on the boundary, then X * 2 is the label
assigned to the next edge in a counterclockwise direction, X * (X * 2) = .I * 2 is the third edge, and X * (X2

* 2) = XI 2
must be the initial edge. If, then, X is a linear algebraic operator such that I 2 = 2, then X is said to be consistent
over the face.

Lemma 6. The operator X is a cube root of unity.
Proof From Definition 15,

X3 2 = Q.

By Definition 14, X is a linear operator, hence

X3k _ R= 0

and (X13 - 1) = 0.

Since 2 is an arbitrary label, the relation can be true always only if

-3 _1 =0.

It follows then that

= 1,--+ ICY 1 q

Comment 7. The root X = 1 implies that all edges bounding a given face are labeled alike. This is not a valid label-
ing, however, and must be excluded. Hence, hereafter it will be required that only the roots p and q are used. Let
it be recalled that p2 = q and q2 = p; i.e., two applications of one operator is equivalent to the others. Therefore, it
is permissible to interpret p as an operator that advances the labeling one edge in the counterclockwise direction

5
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while q advances it one step in the clockwise direction. Thus if 2 is in fact the label , pa is identified as the label b,
and p2 a = qa is identified as c if the set (a, b, E) is ordered in a counterclockwise direction.

Definition 16. Let v be a vertex in an ST-graph with incidence i. It is said that the edges are labeled consist-
ently relative to the vertex v if orientations pxi can be assigned to the i faces incident on v such that the labeling
is consistent on each of the i faces.

Comment 8. Let the i edges of Definition 16 be designated by the ordered set (el, e 2 ,. . . ei), the ordering being
in a clockwise direction around the vertex. If 2 is the label of el, it follows that

the label of e2 is px, 2,

the label of e3 is px2 (px 2 R) = pxl+ x2 2, etc.,

the label of et is px+ x2+.*.+ xi2 = 2.

This gives

(pxl x2+...Xi )QO.

Since R is any of the labels a b, or c, it follows that

pxl+X 2 +...+xi-=

In some sense, then, (x, + x2 + . . . + xi) must be congruent to zero. Returning to the question of consistency
over a face, we have

3x£

or

(p3 x -1) = 0

and

p3x

and in this case 3x must be congruent to 0. This suggests that the exponents of p should be treated on a modulo 3
basis. Hence it is taken for granted hereafter that all algebraic processes on the exponents of p are carried out
modulo 3. Then at the vertex v,

XI +X2 +...+xi_ 0(mod 3).

In order that the labeling shall be valid in each of the i faces, it is further necessary to require that each of the x's
be nonzero. This requirement can be stated by the i relations

(Xj)2=1 (mod 3) (. = 1, 2, . . ., i).

The same sort of analysis can be carried out at each vertex in the given ST-graph.

Definition 17. Let there be an xi (i = 1, 2, . .. , 2K) associated with each face of an ST-graph. Consistency is
maintained over each face and at each vertex, if at each vertex a (a = 1, 2, . . ., K + 2) an equation of the form
daixi 0 (mod 3) (i = 1,2, . . .,2K) is satisfied (it being assumed that the usual convention, that a repeated index is
summed over its range, holds). Any coefficient dai may be a I or a 0, depending on whether or not the face i is
incident on the vertex a. Hereafter the relations

daixi 0 (mod 3)

will be called consistency relations, while the set

X 1 (mod 3)

6
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will be called heterogeneous relations because they prevent any two labels' being alike on the boundary of a face.
Clearly, a valid labeling will satisfy the consistency and the heterogeneous relations.

Definition 18. By a simple, closed path P of length L in an ST-graph is meant an ordered sequence of L edges
(el, e2 , ., eL) such that the pairs of vertices .which they connect can be ordered thus,

[(V1V2 ), (V'2,V3 ), (V3 ,V4 ), . . ., (VL-1 ,VL), (VL ,VI ) ]

and in this ordering every vertex symbol appears exactly twice.

Comment 9. A simple closed path P has the obvious meaning implied by its name; it is a closed curve in the plane.
The path divides the plane into an inside and an outside. However, topological warpings will allow the outside to be-
come the inside and vice versa, and hence the distinction between them is purely artificial. Hereafter, the word in-
side will be used predominantly, and if any confusion is apt to arise, those faces of the ST-graph which constitute
the inside will be identified.

Lemma 7. If a set of xi's exists which satisfies the heterogeneous and the consistency relations for an ST-graph,
then that graph has a valid labeling.
Proof The proof is constructive; i.e., a procedure is given for assigning labels to each edge. The procedure involves
k - 1 steps, and at each step the boundaries of all faces inside a simple closed path have been labeled.

Step 1. Select any edge and label it a. Let vI be one of the endpoints of a. Starting with a and proceeding in a
counterclockwise direction, assign labels to the boundary of each face incident on v2 using the xi as given each face.
This yields a valid labeling for the boundary of each face and a consistent labeling at vI by virtue of the correspond-
ing consistency relations. Clearly, all of the labeled faces are contained within a simple closed path each of whose
edges is labeled.

Step k (k = 2, 3, . . ., k - 1). In each of the k - 2 steps, a vertex vk is selected according to the following scheme:
(a) vk is on the labeled, simple, closed path. (b) The path which includes all of the unlabeled faces incident on vk
contains only three vertices from the labeled simple path. It will now be shown that such a selection is possible.

Two cases are to be considered. First, if there is a vertex with only one unlabeled face incident upon it, this ver-
tex is taken as Vk, for it satisfies the selection rule trivially. Second, if no vertex exists with only one unlabeled face
incident upon it, there must be at least one interior vertex not on the simple labeled boundary. For if E 1 is the
number of labeled edges in the boundary, if E2 is the number of edges in the interior, if F2 is the number of interior
faces, and if there are no interior vertices so that v = E1 , it follows from Euler's formula that

E2 = F2 - 1.

Also

3F2 =2E2 +El.

The elimination of E2 from these relations yields

F2 =E 1 -2.

Since in such a subgraph each interior face contains at least one edge from the labeled boundary and at least one in-
terior edge, it follows that two of the faces contain two edges each from the labeled boundary. Thus there are two
vertices with only single faces incident upon each of them. It can be concluded therefore that if no such vertex
exists, there must be at least one interior vertex. Vertex vk is then chosen so that the closed path, including the
faces incident on vk, contains three consecutive vertices from the labeled boundary and at least one interior vertex.
In either of the two cases, the boundaries of the unlabeled faces incident on vk are labeled in a counterclockwise
order, starting with the existing labeled simple closed path. It follows trivially that the new labeled boundary is
also simple. Furthermore, the labeling is consistent about the vertex Vk.

After the step k = k - 1, the labeled boundary contains exactly three vertices, for at each step the labeling was
completed about only one vertex. Thus the outside of the labeled boundary is a triangular region or face. At this
step the boundaries of all faces have been labeled, and a valid labeling for the graph has been generated.

7
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Comment 10. The rest of this section is devoted to showing that the equations of Lemma 7 always have a solution
for an ST-graph. However, a number of new definitions and lemmas are needed in order to arrive at the desired end
result.

Lemma 8. Let G be an ST-graph with a valid edge labeling, let a simple closed path P in G contain ni edges labeled
i, i = a, b, or c, and let there be N1 faces inside P. Then, if ni is even (odd) so also is NI.
Proof Let inj be the number of edges inside P which are labeled i, i = a, b, or c. Then

N, = 2ini + ni,

since each interior edge labeled i is a boundary of two faces, while an edge in P bounds only one face which is in-
side P. It follows that

N, - ni = 2ini.

Since the difference of NM and ni is an even integer, they are either both even or both odd. This fact proves the
lemma.

Comment 11. The proof of Lemma 8 yields two bonuses. In the first place, since Hi cannot be negative, we have the
inequality

N, > ni

Second, it is to be noted that the analysis is valid no matter which of the three labels is considered. Hence if the
number of edges in P labeled a is even (odd) so also is the number labeled b and the number labeled c.

Lemma 9. Let G be an ST-graph, f1 one of its faces, and let v1, v2, and V3 be the vertices on the boundary of
fl. Then, if a valid edge labeling can be found for each face other than]'iland for each vertex other than v1, V2
and V3 , a valid edge labeling can be found for the entire graph.
Proof Let the boundary of fI be a simple closed path P in G and let the inside of P be all faces other than fI and
all vertices other than vl, v2 , and V3 . By assumption, a valid labeling exists for P and for the inside of P. Since P
contains three edges, and this is an odd number, by Comment 11 it must contain one edge labeled a, one labeled
b, and one labeled c. But this assigns a valid labeling to fI and valid labelings about vI, v2 , and V3 . Since valid
labelings exist for every region and about every vertex, a valid labeling exists for G.

Comment 12. Lemma 9 shows that a valid labeling exists if a set of nonzero xi's can be found which satisfies all
but three of the relations daixi 0 (mod 3), provided the three relations omitted are associated with the three ver-
tices on the boundary of a single face. Hereafter, then, only K - 1 linear relations of the form daixi_ 0 (mod 3) will
be considered, the three relations not used being all of those which contain the xq associated with the qth face. The
comment assumes, of course, that the heterogeneous relations are satisfied for all of the x's which appear in the
(K - 1) consistency relations.

Lemma 10. Let G be an ST-graph. Then it is possible to select K - 1 independent consistency relations, daixi 0
(mod 3).
Proof The lemma will be proved by displaying a method that will always select a dependent set of xi's, (K - 1) in
number. Let vI, v2 , and V3 be the vertices on the boundary of the face whose x does not appear in. the set of equa-
tions.

Step 1. Select a face which contains two vertices from the set (V1, V2 , V3 ) plus a third not in the set, and let this
vertex be designated V4 . Identify the x associated with this region; it is the first number in the sought-after depend-
ent set.

Step 2. Select a face which contains two vertices from the set (V1 ,,-V2 , V3 , V4 ) plus one not in the set, v5 , and
identify the corresponding x. Add this x to the set.

Step j. Select a face which contains two vertices from the set (vI, v2 ,. . ., vj + 2) and one not in the set, vj + 3,

and identify the corresponding x. Add this x to the set.

8
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The foregoing steps are continued up to K - 1 in all. At each step a new vertex is introduced and in the way that
it was selected, a new face will have been used. Thus at each step at least one new x is added to the set; hence the
consistency relation in which it appears will be independent of all those used before. Thus the K - 1 equations are
independent.

The foregoing procedure is a special case of a more general procedure as follows: Let the vertex v, be edge con-
nected to v2 and let v2 be edge connected to V3 . The selection process is carried out as already outlined. This more
general selection process will be used later. Note that, in the procedure outlined initially, v, is also connected to V3.

Comment 13. Since the K - 1 consistency relations are independent, it is possible, by additions, to convert them
to the form

xa- caixi (mod 3), (a = 1, . . ., K - 1),(i = 1, 2, . . ., K).

In other words the given relations can be solved for K - 1 of the x's. The K - 1 members of the set xa will be called
hereafter the dependent variables while the members of the set xi will be called the independent variables. As a
matter of practical fact, given an ST-graph the process described in the proof of Lemma 10 generates the set xa and
then the cai's are easily written down by inspection.

Lemma 11. Let G be an ST-graph and let the relations Xa CaiXi (mod 3) have a solution which in.addition satis-
fies the heterogeneous relation. Then if all Xa 's and all xi's are multiplied by 2, the new values also satisfy the con-
sistency equations.
Proof Multiply the given relation by 2, giving

2xa 2caixi Cai(2xi);

Now let 2xa = xa and 2xi = xi and substitute these new variables giving

Xa = Caix3

Clearly, then, the two sets 5x and xi satisfy the consistency requirements.

