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ABSTRACT

The first-order statistics of terrain clutter are investigated theoret-
ically and experimentally. The return from a point-scatterer (a
scintillating signal) is used as a basis for generating the statistical
properties of terrain clutter as observed by side-looking airborne
radars. According to the model the limiting distributions of terrain
clutter are the Gaussian distribution and the distribution for a scintil-
lating signal (specular clutter). An array of point-scatterers within the
radar beam produces clutter which has long tails similar to those of a
lognormal distribution.

The convergence of the first-order statistics of a scintillating
signal to the statistics of a sinusoidal signal is demonstrated. This
property allows the use of many statistical results available in statis-
tical communication for sine waves in Gaussian noise to interpret and
predict in many cases the statistical properties of terrain clutter.

Also, the statistics of terrain clutter are inferred from data taken
with the Naval Research Laboratory's Four Frequency Radar System
by the Kolmogorov-Smirnov test of the cumulative distribution and
by the computation of the first five central moments of the normal-
ized radar cross section of terrain (in decibels). It is found that in
general, terrain clutter statistics is not exponential (with Rayleigh
envelope) nor lognormal distributed, which supports some of the
predictions of the analytical results.

PROBLEM STATUS

This is a final report on one phase of the problem; work on
other phases is continuing.

AUTHORIZATION

NRL Problem R02-37
Project A 310310B/652A/2 R02101-002

Manuscript submitted July 12, 1972.
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POINT-SCATTERER FORMULATION OF TERRAIN CLUTTER STATISTICS

UNTRODUCIION

Through the years terrain clutter has remained as the main limitation of airborne
radars in the detection of targets when operating over land. To describe terrain clutter in
a more realistic manner and help radar designers and analysts to make provisions for the
large probability of false alarms obtained in this environment, many attempts have been
made to understand the basic phenomena responsible for this clutter and then be in a posi-
tion to predict the effects of terrain clutter on the radar systems.

Presently, it is pretty well accepted that terrain clutter is the result of two basic
mechanisms (1,2): strong point-scatterers (or speculars) and a Gaussian-distributed clutter
of Rayleigh-distributed envelope, which is produced by many equal-amplitude
scatterers.

In previous statistical investigations, a priori statistics (e.g., lognormal, Rayleigh, Chi-
Square and Rician) known to occur in terrain clutter have been used from the outset to
describe the process. Here, a much more fundamental point of view has been taken. The
complete process is developed in terms of the statistical properties of the scintillating re-
turn from the elementary point-scatterer, and the more complicated distributions can be
obtained by a superposition of many point-scatterers within the radar beam. Although
the basic idea is quite general, in this investigation it will be applied for the particular
case of a side-looking radar.

With the point-scatterer as the building block of the clutter process, a great deal of
physical insight can be obtained and terrain clutter data may be interpreted from a more
fundamental point of view. For example, point-scatterers in many instances can be identi-
fied in a topographic map or in a more precise manner by means of synthetic aperture
maps obtained at the same radar frequency. That is, they are in most cases physical en-
tities which appear in the form of various natural terrain features or man-made objects.
In the analytical investigation it is proved that the first-order statistics of a scintillating
signal (i.e., a linear frequency-modulated signal produced by a point-scatterer as the air-
borne radar flies by) converge asymptotically to the first-order statistics of a sinusoidal
signal, or more precisely they converge in density and distribution to the statistics of a
sinusoid for large frequency modulation rates and large observation times.

Analytical expressions are derived for the first-order statistics of a scintillating signal
using the assumption that its frequency spectrum is constant within the time of the fre-
quency sweep. In the more realistic case in which several point-scatterers appear within
the resolution cell, it is not possible to obtain explicit analytical expressions for the first-
order statistics of the return. In those cases, the statistics may be obtained by convenient
computer simulation or by invoking the asymptotic property of the statistics of a scintil-
lating signal. In many cases it is possible to obtain a great deal of insight by proper inter-
pretation of available statistical results for sine waves and Gaussian noise. Many of the
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statistical properties for the envelope of terrain clutter may be obtained in a similar
manner.

The convergence of the statistics of the sum of n sine waves, of irrational periods of
the same amplitude, to the Gaussian distribution is of order /n as n e -. However, the
convergence of the statistics of n scintillating signals of equal amplitude should be of order
11.,I or slower, since the mean value of scintillating signals is nonzero and the component
signals are not independent. The slower convergence of the statistics of the sum of n
scintillating signals may be directly responsible for the lognormal statistical properties of
clutter which sometimes are observed in terrain clutter.

