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ABSTRACT

The effect of hard clipping or ideal limiting on sine-wave sig-
nals and on shaped, Gaussian-noise inputs is considered. For a
single sine wave, the limiter reproduces the fundamental fre-
quency and creates odd harmonics of rapidly decreasing relative
power. For two sine-wave inputs of equal amplitudes, the limiter
generates arrays of beat frequencies centered symmetrically
about the two input frequencies and their shifted odd harmonics.
If the two inputs are of unequal amplitude, the stronger signal
suppresses the weaker. On -shaped, wide-band Gaussian noise,
the limiter tends to broaden the high-frequency end of the spec-
trum slightly and to produce a flat, low-frequency, random-noise
response.

PROBLEM STATUS
The work reported applies to problems involved in the analog-
digital conversion of data for the U.S. Naval Space Surveillance
System. This is the first of tworeportson this phase of the prob-
lem; work on other phases continues.
AUTHORIZATION
NRL Problem RO2-82
ARPA Order 7-58

Manuscript submitted July 17, 1961..
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IDEAL LIMITING

PART 1 - THE EFFECT OF IDEAL LIMITING
ON SIGNALS AND ON NOISE

INTRODUCTION

Although the general theory for nonlinear devices has been exhaustively studied (1)
and the spectral changes in clipped, rectangular-shaped noise have been worked out (2-4),
the need still remained for a concise engineering examination of the results of limiting
signals and the effect of limiting more practical shapes of filtered noise. The purpose of
this work is to determine what a limiter does to two sine waves of different frequencies
and amplitudes and how shaped, Gaussian noise is altered by clipping. The general method
used will follow Davenport and Root (1a) for handling nonlinear devices. A second report
- will treat the more practical case of sine-wave signals embedded in Gaussian noise.

THE IDEAL LIMITER

A limiter is a device which truncates the amplitude of a signal at a given value. By
setting this amplitude very close to zero and then amplifying the resulting signal an ideal
limiter can be approximated (Fig. 1). In terms of the amplification characteristics, an
ideal limiter is approached as ¢ tends to zero and as the actual curve approaches its
asymptotes (Fig. 2).
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Fig. 1 - Illustration of limited signal
and ideal limiter
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OUTPUT VOLTAGE

a ///
/ . Fig. 2 - Output voltage vs input
= INPUT . voltage for a limiter, Solid
y VOLTAGE lines represent the ideal case,
_____ — —a dotted line a possible limiter
> € characteristic,

PART I. SIGNALS ALONE

Single Sine-Wave Input

The general approach to the solution of this problem is through the Laplace transform.
Let g(x) be the transfer characteristic of the limiter and f(w) be the transfer function or
bilateral Laplace transform of g(x). The bilateral transform must be used since x is not
restricted in range to x>0 asis t in the more conventional unilateral Laplace transform.

We then have

f(w) = J g(x) e o dx (1)
and
1 ut+jo
g(x) = fﬁf f(w) ™ dw (2)
u- jo

where the value of u in the contour integral must be properly defined.

In the case at hand, that of an ideal limiter (e = 0), we can define g(x) as follows:

g(x) = +a, x>0
g(x) = O, x=0
g(x) = -a, x <0 (3)

so that we have a corresponding separation of f(») into f,(w) where x>0 and f_(») where
x < 0 with different regions of convergence. Here

f(w) = J ae “* dx, Re(w) > 0 (4)
o

where, for the inverse transformation, the contour of integration over f,(«), C,, must be
aline @ = e+ jv with €>0 and-o < v < w. Also,

0
f (o) = J (-a) e “* dx, Re(w) < 0 (5)
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where C_ must be a line @ = - ¢ +jv with ¢ >0 and -® < v < «. Evaluation of these integrals
yields

fo(e) = f(w) = 2. (6)

Now for the input to the limiter let us use

x = x(t) = V- cos wit = V cos e,

and redefine g(x) by g(x) = g[x(t)] =y(t), where we will assume V to be constant and 6 = «,t.