Lemma 12. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G with all of its
edges labeled alike, and let x7, be the set of x's associated with faces inside P. Then a valid labeling is obtained if
all the x7y are multiplied by 2 and the x's associated with the faces outside of P are left unchanged.
Proof By Lemma 8 the number of edges in P is even, since an even number (namely zero) has two of the three
labels. Hence the number of inside faces is even and similarly for the number of outside faces. Let the number of
inside faces be NI. At each vertex on P the x's belonging to the faces on the inside of P and incident on the vertex
add to zero, mod 3, since the edges of P are all labeled alike. Hence the relations daixi = 0 can be broken into two
sets.

For the x's associated with the inside faces,

daixi=0 (mod 3)(a = 1, 2, . . ., K -1), (i = 1, 2, . .NI),

and for the x's associated with the outside faces,

daiXi 0 (mod 3) (a = 1, 2, . ,K - 1), (i = N1 + 1, . ,2K)-

As each summation is made, some values of a will give trivial null identities; i.e., for those values of a associated with
vertices not on the boundary of an xi in the set then being considered. Clearly for the inside faces,

2daiXi dai(2xi) daixi-m0

Thus the new set of variables 5i satisfies the consistency relations and this without changing the relations associated
with outside faces. They also satisfy the heterogeneous relations.

9
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Definition 19. The operation defined in Lemma 12 is called a reversal of orientations inside a closed path.

Definition 20. Let G be an ST-graph and let P be a simple closed path in G which contains four edges and two
interior faces. Let the vertices on P be labeled V1, V2 , V3 , and V4 in order and let the one inside edge connect vI
and V3. If the edge is removed from vertices vI and V3 and then connected to vertices v2 and V4 , the edge is said
to be rotated.

Lemma 13. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G having two interior
faces, and let the interior edge connect vertices v1 and V3, each of which has an incidence of at least 4. Then a new
ST-graph with a valid labeling can be created by rotating the interior edge if the x's associated with the interior faces,
no x's associated with exterior faces being changed in the process.
Proof. The limitation on the incidences of vertices vI and V3 assures that, after the edge rotation, the result is an
ST-graph. Let x, and x2 be associated with the interior faces after the rotation, with xl being associated with the
faces having v1 on its boundary. If a valid labeling exists, then at v1

Xi X1 + X2 = 2x 1 .

Likewise at V3 ,

X2 = X1 + X2 = 2x 1 .

Atv 2 (or v4 ),

XI +X2 =X, =2x1 +2x 1 .

With these values of x, and x2 and with no changes in the x's associated with any outside face, the consistency and
the heterogeneous relations are satisfied everywhere. Hence by Lemma 7 a valid labeling exists for the entire new
graph.

Definition 21. The creation of a new ST-graph with a valid labeling by changes made only inside a defined closed
path is spoken of as a local relabeling. If more extensive changes have to be made in order to arrive at a valid label-
ing, the process is called a global relabeling.

Lemma 14. Let G be an ST-graph with a valid edge labeling and let P be a closed path containing three edges and
one interior face. Then a valid labeling of a new graph, obtained by adding a three-vertex inside P. can be obtained
by a local relabeling.
Proof The addition of a three-vertex to an ST-graph yields an ST-graph. Let x be the variable associated with the
inside face in G, let v1 , v2 , and V3 be the vertices on P and let RI, x2, and X3 be the variables associated with the
three inside faces of the new graph, with xl and x2 associated with faces incident on vI. For consistency at vI it is
necessary that

Xi +X2 -X.

The heterogeneous relations require that X I1 and x 221 . Squaring the consistency relation and using the hetero-
geneous relations, it follows that

X1 + 2_X, 2 +X2-X

1 + 2xi 2 + 11,

2x x12 2,

and

x1 x 2 m2x,

1 0
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by virtue of the consistency relation. At the vertex v2 , consistency requires that either

X2 + X3 X

or

2x + X3-X,

X3 -2x.

It is trivial to show that consistency holds at v3 and at the added vertex. Hence by Lemma 7, a valid labeling exists.
Finally, it is observed that the foregoing operations were all local.

It is trivial to show that the argument can be reversed. Thus, if an ST-graph with a valid edge labeling contains a
simple closed path containing a three-vertex and three interior faces, the interior three-vertex can be removed by a
local relabeling, leaving an ST-graph with a valid labeling.

Definition 22. Let G be an ST-graph with a valid edge labeling. Then Gi (i = a, b, or c) is a subgraph of G ob-
tained by deleting all edges of G labeled i. In a similar fashion Gjk is a subgraph of G obtained by deleting all edges
of G labeled j or k.

Comment 14. Clearly every face in Gi has four bounding edges and there are K of these. The subgraph Gjk may
contain simple closed paths; it will always have disjoint subgraphs, as the following argument shows.

Let pA be the number of independent simple closed paths in Gjk and let a be the number of disjoint subgraphs.
Gik has K + 2 vertices and K edges. If these numbers are substituted into the well-known formula,

number of edges + number of subgraphs = number of vertices + number of independent closed paths,

we have

K + a =K +2 +.

Hence

-A = 2.

Since 1A cannot be negative, a > 2; hence Gij always has disjoint subgraphs. Finally it is noted that every time the
number of closed paths is increased by 1, the number of disjoint subgraphs is increased by 1 also. This is just
another way of saying that every closed path in Gik has a non-null inside. This interior subgraph may be as simple
as a single vertex; it also may be quite complicated.

Lemma 15. Let G be an ST-graph with a valid edge labeling and let e be an edge in G; then if e is contained in
a closed path P in G having all of its edges labeled alike, the rotation of e removes it from such a path and vice versa.
Proof The conditions of the lemma assert that e is in a closed path in Gjk. As pointed out in Comment 14, this
closed path has a disjoint subgraph on its inside and on its outside. When e is rotated, one simple closed path is
opened. Hence by Comment 14, the number of disjoint subgraphs in Gik is reduced by 1; that is to say that the
disjoint subgraphs which were on the inside and outside of P are connected after the rotation of e.

Conversely, assume that e is not an edge in a simple closed path. It is, however, a part of a disjoint subgraph in
Gjk. Let vi and V3 be the endpoints of e. After the rotation of e, the subgraph in which e was originally located is
divided into two parts, since v, and V3 are no longer connected, while the rest of the subgraph is unaffected. Thus
the numbers of disjoint subgraphs has increased by 1; hence by Comment 14, the number of closed paths has been
increased by 1. Clearly, the edge e has connected two vertices, say v2 and V4 , which formerly were unconnected,
and thereby has created the new closed path.

Lemma 16. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G having four
edges and two interior faces, and let a new ST-graph be created by an ordered addition of a four-vertex inside P.
Then the new graph has a valid edge labeling.

11
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Proof Let the vertices on P be V1 , V2 , V3 , and V4 in order, let the interior edge, say e, connect v, and V3 , and let
xl and x2 be the variables associated with the two faces in G with the face related to xl having v2 on its boundary.
Also, let the four interior faces in the new graph have the variables x1, X2 , X3 , and X associated with them, with
xl and x2 being associated with v2 , and x2 and X3 with v3 .

Three cases are to be considered.

Case 1. Let x1 2x 2. Then at vertex V2 , consistency requires that

Xi +X2 -X1 ,

and the heterogeneous relations require that
322 2

X x2- X1 2-1.

Then it is easy to show that x l-x2-2x1 . A similar argument at V4 gives

X3 + X x2 52x1,

with

-2=-2= 2=
X3 -X 4 -X1 1.

This yields X3-X 4 x1 . Finally, these values of X 1, X2 , X3 , and X are easily seen to be consistent at v1 , V3 and
the added vertex. In this case a valid labeling is obtained locally.

Case 2. Let xl x2 , and let e be in a closed path P with all of its edges labeled alike. Then by Lemma 12,
the x's associated with faces on the inside of P can be multiplied by 2 and still have a valid labeling. Let x2 be one
of the x's inside of P. Then a valid labeling exists for G in which x2 becomes 2x 2 - x2 x2, say. Now x2 2x,, and
so the conditions of Case 1 apply. The valid addition of a four-vertex follows.

Case 3. Let xl -x 2 and let e not be in a closed path p with all of its edges labeled alike. By Lemma 13,
the edge e can be rotated and a valid labeling results. Let xl and x2 be the variables associated with the new faces
created by the rotation. By Lemma 13, xl x2 2x,. By Lemma 15, the rotation of e put it in a closed path with
all of its edges labeled alike. But now the situation is the same as in Case 2; the addition of a four-vertex with a
valid labeling follows.

Comment 15. Let G be an ST-graph with a valid edge labeling, and let P be a simple closed path having five edges
and three interior faces. Suppose a five-vertex is added inside of P as described in Lemma 5. But this lemma as-
sumes that after the addition of the five-vertex, the result must be a graph with no four-vertices. Hence the assump-
tion that the five-vertex is added according to Lemma 5 is equivalent to asserting that the number of edges outside
of P and incident on each vertex in P is two or greater. This condition is assumed in all subsequent discussions of
the addition of a five-vertex. To standardize these discussions, it will be assumed that the vertices on P, the interior
edges, and the interior faces have associated x's as shown in Fig. 2a. After the additions of a five-vertex, the situa-
tion will be as shown in Fig. 2b for lemmas 17 through 19.

Lemma 17. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G containing five
edges and 3 interior faces as shown in Fig. 2a, and let xl 2x2 =X3 . Then a five-vertex can be added as shown in
Fig. 2b, and a valid edge labeling can be found using only local operations.
Proof To have consistency and to satisfy the heterogeneous relations at v2 , it is required that

_x +x 2_ X_

and

-2 =-2 2-

xI x2 -XI 1

This yields the conditions

X1 -X 2 -2x 1 .

12
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V5

VI

(a)

V4

VI

(b)

Fig. 2-Standard designations for five-sided figures.

At V3 the requirements are

X2 + X3 X1 + X2 - 0

and

X2 X3 _ X1 2--X22-1

This yields

23 2 -X 1

V2

V2

V3
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At V4 the requirements are

X3 +X4 -X2 +X3 -°

and

-2-2- 2- 2X3 -x 4 2x 2 _x 1

This yields

X~4-2x3-32xl.

At v5 the requirements are

X4 + X5 X3 3X 1

and

x42 =x5 =X 2
X4 _ X5 32

This gives

X -2x 3 - 2xI .

By using the values of X1, X2 ,X3 , X4 , and x5 it is easy to show that consistency holds at v1 and at the added five-
vertex.

Lemma 18. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path containing five edges
and three interior faces as shown in Fig. 2a, and let x 1 X2 2x3 . Then a valid relabeling of G can be made so that
the x's associated with the interior faces are all equal.
Proof By Lemma 13, edge el can be rotated with a local relabeling. This yields a new graph with a five-sided fig-
ure like Fig. 2a but with the vertex and edge labels permuted. The x's associated with the three faces in the new
graph, say x ,2, and X3, are given by

X1 X3 , x2 2xl, x3-2xI.

Hence x, =-x2 =X3 by virtue of the given conditions.

Comment 16. It is clear from symmetry that if 2x1 X2 x3 , then the conclusion of Lemma 18 is still valid.

Lemma 19. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G with five edges
and three interior faces as shown in Fig. 2a, let X1 X2 -X 3 , and let e1 not be in a simple closed path P with all of
its edges labeled alike; then a five-vertex can be added inside of P with a valid edge labeling for the new graph.
Proof By Lemma 13, edge el can be rotated. Let the x's for the new faces be xl and x2. Then by Lemma 13,

2x1I 2. By Lemma 15, eI is now in a closed path, say P, in which all edges are labeled alike. Let the face
associated with xl be on the inside of P. Then by Lemma 12, the x's associated with the faces inside of P can be
multiplied by 2 and yield a valid labeling. This operation makes 2 xl XI 2X2 X3 . Now the condition of Lemma
17 holds and a five-vertex can be added with a valid labeling.

