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ADDENDUM

Immediately after the second sentence in the section entitled
"Theoretical Model" in NRL Report 6823, introduce a footnote which
should read as follows:

The angle of incidence ~inc shown in Fig. 1 is negative in value;
binc assumes positive values on the opposite side of the normal to the

plane of the array.
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ABSTRACT

A limited investigation is made of the scattered-field response of
a linear array of center-loaded cylindrical elements illuminated by a
plane electromagnetic wave with a step function of time variation. The
theoretical approach utilizes Fourier's theorem to express the tran-
sient response as a sum of the steady-state responses to the individual
sine-wave components of the step-function illumination.

The number of array elements and their spacing can be deter-
mined simply from the time variation of the backscattered field, pro-
vided the angle of incidence .of the illumination is known and adequately
large to separate the component transient waves.

In the case of an N-element array, it is found that the transient
field scattered in any arbitrary direction in the H plane can be repre-
sented as a summation of N appropriately time-delayed components,
each with the same time variation as the field scattered in the reflected
direction but with an amplitude reduced by a factor of 1/N.

PROBLEM STATUS

This is the second report on the final phase of the problem; a third
and final report on the problem is now in progress.

AUTHORIZATION

NRL Problem R02-44
Project ARPA Order 820

Manuscript submitted October 15, 1968.
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THE SCATTERED-FIELD RESPONSE OF A LINEAR ARRAY
TO A STEP-FUNCTION ILLUMINATION

SUMMARY

The scattered-field response of a linear array of cylindrical elements illuminated
by a plane electromagnetic wave with a step function of time variation has been investi-
gated. In the theoretical model the array consists of N thin, uniformly spaced, center-
loaded elements in free space. The transient wave of illumination, polarized with its
electric vector parallel to the axes of the elements, is incident in the H plane of the ar-
ray. The theoretical formulation uses the theorem of Fourier to express the transient
scattered field in the far zone as an integral of the steady-state scattered-field responses
to the individual sine-wave components of the illumination.

From an approximate expression for the steady-state scattered field of a linear ar-
ray of N elements developed in a previous study (1) we find that the transient field scat-
tered in any arbitrary direction in the H plane is a summation of N appropriately time-
delayed components, each with the same time variation as the field scattered in the
reflected direction but with an amplitude reduced by a factor 1N. It follows from this
synthesis concept that the amplitude of the transient response reaches a maximum in the
reflected direction, where the time delay between the component fields vanishes. Also,
the transient scattered wave has a maximum time of duration in the backscattered direc-
tion of observation.

The transient scattered field of a model array of eight elements was calculated from
the continuous, sine-wave, scattered-field response of the model array for various con-
ditions of loading and illumination.

When the reflected transient fields are well damped or nearly periodic in character,
during several cycles of oscillation, the number of array elements and their spacing can
be determined simply from an observation of the transient backscattered field as a func-
tion of time, provided the angle of incidence of the illumination is known and made suffi-
ciently large to separate the component transient waves.

It is found that the largest H-plane scattered energy occurs when the center loads of
the elements represent approximately a conjugate match to the effective internal imped-
ance of the array elements over the frequency spectrum of the transient illumination.

INTRODUCTION

Subsequent to 1960, a number of papers on transient phenomena in antennas have ap-
peared in the literature. Polk (2) treated the transient behavior of aperture antennas.
He pointed out that the transient conditions in the radiation pattern of an antenna depend
upon antenna size, the carrier frequency, the duration of the time signal, and the ampli-
tude and phase distributions over the aperture. Polk's procedure involved the evaluation
of infinite integrals, which is a difficult operation even for the simplest types of time
signal and aperture distribution. Tseng and Cheng (3) present a simplified approach for
the analytical determination of the transient pattern characteristics of an aperture-type
antenna for arbitrary time signals and arbitrary aperture distributions. In their method

1



0. D. SLEDGE

it is not necessary to take the Fourier transform of the time signal or to evaluate com-
plicated inverse transforms.