Finally, the statistics of terrain clutter obtained with the Four Frequency Radar (4
FR) system are obtained. The empirical investigation shows that in general terrain clutter
is neither Gaussian (with an exponentially distributed radar cross section) nor lognormal.
These conclusions have been arrived at by means of a Kolmogorov-Smirnov test of the
cumulative distribution of the normalized radar cross section (NRC) of terrain and by an
investigation of the first five central moments of the NRC. As a general rule the type of
terrain is reflected most markedly in the mean value of the NRC.

STATISTICAL PROPERTIES OF SCINTILLATING SIGNALS

Scattering Considerations

Consider an airborne, side-looking, coherent pulsed radar system illuminating the ter-
rain at small depression angles; see Fig. 1. In such a scattering configuration, the range
resolution is determined by the radar pulse width and the azimuthal resolution is a func-
tion of the horizontal dimensions of the antenna (3).

The radar transmits a characteristics spectrum of electromagnetic plane waves which
are scattered by the terrain in all directions. The backscattered waves are collected by the
radar receiver and they constitute the terrain clutter, whose statistical properties we are
interested in determining.

We will be dealing with the simplest form as possible of the backscattered signal in
order to include only the necessary features of the return containing information on the
physical process responsible for terrain clutter. For our purpose, the return from a point-
scatterer within the resolution cell will be of the complex form

Y(t) = A (t) io(t)e-iwot for 0 t T, (1)
R(t)

keeping in mind that we are interested in the real part of Y(t). The continuous wave
(CW) version of the backscattered signal about the angular frequency coo will be used for
simplicity. A(t) contains both the amplitude weight of the two-way antenna radiation pat-
tern and the intrinsic amplitude of the scatterer, R (t) = V(R + vt) is the slant range
to the scatterer, 0(t) = 2f3R(t) is the phase, v is the speed of the aircraft, j3 = 27r/X is the
propagation constant of a plane wave transmitted by the radar, and T is the observation
time dependent on the antenna beamwidth. In many practical cases t <<R 0 , R 0 being
the slant range from the radar to the point-scatterer at broadside. The return signal for
these cases can be approximated by
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(SIDE VIEW)

R(t)

I

1
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ANTENNA
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(TOP VIEW)

Fig. 1-Scattering geometry for a side-looking radar

Y(t) = A(t) (2)i(0 +Kt2) -iwot

where q = 2Ro and K = P 2/Ro, which is the scintillating rate.
(2) will apply if we let ¢(t) = - (-t), since the rate of change of
is negative. For our purpose we will deal with the return for t >
contains all the intrinsic properties of the return.

For t < 0, Eqs. (1) and
slant range in this case
0 only, since by itself it

Thus, terrain clutter may be represented as the superposition of a great number of
scintillating signals at any given time

n

Y(t) = -icot iak jk+iK(t-tk)2

k=1

for 0 t < T,

and for simplicity all amplitude effects have been lumped into the ak coefficients which
are taken to be constants.

Thus, in fact, tacitly we are assuming that the illumination pattern of the radar an-
tenna is independent of angle of uniform weight. The scintillating rate K and the phases
Pk are also assumed to be constant. This is really a simplification because in practice the

amplitude, the phases, and even the number of scatterers producing the return may change
within the observation time T.

r

(3)

3

(2)
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One Scintillating Signal

In what follows we will deal with a coherently detected version of the scintillating
signal of Eq. (1). The fluctuations in this case appear about zero frequency.

Y(t) = A cos (Kt 2 +0) for 0 t T,

which is a linear frequency modulated signal. The frequency spectrum of Eq. (4) is a com-
plicated expression involving Fresnel integrals (4).