Comment 1 7. The conclusions of Lemma 19 are still true if the roles played by el and e2 are reversed. The truth
of this statement is rather obvious from the symmetry of the given initial conditions.

Comment 18. At this point, every possible situation, except one, for the addition of a five-vertex has been exam-
ined. The exception is the combination xl x 2 X3 , with both el and e2 contained in closed paths and with all
edges in each path labeled alike. Some additional lemmas are needed before this case can be treated.

Definition 23. Let c(xa), a- 1, 2, . . ., K - 1, be a polynomial which is generated as follows:

K - 1
C(Xa)_ fl Xa

a-1

14
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Also, let the values of xa, namely xa = caixi, be substituted into the product, and then let the heterogeneous relations
Ix4 = 1 be substituted. The result is a multilinear polynomial in which the number of variables appearing in each

term is either even or odd. Call the result the characteristic polynomial of G relative to the dependent x's. It is a
function of the xi's, say [c(xi)]. Hereafter, brackets will be used to show that the substitutions xi2 = 1 have been
made.

Comment 19. If x -a 1 for every value of a, it follows that [c(xi)] must be nonzero. That this condition is also
sufficient to assure a valid labeling of a graph for which [c(xi)] i 0 (mod 3) is given in Lemma 24.

Comment 20. If xi is a variable in [c(xi)], then the characteristic polynomial can be written as

[c(xN)] = [xj0(xm)+0(xm)],

where O(xm) and O(xm) are multilinear polynomials neither of which contains the variable xj.

Comment 21. From the definition of a characteristic polynomial, [c(xi)] is a product of linear factors followed by
a substitution of the heterogeneous relations xj2 = 1. It is possible for the same characteristic polynomial to be
obtained from a product of different linear factors. For example, a certain ST-graph with a particular choice of de-
pendent variables yields the characteristic polynomial

[cl(xi)] = [(xl + x2 ) (xl + 2x3 + 2x 4 ) (x + 2x 4)]

= 2xI + 2x2 + 2x3 + x4 + 2x x2x3 + xIx 2 x4 + xI x3x4 + x2x3x4.

On the other hand the same result is obtained from

[c 2(xi)] = [(xI + x2 ) (xI + x 3) (2x, + x 4) -

Such possibilities prompt the following definition:

Definition 24. If the characteristic polynomial obtained from the product of k linear factors is the same as
the polynomial obtained from the product of an equal number of other factors in which not all of the factors in
the two sets of factors are identical, the two sets of linear facto'rs are said to be equivalent factorizations of the
polynomial.

Comment 22. If a characteristic polynomial is not identically zero, it is trivial that if the polynomial is multiplied
by a constant (mod 3) the result is also nonzero. In addition, the multiplication by a variable xj does not yield a
zero result, for by Comment 20,

{ xj[C(xi)} = {Xj[xjo(xm) + 0(xm)]} = [¢(xm) + xjo(xm)] * 0.

Thus if the concern is to keep a polynomial nonzero, no basic change is made, whether a polynomial is multiplied
by either a constant or a variable.

Definition 25. A characteristic polynomial is said to be reduced if a linear factor, not containing x; is sub-
stituted for xi in the polynomial and if the result obtained after the imposition of the heterogeneous relations is
not identically zero.

Comment 23. A reduction is one step in the process of finding a set of ratios between variables, which, if substi-
tuted in a characteristic polynomial, leaves it nonzero. Clearly, the finding of a sufficient number of such ratios is
equivalent to finding a set of xi's that satisfies the heterogeneous and the consistency relations for (a) if the polyno-
mial is nonzero every xi is nonzero, (b) every independent xi is kept nonzero in the reduction process, and (c) the
factors in the polynomial are such as to satisfy the consistency relations. It will be shown in Lemma 23 that a suf-
ficient set of ratios can be found from a sequence of reductions so that a ratio is established between every pair of
variables. These ratios may or may not be unique.

LU.ma 20. If in [c(xi)I =[Ox1 + 0] there exists the condition [gxkfI [01, 2 =1, then the substitutionx;
=x * qUl yield a reduced polynomial which is nonzero.
Proof. rc(xd)] = [0xj + 01 = [1xj +& xk0] = [xj +K(xk)0I.
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The substitution x; =g xk yields [c(xi)lj = [2kxk4], where the subscript j indicates the variable eliminated, and 4
does not contain xj. By Comment 22, the result is nonzero.

Comment 24. Since x -Xk it follows that Xk = xj. A similar argument will show that Xk can be eliminated in-
stead of xi.

Lemma 21. If in lc(x )1 = [1x1 + 01 there exists the condition lOX] = 0, where X is a linear factor, and in
addition, if [4) = [X4J, wXere X is a polynomial, then the substitution x1 = X will yield a nonzero polynomial.
Proof [c(x1 )] = [0x; + X0] = [(xi + X)4)] = [(x; + X (X)f]. It follows that [c(xi)]j =[(2X) (X)X1. From the given
conditions [X0] # 0, it follows directly that [2(X2)X] * 0.

Comment 25. If [c(xi)] has the factorization [(xj + X) (X)X] and if X = Xk + g, where A is a linear factor, then

[(Xj + X) (X)] = [(Xi + Xk + A) (Xk + M) [ + Xjxk + 2nXk + AXJ + I.

But this has the equivalent factorization

[(Xk + xj + 2g) (xj +2g)J = + xjXk + 2pXk + PXj + b1]

and hence

[c(x1 )] = [(Xk + x; + 2g) (x; + 2g)0].

This suggests the substitution Xk = xj + 2g. If this is done, it follows that [c(xi)]k = [2 (xj + 2g) 2 '] * 0, since it is
given that [(x; + 2u)fl * 0.

Comment 26. Lemmas 20 and 21 are cases of what is called a forced reduction. The essential feature in both of
these cases is the existence of a nonzero sum of two quantities, both of which are known to be nonzero. Thus if
the two quantities are, say, 0 and 0, and if in addition it is known that 0 * 0, then the only condition that will
allow 4 + 0 to be nonzero is that 4 0'O. These conditions are met by the polynomial [4)() + 0)]. Now suppose
that xi is a variable from 4 =0 and that x; occurs in 4 but not O so that j = x1 + A. Then

[(x; + g)0(xj + A + 0)] = [O + 2xjAO0+ Xj0 2 +0 2 ].

This product has the equivalent factorization

[(xj + 0 + 2z) (0 + 2tu) (x; + t)] = [I + 2xjg0O + Xj0 2 + A02 + 0 2 ],

and hence is of the same form as in Lemma 21. No generality has been lost by assuming that 0 did not contain xj,
for if one assumes to the contrary and if x; is to remain in 0 = 0, then 0 must contain 2xj and (4 + 0) will not contain
xj. A redefinition of linear factors will recreate the form originally assumed. It is concluded therefore that Lemma
21 represents the most general case possible for (a) it includes Lemma 20 as a special case and (b) a sum of three or
more linear factors, each of which is not zero and for which a linear combination of the three factors is known to
be nonzero, yields no unique information about relations between the factors. The simplest case is (xi + £ lxj +& 2 Xk) * 0
where the three nonzero factors are xi, £lxj, and 2 Xk. No unique ratios between the x's exist.

Comment 27. It is clear at this point that there are always at least two ways to make a forced reduction.

Lemma 22. If[c(xi)] = [Ox, + 01 has no forced reduction, then the substitution xi = £Xk, £2 = 1, will yield a
nonzero polynomial

Since (xk)2 = I,£2 = 1, it follows that

[C(X1 )] = [I)XJ + (£ Xk O]

= (0Xj +iXkO)l

= [0Xj +£ Xk i,

where

4 = Xko.

16



NRL REPORT 6902

Now if the substitution x; =X xk is made, the result becomes

[C(Xi)]j = [IxkO + "0k4I [gXk(O + 4A)].

This result can be zero only if = 24 = 2XxkO. But if this were the case, [c(xi)] would have a forced reduction
which is contrary to the stated conditions of the lemma.

Comment 28. The reduction in Lemma 22 can be made in either of two ways, xj = xk or xj = 2 xk, and either sub-
stitution yields a nonzero result. Such a substitution is called an arbitrary reduction.

Q ~~~~~~~~~~~~~~~~~~~~~~~~~~~2
Comment 29. If [c(xi)] is of the product form [c(xi)] =x 1 x2 ... x , then the substitution xi = xj, 2X = 1, will
yield a new polynomial which is nonzero and in which the number ofvariables has been reduced by two. Such a
substitution is called a product reduction. There are two ways to make such a reduction. Finally if p is odd, a
succession of product reductions yields a polynomial containing a single variable; if p is even, the end result is a
constant.

Comment 30. There are at least two possible ways to make any reduction. Thus it is possible in any forced or arbi-
trary reduction to make a substitution for some variable other than a distinguished one.

Comment 31. If, as a result of a forced or arbitrary reduction, some variable other than the one eliminated by the
substitution does not appear in the reduced polynomial, then that variable can be given an arbitrary nonzero value
without making any polynomial in the sequence of reductions zero. Thus, if xm is such a variable, then one can
make xm = 9 xq, X = 1, where xq is any other appropriate variable.

Comment 32. The set of substitutions associated with a sequence of reductions can be solved simultaneously to
yield a set of ratios of the form xi = XB, where the xB's are a set of distinguished variables such that there is no ratio
established between any two of them. If desired, ratios can be made arbitrarily among the xB's so that there remains
in fact only one distinguished variable. It may be noted that if the initial polynomial contains R variables, and if all
reductions are forced or arbitrary, there are at most R - 1 substitutions. Each product reduction will reduce this
number by one.

Lemma 23. There exists a sequence of forced, arbitrary, and product reductions such that each reduction
yields a nonzero polynomial and the end result is either a constant or a constant times a single variable.
Proof The proof is constructive. At each step in the sequence let the polynomial be tested for the existence of a
forced reduction. If such exists let it be made. If none exists let an arbitrary reduction be made. These steps are
continued until a product form is obtained. By Comment 29, this form may be reduced to either a constant or the
product of a constant and a variable.

Comment 33. The tests for the existence of a forced reduction are made readily. Given [c(xi)] = [¢xj + 0 ], one
seeks a linear factor X = Efixi, i ¢ j, such that [(X] = 0. Substituting the linear form of X and equating coefficients
of like terms on the two sides of the equation yield a set of linear equations with the fi's as unknowns. If a solution exists
for the fi's, then the factor X exists and is determinate. There may be multiple solutions. Next if X consists of more than
one term, then it must be ascertained if X is also a factor of . In other words, one asks if there is a polynomial 4 such that'
[X4 ] = t . This calculation is a bit more complicated than the determination of X. Note that the number of variables in
0 is known and that the number of variables appearing in each term of 4 is either even or odd. It is clear that the parity
of each term in 4 must be opposite to that of the terms in 4'. Hence 4 must be a polynomial containing all of the variables
that appear in 4, and each term must be of parity opposite to that for the terms in 4. Let 0 be a polynomial con-
taining the sum of all possible terms of the permitted form with each term having a coefficient gi. This polynomial
is substituted for i and the coefficients of like terms on the two sides of the equations are set equal to each other.
This yields a set of simultaneous equations involving the g's as unknowns. If a solution exists, then 4i exists and a
forced reduction must be made. In theory a test for each xj in [c(xi)] must be made before it can be asserted that
no forced reduction exists.

Comment 34. The foregoing operations and ideas will now be illustrated using polynomials and factors derived
from two different ST-graphs, each having a characteristic number 4.
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Illustration 1

(xI + x2 + X3 ) (2x 1 + 2x 2 + 2x 3 + 2x4 ) (2x1 + 2x 2 + X3 + 2x 4 ) = c(xi).

Then

[c(xi)] = x1 + x2 + 2x 3 + x4 + 2x1x2x3 + xIx 2x4 + 2x1 x3x4 + 2x 2x3x4.