The output y(t) of the limiter will then be

a £+jmechosﬁ a ‘€+jmechos9 7
y(t) = 77 0 dw + 27 —w‘dw. (7
€

.jm .s.jm

This reduces to

dw. (8)

etjo
a ewV cos 8 _ e-wV cos 8
w

By the Jacobi-Anger formula,
ezcosd - Z €, I,(z) cos mf
m=0

where € is the Neumann factor, £ =1, € = 2 (m>0), and I_(z) is the modified Bessel
function of the first kind. Whence,

. 4i® [T (aV) I (-aV)
y=2—737-j-Z_0:€mcosm9J [ — - > dw . (9)

_jm

Now I (-2) = " 1,(2); therefore,

. m e 1 (2)
y = aZ[l-(-l)]Smcosmez—Tlrjf " de, (10)

m=0 5-j

where we have let z = «V and § = «V. Integrals of the form of Eq. (10) have been evaluated
by Davenport (1b) with the result

S+jo I jo
I = 1 j g, LJ Tn(2) o, . (11)
8

273 z 27 z

-j® - jw

HHY

ATITITCLVTIAND
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Using the relation I_(jx) = j" J (x) we reduce this to

im o 2 J (%)
I = ———‘] J m dx,
27j x

which is easily seen to yield

jm RURES)
J m m
1 =2—7Tj[1-(_1)]£ —— dx. (12)

Now the expression j"‘[l - (—1)"‘] yields zero for all even values of m and yields +2j for odd
values. This can be written as

m7r

j"‘[l—(—l)m] = 2j sin— .

Also, the integral in Eq. (12) can be evaluated by using Weber’s infinite integral (5a) given
as

J‘” I () F(%) (13)

gv-ntl Qv-p+l I"(u - %+ 1)

Here, if we let » = m, t = x, and = m, we have the integral of Eq. (12); thus,

m
® I (%) r(z3) 1 .
< dx = —(————= ~ . ‘ (14)
m m
° ar (5 + 1)
Finally, then, we have
I = m_177 sin m_;r . (15)

The final output in Eq. (10) is

o
E 1

y = 4—7? — sinm—; cos mw;t . (16)
m=1

This series expansion, which of course corresponds to the harmonic content of a square
wave, is plotted in Fig. 3. Here, the relative power content at the discrete frequencies
is shown versus frequency, based on an input frequency of 1 kc and a clipping level of unity.

Input Consisting of Two Sine Waves

To determine the limiter output for the case where the input consists of two sine waves
of different frequencies, the same general theory applies. Here, however,

x = x(t) = Vy cos wyt + V, cos wyt = Vg cos 61+ V, cos G, (17)
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1-KC INPUT

B CLIPPING
LEVEL

0.8 —

0.6 [

RELATIVE POWER OUTPUT

04 —

0 I | 1 R s
9 3 5 7 9 " 13

FREQUENGCY (KG)

Fig. 3 - Output power spectrum of ideal limiter
for a single sine-wave input

where V, = V, only as a special case. Substituting this expression in Eq. (8), the limiter
output becomes

_ a erie ﬂ {em(Vl cosfy +V, cosb,) _ e-w(Vl cosf, +V, cosﬁz)} (18)
Y = 25 w ’

€-j®
Again applying the Jacobi-Anger formula, this expression reduces to
@© © N €+jo Im(OJV ) I (&)V )
y = aZZ[l—(—l) +n] Sm Sncosmﬁl cosr1922—717jj ‘—lw“n—z—dw. (19)
m=0 n=0 €-jo

The problem then is to evaluate the contour integral.