In Fig. 2 the frequency spectrum of a scintillating signal, as obtained by Klauder and
others, is shown as a function of the parameter KT 2 . As KT 2 -+ 0, the spectrum of a
scintillating signal tends to a constant. In practice the side-looking radars operating at
small depression angles KT 2 is large. In this analysis we will asusme that the frequency
spectrum of the scintillating signal from a point-scatterer is constant during the observa-
tion time. Thus, from elementary probability theory the characteristic function of Eq. (4)
can be obtained from

F() = i Acos [(x2K)+l]p(X)dX
0

(5)

where

X = Kt

p(X) 2X0
1

2KT 

Using the identity

00

iZcosO - ft
m=0

itme Jm(Z)cosmO

wAf/KT

Fig. 2-Frequency spectrum of a linear-frequency
modulated signal

(4)

(6)

a
-J

a-

0
WI

1.5

1.0

0.5

0

KT = 1207

_ 10T_ ,
I I I

2
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where o = 1 and em = 2 for m > 1, in Eq. (5). By reversing the order of integration and
summation, the following expression can be obtained for the characteristic function:

00

F() = Z imbmJm(tA),

m=0

with

e Us 2Xo
bm = 2 xJ cos m

0X 
+ dX.

By making a change in variables it is simple to show that

(7)

bm = ____ 1 {cosmOC(rm) - sin mq5S(Tm)} for m > 1

and

bo = 1,

where

TM = 2T (2m) 1/2

with C(Tm) and S(rm) being the Fresnel integrals defined by

Cos T 2)dT

sin T 2) d.

The probability density function (pdf) is by definition the
characteristic function. After the manipulations we find that

Fourier transform of the

00

p(Y) = {7r-(A2 y2)-1/2 (-)m bm cos(m sin-1 + 2 )
O~~~T A= 2 lIy YA }

IYI>A 

As usual from the pdf, the distribution function can be obtained with no difficulty.
It can be shown to be

and

JTm

TM

S(' ) = 
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P{Y>Y}= sin Y +
7r A/

00

1E ( )m+l bm sin(m sin-, + ir

m=1

The mean value of the scintillating signal can be shown to be

Mean {Y} =
A/i\ 1/2

[cos 0 C('r1 ) - sin S(l].

The term in parentheses outside the infinite sum in Eq. (9) is the expression for a
sinusoidal signal of amplitude A. Since, in deriving Eqs. (7) through (10) we have assumed
that KT 2 is sufficiently large so that the spectrum of the scintillating signal is constant in
the interval (0, 2KT), we may replace the Fresnel integrals by their asymptotic value 0.5.
Thus, the asymptotic form of Eqs. (8) through (10) are respectively,

00

p(Y) I(A2 - y 2)-1/2 + (A2 - y 2)-1/2 ()M Cos(t
m1 cos\4

+ mO) (11)

X cos (msin-1 
A

P{y>y} - - 1 sin-1 +
7 A

00

1 v
2TViKE

m=1

X sin (m sin1 

Mean {Y} 

mir
2

A (r\1/2
4T\K)

+0 (13)

In Fig. 3, the convergence of the distribution function of a scintillating signal toward
the distribution of a sinusoidal signal for increasing values of T is demonstrated. The cu-
mulative distribution for the scintillating signals in the figure were obtained by computer
simulation by sampling Eq. (4). The result is in agreement with the prediction of Eq. (12).
For example, for Y = 0 and = 0, Eq. (12) assumes the form

00

2 2T%0}_27 m (2m -1)3/2 
m=1

(14)

and the numerical value of the infinite sum is 0.865 to three decimals.

(9)

(10)

)m+1

M3/2

and

+ mO) (12)
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1.0
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< 0.8
(n0
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00.4
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R~'0. 2

-1.0 -0.8

K = 27r X 15 RAD/SEC 2

At = 0.001 SEC.

0=00

2.5 SEC

0.2 0.4 0.6 0.8 1.00
Y

Fig. 3-The distribution of one -scintillating signal

Thus, for large TVK factors, the first-order statistics of a scintillating signal are very
similar to those for a sine wave and as TN/K -* - they become the same. However, some
important differences exist, for example while the mean value for a sine wave is zero, the
mean value for a scintillating signal is nonzero, given by Eq. (13). This difference in the
first-order statistics of these two signals yields a different rate of convergence of the first-
order statistics for the sum of scintillating signals as compared to that for sine waves (as
the number of the components increases), toward the Gaussian distribution. This point is
investigated later on.