Using Comment 20.

[c(xi)] = [x1 (1 + 2x 2x3 + x2x4 + 2x3x4) + (x2 + 2x 3 + x4 + 2x 2x3x4)]

If a forced reduction exists, there must exist a linear factor X = f2x2 + f3x3 + f4x4 such that

[(f 2x2 + f3x3 + f4x4) (1 + 2x2x3 + x2x4 + 2x 3x4)] = x2 + 2x3 + x4 + 2x 2x3x4.

By expanding the left-hand side and equating the coefficients of like terms, we find only one independent relation,
namely, f2 + 2f 3 + f4 = 1, or f2 = 1 + f3 + 2f 4 . Thus there are nine factors, each of which will satisfy the conditions
since each of the variables f3 and f4 can take on the values 0, 1, or 2 arbitrarily. Let attention be focused on one
possibility, namely, f3 = 2, f4 = 1, which gives f2 = 2 and X = 2x 2 + 2x 3 + X4 . Next, one seeks a polynomial
X = g2 x2 + g3 x3 + g4x4 such that

[X4'] = 1 + 2x2x3 + x2x4 + 2x 3x4 = [(2x2 + 2x 3 + x4) (g2x2 + g3x3 + g4 x4 )Q.

Again by equating coefficients of like terms one obtains four relations,

2g2 + 2g3 + g4 =1,

2g2 + 2g3 = 2,

92 + 2g 4 -1,
and

g3 + 2g 4 M2.

The unique solution of this set is g2 = 0, g3 = 1, g4 = 2. Thus 4 = X3 + 2x 4 , and there is a forced reduction. Now
make the substitution x1 = 2x 2 + 2x 3 + X4 , giving

[c(xi)] 1 = 2x 2 + x3 + 2x 4 + x2 x3x4 = [x2 (2 + X3x4) + (X3 + 2x 4 )1.

Again it can be shown that a forced reduction exists. One such possibility is X = X3 + 2x 4 , which gives the substitu-
tion x2 = X3 + 2x4 . The result of this substitution is [c(xi)] 12 = 2x3 + X4 . Again there is a forced reduction
X3 = 2x 4 . This substitution yields Ic(xN)I 1,2,3 = 2x 4 . Thus the end product is the product of a constant and a
variable.

Now, looking at the three substitutions,

xi = 2x 2 + 2x 3 + X4,

X2 = x3 + 2x 4 ,

and

X3 = 2x 4,

makes it obvious that all xi's can be expressed in terms of any one of the four variables, say X4 . Thus

XI X4,

x2 =X4,

and

X3 = 2x 4.

18



NRL REPORT 6902

Finally, it is noted that the three factors taken from the graph yield

xI +x2+ x3 --x4 + x4 + 2x 4 -x 4 -Y 1 (say),

2x1 + 2x 2 + 2x3 + 2x 4 -2x 4 + 2x4 + x4 + 2x 4 -x4 - Y2 ,

and

2x1 + 2x 2 + X3 + 2x 4 _ 2x 4 + 2x 4 + 2x 4 + 2x 4 _ 2x 4 -y3 .

Thus it is verified that the dependent variables yj are each nonzero. Using the values of x1 , x2 , x3, Y1, Y2, and y3

in terms of X4 and interpreting X4 as some orientation assigned to the labeling of the boundary edges for the region

corresponding to X4, we determine a labeling for the whole graph.

Illustration 2

A certain ST-graph gives

c(xi) (xI + x2 + 2x 4) (2x1 + x3 + x4) (2x 2 + 2x3 + 2x 4).

It follows from performing the indicated multiplication that

[c(xi)] x1 + 2x3 + 2x 4 + 2xx 2 x4 + 2x 2x3x4.

From this it follows that

[c(xi)] [x 1 (l + 2x 2x4 ) + (2x 3 + 2x4 + 2x2 x3 x4 )].

If a linear factor X f2 x2 + f3x3 + f4 x4 is sought so that

(1 + 2x2 x4) (f2x2 + f3x3 + f4 x4 )=_2x 3 + 2x 4 + 2x 2x3x4 ,

it is found that the fi's must satisfy

2f2 + f4 0,

2f 3 1,

f1 + 2f4 1,

and

f3 -1.

Since these relations are inconsistent, no X can be found that satisfies the required condition. It can be shown, by

using each variable in turn, that no forced reduction exists. Thus an arbitrary reduction must be used. Let the sub-

stitution x1 = X4 be made, giving

[c(xdI 4 -2x 2 + 2x3 + 2x1x2x3 = [x1(2x 2x3 ) + 2(x 2 + X3)

If a factor X _ f2x2 + f3x3 is sought so that

[(x2 x3) (f2x2 + f3 x3 )]-x 2 + x3,

it is found that X Mx2 + X3. If now a polynomial 4 = g2x2 + g3X3 is sought so that

I(x2 + x3) (g2x2 + g3 x3)I = 2x2 x3,

it is found that g2 + g3 =0 and g2 + g3 1. It is concluded that even though a factor X exists, no forced reduction

exists. So a second arbitrary reduction must be made. Let x2 = X3 be substituted, giving [c(xd)]4 3 = 2x1 + x2.
This leads to the final substitution x2 = 2x1 . Combining the results to this point,we find that one reduction is

XI = X4, x2 I= 2x4, x3 = 2x 4, Y1 = 2x 4 , Y2 = 2x 4 , y3 = x4.
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Returning to the second arbitrary choice, we let x2 = 2X3 be substituted, giving [c(xI) 43 = x1. Here arises an
example of a situation where a substitution removes some additional variable, x2 in this illustration. Hence it is per-
missible to set x2 equal to X4 or to 2X4 , for example. By using the first of these substitutions, it follows that
Xi = X4 , X2 = X4 , X3 = 2X 4 , Y1 = X4 , Y2 = 2X 4 , and y3 = 2X4 . On the other hand, if X2 = 2X 4 , the results become
XI = X4 , X2 = 2X 4 , X3 = X4 , Y1 = 2X4 , Y2 = X4 , and y3 = X4 .

Three independent possibilities have been found to this point, but this is not all. The first choice may be
x1 = 2X4 , giving

[C(Xi]4 = 2x 1 + X2 + 2X3 + X1 X2 X3 = [x 1(2 + X2 X3 ) + (X2 + 2X 3 )].

Without giving the details, it can be shown that

[c(Xi)I4 = [x 1(2 + X2 X3 ) + 2x2 (2 + X2 X3 )] = [(X1 + 2x 2) (2 + X2 X3 )]-

From this it follows that x2 = 2x 1, and X3 = 2x 2 . In terms of X4 , X1 = 2X4 , x 2 = X4 , X3 = 2X4 , Y1 = 2X4 , Y2 = X4 , and
Y3 = 2X4 . Thus, in all, there are four independent ways of assigning labels to the edges of the given graph which in-
cidentally is a regular graph of six vertices with four edges incident on each vertex. Of course a special choice of
dependent regions has been used here.

Lemma 24. If the characteristic polynomial for an ST-graph is nonzero, then that graph has a valid edge
labeling.
Proof By Lemma 22, if the characteristic polynomial is nonzero, there exists a sequence of forced, arbitrary, and
product reductions that will reduce the polynomial to a constant or the product of a constant and a variable. From
these reductions, at least one set of ratios can be found which when substituted into the polynomial leaves it non-
zero. Such a solution exists because it is always possible to find R - 1 independent relations among the R variables
of the polynomial which when solved determine R - 1 ratios. These ratios make every variable, both dependent
and independent, nonzero, thus satisfying the heterogeneous relations. Since the factors in the given polynomial
are derived from the consistency relations, it follows that these relations are satisfied also. Thus the reduction proc-
ess yields at least one valid labeling for the graph.

Lemma 25. Let G be an ST-graph with a valid edge labeling, let P be a simple closed path in G containing five
edges and three interior faces as shown in Fig. 2a, let x1 = x2 = X3 , and let both el and e2 be in simple closed paths

P1 and P2 with all of the edges in each path labeled alike. Then an ordered addition of a five-vertex can be made
inside of P with a valid edge labeling for the new graph.
Proof By Lemma 12, the x's associated with the faces inside of P1 can be multiplied by 2 and still leave a valid
labeling. Let the inside of P1 contain x1 and let a reversal of orientation be made inside of P1. This situation is as
shown in Fig. 3a. Either (a) edge e2 is contained in a simple closed path P', not necessarily P2 , with all edges

labeled alike, or (b) it is not. If (a) holds, then a reversal of orientation can be made on the inside of P', which is
taken to be the side containing X3 . This yields the situation shown in Fig. 3b. By Lemma 17, a five-vertex can be
inserted, using only local relabelings, and a valid labeling is the result.

If (b) holds, then by Lemma 16 (Case 1) a four-vertex can be added inside the closed path V1 , V2 , V3 , V4 , VI,

giving the result shown in Fig. 4a. Again by Lemma 16 (Case 1) a four-vertex can be added inside the closed path

V, V4 , V5 , v1, v as shown in Fig. 4b. Call the resulting graph G. Let dependent variables be chosen in the order X4,

X5, X6 , X7 and then x's associated with faces outside P, but not including a face incident on v5 . x1 , 2 , and X3 be-
long to the set of independent variables. From Fig. 4b it is clear that

x6 =2xI + 2K2 + X6,

X5 = X1 + X2 +X5,

X4 -2x 1 + 2X2 + X4 ,

and

X7 -2xI + 2X2 + 2X3,

where X4, ?s, and X6 are linear factors none of which contain xX, x2, or X3.
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Fig. 3-Steps in the addition of a five-vertex, I.
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V3 V4

V2~~~~~~~~2
/ X2 =2Xa /V X3 =XI

V2~~~~~~~~~~~~~~~~~~V
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\ X4=X1 \~ Xv =XI / 1 \x \

VI

(b)

Fig. 4-Steps in the addition of a five-vertex, II.
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The characteristic polynomial of G is of the form

[c(xi)] = [(2K 1 + 2x 2 + 2X3) (2Kx + 2x2 + X4 ) (X1 + + X5) (2kI + 2x 2 + X6)4' # 0,

where 4 does not contain x1 , x2 , or X3. It is important to note that the variables 'K and K2 always appear in the
combination x, + x2 .

It is observed first that by Lemma 15 the edges in the path V3 , V, V', V5 lie in a simple closed path with all edges
labeled alike. From this fact it can be concluded that [c(xi)] cannot involve a forced reduction at each step in a
complete reduction. Hence the reduction process must include some arbitrary steps. Next it is observed that if any
forced reductions exist, they cannot involve the factor (KH + 2 ) in a necessarily nonzero form, for if this were the
case then of necessity 'x = x2, whereas it is known that at least two sequences of reductions exist in which x, = 2x 2 .
Furthermore by Comment 30, it is not required at any step in a complete reduction that x1 be eliminated by a sub-
stitution. Since Kx and x2 always appear in the combination x, + x2, if follows that it is not necessary to eliminate
either x1 or K2 by a substitution at any step in a complete reduction. It is theoretically possible that some reduction
may remove xI from all succeeding polynomials. If so, however, x2 will be removed also, and it will follow in that
case, that, either K, = x2 or Kx = 2x2 will be valid ratios.