Several authors (4-7) have investigated various kinds of transient phenomena in par-
ticular types of simple cylindrical antennas. The investigation of the scattering of a
transient-type of illumination by a linear array of cylinders has not appeared, to this
author's knowledge, in the antenna literature. In this report a numerical solution is pre-
sented to the problem of the scattering of a plane electromagnetic wave with a step func-
tion of time variation by a linear array of cylindrical elements. The theoretical formu-
lation makes use of the Fourier theorem to express the transient response as an integral
of the responses to the individual sine-wave components of the step function of illumina-
tion.

THEORETICAL MODEL

The theoretical model is shown in Fig. 1. The model consists of a linear array of N
parallel, center-loaded, cylindrical elements in free space illuminated by a step function
(plane wave) incident in the H plane of the array at an angle 0inc to the normal of the
plane of the array. The polarization of the illumination is such that its electric vector
lies parallel to the axes of the array elements, which are of length 2h, of radius a and
are spaced uniformly at a distance d. The radius of the elements is assumed thin rela-
tive to their length and to the shortest significant wavelength appearing in the spectrum
of incident illumination. In our theoretical model, only the axial currents induced in the
elements are significant; consequently the induced currents maintain a vector potential
having only a z component.

FOURIER REPRESENTATION OF THE TRANSIENT
SCATTERED FIELD

The steady-state scattered field observed in the far zone of the array illuminated by
a plane wave of time dependence exp( jwt) incident in the H plane of the array can be ex-
pressed in the form

E ()= [A(woh/c) + jB(&h/c)] 60 exp(-j&,r/c) (1)

where r is the distance from the center of the first element of the array to the point of
observation in the far zone, c is the velocity of electromagnetic propagation in free
space, and is the angular frequency of the incident wave. The quantities A(wh/c) and
B(ch/c) are real functions of a) only, provided the physical dimensions of the array, the
angle of incidence of the illumination, the direction of observation of the scattered field,
and the character of the load impedance functions Z(w) are fixed.

When we have a transient type of illumination of the array, the scattered field is
likewise transient in character. Let the incident electric field be a step function of mag-
nitude E; then according to Papoulis (8), the Fourier transform of the incident field is
Eol 278(O) + 1/jo] , where a(Xo) is the Dirac delta function. It follows from Fourier's theo-
rem and Eq. (1) that the transient field resulting from the step-function illumination may
be represented by the following Fourier integral

o

e s ( t- rc) 30f 8 [f(co) + A (/c) j(fi)h/c) ]exptjxo (t - rc)] dw (2)
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P(r,9. )

Fig. 1 - Theoretical model

From an integral property of the Dirac delta function, Eq. (2) may be cast in the form

30 1 rA(oh/c) + jB(jh/c)
e0s (r) exp(jo)r) dco

+ im [A(coh/c) + jB(coh/c)] exp(jCAr) 3

where r t- r/c.

To evaluate the limit, a numerical investigation for small values of nOh/c shows that
A(woh/c) and Bh/c) have the following h/c dependence:

A(oh/c) e K'Q(hc)2 (4)
and

B(woh/c) K"(oh/c) 3 (5)

where K' and K" are constants. It is apparent from Eqs. (4) and (5) that both A(h/c)
and B(wh/c) vanish in the limit as &, goes to zero; hence Eq. (3) may be written

e0s (r) ={30cx{ i,, [B(wh/c) cos or + A(wh/c) sin or] do

+ j f ± [B(owh/c) sin r - A(wh/c) Cos w dt. (6)

For a physical transient field, the individual parts of the last integral in Eq. (6) must
each vanish under all conditions of impedance loading, angle of incidence, etc. Thus, it
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is evident that A(wh/c) and B(oh/c) must be respectively even and odd functions of &)h/c.

Accordingly, the expression for the transient scattered field may be put in the form

= 60 B(wh/c) + A(coh/c) sin d . ()er 6Sins cro (7

Note that t = 0 or r = -r/c in Eq. (7) corresponds to the instant of arrival of the step-
function illumination at the first element of the array (Fig. 1).

Because of the finite velocity of electromagnetic disturbances, the transient scat-
tered field should be zero for values of retarded time r less than zero. To meet this
physical requirement the following causality condition must hold true:

co coJ B(,wh/c) c o r J A(cjhc) sin co IrI (8)
co N

One can conclude from Eqs. (7) and (8) that the complete scattering behavior of an array
(or any antenna for that matter) in the time domain can be found theoretically provided
either the real or imaginary part of the steady-state sinusoidal scattering response is
known over all frequencies.