Central Limit Theorem

As an illustrative example consider the convergence of the distribution of the sum of
n sine waves with irrational periods (irrational periods are required so that the sine waves
are mutually independent) and amplitudes ak to the Gaussian distribution. Via the charac-
teristic function it is quite easy to derive the pdf which is of the form (5)
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n

P (Y) V _ y2 /2a2 1 - -

and the distribution function which is given by

Pft > t} - 1 [ - 4(t)]

6 , -k

k 1 (t4 -6t + 3) + . .. 

n
Lak4

1 -t 2 /2 k=1 (3t-t 3 ) +

-Vr _2: 64a 4

where

n

2u = Tak , t = 

k=1

and

'D (t) = ft 2

The convergence of the density function for the sum of sine waves of the same ampli-
tude toward the Gaussian distribution is illustrated in Fig. 4.

-3 -2 -I 0

' INFINITE

2 3

Fig. 4-The density function of the sum
of sine waves of equal amplitude and
irrational periods

The general convergence problem of the distribution of the sum of n independent
random variables to the Gaussian distribution was investigated by Gnedenko and Kolmogorov
(6). For the more general case, in which each of the components is distributed according
to a different density function, the convergence of the probability density function of the
sum to the Gaussian distribution is in the following manner:

8
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y2M 2 1

p(Y) -e -P- 1M 32(3t-t 3)

6t2 +3) + 'I

+

+ (M4 - 3M')~~2j 2(t4 -
2

where
y

and

1[1- (01

+ -t2 /2 Ml

V2ir -r 1/2

1 M 3
6 M 31 ( - t2 )

1 (M 4 -3M'2)
24 M2

2

for the distribution function, where

(t3 - 3t) +.

n

M1 =TMlk,
k=l

n

M 2 = L M2k,

k=l

n

M2 =2 1m2k,
k=1

n

M3 = m3k,

k=1

n

M 4 = m4k,

k=l

and

mlk, m2k , * -

are the first-order moments of the component random variables.

(17)

P{t>t} (18)

9
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The net conclusion obtained from examining Eqs. (15) through (18) is that the dis-
tribution of the sum of independent random variables with zero mean converges to the
Gaussian distribution as 1/n with the number of components and when the mean value of
the component random variables is nonzero the convergence of the distribution of the sum
to the Gaussian distribution is slower, of order 1A/W.

Bernstein (7) investigated the convergence of the distribution of the sum of depend-
ent random variables. In this case the Central Limit Theorem arguments apply to the
number of independent subsets contributing to the sum, which obviously is smaller than
the total number of the component random variables.

Many Scintillating Signals

In general, terrain clutter is the result of many point-scatterers within the antenna
beam. Analytical expressions for the first-order statistics for the sum of n scintillating
signals of the form

n

Y(t) = Zak cos [K(t-tk) 2 + k ] for 0 t T (19)

k=1

cannot be derived. However, several important properties for the sum of many scintil-
lating signals can readily be obtained. For example using Eq. (13), the mean value of Eq.
(19) is immediately obtained

n

Mean{Y} 4() Eak cos(-~. + Ok) . (20)

k =1

Similarly an explicit expression for the variance of Eq. (19) can be obtained, this is

a2(r) ~ 2Z~ak2 + ak al b(tk - t1) + 27r) 2 akal{COs( - + O/kl)

k=1 all pairs k,l=1

_1 27r 1/2

T(K) cos( + k)cos(T + 01)t (21)

where is the Kronecker delta function and kkl = (K/2)(tk - t + )2 + (k + 1).

It is not difficult to arrive at the result that the worst clutter case (greatest proba-
bility of false alarm for a given threshold level) will occur when all the point-scatterers are
lumped together and add constructively. For this case the variance takes the form

2 - ( )2 + (22)

10
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and the first-order statistics are those for a single scintillating signal of amplitude equal to
the sum of the component amplitudes.

Another interesting case is that in which the components' scintillating signals can be
considered mutually independent. In this case the variance is of the form

n

2 T Eak + (,-a ) (23)
k=1

in which the first sum is the variance of n sine waves of irrational periods and of amplitude
identical to those of the scintillating, signals.

Although the first-order statistics of the sum of several scintillating signals cannot be
obtained explicitly, they can be derived very conveniently by computer simulation. In
Fig. 5 the computer simulation has been performed for the case of two-scintillating sig-
nals. The amplitude of one component is kept constant, while the amplitude of the other
component is varied from 0 to 1, in steps of 0.2.