Now consider a polynomial derived from [c(xi)] by deleting the first factor from its definition. Thus

[cl(xi)] = [(2kx + 2X2 + X4 ) (k + X2 + X5 ) (2kx + 2X2 + X6)4'I °-

The inequality is true trivially since [c(xi)] # 0. [cl(xi)] can be interpreted as the characteristic polynomial for
everything in Fig. 5a outside of the four-sided region v1 , v, v, v5, v1. It is clear that every sequence of reductions
that is valid for [c(xi)] will be valid also for [cl(xi)]. Since it must satisfy one less heterogeneous relation (it does
not contain K3) and one less consistency relation, it is generally true that more different sequences of reductions
exist for [cl(xi)] than for (c(xi)], but this fact is not of importance here. It can be assumed that both Kx and K2
are contained in [cI(xi)], for if this were not the case 'x and x2 would be arbitrary and the ratio K1 = x2 would be
valid by an arbitrary assignment. Now let the substitutioni = xX + K2 be made in [c1 (xi)], giving [cl(xi)] =
[(2Z + M4) (Z + X- (2Z + X4 )4' # 0. Now consider the polynomial defined by

[c'(xi)] [2 1 (xi)] = 2i(2z + 4 ) + X 5) (27 +X6)'] 0 .-

The inequality follows from Comment 22. Now let the substitution z = k, + K2 be made in [ c'(xi)], thus restoring
these variables. The result is

[c'(xi)] = [(2x- + 2x 2) (2kx + 2k2 + X4)(K + X2 + X5 )(2X, + i2 + X6)4] =0.-

This quantity can be interpreted to be the characteristic polynomial for the graph shown in Fig. Sb. in which
the variablez is associated with a dependent face. Since [c'(xi)] is nonzero by Lemma 23, there exists a sequence
of reductions which will completely reduce the polynomial. Such a sequence must involve the substitution K =K
since the factor (2kX + 2k 2 ) by Lemma 20 gives rise to a forced reduction. It follows that z = x. By Lemma 24,
there exists a valid labeling for that part of the graph of Fig. Sb outside of the three-sided face vl, V, vs, v5 . But by
Lemma 9, a valid labeling exists for the entire graph.

Finally, let the vertex v' of Fig. Sb be removed. This leaves a valid labeling for a graph in which a five-vertex
has been inserted inside the closed path P.

Theorem 2. Every ST-graph has a valid edge labeling.
Proof The proof is by induction on the characteristic number K.

1. If K = 2, a valid labeling exists.

2. Assume that a valid edge labeling exists for every ST-graph up to and including K.

3. By Lemma 5, any ST-graph can be created by the ordered addition of vertices having incidences of
3, 4, or 5. By Lemma 14, the addition of a three-vertex yields a valid edge labeling; by Lemma 16, the introduction
of a four-vertex yields a valid edge labeling; and by Lemmas 17, 19, and 25, we show that a five-vertex can be added
so as to yield a valid edge labeling. Hence a valid edge labeling exists for an ST-graph with a characteristic number
(K + 1).
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V2 V57

V1

(a)
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V2

Vr~~~~~~~~V

(b)

Fig. 5-Steps in the addition of a five-vertex, III.

Comment 35. The proof of Theorem 2 only assures that there shall be one valid labeling for a given ST-graph. It is
the exception rather than the rule if only one labeling is possible. Consider the technique of Lemma 20 which can
generate all possible labelings. A unique labeling exists only if O(xm) = KxkO(xm), where xk can be any x other than
xi. It is obvious that this is a very special set of conditions and is not to be expected often in practice. It can hap-
pen, however, and does, for example, in the unique ST-graph for K = 3.

III. The Vertex Labeling of Planar Linear Graphs.

Definition 26. Let G be a planar linear graph, let there be four distinct kinds of labels available, and let one
label be assigned to each vertex in G. Then if an assignment of labels to vertices can be made so that no pair of
vertices which are edge connected are labeled alike, a valid vertex labeling for G is said to exist.
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Comment 36. This section is concerned with proofs that valid vertex labelings exist for ST-graphs and for planar
graphs in general.

Lemma 26. Let G be an ST-graph with an assigned valid edge labeling. Then one of two labels can be assigned
to each vertex of G1(i = a, b, or c) so that no pair of edge-connected vertices are labeled alike.
Proof Every face of Gi has four edges on its boundary (Comment 14); hence, every closed path in GI has an even
number of edges. It is known that in any graph which is at least two-vertex connected, at least two simple paths
can be found that join any two vertices. These two paths form one or more closed paths; the more-than-one case
holds if the two paths share one or more vertices other than the two endpoints. In the case of two vertices in GI,
the number of edges in the two paths must be either both even or both odd, since the two paths taken together
must give a set of simple closed paths, each of which has an even number of edges. These facts provide the basis
for a constructive process of assigning labels.

Select a set of independent simple closed paths in GI. They will be (K - 1) in number and may, for example,
be the boundaries of the faces of GI, or, they may be based upon some topological tree in GI. It really does not
matter how they are selected. Now select an edge in one of these closed paths and label the endpoints of the edge,
say, 8 and e. Calling the rest of the closed path a simple path from one already labeled vertex to the other, label
the vertices along this path alternately e, 8, e, 8, etc., starting with the vertex already labeled 8. Since the number
of edges along the path is odd, e will be the next label in the sequence when the end of the simple path is reached,
and this assignment will be consistent with that already made.

Now select a second independent closed path which has at least one edge in common with the closed path al-
ready labeled. The endpoints of this common edge will have been labeled already. Using it as a starting point, label
all vertices in the closed path that have not already been labeled.

Repeat the process just described until all (K - 1) independent closed paths have been labeled. A valid vertex
labeling results, since every closed path contains an even number of edges.

Lemma 27. Let G be an ST-graph with an assigned valid edge labeling. Then one of two distinct labels can be
assigned to the vertices in Glk (i = a, b, or c, k # j) so that no pair of vertices that are edge connected in Gik are
labeled alike.
Proof Since Gjk has at least two disjoint subgraphs, the assignment of labels can be made to each subgraph in turn.
There are two cases to be considered.

Case 1. A subgraph in Gjk contains no simple closed paths. In this case there is one and only one simple path
joining any pair of vertices. Let vo be an end vertex in Gjk, let the other vertices be called v1, v2, etc., and let the
unique paths from v0 to vI, v2 , etc., be called P1 , P2, etc. Label v0 , say, p.. Starting from v0 and using path P1 ,
label the vertices alternately p., v, pA, v, etc. Repeat the process with P2, P3, etc. If any two of the paths have edges
in common, the labeling will be consistent, since the same starting point is used in both cases and the common ver-
tices are labeled in the same order. Finally it is observed that if the subgraph consists of a single vertex, only one
label is required.

Case 2. A connected subgraph of GJk may contain one or more simple closed paths. Since every edge in one
of these closed paths is labeled alike (by Lemma 8), the number of edges in each such closed path is even. This case
differs from Case 1 in that there may not be a unique path from one vertex to another. However, if two or more
such paths exist, the number of edges in the paths are either all even or all odd. Select some vertex, call if v0 and
label it, say, p.. Call the remaining vertices v1 , V2 , V3 , etc. Call the simple paths which join v0 to vi (i = 1, 2, 3, etc.)
Pia where a is an index that designates each of the separate simple paths connecting v0 to vi. It is assumed that the
maximum number that a can have is the number of independent paths connecting v0 to vi.

Select the path P11, and starting from v0 , label the vertices along the path alternately p., v, p., v, etc. Now select
path P12 and repeat the process. Continue until all paths having 1 for a first subscript are labeled.

Now repeat the process with all paths P2 a, then P3a,, etc., until all paths have been labeled. Consistency will hold at
every step, for if two paths have edges in common their endpoints which have been labeled in the same order, and
if two paths take alternate paths through a simple closed path, the number of edges traversed by each path through
the closed path will be both even or both odd.

The foregoing process is repeated for each disjoint subgraph of Gjk. The final result is a valid vertex labeling
using only two distinct kinds of labels.
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Theorem 3. Let G be an ST-graph with an assigned valid edge labeling; then one of four distinct labels can be
assigned to each vertex of G so as to give a valid vertex labeling to G; furthermore, three distinct such labelings can
be found, no two of which are permutations of each other.
Proof Let the subscript i in Lemma 26 be a and the subscript j and k in Lemma 27 be b and c. Let the labels 8
and e be assigned to the vertices in Ga according to Lemma 26 and the labels pu and v be assigned to the vertices in
Gbc according to Lemma 27. Every vertex in G is also in Ga and in GbC. Hence every vertex in G has been assigned
two labels. These assignments will appear in the four distinct pairs (8, p.), (8, v), (e, A.), and (e, v). Let these pairs be
called A, B, C, and D in order. If a pair of vertices are edge connected in Ga then they will differ in the first of the
pair of Greek labels; if the pair are edge connected in Gbc, they will differ in the second of the pair of Greek labels.
Therefore any pair of edge-connected vertices will have different labels from the set of labels A, B, C, and D.
Clearly then, the labeling so determined is a valid vertex labeling.

Now let the indices be changed in GI and Gjk to Gb and Gac. Half of the edges which were in Ga and had
labels 8 and e at their endpoints are now in Gb and have labels pu and vat their endpoints. It is clear, therefore, that
the labeling in this case is different from that given before. The change is not a permutation, for the labelings as-
signed to the endpoints of one-third of the edges are not changed.

A third arrangement is obtained if GI is made Gc and Gjk is made Gab. The same arguments hold regarding its
difference from the other arrangements and for the absence of a permutation. Thus there are three distinct ways in
which an ST-graph can be given a valid vertex labeling.

Comment 37. Theorem 3 can be proved in several ways. The argument given above was called to the author's at-
tention by Robert Busacker.

Comment 38. Steps will now be taken to remove the restriction to ST-graphs which is contained in the statement
of Theorem 3.

Comment 39. It is almost trivial to remark that if a valid vertex labeling is determined for an ST-graph, the same
labeling will be valid if any number of edges are removed from the graph.

Theorem 4. Let G be a finite planar linear graph. Then one of four distinct labels can be assigned to each ver-
tex in G so that no pair of vertices which are edge connected are labeled alike. Furthermore, the assignments can
be made in three distinct ways, no two of which are permutations of each other.
Proof A constructive proof will be given.

Remove edges from G so as to remove all loop and all parallel connections. Call the result G. Every pair of
edge-connected vertices in G is still connected in G. Using Theorem 1, let G' be converted to an ST-graph G. Now
using Theorem 3, three distinct labelings are found for the vertices in G. Next remove edges from G until G'is re-
covered. By Comment 39, the three labelings are still valid. Finally, the parallel connections and the loops are
added to G' to recreate G. In this last step no new edge connections are made; hence, each of the three labelings
is valid in G.

Comment 40. Theorem 4 is a positive statement that the dual of the four-color conjecture is true.t

IV. The Labeling of Faces in a Planar Linear Graph.

Definition 27. Let G* be a finite planar linear graph, and let one of four labels be assigned to each face of G*
such that no pair of faces with an edge in common are labeled alike. Then a valid face labeling of G* is said to exist.

Comment 41. This section is given over to a proof of the existence of a valid face labeling for any planar graph; i.e.,
to a proof of the four-color conjecturert

Theorem 5. Let G* be a finite planar linear graph. Then ove of four distinct labels can be assigned to each
face of G* in such a way that no two faces with an edge in common are labeled alike; furthermore, the labelings
can be assigned in three distinct ways, no two of which are permutations of each other.
Proof The proof of the theorem is straightforward through the use of duality principles.

t See, however, the footnote on p. 1. BL. & H.H.
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Since G* is a planar graph, it has a physically realizable dual G in which every face of G* becomes a vertex in
G. The number of edges remains invariant in the dual transformation; an edge which is common to two faces in
G* edge connects the corresponding vertices in G. Now by Theorem 4, G has three distinct valid vertex labelings.
Since the dual of G is G*, if any of the three valid vertex labelings is assigned to G, and it is then dualized, with the
labels of vertices being carried over to the corresponding faces in G*, it follows that a valid face labeling is obtained.

The same result is obtained if each of the other two possible valid vertex labelings of G is used in turn. Hence
a valid face labeling for G* can be found in three distinct ways, no two of which are permutations of each other,
since the valid vertex labelings in G are also not permutations of each other.