It is shown in Appendix A that

€+jo 1 A4 1 \'A m+n m+n ® v (XY
J V) TV o (1o eny™ ]f ToOT2) 102 (20)

X

- joo 0
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In terms of Eq. (20), the output from Eq. (19) then becomes

aly m ® Jo(xV) To(xVp)
y = %Zo Z(;Sm €, [1 -(-1 +n] sin (m +2n)77 cos mwt cos nwztj U oo 2 k. (21)

X
0

1. Special Case: vy =V, =V.
The integral in Eq. (21) becomes a special case of the Weber-Schafheitlin integral (5b),

@ sinl(v wuym
d 2 2 -
J T T F = 7 i
0

22
— (22)
where a = V; = V, Using this in Eq. (21) we obtain the final result
_a alv _ m+n 1 . (m+n)yr . (m-n)7w
y = —W—Z;gsm £, [1 (-1) ] 7.2 sin 2 sin 2
x {cos (mwy +nwy)t + cos (mwl-nwz)t} . (23)

As can be seen, terms exist only when (m+n) is an odd integer. Table 1 shows values of
the relative amplitude of the harmonics in the limiter output (Eq. (23)) for a partial set

of values of m and n, where the two sine waves are 1 k¢ and 1.001 ke and a = 1. The power
spectrum is plotted in Fig. 4.

2. General Case: V; >V,

In the general case for v, > v, we have by Sonine and Schafheitlin (5¢)

® Ju(at) J,(bt) b”r(% * %) prv  v-p b2 (24)
— —— dt = oF1 5 » Tg 3 v+ly 222
0 20 T(w+ DT (145 - %) 2

for a >b. Substituting this in Eq. (21) we obtain the final result

- iiie g [1— m”‘] }\nr(m;n> . (m+m)m
Y T an m Sn - sin

- 2
=3 &= m=-n
% 40 M(n+1) (1 L )
x oF (_n%q ) n;m; n+1; }\2) [cos (mw;-+ nawy)t + cos (mw; - nwz)t] , (25)

where \=(VyV,) <1 and
b a(a+1) b(b+1)£
C

F , b; c; =
oFy(a, b;c; z) 1+ c(cr Y

z
F +
We note that this does not hold for the limiting case V,= V,. In order to obtain an idea of
how this function looks we plot (Fig. 5) the relative power output at the two fundamental
frequencies as a function of the parameter x where V,/V, = x/(1-x). For x= 0 or 1, the
single signal case is obtained. As x - 0.5, the previous Vv, = V, case is approached.
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Table 1
Partial List of m and n Values Used to Evaluate
the Output of a Limiter (Eq. (23)) for the Special
Case Vv, = V, = V; m + n = 0dd Integer; a = 1

m| n Output Relative Amplitude | Output Power
Frequency
5] 4 996 0.090 0.008
4| 3 997 -0.116 0.013
3] 2 998 0.162 0.026
2,1 999 -0.270 0.073
10 1000 0.811 0.658
01 1001 0.811 0.658
1( 2 1002 -0.270 0.073
2|3 1003 0.162 0.026
3| 4 1004 -0.116 0.013
4|5 1005 0.090 0.008
3,0 3000 0.090 0.008
2|1 3001 -0.270 0.073
12 3002 -0.270 0.073
0|3 3003 0.090 0.008
41 5001 -0.054 0.003
3] 2 5002 0.162 0.026
2|3 5003 0.162 0.026
14 5004 -0.054 0.003
1.2
B CLIPPING
LEVEL
10 [— -
. -
% o8 l— INPUTS 10007 AND 1001
g EQUAL AMPLITUDE
- L
2
E 06|
3
N s
>
- 04 |—
3
Fig. 4 - Output power S B
spectrum of ideal limiter 0.2 —
for input consisting of
two sine waves of equal -
amplitude o Ll I I N\ | | A Ll

996 998 1000 1002 1004

3000 3002 5001 5003
FREQUENGY (GPS)

o
i
Loty
Lo
oo
-

o
P

Lo
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// consisting of two sine waves with
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RATIO OF INPUT SIGNALS

In Fig. 6 the full spectrum is shown for the case A= 0.5 (x=0.333). Table 2 tabulates
these results. Comparing Figs. 4 and 6, and also in Fig. 5, we note the strong attenuation
effect of the ideal limiter on the weaker of two signals.