SYNTHESIS OF A TRANSIENT FIELD SCATTERED IN ANY
DIRECTION FROM THE TRANSIENT FIELD SCATTERED
IN THE REFLECTED DIRECTION

At this juncture we will digress and demonstrate that the transient scattered field in
any direction in the H plane can be synthesized approximately from the time variation of
the field scattered in the reflected direction.

From Sledge (1) the following expression is given for the 1-plane scattered field ob-
served in the direction (Fig. 1) in the far zone when the array is illuminated by a plane
wave of time dependence exp( jot) incident in the H plane of the array:

L0 () = [r exp (ic r) E Gi exp [(i- 1) -' d sin + jiyj (9)

where G. and yi are the magnitude and phase of the complex effective scattering coeffi-
cient of the ith element of the array. In general G, and yi are functions of wh/c, f
and the impedance function of the load. From extensive numerical calculations (see Ap-
pendix B of Ref. 1) it is found that G remains reasonably constant across the array and
that yi increases approximately in uniform increments of (d/c) sin sine radians as the
element number i progresses from 1 to N. By virtue of this property of the scattering
coefficients, Eq. (9) can be approximated by

N

E0
5 (s) = Er (c) exp[j (i - 1) A], (10)

i=1

where V, = (d/c) (sin 0+ sin inc) and Eor (CL) is the complex scattered field in the re-
flected direction ( = -c). Using Eq. (10) and Fourier's theorem it can be shown that
the transient scattered field resulting from a step-function illumination of the array is
given by the sum
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N

em (r) = 1 eOr[r - (i- 1) tI, (la)
i= 1

where er (r ) is the transient scattered field observed in the reflected direction and

At = -(d/c) (sin S-+ sin inc) (lb)

is the time delay of the (i + 1)th component transient field relative to the ith component.
(Appendix A gives a quantitative comparison of Eq. (11) with the Fourier integral form
to be given as Eq. (12).) It is apparent from Eq. (11) that the scattered H-plane field
consists of N components, each an appropriately delayed version of e (r )/N. The th
element of the array radiates the ith-component scattered field.

Thus, we observe that once the basic transient field scattered in the reflected direc-
tion has been determined, it becomes a relatively simple matter to synthesize the tran-
sient field scattered in any arbitrary direction in the H plane. Also, it is seen from Eq.
(Ila) that the transient scattered-field response of an array possesses its largest ampli-
tude when the field is observed in the reflected direction where At vanishes. Also, it
follows from Eq. (lb) that At is a maximum value in the backscattered direction; hence
the time duration of the transient field is largest in this direction of observation.

CALCULATION OF THE TRANSIENT SCATTERED FIELD
OF A MODEL ARRAY

In this section we will make a limited study of the scattering characteristics of a
model array of eight, identical, center-loaded elements illuminated by a step function of
electromagnetic field. In our calculations we will keep the uniform separation between
the array elements equal to the length of the elements (a commonly used spacing in
broadside arrays). We will assume that the ratio of the length to the radius of an element
is fixed at 1000 and that the strength of the incident illumination remains constant such
that Eh = 30. To make our calculated results independent of the distance from the ar-
ray to the point of observation of the field, we will suppress the factor 6/r appearing in
Eq. (7). Also, the transient scattered field becomes a function of relative retarded time
a if we change the variable of integration from to h/c.

The modifications of Eq. (7) result in the following formula for the normalized tran-
sient scattered field

te (a)]n = s[ sin ax + B cos ax dx, (12)

where x= h/c and

a = Wr =T (t - rc).

As a practical matter the upper limit in the integral of Eq. (12) must be finite. In
the numerical approximation of Eq. (12) the limits of integration were from 0.05 to 4.05
in x. The upper limit is determined by the extent of the validity of the steady-state
scattered field calculations of Sledge (1), the source of the values of A(x) and B (x).