ACKNOWLEDGMENTS. The author would like to express his appreciation to those several associates of his at the
U.S. Naval Research Laboratory who have listened sympathetically to his discussion of special points in the fore-
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Appendix A

MATERIAL PERTAINING TO LEMMAS 17 THROUGH 25

Notation for Multilinear Polynomials

Xk(xI), (i = 1,... n) is a product of k linear factors modulo 3.

Hence Xk(xi) is a quadratic, at most, in any xi. Xk(xi) is Xk(xi) with the substitution xi2 = 1. Any term is a
linear product of variables k or less in number. Xk(xi) is reduced in the following fashion, assuming Xk(xi) # 0
identically.

1. If Xk(xi) can be factored into the form (using x42 = 1) tXk 4'x1), where t2 = 1, then multiply the
polynomial by tXk and set x j = 1, giving 4(xi) as a result.

2. If Xk(xi) can be factored into the form (using xi = 1) [b(xi) + 0(xi)] X(xi) where 4(x 1) * 0 and 0(xj) * 0,
then set 0(xj) = 0(xi) and solve for some variable xi. This value of xj is then substituted into Xk(xi), giving Xkl(xI).

Special Case a. If '(x1) = Xk and 0(x1) = txi, with t2 = 1, then set Xk = txi or xi = tXk.

Special Case b. If Nxi) = Xk, then set Xk = 0(xi) and solve for some variable.

Y(xi) is Xk(xi) reduced as far as it can be.

* * * *

The xi's in Xk(xi) are said to be unique to within a ratio if the range of i is I to k + 1 and if the reduction proc-
ess gives k linear relations. (X(xi) is said to be exhausted if it is a linear polynomial.) Note that if the xi's are unique
to within a ratio, then X(xi) is a constant.

Lemma. If i in Xk(XI) is equal to or greater than k + 2, then the xi's are not unique to within a ratio.
Proof Xk(xi) is obtained from k linear factors. Hence at most k linear relations can be found in the reduction
process. But it takes k + 1 relations to uniquely fix ratios. The result follows.

Definition. Any Xk in Xk(xi) which disappears in the reduction process, without having its ratio to some other
variable determined, is said to be arbitrary.

Lemma. If Xk(x 1) = xi5x 1), where 0xJ does not contain xi, then xi is arbitrary and (x1) is of the form
Xk.k(XI)
Proof That xi is arbitrary follows from the definition of such a variable.

Every term in Xk(xi) is a linear product of not over k variables. Consequently, every term in O(xj) is a linear
product of at most (k - 1) variables. The result follows.

Lemma. If Xk(xx) $ 0, n. > (k + 2); and if none of the variables are arbitrary, then Xtx 1) contains at least three
variables.
Proof At most, k linear relations can be found in the reduction process. Since no variable is arbitrary, at each step
in the reduction process, the number of variables is reduced by exactly one. Hence after k - I steps, a linear factor
results having at least three variables.
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Let Xk(xj) be the product of k linear factors involving n unknowns. Let F(n, k) be the largest number of dis-
tinct terms in Xk(xl). Then

F(n,k+ l)=F(n,k)+F(n- l,k+ 1),

with

F(p, l)=pandF(l,q)= 1.

Also, for example,

[(x + y) (Xxy + p(x + y) + A)]

= [Xy+g+gxy+ ox+Xx+pxy+p+Poy]

= [2yxy+(X+w)x+(X+w)y+22p]

= [2p(xy + 1) + (X + W)(x + y)]

= [(2gy+ X+ w)(x+y)] _0,

if

[0] -O

and

[R + c] O.

Again,

[X(X + w)(X + 2w)] [X(X 2 + 2)].

Two further lemmas are needed.

Lemma 1. If xi = hxn is one of a set of forced reductions prior to any arbitrary reductions, it can be found in the
first reduction.

Lemma 2. If xp and xq appear symmetrically in a polynomial, then Xq = 2xp cannot be a forced reduction.

(The material from 4 April to 8 July 1964 is believed to be supplementary to Comment 34.)

April 4, 1964

Lemma. Let X be a linear polynomial containing more than two terms; then, there exists no linear polynomial
p such that [Xtl ]-0.
Proof. 1. Assume that X contains a term z which is not contained in p. Let X = X + z, where X1 does not con-
tain z. Then [Xg] = [(X1 + z),u] = [XptL + zp] = [XRIA] + [zu] . Since the second term is not null and has no product
in common with [XpI/], the result cannot be null.

2. Assume that ,u contains a term co which is not contained in X. By a similar argument [XMI * 0.

3. From (1) and (2), it follows that X and ,u have the same number of terms.

4. If [Xip] = 0, then so will [X(x,,u)I, since this amounts to no more than x,[1R] . Note that [x,,u] is
of second degree and is of the form 1kixlxi .
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5. Let X be represented as X3ixi, where P1 = 1 and P3i + 0. Then for the product to be null, the coeffi-
cient of each term in the product must be null. The coefficient of xi(i > 1) is (kiB3 + 13i) = (P3 i + ki); hence for this
coefficient to be zero we must have ki = 213i. The coefficient of xlxjxk, (1 < j < k) is (kj13k + kk13j). But kj = 29j1
and kk = 213k. Hence, the coefficient is 29jk + 213jgk= 0j1

k * 0. Thus it is impossible to make all coefficients zero
simultaneously.

Comment. If

=xI +12 X2

and

= 1 + k2 xIx2

then

[X] -[X 1 +92X2 +k2 X2 +k 212 2 xI] [(1 +k2 P2 )xI +(k 2 +92 )X2]-

For this to be null, k2 = 2132, and this value will make the first coefficient zero also. This explains the limitation in
the theorem. On the other hand, if

X = x, + 132x2 + 93 x3

and

I = 1 + k2x1 x2 + k3xIx3 ,

then

[Xg ]- [(I + k2 #2 +k 3fl3 )xI +(k2 + 92)x2 + (k3+ 3 )x3 +(k2 03 +k 3l 2)xIx 2x3].

The second and third coefficients can be made zero if k2 = 2132 and k3 = 2j33. The last coefficient then becomes
121, which is not null. The first coefficient becomes (1 + 2 + 2) 2, which is also not null. However, if the number
of terms had been 1 + 3N (N an integer), then this first coefficient would have been zero. It is clear that the crucial
part of the argument requires that there be a triple term in the product. Note also that the coefficient of the term
Xi xj Xk( 1 < i <j < k) is always zero; an interesting fact of no great consequence.

April 21, 1964

Consider the following multilinear polynomial of second degree and fourth order:

ab + ac + ad + 2bc + 2bd + 2cd.

This polynomial can be obtained from any of the following products:

[(a+b+c+d)(b+c+d)], [(a+b+2c+2d)(a+2c+2d)],

[(a + 2b + c + 2d) (a + 2b + 2d)], or [(a + 2b + 2c + d) (a + 2b + 2c)].

This shows that the decomposition of a multilinear polynomial into a product of linear factors is not unique. On
the other hand, it is legitimate to write, for example,

[(a + b + c + d) (b + c+d)] [(a + 2b + 2c + d) (a + 2b + 2c)].

It is not legitimate to remove the brackets, for this implies an equality of factors before the imposition of the con-
straint (xi)2 = 1.
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April 22, 1964

Lemma. Let 4 = a@ + 0 be a multilinear form and let a + X be a linear form. Then [(aq5 + 0) (a + X)1 can be
identically null only if X is a factor of 4' (ie., I P] fXaP1 1), if/c/f [-M2O], [01 E [2Xk1, and if (a + 2X) is a factor.
Proof [(a) + 0) (a + X)] [I + aX0 + aO + X03 [(aI + XO) + a(X@ + 0)1 . The first factor does not contain a. There-
fore, each term in parentheses must be zero independently. Thus [' + X0] -0 and [X' + ] _0 0. It follows that
[P11 -2[X0] and [0] =2[ X4I. Now return to the first term [a@ + 0] and substitute the foregoing values, giving
[2a(X0) + 2(X@)]- 2[X(aO + )] _ 2[[X] [aO + ']1 . Q.E.D. Also, [a@ + 0] [ao + 2X¢] -[(a + 2X)]
[2X0(a + 2X)] 2[OX(a + 2?')4.

Comment. The foregoing lemma shows that if [4(a + X)] is to be zero identically, then the product can be written
in the form [(a@ + 0) (a + X)] -2[X(a0 + ') (a + A)] 2[X(a + A) (a + 2[Xq5)] = 2[X(a + A) (a + 2X)0A]. This is iden-
tically zero because [X(a + A) (a + 2X)] _ [X(l + 2X2)] =_ [A + 2X] 0.

To give a feeling of confidence in the foregoing lemma, let us look at a product which at first glance does not
appear to fall into the triple product category, yet we can show that in fact it does.

Let 0 and 0 be two linear factors, each of which has at least two terms. Hence, we cannot assert that the square
of either term must of necessity be nonnull.

Now consider the product [@0(4' + 20) (' + 0)] [@0(' 2 + 202)] [00 + 2001 0.

Now let us play the game that 4, of the previous lemma is the product of the first three factors; namely
[00(o + 20)]. We seek to show that if the last factor [4 + 0 ]-[a + A], where a is a single term, then X is a factor
of A. Wehave [0][a+ X +2@] and [@+20]I[2(a+ X + )]. Then [00(C'+20)]-2[a(a+ X +20)(a+ X +0)]-
2[$(1 + 2aX + A 2) + 20 2 )] = 2[4 + (2aX +AX2)0 + 20] _ 2[(2aX + A 2)0] -2[A(2a + A)0] _ [X(a + 2X)0]. HenceX
is a factor, as theory says it should be.

Note if X = a single term, say b, then only two factors are required, for if b is a factor of 4, no generality is
lost if the b is dropped and a new polynomial Pb is considered, which is obtained by the rule fPb = [b4]. Then we
have [(a4,+ 0)(a+ b)]=-[@+ abk+aO+bO] =-[(b4'+0)a+(4'+bO)]=0. Itfollowsthat [0]- [2bt]/and [@1--[2b0].
Then [(aa + 0) (a + b)] [(a@ + 2bo) (a + b)] [O(a + 2b) (a + b)] 0, since [(a + 2b) (a + b)] [a2 + 2b2 ] _O.

Finally, note that in all but the case A = xi, the factors needed to make a null product are dependent.

May 28, 1964

Theorem. Let p(x,) be a multilinear polynomial, involving three or more variables, which contains no linear
factor, and let a be any of the variables in p(xi). Then there exists no linear polynomial a + A such that
[p(xi) (a + A)] is identically zero.
Proof p(xi) can be expressed as

p(xi) = a' + 0,

where 4 and 0 are, in general, multilinear polynomials, neither of which contains the variable a.

Assume the theorem is false. Then

[p(xi) (a + A)] _ [(a' + 0) (a + A)] - [a[AX0] + 0) + 0 + [AO]] =0.

For this to be true, the two conditions

(1) [X0] + =s0 and (2) [XO] +sO0

must be satisfied simultaneously. Substituting (1) into p(xi) we have [p(xi)] [ao] + [A'P S[ao + 2X¢]-
[f(a + 2X)]. Hence, p(xi) contains the linear factor a + 2X, which contradicts the given conditions. Q.E.D.
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Comment. If the second condition is substituted into the result, we have [p(xi)] [2tX0] (a + 2X)] [2X0(a + 2X)]
Hence X is a factor of p(xi) also.

May 29, 1964

Theorem. Let p(xi) be a multilinear polynomial with three or more variables such that it cannot be reduced;
then, there exists no linear polynomial a + ,u that [p(xd) (a + p)J is identically zero, where a is any variable.
Proof Write p(xi) in the form p(xi) = ao + 0. Note that if [] 0, then the theorem is true trivially. Hence assume
[0] 0. Then

[p(xi) (a + y)]M [(aq + 0) (a + p)] [a(0 + [p0]) + (0 + [p I)].