Since the mean value of scintillating signals is nonzero, the distribution of the sum of
many scintillating signals should converge to the Gaussian distribution according to Eq. (18)
and the number of components is the number of independent subsets. Here, we will not

0.5 X0
TOTAL SAMPLES = 2x10 4

a, I

K=307r RAD/SEC 2

0.A

en \I, At= 10-3 SEC.

co 01 = 02=°°

03 f1 :Q, t| 2 SEC.

a-
2

O ~~~~~~~~~C ~~~~ 0. 8X~~~~~~~
Lii 0.2
U. 0.6

0.4
_ ~~~~~~~~~~~~~~0.2

N~~~~~N
NN

NN
N.0~~~~~~~~~~~~

0 2

AMPLITUDE

Fig. 5-The distribution function for the sum of two-scintillating signals
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attempt to define what we mean by independent subsets in terms of the scintillating sig-
nals. Our aim is only to emphasize the slower rate of convergence of the distribution of
the sum of scintillating signals toward the Gaussian distribution. This is illustrated in Fig.
6 in which the distribution of a number of scintillating signals, for point-scatterers of equal
amplitude in an array configuration, was obtained by computer simulation for different
numbers of scintillating signals. The limiting distributions are the distribution for one
scintillating signal and the Gaussian distribution. Surprisingly enough the distribution for
the sum of a large number of scintillating signals has long tails, similar to the lognormal
distribution. Thus, seemingly we have discovered a new mechanism that yields lognormal
clutter.

Based on the asymptotic properties of the first-order statistics of the sum of scintil-
lating signals, the distribution of the return from a point-scatterer in a homogeneous Gaus-
sian clutter may be approximated by the well-known statistical results for a sine wave in
Gaussian noise (8-10). In Fig. 7, Rice results (9) have been used to represent the distribu-
tion of a point-scatterer in various amounts of Gaussian clutter.

1.01 1

0.9F

U)
Cl)n

co

zUU

x
LUUj

L-m

0

H-

m

co

0
0-1

0.8k

0.7k

0.6F

0.5 

0.4F

0.3F

O.2

0.1-

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Y/YRMS
Fig. 6-The distribution function of the sum of several scintillating signals

K = 27 X 15 RAD/SEC 2

SCATTERERS OF EQUAL AMPLITUDE
AND I SECOND APART

SAMPLING INTERVAL= 0.001 SEC

T=30 SEC
ALL PHASES = 0

I POINT SCATTERER

Has2 GAUSSIAN CLUTTERN - - -

20…
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z0
D
m

H
Qo

C)

0
0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

YFYRMS
Fig. 7-The distribution of a point-scatterer in Gaussian clutter

1.8 2.0 2.2

In terrain clutter measurements taken with the 4FR system over Phoenix, Arizona,
on Oct. 7, 1966, the lognormal and specular nature of clutter was quite evident. In Fig.
8 a couple of these interesting distributions of the complete signal are displayed. (The out-
put of the amplitude and phase channels of the 4FR system have been combined to form
E cos q; E is the envelope of the clutter and 0 is the instantaneous phase.) The distribu-
tion for P-Band exhibits the long tail typical of lognormal clutter, quite similar to those
given in Fig. 6 and obtained by computer simulation. The distribution for C-Band may be
a composite, produced by a couple of strong point-scatterers in a background of weaker
Gaussian clutter.

STATISTICS OF THE ENVELOPE

In many applications one is interested mainly in the statistics of the envelope E(t) of
terrain-in particular in incoherent radars. The envelope of Eq. (3) is given by

13
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Fig. 8-Cumulative distributions obtained with the 4FR system over Phoenix,
Arizona, in 1966 which support the specular nature of terrain clutter

ak cos [k + K(t -tk

I-n

+( aksin [0k +K(t -tk

k=1

)2]) 2}

n

E (t) = a2 +2

k=1 all pairs
k l

akal cos [(Ok - 01) + K(tk - tl) 2 - 2K(tk - tl)t]

E(t) = T
k=1

or

(24)

1/2

I
1/2

(25)
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Interestingly enough the mean value of E2 is given by

n

Mean {E2} = 2a,2
k=1

for k 01,

which also is related to the mean power of the incoherent clutter.

Thus since Eq (26) also represents the mean value for the superposition of sine waves
of amplitude similar to the scintillating signals one would suspect that the distribution of
the envelope of terrain clutter may converge faster to the Rayleigh distribution than the
distribution of the complete signal (amplitude and phase) will converge to the Gaussian
distribution. Recalling the results for a sine wave in Gaussian noise, a point-scatterer in
Gaussian clutter should have an envelope which is Rician distributed.