Filon's quadrature formula with subintervals of 0.05 in x is used to numerically
evaluate the truncated version of the integral appearing in Eq. (12). For each combination
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of oj,,,i load impedance, and the calculation of the transient field is made in a steps
of 0.1 over a sufficient range in a.

We will present in Figs. 2 through 6 examples of the scattered-field response of the
model array to a step-function illumination, all calculated using Eq. (12). One thing in
common to all the transient fields shown in this report is the existence of a time varia-
tion of the field prior to x = o. This condition cannot happen in a physical system, as
was pointed out earlier. Two reasons account for the precursors exhibited in our calcu-
lated transient fields. First, the steady-state fields from which the transient fields are
calculated are not truly physical fields that satisfy Maxwell's equations and the boundary
conditions on the array but are unphysical, mathematical approximations to the true phys-
ical fields. Second, the limits of the Fourier integral representation of the transient
fields are truncated of necessity at both the upper and lower ends of the frequency spec-
trum. Intuitively it is felt that the high-frequency cutoff at wh/c = 4.05 and the nature of
the load impedance function principally determine the character of all the transient fields
in the negative a regions.

It is interesting to note that the rise time of all our calculated transient fields seems
to be related, as it should be, to the high-frequency cutoff at &nh/c 4. The rise time of
an ideal low-pass filter with a cutoff at = c is simply n7/c. In our field calculations,
xc = 4c/h; therefore the rise time of our transient fields should be of the order of 77h/4c.
This formula appears to agree with our calculated results, provided we define the rise
time of the fields to be the positive increment in time required for the transient field to
increase from zero to 90% of the first large positive peak. According to this definition,
the rise time of our graphs runs between 0.70 and 0.80 in a.

Our calculated results are limited to the scattered-field responses of the model ar-
ray observed in either the backscattered or the reflected direction.

Figure 2 presents several scattered-field responses of the model array uniformly
loaded with Zj(w) = 240 ohms. Figures 2a, 2b, 2d, and 2f show the basic field responses
observed in the reflected direction for the illumination incident at angles of 0, -20, -40,
and -60 degrees respectively. We see that the reflected transient fields resemble each
other fairly closely over a wide range of incidence angles. Figures 2c, 2e, and 2g show
the backscattered-field responses for the illumination incident at -20, -40, and -60 de-
grees respectively. In Fig. 2c the first large peak is predominantly due to the large
positive peak of the component transient radiation from the first element of the model
array, and the large peak at a = 11 results primarily from the large negative peak of the
component transient field radiated by the eighth (last) element.

The smaller amplitude oscillations lying between the two large peaks result from
the partial annulment of the component transient radiations in this region of a. When
the illumination is incident at -40 degrees or more, the separate components of the
backscattered transient fields are easily discernible, as one can see in Figs. 2e and 2g.
From Eq. (b) it is seen that the a delay of the (i + 1)th transient field component rela-
tive to the ith component field when observed in the 0 direction is given by

Aa =-(dl (sin 0+ sin in) (13)

For the model array with d = 2h, the Aa of the field observed in the backscattered direc-
tion is given by

Aa -4 sin (binc

6
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(a) Reflected field for normal incidence

-2 0 2 4 6 8 10 12
RELATIVE RETARDED TIME lRLPHR)

14 16 18

(b) Reflected field for incidence at -20 degrees

Fig. 2 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 240 j ohms.
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RELRTIVE RETRRDED TIME (RLPHR)

(c) Backscattered field for incidence at -20 degrees

RELRTIVE RETRRDED TIME (ALPHA]

(d) Reflected field for incidence at -40 degrees

Fig. 2 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 240 + j ohms. (Continued)

8

iJ. 06

0. 05

3-- 0.04q
C,

ccU 0. 03
U,

s 0.02
-0 0.01

2 -0. 00
cc

G -°°

U -0. 01
u- -0.02

~:! -0. 03
cc

-OoJ

G -0. 04

-0. 05

-0.06

I
CD

LU 0.

II

C

-J -0.

a:

;,! -0.