PART II. NOISE ALONE
The general method of dealing with random noise is to use the Fourier cosine trans-

form. Given an input power spectrum G(w), the correlation function R(7) is the Fourier
transform of G(w) given by

R(T) = J G(w) cos wT dw (26)
-0
where 7 is the time delay. The normalized correlation function is

R
o7y = E% . (27)
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1.6 X
INPUTS 1000 v AND 1001 "\,
AMPLITUDE RATIO OF 2:1
14 —
.2
@ — CLIPPING
w
g LEVEL
g 1o -
[
oy N
o
5
3 08
W -
>
b
3 0.6
w
@ -
04—
0.2 |—
o A l I J\, [ | I /\, L.
998 1000 1002 2999 3001 5001 5003

FREQUENCY (CPS)

Fig. 6 - Output power spectrum of ideal
limiter for input consisting of two sine
waves of unequal amplitude

Table 2
Partial List of m and n Values Used to Evaluate the Output of a
Limiter (Eq. (25)) for the Special Case Vy, = 2V,,0r x = 0.5;
m + n = Odd Integer; a =1

m | n | Output Frequency | Relative Amplitude | Output Power
312 998 0.106 0.011
211 999 -0.287 0.082
170 1000 1.189 1.414
011 1001 0.329 0.108
1] 2 1002 -0.0426 0.002
4 |1 2999 -0.181 0.033
310 3000 -0.208 0.043
2 (1 3001 -0.287 0.082
142 3002 -0.0426 0.002
510 5000 -0.0212 0.000
4 5001 0.181 0.033
2 5002 0.106 0.011
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The correlation function of the output is then (4)
a2 2 sin"! {o(7)} (28)

and the output is the inverse transform of this
E(w) = —45 a2 J sin"! {p(7)} cos wr dT . (29)
m 0

To evaluate this integral we have expanded

sin"*x = x+—6—+TO—+'-'.

Input of Band-Limited White Noise

The first case is band-limited white noise with infinitely steep skirts. This is an
ideal, theoretical case which cannot be achieved in practice. The input is a constant
amplitude distribution of frequencies over a given range (Fig. 7).

G<w):2§)’ wy - Wy < @< Wy + W - (30)

a

We are considering the special case where «,, the center frequency, is three times «,,
the half-power frequency. In this case the Fourier transform of the input G(w) is

!
=
n
—y
=)
6 ®
o]
%]
S
3
[N
S

R(7)

2w
wo-w’
sin w7
= cos w,T ,
wa'r
and
R(O) = K,
SO
sin w, 7T
o(T) P cos w,T . (31)
The output power spectrum is then
@ sin w_T
E(w) = 4 cos wr sin~! {——"— cos w,T ; dT. (32)
2 o
T 0 wa'r
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AMPLITUDE | e

| .

| e

. . . K o ____ ! s
Fig,7 - Hlustration of ideal, band- 2wa |

limited white noise with infinitely | > FREQUENGY

|

steep skirts Wo = g W +wq

Expanding the sin-!, the first term will be

4 ® sin W, T
—3 cos w7 ———— dT
T Jo

wa'r

2 (° sin w,T sin o7
= — cos (w=-wy)T ——d'r+—— cos (w+wy)T ——— dr
772 o Y @, T

I, + I,.

These integrals can each be expanded using 2 sinA cos B = sin(A+B) + sin (A -B). The
second 1integral I, is found to be zero. For I, we have

o, w < wy - w,
1
Il = o Wy = Wy < W < wy + Wy (33)
a
0 , Wy + W, < w

The first term of the output is plotted in Fig. 8. The second term can be calculated by
similar methods and is found also to have no dc component (that is, E(w) = 0 for » = 0).
The first two terms are plotted in Fig. 9. The maximum contribution of the second term
is about 1/10 of the first. The third term is found to be about 1/10 the second. The
second term also has a second peak at 3«,. The third term has a dc component which is
about 6 x 10™* times the peak value of the first term. In the more usual case where

w, > w,, de components do not appear until much later terms and are negligibly small.