The convergence of the first-order statistics of the envelope of the sum of many ran-
dom processes toward the Rayleigh distribution is reviewed in detail by Beckmann (11).

For example the envelope of the sum of n sinusoidal signals of irrational periods and
amplitude ak converge toward the Rayleigh distribution according to the expression

p(E) E e-E 2 /2a2 1

n

Eak4

_ 1 k=1 (8-8t2+ 4) +
64 a

for the density and

> R} e R2{1

n

Eak4

k=1

16g4 (R 4 -2R 2 ) + .. (28)

for the distribution function, where

n

2c 2 = EZa2

k=1

E

The more general question on the rate of convergence of the envelope of the sum of
independent random processes, each distributed according to a different distribution, can
be shown to converge to the Rayleigh distribution according to the expression

p(E) 2E I-E21M2 1 ( W M2) (2-4,2 + 4) + .}

(26)

(27)

(29)

15
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for the density with =EIM 12 and

{ E > R - -R2J1 + 1 (M4 - 2 2) (R4 -2R 2 ) + *-} (30)
J ~~~~~2 J30

for the distribution function, where

n

M2 = Z 2k,

k=1

n

= L m2k,

k=1

n

M4= Z 4k,

k=1

and m2k and m4k are the second and fourth moments of the component random processes.
Beckmann's expression (38) in Ref. 11 is incorrect; a quadratic term in the series for the
distribution is missing. Compare with our (30).

INFERENCE OF THE STATISTICS OF TERRAIN CLUTTER

In this section, the statistics of terrain clutter as observed with the 4FR system is in-
vestigated. The 4FR system transmits at 428 MHz (UHF or P-Band), 1228 MHz (L-Band),
4455 MHz (C-Band) and at 8910 MHz (X-Band). An excellent description of the 4FR sys-
tem can be found in Ref. 1. Since the amplitude channel is completely calibrated, these
data will be used in the inference of the statistics of terrain clutter. The outputs of the
amplitude channel are samples of radar cross section of terrain (in units of decibels) as a
function of time and can be normalized by the area on the terrain illuminated by the
radar.

The data used in this investigation were collected by the radar, in side-looking opera-
tion, on Oct. 6, 1966, over Arizona and contain return from deserts, mountains, farm-
land, and local communities. Additional information on the measurements can be found
in Ref. 12.

The cumulative distribution of the NRC of terrain is checked with the Kolmogorov-
Smirnov test (13) against the exponential and the lognormal distributions. Finally, the
first five central moments of the samples (in units of decibels) of the NRC of terrain are
obtained. Clearly, if all the moments were known, the exact distribution of terrain clutter
could be reconstructed.

It was decided, for obvious practical reasons of terrain identification, that the total
number of samples used in each distribution and moment computation should not exceed
the time in which the airplane takes to travel the distance equal to the azimuth antenna

16
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beamwidth illumination of the terrain. Thus the total number of samples used in each dis-
tribution, or moments computation, is a function of airplane altitude, speed, antenna de-
pression angle, and antenna azimuth beamwidth. The total number of samples used in
each computation ranged from about 900 to 11,000.

The Distribution Function

The Kolmogorov-Smirnov test is a distribution-free type of statistical test used to test
the hypothesis if the cumulative distribution obtained from a set of independent samples
taken from a population belongs to a theorized distribution for the population. The num-
ber of independent samples for the terrain clutter data was determined by a standard run
test (14) on groups of 1024 consecutive samples. The cumulative distribution of terrain
clutter (between the 0 and the 100 percentile) are then tested against the exponential and
the lognormal distributions. In the comparison with the exponential, the mean value of
the theorized distribution was adjusted for the smallest maximum deviation between the
distributions. In the comparison with the lognormal distribution, the variance and the
median of the theorized distribution were taken to be that of the sample.

The Kolmogorov-Smirnov test, at the 99% level of significance (i.e., the cumulative
distribution is accepted as belonging to the theoretical distribution if the maximum devia-
tion is less than or equal to the critical value as given by Ref. 13) shows that in general
the NRC of terrain is not exponentially distributed (with Rayleigh envelope) nor lognormal
distributed. However, specific sections of data may be found to be exponentially distrib-
uted and on a few occasions, for small independent samples sizes, the data may be found
to be lognormal.