-J

Gc A



NRL REPORT 6823

6

5 

4-

3-

2

I

2-

3

4

5

6_ - A6 -4 0 4 8 12 16 20 2Y 28 32 36 41

RELRTIVE RETRROEO TIME (RLPHR)
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(f) Reflected field for incidence at -60 degrees

Fig. 2 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 240 + j ohms. (Continued)
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(g) Backscattered field for incidence at -60 degrees

Fig. 2 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 240 + j ohms. (Continued)

From Eq. (14), A is 2.57 for oi,, = -40 degrees and 3.46 for inc = -60 degrees.
The values agree with the a separation of the positively going zeros of the transient
fields portrayed in Figs. 2e and 2g respectively. In fact, the number of elements in the
model array is easily determined from either Fig. 2e or Fig. 2g by simply counting the
large positive peaks of the transient waves. It is apparent from Eq. (13) that the spacing
of the elements of an array can be found from the backscattered field, provided the angle
of incidence of the illumination is known and made sufficiently large to allow the meas-
urement of the time displacement between the component transient fields. In the case of
our model array with element spacing 2h, an angle of incidence of 40 degrees is appar-
ently adequate for this measurement with the exception of the case of Fig. 3, where the
reactive load impedance 72 + j(300 Oh/c - 740 c/oh) presents a poor match to the internal
impedance of the elements of the array over the frequency range of interest (0.05 <
coh/c 4.05). In fact, as shown in Ref. 9, at normal incidence the reactance of the load
referred to above is approximately equal to the internal reactance of the elements in the
range btween 1.0 and 2.0 in coh/c. The basic reflected transient fields of Fig. 3 are
relatively long in duration, and as a result the beginning of the component transients are
not easily discernible in the backscattered transient waves, because the component tran-
sients overlap considerably in time. The reflected transient waves of Figs. 3a, 3b, 3d,
and 3f exhibit oscillations at two frequencies: the lower one relates to the fundamental
element resonance at coh/c = 7/2, and the higher frequency relates to a resonance of the
elements at h/c = 3.55, where the load reactance tunes out the element reactance.

A closer examination of Fig. 3g reveals the existence of some constructive interfer-
ence between the component waves. The time delay between successive transient waves
matches the time separation of the first and second large positive peaks of the component
transient form shown in Fig. 3f. Because of the nearly periodic character of the compo-
nent wave between -0.6 and 6.7 in a we can, by a suitable choice of the angle of inci-
dence, cause the strength of the backscattered field to be a maximum, as shown in
Fig. 3g. Notice in Fig. 3g that the first large peak of the ith transient component ap-
proximately coincides in time with the second large peak of the (i - )th component,
where i also is the numeral appearing on the large peaks of the transient wave. The
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numbered large peaks are separated almost uniformly by an amount Aa = 3.5 -4 sin inc
the a delay between successive transient components. The first two large positive (or
negative) peaks of the component transients are separated by approximately 3.5 units
in a (Fig. 3f).

In general the discussion of Fig. 2 applies as well to explain the character of the
graphs of Figs. 4, 5, and 6. However, a few additional remarks about Figs. 4 and 5 seem
appropriate.

In Figs. 4a, 4b, 4d, and 4f the transient waves appear to have a damped oscillatory
tail with a period approximately equal to the reciprocal of the fundamental resonant fre-
quency of the isolated elements of the array.

The impedance function of the load in Fig. 5 presents approximately a conjugate
match to the effective internal impedance of the elements of the array at normal inci-
dence over a range in oh/c extending from 1 to 2.2. Apparently this load impedance with
its better match to the antenna impedance allows more current to flow in the elements
over a broad band than is allowed by the other loads considered in this study. This ac-
counts for the larger energy scattered by the array when using the matched load than
when using the other loads.