1% TERM OUTPUT

! Fig. 8 - Plot of the first term in
T the equation for the power output
| spectrum of the band-limited
x
|

* FREQUENCY i i
wo~ug : white noise
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‘:‘ 0.2 ou'rs'uf.___.rmsv'n:ma-'LMI
3

—.— SECOND TERM
0.1
o . 1 \.\__.ﬁ
0 w, wy— w, W, w, + Wy W—p

Fig., 9 - Effect of ideal limiting on the spec-
trum of band-limited white noise with infinitely
steep skirts

White Noise Through Single-Tuned Circuit

As a second case of noise input we will consider the input represented by

G(w) = K + X : (34)

w2 2
1+< °> 1+<w+%>
wa wa
which could result from passing white noise through a single-tuned circuit. Here o, is
the center frequency and «, is the half-bandwidth. We find

R -wB:lTI
(7) Kw, 7 e cos wy T

1

and

@il

e cos @,T . (35)

p(T)

The power-spectrum output from an ideal limiter is then

3]
~w Tl
E(w) = —4—2‘[ cos wr sin~} {e “a'7 cos wo'r} dr. (36)
7 Jo
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13

Using the first three terms of the sin-! expansion this integral was reduced to integrals

of the form

which were evaluated. Note that both input and oufput signals have a dc component

(Figs. 10, 13, and 14).

00
-pw |7l
N a
j e cos (w - quy)7T dT
0

— ~ K K o
INPUT Glw) = — %Y + ey ”o)z K = “'?
H'F—“q I+ oy
OUTPUT ===
0.3 /\
) -~
" / 1\
3 0.2 7
3 .
3 [/ ]\
o
3 / \
0.1 / 7 \\
/ \\
= .——/ N
\\
~
0
0 ‘wg g = Wg Wo wo *wg o
Fig. 10 - Effect of ideal limiting on the spectrum of white noise

Bandpass Filter

passed through a single-tuned circuit

As the third case, consider three types of input noise provided by passing noise from
some random source through a low-pass filter followed by a high-pass filter. The respec-
tive attenuations for these filters are given by

]

L
[
s
¥

L
i
-

P
[

o
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4 '
+1 SLOPE

-1 SLOPE
T ] T I
< «
Fig. 11 - Nlustration of the char-
0.1 LN t }

acteristics of a low-pass and a
10 0.1 ! 10 high-pass filter

(Ta:,')__’ (c‘:‘; )—_’

0.1

The characteristics of these two filters are summarized in Fig. 11. Filters of this
type are said to have a characteristic of t1 because of the slope of the asymptotes. When
two filters follow each other (but are isolated to prevent interaction), the total attenuation
is the product of the two attenuations. Letting «; = nw,, we have

w
, naw,
Ap = AA" = = X (38)
o @) )
0 0
The power spectrum is
(7)
2 nw,
G(w) = Ay = ” el (39)
[ @)
Expanding this by partial fractions we get
G(w) = kK __ -k (40)

2
14 <i> 1+ (—‘”—)

where K is an amplification factor given by K = 1/(n? - 1). Figure 12 shows the attenua-
tion curve of this combination for n = 10.

Fig. 12 - Attenuation curve for a
high-pass and a low-pass filter
in combination

Type 1: Choosing n = 10 for G(») (as above) we have

-10 w, T ~w, T

R(T):K%wO[IOe °" - e °]<

p(T) = %) e-10 “oT %e o” (41)
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and
E(w) = 7,;42 J:ocos wr sin™ {1—90 e-:lo R % e-mof}d'r. (42)
We now expand the sin-1, producing integrals of the form

w
-aT
e cos x7 d7 where x = w/wo .
0

While the input has no dec component, the output does have a dec component and is level
over the low-frequency end up to about /e, = 0.1. This filter-limiter system can provide
constant-amplitude, white noise over the low-frequency end of the spectrum (see Figs. 13
and 14).*

Type 2: As another case we take

K 2 K 2
G(w) = - (43)

1+ <—10 “’o) 1+ <w—0>

which may be thought of as an intermediate condition between the band-limited white noise
and the previous case which had a characteristic of t1. The characteristic of G(w) above
is a band-pass filter with skirt asymptotes of 12,

As before, we have

’ -10 -
R(T) = wo% [10(1+710w0)e “o7 _ (1 +'ra)o)e on]
-10 -
o(r) = 1—90 (1+10 w7y e “oT . %(1 +@,T) e “o7 (44)
and
® 10 10 1
- -w

E(w) = 7% J cos wT sin'l{g (1 + IOmOT)e “T _ 9 (1 + wyT) e o"'}d,’_ . (45)

0

Expanding the sin-! we get integrals of the same type as in the previous case and inte-
grals of the form

©
f e ® cos x7 d7
0

which can be found in Bierens de Haan (7).