Now assume the theorem is false, i.e., that

[a(0 + [p0J)+(t + [p+])]mO.

This can be true if, and only if, both expressions in parentheses are zero simultaneously. Hence two conditions must
be satisfied: (1) [0]--2[puk] and (2) [4=]-2[p0].

Put (1) into p(xi), giving

[p(xi)] [aO + 2[p@]] [O(a + 2p)].

Now put (2) into this expression, giving

[p(xi)] [2[pOI] (a + 2p)]M [ 2p0(a + 2p)].

But this shows that p(xi) was reducible, which violates the given conditions. Q.E.D.

May 30, 1964

Technique of Reduction.

Given p(xi) as a multilinear polynomial, we first define a necessary reduction. But this operation is based upon
the notion of a necessary factor, which can be explained as follows. Let a be any variable in p(xi) and write p(xi)
= ao + 0, where neither 0 nor 0 contains the variable a. If there exists a linear polynomial X which does not contain
the variable a such that [0] [Xo], then [p(xi)] [ao]+ [X0] = [ao + X0] = [(a + X)0] and p(xi) is said to contain the
necessary factor (a + X). In a complete generality p(xi) must be tested for each variable to be certain there are no
necessary factors.

Now assume that p(xi) has the necessary factor a + X where X = b + IA, b being a second variable, so that
[p(xi)]m [(a + b +pA)01. Now write k as 0 = b5 + r. If 0 has a necessary factor b + tu, i.e., r = [p5], then 0 becomes
[ ] * [(b +p)6]. p(xi) becomes [p(xi)] =[(a +X) [(b +,)]] [(a + X) (b + A)5] [(a + b + g) (b + p)8 ]. In such a
case p(xi) is said to have a necessary reduction.

A necessary reduction is made as follows. The condition of a nonzero product requires that a = b + pA. This
relation can be solved for any variable which appears in it. Suppose it is solved for x;. Then one forms the product
[xjp(xi)] and substitutes the values of x;, say xj = , where 13 is a linear factor. This operation will reduce the num-
ber of variables by one and the number of factors by one, for either xj = a or xj = b (b is any term in X). If xj = a,
we have [ap(xi)]a=x [X(a + X)X6]a=x- 53 6] = ]. If xj = b, then b = a + 2p and [bp(xi)] [(a + 2p1)(2a)(a)5]
-[(a + 2u)5] .

If p(xi) has no necessary reduction, then one can select any variable xj and set it equal to 13, where 13 is arbitrary
but usually set to be a constant times another variable for reasons of simplicity. Then one forms xjp(xi).=P. This
will reduce the number of variables by one, but in general increases the number of factors by one. The new poly-
nomial most generally has a necessary reduction.
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July 8, 1964

Theorem. Let 0(xi), i = 1, 2, p, be a nonreducible polynomial derived from the product of k(k < p) linear
independent factors. Then ¢(xi) has no equivalent factorization into k dependent factors.
Proof The polynomial specified has at least one term involving k variables. Hence any factorization must involve k
linear factors.

Now assume that a factorization in dependent factors exists. Then there exists an expression of the form
ClXl(Xi) + C2 X2 (xi) + * * * + ckXk(xi) 0. This being the case, the expression can be solved for some variable, say
xk, in terms of the other variables. This expression for xk can be substituted into O(xi), yielding a polynomial
0(xi), x = 1, 2, . . ., k - 1, k + 1, ... , p with only p - 1 variables. But this implies that O(xi) is reducible, which is
contrary to the stated conditions.

Theorem. Let k(xi) i = 1, 2, . q be a polynomial that is partially reducible (i.e., there exist q - p relations
of the form xs = cixi i = 1, 2_ . ., p, which will eliminate q - p variables) terminating in the polynomial 0(xi),
i = 1, 2,...,p, which is nonreducible. Then there exists no linear factor 4(xi) such that [iP(xi)k(xi)]-I0, unless
the substitution of the q - p relation into /(xi) makes it null.
Proof If the substitution of the linear factors makes 4(xi) null, the exception is obvious. Otherwise, the conditions
stated with the linear factors substituted violate the conditions for a zero product with a linear factor.

Supplement to Lemma 25

Definition. The polynomial [c(xi)] is said to be symmetrical in the variable xi and xj if an interchange of xi
for xi and vice versa leaves the polynomial unchanged.

Comment. If [c(xi)] is symmetrical in the variables xi and xj, and the most general form that [c(xi)] can take is
[c(xi)] = Xxixj + p(xi + xj) + w, where X, p, and co are polynomials, none of which contains either xi or xj.

Lemma A. If the polynomial [c(xi)I is symmetrical in the variables xi and xi so that [c(xi)I = ?c1 ixi +
p(xi + xi) + w, then [c(xi)I can have xi + 2x1 as a factor if, and only if, the three conditions [XI 0 0, [W=- [2A1, and
[,uO are satisfied.
Proof Substitution of the conditions yields

[X(xixj + 2X] [X(xixj + 2)] [Xxj(xi + 2 xj)].

On the other hand, assume that (xi + 2xj) is a factor of [c(xi)]. Then the substitution x; = xi must yield a zero re-
sult. Thus [X + 2yxi + co] 0. Since X, ,, and co do not contain xi or xj, either [X]- [m] [co] 0, which is a
trivial result, or [R + co]0, with [X] 0 0 and [p] 0. These are the conditions stated.

Let dependent variables be chosen for Fig. 4b in the following fashion. Consistency relations for vertices v,
vj, and v5 will not be invoked. Let dependent variables be selected by the following scheme: X4 with a consistency
at V2 , X5 with consistency at v3 , X6 with consistency at V4 , X7 with consistency at v' x8 with v, and v5 as two of its
vertices (not shown in Fig. 4b) with consistency at some new vertex v6 , and the remainder to be chosen so that no
variable will become dependent if it is associated with a region incident on v2 , V3, or V4. It follows from the nature
of the selection that

X6 = RI + 2x2 + 201, where 01 involves variables associated with regions incident on V4 ;

X5 =Xi + X2 + 02 where 02 involves variables associated with regions incident on V3 and all but one vari-
able from 0,;

X4 = 2_x + 2x2 + 203, where 03 involves variables associated with regions incident on v2 and some variables
from 11 and q52;

X7 = 2xI + 2x2 + 2x3, with consistency at v'
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Let t be the polynomial obtained from the product of all dependent variables other than X4, X5, and x6 . Then

[c(xi)] [{(2X1 + 2X2 + 20,) ( + X2 + 02) (2XK + 2X2 + 203)W} (2-x + 2X2 + 2X3)] P 0.

Now consider the polynomial with the last factor deleted:

[C(Xi)l -[(2_XI2(0 + 02 + 03) + (X1 + x2 )(l + 010 2 + 0103 + 0203) + (20, + 202 + 203 + 0102003)}4] P 0.

Note that this expression is symmetrical in xl and x2.

By Lemma 15, the edges in the path V3 , V, v, and v5 can lie in a simple closed path with all edges labeled alike.
Thus there exist solutions in which x2 = 2`x . Hence (x + 2 ) is not a factor of [cI(xi)]. We seek to show that
(xl + 2x2) is also not a factor.

Since (-xI + x2 ) is not a factor, the substitution x2 = 2_x can be made without yielding a zero result. There-
fore,

lc(xi)] = 2X1-i [{(01 + 02 + 03) + (20, + 202 + 20 3 + 010203)}1 ] -[010203fl a] 0

By Lemma A, (it + 2x2) can be a factor only if the three conditions

(1) [(201 + 202 + 203 + 010203)0] 4 0

(2) [01 + 02 + 03 + 010'203M¢ -

(3) [(1 + 0102 + 0103 + 0203)M] 0

are satisfied simultaneously.

By Lemma A, (xl + 2x2) can be a factor only if the three conditions,

[(201 + 202 + 203 + 0 102 0 3 )M] P 0,

[(010203M0 PO°,

and

[(0 + 0102 + 0103 + 0203M 0] ,

are met. The fact that (xl + x2 5 is not a factor means that the substitution l = 2x2 does not yield a zero result.
Hence

[C1(Xi)]X2=2X, - [01020M 0- 0,

which shows that the second condition holds.

Let us turn to the last condition and note that [ 4] 0. Hence the condition can be satisfied only if the ex-
pression in the parenthesis is zero. But for this to be true, [010 2 + 0103 + 0203I must consist of only squares of the
variable. We now show that this cannot happen.

Since the addition is ordered, there must be at least three regions outside of P incident on each vertex. Con-
sider vertex v2 . There must be a region with one of its vertices on v2 and none on V3 or V4. Let the variable associ-
ated with this region be xq. Then xq occurs in 03 but not in 01 or 02 Likewise at V3 there is a similar region with
a variable Xs which does not appear in 01. It follows that in the polynomial ['k1'12 + 0103 + 0203] there exists a
term [xq(0i + 02 )], but this cannot be zero for 02 contains the variable x, while 't does not. There are no other
terms containing xq. If follows that [c102 + 0103 + 020t3] cannot involve only squares of variables. It follows that
the third condition cannot be satisfied, and hence [c1 (xi)] does not contain (xI + 2X72) as a factor.
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Appendix B

ADDITIONAL NOTES January 4, 1964

A New Statement of the Four-Color Problem

Consider Fig. B1, in which the nodal constraint is satisfied at V4 , but not at v1 , v2, and V3 . Assume also that
the nodal constraints are satisfied at every other node in the graph and that these constraints give rise to the multi-
linear polynomial 0. Let 0 be the incidence on V4 provided by the graph outside of vI, V2 , V3 , V4. The region vI, v2 ,
V4 is taken as dependent while V2 , V3 , V4 - a is independent. Then for the whole graph we have a multilinear poly-
nomial, 20(a + 0) _ 2a0 + 200. Assume that a valid solution exists for the graph. Then 2a0 + 200 must contain
this solution; it may also contain other solutions which make the incidence on v1, v2, and V3 nonzero. Note that
200 does not contain a, and that 0 3 0. Also 0 + 0 if four or more regions are incident on V4. Assume further,
without loss of generality, that the incidence on v2 > 4.

Now consider Fig. B2, which is the graph of Fig. BI with the (V2 , V4) edge rotated to (v1 , V3). For this graph,
with v1, v2 , and V3 again not having their constraints satisfied, we have the multilinear polynomial 200, which is
exactly the second term for Fig. B 1. In Fig. B2, the variable a does not appear in the polynomial. Hence the poly-
nomial of Fig. B2 can be obtained from Fig. B 1 by setting a = 0. It follows that such an edge can be rotated, giving
a valid solution, provided 60 i 0 for the initial graph, Fig. B 1. Proof of this fact would in effect prove the four-
color conjecture.

Vi

rest\
of
graph

V3 I

I
/

V2

Fig. B1.

Vi V3

V2

Fig. B2.

August 7, 1964

A New Throught On The Four-Color Problem

Suppose we seek to add a vertex of degree five to G, which is known to have a coloring. Thus we seek to add a
vertex to a region and obtain a coloring for the Enlarged graph G' as in Fig. B3.

Fig. B3
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It is easy to show that the only situation which will not give an immediate coloring for G' is the one in Fig. B4,

C

Fig. B4.

with the additional requirement that both interior edges are contained in meshes, all edges of which are of the same
coloring. Let us arrive at a graph GI as follows.

1. Exchange to the right of interior edge b, giving the edge labeling shown in Fig. B5. If the interior a
is still in a similarly colored mesh, a solution to G' is immediate. So assume a is not in such a mesh.

Fig. BS.

2. Add a vertex of degree four on the interior b, giving the result shown in Fig. B6. In this graph all
interior a's and b's are not in colored meshes.