For example in Figs. 9 and 10, the data is very likely to be exponentially distributed,
while in Figs. 11 through 15 the data are neither exponential or lognormal. As a matter
of fact, cumulative distributions which have long tails, typical of lognormal distributions,
fail the Kolmogorov-Smirnov test in comparison with a lognormal distribution between the
0 and the 100 percentiles. Thus, strictly speaking terrain clutter may never be lognormal
distributed and only the tails of the distribution may be approximable by this distribution.

The Central Moments

For purposes of identifying the statistics of terrain clutter in a more definite manner,
the first five central moments of the NRC of terrain clutter (in units of decibels) will be
derived from the amplitude samples of the 4FR system.

The central moments /ul, /12, . . ., sn of a random variable which is exponentially or
lognormal distributed are well known and can be used for comparison. The central mo-
ments for the logarithm of a random variable which is exponentially distributed are related
to the Poligamma function (15). The Poligamma function T(v-1)(x) is defined as

dv4v-1)(X) = dv [fr(x + 1)], (31)

where F(x + 1) is the Gamma function. The central moments of the natural logarithm of
a random variable which is exponentially distributed are constants given by

17
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Fig. 15-Maximum deviation of the cumulative distri-
bution of terrain clutter from the lognormal distribu-
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A2 = VI(°) = 1.64493
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(32)

114 = V'"(0) = 6.49393

1U5 = VIV(0) = -24.88627

and T(0) = 0.5772157 is the difference between the natural logarithm of the mean value
of the exponentially distributed random variable and the mean value of the natural logarithm
of the random variable. The numerical values of the Poligamma function were obtained
from Davis (16).

Similarly, the central moments of a random variable (exponentially distributed in am-
plitude), in decibel units are related to Eq. (32) by a constant; that is,

2 = c2 1'(0)

1A3 = C3T"(O)
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where c = 10 log1o e with e = 2.7182818, and the difference between the median and the
mean value of the random variable in decibels is approximately 0.91.

The central moments of the logarithm of a random variable which normally is log-
normal distributed are those of the Gaussian distribution

n/2

n= In2 JJ(2k -1), (34)
k=1

where n > 2 and is even. If n is odd, sIn = .

In Figs. 16-55, the result of computing the central moments of terrain clutter for the
four frequencies and both polarizations are shown. In these plots the corresponding
values for the central moments for the exponential and the lognormal distribution are
shown for comparison. Obviously, these results show that terrain clutter in general is
neither exponential nor lognormal distributed, thus supporting the results of the Kolmogorov-
Smirnov test on the cumulative distribution.

One obvious conclusion is that the type of terrain is principally reflected in the mean
value of the clutter. In comparison with the previous empirical results obtained for sea
clutter (17), now we find a greater spread in all the moments.

RESULTS AND CONCLUSIONS

In the first part of this investigation the point-scatterer formulation for the statistics
of terrain clutter was developed. Although the model is quite general, specific results are
given only for the case of a side-looking radar. We have shown that many of the statistical
properties of terrain clutter can be derived with this formulation. An important result of
this investigation is the relatively slow rate of convergence of the statistics for the sum of
several scintillating signals toward the Gaussian distribution as the number of components
increases. This happens because the mean value of a scintillating signal in general is
nonzero.

The limiting distributions of terrain clutter are shown to be the Gaussian distribution,
that obtained over homogeneous terrains such as deserts and farmland for example, and the
distribution of a scintillating signal produced by a point-scatterer. Terrain clutter which has
a distribution with long tails, typical of lognormal distributions, should be encountered
over urban areas and over mountainous terrain. Figure 8 shows selected distributions of
terrain clutter obtained with the 4FR system which have interesting features tending to
support the point-scatterer formulation for the statistics of terrain clutter.

The empirical investigation of the statistics of the NRC of terrain, in decibel units,
in general has neither exponential (of Rayleigh envelope) nor lognormal distribution. How-
ever, terrain clutter data from homogeneous terrains are very likely to be exponentially
distributed (with Rayleigh envelope).

Strictly speaking, terrain clutter is never lognormal distributed between the 0 and 100
percentiles. However, in many instances the distribution of terrain has long tails typical

22
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of lognormal distributions, and for these cases the tail of the distributions may be approxi-
mated by a lognormal distribution.

Of course, in order to evaluate fully the merits of the point-scatterer formulation for
the statistics of terrain clutter a great deal of further investigation of the statistics of data
is required.
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