>'(This effect was reported in “L, F, Random Signal Generator,” J. L. Douce, and
J. M. Shackleton, Electronic and Radio Engineering, August 1958, pp. 295-297,

LYIAN

N
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Again, there is no dc component in the input. The output, normalized to have a peak
value equal to the previous case, has a dc component, about 2.5 db lower, which is flat
until «w/w, = 0.02.

We see then that, as the skirts of the attenuation characteristic become steeper, the
dc component of the output and the range over which it is flat decrease, the limiting
case being the band-limited noise input (see Figs. 13 and 14).

Type 3: Finally we will consider the input

G(w) = LS (46)

2 2
1+ (52 1+ (2
2w, wy

which is the same as type 1 except that now n= 2. We have

- 2w -w
R('r):2a)0ge or—woge o7
- 2wy T ~wy T
p(T) = - e (47)
and
E(w) = —izf cos @7 sin”! {28-2%7 - e_on}d'r (48)
™ Jo

which we evaluate as before.

This result is essentially the same as type 1. The dc output level is slightly lower
and the peak has moved to the right. The output is still flat within 1.5 db up to w/w, = 0.1
(see Figs. 13 and 14).

In the following input and output spectrum plots, the input amplification constant K
has been chosen to make ["G(w)dw = 1 and, consequently, R(0) = 1. It should be noted that
the total output power P_ is independent of the input power and depends only on the limiter
voltage a; P_ = f:° E(e) dw = a2. In the plots we have chosen a = 1. The inputs of the type

awy = |—2 17 - [
1+<5%> 1+
[ 0

G(w) = =22 and — = ym.

max n +1 wo

For p = 2, the expressions are more complicated; for n = 10, G()_,, = 0.8847 and
w/wy = 1.954.
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Fig. 13 - Input spectra of white noise passed through
various band-pass filters
T ] l | T
QUTPUT FOR G (w) ! ’ ! i n-
&) = - n=
[ey] ) {F
Ew) FOR Glw)s —F— 4 —X
TR w4 wy\2
(55 R /
o .
i
4 /
y /
-5 //
-10 //
27
=T =27
-15 \
0.00I 0.0l 0.1 | 10 100
(-4
Yo

Fig. 14 - Output spectra after ideal limiting
of band-pass filter inputs




REFERENCES

Davenport, W.B., Jr., and Root, W.L., “An Introduction to the Theory of Random
Signals and Noise,” New York:McGraw-Hill (1958)

a. Chap. 13 on “The Transform Method,” pp. 277-311
b. pp. 284-286
c. p. 285

Van Vleck, J.H., “The Spectrum of Clipped Noise,” Harvard University Radio Research
Lab. Report No. 51, July 21, 1943

Baum, R.F., “The Correlation Function of Smoothly Limited Gaussian Noise,” IRE
Transactions on Information Theory, Vol. IT-3, pp. 193-197, Sept. 1957

Lawson, J.L., and Uhlenbeck, G.E., “Threshold Signals,” MIT Series, New York:
McGraw-Hill, Vol. 24, pp. 57-58 (1950)

. Watson, G.N., “A Treatise on the Theory of Bessel Functions,” Cambridge:The

University Press, 2nd ed. (1944)

a. p. 391
b. pp. 402-404, 13.41 (No. 7)
c. p. 401, 13.4(2)

Wylie, C.R., Jr., “Advanced Engineering Mathematics,” New York:McGraw-Hill,
1st ed., p. 262 (1951)