The larger, resistive, frequency-invariant loads of 240 and 600 ohms present a mis-
match at all frequencies contained in our Fourier integral with finite limits. The model
array when using these two loads scatters less energy than the array with center loads
of 72 ohms resistance, because the induced currents in the array are smaller for the
larger load impedances.
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2 0 2 4 6 8 10 12 14
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(a) Reflected field for normal incidence

Fig. 3 - The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is 72 + j(300wh/c - 740c/wh)ohms.
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(b) Reflected field for incidence at -20 degrees
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(c) Backscattered field for incidence at -20 degrees

Fig. 3 - The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is 72 + j ( 3O00h/c - 740c/wh) ohms. (Continued)
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RELRTIVE RETRROEO TIME (RLPHR)

(d) Reflected field for incidence at -40 degrees
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(e) Backscattered field for incidence at -40 degrees

Fig. 3 - The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is 72 + j(300wh/c - 740c/(h)ohms. (Continued)
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RELRTIVE RETRROED TIME (RLPHR)

(f) Reflected field for incidence at -60 degrees
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Fig. 3 - The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is 72 + i (300wh/C - 740c/&h)ohms. (Continued)
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RELRTIVE RETRRDED TIME (RLPHR)

(a) Reflected field for normal incidence

RELRTIVE RETRRDED TIME (RLPHR)

(b) Reflected field for incidence at -20 degrees

Fig. 4 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 72 + jO ohms.

0.50

0.40
I
z 0.30
IIJ

C 0.20
-J
! 0.10

_ 0. 00U_

w -0. 10

-0 20

J -0. 30

-0.40

-0. 50

0.50 

0040

c 0,30

n 0020

UJ Oa10

.00

Ui -0. 10
-Jw

Uj -0. 20
i-

z -0 30

-0.40

-0 50

15



O. D. SLEDGE

RELRTIVE RETRRDEO TIME (RLPHR)

c) Backscattered field for incidence at -20 degrees
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(d) Reflected field for incidence at -40 degrees

Fig. 4 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 72 + jO ohms. (Continued)
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8 -4 0 4 8 12 16 20 24 28 32 36
RELATIVE RETARDED TIME (ALPHRA

e) Backscattered field for incidence at -40 degrees
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RELATIVE RETARDED TIME (RLPHR)

(f) Reflected field for incidence at -60 degrees

Fig. 4 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 72 + j ohms. (Continued)
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4 8 12 16 20 24
RELRTIVE RETRHDED TIME(RLPHR)

(g) Backscattered field for incidence at -60 degrees

Fig. 4 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 72 + jO ohms. (Continued)
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(a) Reflected field for normal incidence

Fig. 5- The scattered-field response of the model array
to a step-function illumination. The loadimpedance func-
tion is -17+ 39coh/c+ 9w2 h 2 /c 2 + j(1160- 743(oh/c) ohms.
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(b) Reflected field for incidence at -20 degrees
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Fig. 5 - The scattered-field response of the model array
to astep-function illumination. The load impedance func-
tion is -17+ 3h/C+ 92h2/c2+ j(160- 743&jh/c) hms.
(Continued)
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nz:~~~~~~~~~~~~~~
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RELRTIVE RETROED TIME (RLPHR)

(d) Reflected field for incidence at -40 degrees
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RELATIVE RETARDED TIME (RLPHR3

(e) Backscattered field for incidence at -40 degrees

Fig. 5- The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is -17+ 39wh/c+ 9co2h2 /C2+ j(1160- 7430/c) ohms.
(Continued)
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RELRTIVE RETRROEO TIME (RLPHR)

(f) Reflected field for incidence at -60 degrees
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(g) Backscattered field for incidence at -60 degrees

Fig. 5- The scattered-field response of the model array
to a step-function illumination. The load impedance func-
tion is -17+ 39wh/c+ 9 2h2/c 2+ j(1160- 743wh/c) ohms.
(C ontinued)
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0 2 4 6 8 10 12 14 16 18
RELRTIVE RETRROEO TIME (RLPHR)

(a) Reflected field for normal incidence

0.30

0.25-

F- 0.20 -
z
L 0.15

C3

_~ O. s 7X

LU

,£ -0. 05

LU -. 10

F_ -0.15
Cc
-j
LU -0. 20a:

-0.25-

-0. 30 -
-4 -2

(b) 

0 2 4 6 8 10 12 14 16
RELRTIVE RETRRDED TIME CRLPHR)
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Fig. 6 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 600 + jO ohms.
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4 6 8 10 12
RELRTIVE RETRRDED TIME IRLPHR)

(c) Backscattered field for incidence at -20 degrees
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RELRTIVE RETRRDED TIME (RLPHR)