C

Fig. B6.
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3. Add a vertex of degree four on the interior a to the left, giving the graph G1 , as in Fig. B7.

Fig. B7.

The point is that G1 has a coloring-hence there exists a nonzero polynomial for G1 . Let the dependent re-
gions for G1 be chosen according to the scheme in Fig. B8.

V3 V2

V5

V6

Fig. B8.

The selections are made in the order:

a.
b.
c.
d.
e.

Region A with zero sum on vI,
Region B with zero sum on v2 ,
Region C with zero sum on V3,

Region D with zero sum on V4 ,
Exterior selections none of which have zero sum on V5, v6 , or V7.

Thus all vertices are included except v5, v6, V7; i.e., three vertices on two adjacent edges. These selections give

D= 2[(x + y) + z],
C = 2(x + y) + 20, where 01 is the rest of the regions on V3 ,

B = (x + y) + 01 + 202 where 02 is the rest of the regions on v2 ,
A = 2(x + y) + 20, + 02 + 203 where 03 is the rest of the regions on v1.
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If 1 is the multilinear polynomial for G1 , then it is of the form

= [2(x + y)+ 20, +02 + 203 [(x+y)+01 +20 2] [2(x+y)+201 [2(x+y)+ 2z10},

where 0 is the product of factors from the remainder of G1 . The point is (a) that 0 does not contain x, y, or z, and
(b) that x and y always appear in the combination x + y.

Let 4' be 4'I with the factor [2(x + y) + 2z] deleted. Then since 4'1 is not zero (it has at least two possible
solutions) so also is 4'. If 4" contains some necessary reductions and if the regions eliminated contain x and y, they
must contain them in the form (x + y). After all such reductions are made on the fully reduced polynomial, say
o', it must contain (x + y) in that combination, but not z. Since this fully reduced polynomial is nonzero, there
exists at least one solution with x = y. Hence there exists a graph which is colorable in the form shown in Fig. B9.

Fig. B9.

Removal of the vertex of incidence 3 gives the desired result.

There remains only the question of a possible gap in this argument. If no gap exists, the theorem is true and
proved as of this date.

September 14, 1964

On an Aspect of the Four-Color Conjecture

Let G be an ST-graph and let Fig. B 10 be a subgraph of G, let a polynomial be based upon v2 , V3 , V4 with only
one dependent region y being incident on v1 , let 0 be the sum of the regions incident on v, other than y so that
y = 20, let 4 be the polynomial obtained from the remaining k-2 dependent region, and let a labeling exist. Then
[ye] - [204'] # 0.

V3

V3

0

V4

Fig. BIO.

0

V4

Fig. BIl.
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Now consider Fig. B 1. Let y' be the dependent region and let this be the only change from Fig. B10. Then
y' = 2x + 20. The polynomial for this graph becomes [yapI [(2x + 20)4,] (2xv/ + 204,] # 0, for 4 and 0 do not
contain x. In fact both terms are nonnull. Hence we know that solutions exist for the graph of Fig. B 11 in which
the consistency relations are satisfied at all vertices other than v2, v3, v4. Furthermore, there are multiple solutions
since the number of variables has increased by one.

In conclusion, if it can be shown that one of these multiple solutions satisfies the consistency relation at v2

(or V4 ), then the four-color problem will have been solved.

Note that x and y' are interchangeable without affecting any solution.

Notes of September 15, 1964

Lemma. Let G be an ST-graph for which it is known that a nonzero polynomial exists that satisfies the con-
sistency conditions at every vertex except three, vi, vY, vk, where v1 is connected to vI, and vi is connected to vk, but

vi is not connected to vk. Theneither the polynomialfor G will contain every solution that satisfies the consistency
conditions at v1, v-, and Vk, or vj may be split into vi'and v"' with these two vertices connected so that the consis-
tency conditions are satisfied at vi, v/, v;', and Vk.

Proof For any solution let RI, Ri, and Rk be the sums of the incidences on the respective vertices. Since all regions
have been used in establishing the characteristic polynomial, it follows that RI + Rj t R. = 0. There are three cases
to consider.

1. If Ri = Rj = Rk = 0, then consistency exists at vi, vi, and Vk.

2. If RI = Rj = Rk * 0. Let v; be split, thus creating two new regions vi and vk, where vi has an inci-
dence on vi, and vk has an incidence on vk. Both are incident on vj' and vj". By the parity lemma, Rj' = R" = 2RJ.
Then let the variable associated with vi be xi = 2RI. In a similar manner, let xk = 2 Rk. Thus at v1 we have
R, + 2RI = 0; at vk, Rk + 2 Rk = 0; at vj' (or vj") we have 2 Rj + 2RI + 2Rk 2(Ri + Rj + Rk) = O°

3. If R, = 2 Rk, Rj = 0. Let v; be split and let xi = 2RI and xk = 2 Rk = RI. The conditions on parity
require that R' = Ri" 0. Then at vi we have RI + 2I = ,; at vk, Rk + 2Rk = 0; and at v;' (or vj") RJ' + R + 2RI = 0.

Notes of September 18, 1964

Lemma. Let G be an ST-graph, let v, and v3 be two connected vertices, let v2 and v4 be the other vertices in-
cident on the regions having the edge (v1, v3 ) as a boundary and let there be at least one labeling for G. Then the
vertex (v1, v3) can be rotated to (v,2, V3 ) if the incidence on v1 and V3 is at least 4.
Proof Let the situation be as shown in Fig. B 12. Then there exists a polynomial
that satisfies the consistency relations at every vertex except v2 , v3, and V4. This Va
polynomial will contain a solution that is consistent at these vertices; it will also
contain other possibilities, in which some are not zero at all of the three vertices.

To form this polynomial, let dependent regions be selected as follows. Take V V2
a region having (V2, V3) as an edge but not b. Take a second region bounding the 4 \ /
one just taken and having vi on its boundary. Continue in this fashion until vi is
satisfied. Then starting at (v3, V4 ) select a region not a. Continue in this fashion
but not using any regions incident on v1 not used in the first sequence of
selections. VI

Now every linear factor that contains a also contains b in the combination Fig. B12.
a + b. Hence these two variables are indistinguishable in the polynomial. The poly-
nomial cannot be completely reducible, for it must contain at least three solutions (number of variables = k and
number of factors = k - 1). Hence one arbitrary reduction is b = a. But this gives a possible rotation, as the follow-
ing argument shows.
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There are two cases.

Case 1. b = a and consistency holds at V2 , V3 , V4. Then the situation is equivalent to the labeling of Fig.
B13, in which case a rotation is immediate.

Fig. B13.

Case 2. b = a but consistency does not hold at V2, V3 , v4. Then the situation is equivalent to the labeling
of Fig. B 14. This gives an immediate solution, shown in Fig. B 15, in which consistency now holds at v2 , V3, and v4 .

a z

b

a \

a
C

b

V3

\\b

V4

Fig. B14. Fig. B1S.

The conclusion is that if the reduction b = a is either forced or can be arbitrary, then a rotation is possible.

September 24, 1964

A Key Result in a Proof of the Four-Color Conjecture

Lemma! Let the subgraph of Fig. B16 be a part of an ST-graph for which a labeling is known to exist. Assume
further that there are at least two regions exterior to the subgraph which are incident on VI, V2, V4 , v5 , and V6 in

turn. Let P be a polynomial which assumes consistency
V2 V4 at every vertex in the whole graph except at V1, V2 , and

V3. We wish to show that (x + 2y) is not a factor of this
/7 \ \.a polynomial.

It / \ \ / b \ Proof Let dependent regions be selected in the follow-
I / \ V3 7 \ ing fashion:

I The region (v2 V3 v4 ) for consistency at V4 ,

2. The region (V3 V4 vs ) for consistency at v5 ,

~3. The region (V3 v5 v6 ) for consistency at v6,

4. The remaining to start with (vI v2 v 7 ) for con-
sistency at v7 and no choice to be based on V4, v5 , or v6.

V1 VS

V5

Fig. B16.
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Let XI, 2X2, and \3 be the linear factors which give the independent variables at V4, vs, and v6 in order. Let X be
the polynomial obtained from the product of the factors resulting from the choices in Step 4. For the remaining
three factors, we have

x + y + c + X3 = 0, or c = 2(x + y + X3) at v6 ;

b + c + 2X2 = 0, or b = 2c + X2 = x + y + X2 + X3 at v5;

and

a-+b+Xi =0,ora=2b+2X1 =2(x+y+y1+X 2 +X3 )atV4-

Then

P = [abcuz

= [(x +Y+ X+2 + X3) (X +Y +X2 + X3 ) (X +y+ 3M]

Let the first three factors be multiplied together, not making the heterogeneous substitution as yet, giving

P =[{(X+y)2 (X1 + 2X2) + (x + y)( + 2 +X 1 2 +2X1X3 +X2 X3)+X3( 2 +XlX 2 +X XI3 +2X 2X3 + 32)}P]-

Now consider two cases.

Case 1. The graph is known to have a labeling such that x = y. In this case, clearly (x + 2y) cannot be a
factor.

Case 2. The graph is known to have a labeling such that x = 2y. We seek to show that this selection is not
forced in P. From the assumption, it follows that

P(x=2 y) = [X3 x2 + \X2 + X1 X3 + 2X2X3 +Xh32t] ' 0.

It is also clear that (x + 2y) cannot be a factor of P unless

[(1 + \2 + X172 + 2XX 3 + 0,X3)P]I°,

for if (x + 2y) is a factor, then the substitution y = x into P must give a null result. Let this condition be substituted
into the expression for P, giving, say,

p= [{(X + y)2 (XI + 2X2) + X3(2 + 2X1X3 + X2X3 + X3 )}2 j

= [{(X + y)2 (X1 + 2X2) + (2X3 + 2X X31 + X2X31 + X3)} 0

= [{(x+y)2 (Xt +2X2 )+ 3(2X, +X2 )}4]

= [(X1 + 2X 2 ) {(x + y)2 + 2X3} 2

= [(X1 +2X 2 )(X+Y+X 3)(X+y+ 2X3)X1

0 Oif(x+2y)istobeafactor.

It follows that (x + 2y) is a factor only if [ X3
2 ] 1 so that

P?= [(Xt + 2X2 ) {(X + y)2 + 2}1 - [(Xi + 2X2 ) (2 + 2xy + 2)0]

[(I + 2X2) (1 + 2xy)4i - [x(X1 + 2?2) (x + 2y)/].
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But X3 has at least two terms, so that [X3
2 ] 0 1 when the heterogeneous relations are substituted. Hence the conjec-

ture is true. This result is the key one for proving the four-color conjecture, for it allows an ordered introduction
of a five-vertex, as the following analysis shows.

The previous result shows that in P, x = y is a possible solution. Now consider two cases which are exhaustive.

Case 1. The substitution x = y satisfies the consistency relations at v1 , v2 , and V3. In this case the edge
(v2 v6 ) can be rotated, leaving consistency at every vertex. That is, the figure becomes as given in Fig. B 17.

V2
V4

VI

V5

V6

Fig. B17.

Case 2. The substitution x = y does not satisfy the consistency relations at vI, v2 , and V3. The discrep-
ancy at V1, V2, V3, is, say, f at each vertex. Then x = y = f and x + y = 2f. Let the edge (v2 v6) be rotated to give the
graph of Fig. B 18.

V4

V,

V6

Fig. B18.

V5

It follows that with this situation consistency has been established locally at vI, v2, and V3, since the incidence has
been reduced by f at each of these vertices.

Hence we have the result: If in an ST-graph, consistency holds at every vertex except v1 , v2, and V3 with v1
connected to v2 and v2 connected to V3; if vI, v2, and V3 are a four-sided subgraph with two interior regions; and if
the polynomial allows the two regions to be equal, then consistency holds everywhere when the common edge is
rotated.
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