. Bierens de Haan, “Nouvelles Tables D’ Intégrales Définies,” New York:Strechert and

Co., Table 361 (1939)

18




APPENDIX A &

EVALUATION OF CONTOUR INTEGRAL

From Eq. (19) of the text, the following contour integral must be evaluated

@, (A1)

(5]

L f”jm Ln(@V1) T(@Vy) |
€

-jo

over the contour shown in Fig. Al.

v
|
Ce

+iB=

) [}

Cs
N4 € > 0
Fig. Al - Contour integration paths

y A for the evaluation of I in Eq. (Al)

-iB e
w=u+jv PLANE

For o = u+ jv, let the contour integration be divided as follows:

J“iﬁ I (0Vy) I (wV),)
d
€

I, = o W, W= €+jv
-iB
I(wV)I(a)V)
I, =J 1 2 dw, w=u+jp
€+jf
flﬁ I (le) I (wV2) )
13 , @ = Jv
€8 1 (wVy) I (wVyp)
1, - f 220 7 g, w=u-is (A2
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where I, becomes I as 8 +». Now we have (6)
® m+ 2k 1
~ z - -
In(2) = ; (2) K T(m+k+1) (A3)
so that I_(wV,) I (wV,) varies as o™ for small ». Sincem and n cannot both be zero for

our particular problem, the singularity in the integrand of I at the origin vanishes, and
hence by Cauchy

I, +I,-I3+1,=0. (A4)
To show that 1, = 0, we first write I_(z) for large |z| as (1c)

I(z) = e’ | (A5)
Vv 2rz

Along C,, » = u+jB, so for large g we find

I Jils I @V I @Vy) 4 QJBV1tV) 0 u(Vy#Vy) 4
2 7 @ = - u .
€+ip ¢ VYV, Joo (u+jB)?

u(V,+V,)

1 J’0 e
27 ViV, J. u? + B2

I1,| < du -0 as fB-o.

A similar argument shows I,= 0, and hence I, = I,. Therefore, as 8 » «

[4)

(A6)

j®

By letting » = jx, and recalling that I_(jx) = j™I_(x), we see that

X

1= ™ J" (V1) Jo(xVy) a o+ ™0 Im I.(xVy) J,(xV5) p

X X

0

i

X .

mnm ml %V a(~-xV mén (7 v v
- +j J o (-x 1)XJ(X 2) dx + j + J Jm(x 1) Jn(x 2)d
0

X
0

But J (-x) = (-1)"J (x), and so, finally,

= i x .

€+jo 1 v ©
I - J D TOVD e [y o] f IRCARRCAN

w =
X

-jo 0

1




APPENDIX B

CALCULATION FOR THE CASE OF
BAND-LIMITED WHITE NOISE

In the text we said that

and the results of evaluating this integral were stated. As an example of the methods used

E(w) = %J sin"! {o(7)} cos wr dr
" Jo

(A7)

we shall now perform the calculation for the case of band-limited white noise where

We can write

where

and

We have first

sin Q)a‘T

wa'r

E(w) = ZTk for k odd

_1 -_
c; = 1, CS‘E' Cs = Za

@
T, = iZ:f p(7T) cos wT dT .
T Jo

Using trigonometric identities

cos OJOT COos wT

1 sin w7

2 w,T

{cos (w + wy)T + cos (w - wo)'r}

1, .
To {51n (@ + @y + @ )T = sin (@ + @) - )T

. . 1
+ sin (@ - @y + @, )7 - sin (w - wy - wa)T};r—.
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Then,
1 (7 d
T1 - 3 {...} __7.- . (A13)
T4 Wy Jy T
Now
J sin ax — =
x
0 —-%, a<0
SO
+1, -1; W+ @y + w, >0, <0
-1, +1; W+ wy - W, > 0, <O
T, = =L 2 (A14)
1 2 2
T Wy +1, -1; W= wy + @, > 0, <0
-1, +1; w - w, - w, >0, <0
which yields
1
Ww’wo—wa<w<w0+wa
T, = {A15)

0, elsewhere.