(d) Reflected field for incidence at -40 degrees

Fig. 6 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 600 + jO ohms. (Continued)
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(f) Reflected field for incidence at -60 degrees

Fig. 6 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 600 + jO ohms. (Continued)
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(g) Backscattered field for incidence at -60 degrees

Fig. 6 - The scattered-field response of the model
array to a step-function illumination. The load
impedance function is 600 + jO ohms. (Continued)

CONCLUSIONS

When a linear array of N elements is illuminated by a step function of electromag-
netic field, the resulting transient field scattered in any direction can be synthesized ap-
proximately fron N suitably delayed replicas of (1/N) times the field scattered in the
reflected direction. The (i + 1)th-component field is delayed relative to the ith-
component field by -d/c(sin + sin kjinc). The scattered field reaches its maximum
amplitude in the reflected direction ( = Oinc) because the component transient fields
add constructively in step with each other only in this direction. The time duration of
the scattered field has a maximum value in the backscattered direction of observation.
The basic field scattered in the reflected direction characterizes the array and the inci-
dent illumination. The reflected field for a given illumination manifests the interaction
between the elements of the array, the effect of the impedance function of the center
loads, and the physical dimensions and spacings of the cylindrical elements; however
this information is very difficult to extract from an analysis of the time variation of the
reflected field. When the reflected transient fields are well damped or nearly periodic
in character during several cycles of oscillation, the number of array elements and their,
spacing can be determined simply from an observation of the transient backscattered
field as a function of time, provided the angle of incidence of the illumination is known
and made sufficiently large to separate the component transient waves in time.

Of necessity our study of array scattering is limited to a small number of load im-
pedances. Among the loads considered, it is found that the smallest H-plane scattered
energy occurs when the center loads of the array are nonreactive impedances of 600
ohms (invariant with ) and that the scattered energy is largest when the load impedances
represent approximately a conjugate match to the effective internal impedance of the ar-
ray elements over the principal part of the frequency spectrum of the transient illumina-
tion.
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Appendix A

A COMPARISON OF THE SYNTHESIS FORMULA WITH THE FOURIER
INTEGRAL REPRESENTATION OF THE SCATTERED FIELD

To show quantitatively how well the approximate synthesis formula, Eq. (11), agrees
with the more accurate formula, Eq. (12), a comparison of the two formulas is given in
Table Al at a number of salient points on the backscattered transient wave shown in
Fig. 2c. Table A2 shows a similar comparison made on the wave shown in Fig. 2e, where
Oinc =-40 degrees. The agreement is quite good at all points.

Table Al
Comparison of Eq. (11) and Eq. (12) When oinc is -20 Degrees
and the Load Impedance Function is 240 + j ohms (Fig. 2c)

a Field From Field From Point of Comparison
Eq. (11) Eq. (12)

0.10 0.0331 0.0335 First large positive peak

2.50 -0.017 -0.016 First large negative peak

3.27 - 0.00 First zero after large
negative peak

3.28 0.00 - First zero after large
negative peak

9.90 0.0083 0.0087 Small positive peak just
before large negative peak

10.25 - 0.00 Zero just before large
negative peak

10.30 0.00 - Zero just before large
negative peak

11.00 -0.0335 -0.0340 Last large negative peak

12.05 - 0.00 Zero immediately follow-
ing large negative peak

12.10 0.00 - Zero immediately follow-
ing large negative peak
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Table A2
Comparison of Eq. (11) and Eq. (12) When Oinc is -40 Degrees
and the Load Impedance Function is 240 + jO ohms (Fig. 2e)

a Field From Field From Point of Comparison
Eq. ( 1) E q. (1 2)

0.20 0.037 0.038 First large positive peak

0.87 0.00 0.00 First zero following first
large positive peak

1.50 -0.0406 -0.0412 First large negative peak

2.20 0.00 - First zero following first
large negative peak

2.27 - 0.00 First zero following first
large negative peak

2.90 0.0290 0.030 Second large positive peak

18.20 0.0325 0.0327 Eighth large positive peak

19.50 - -0.0264 Last large negative peak

19.60 -0.0264 - Last large negative peak

21.20 - 0.00 First zero after last
large negative peak

21.30 0.00 - First zero after last
large negative peak
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