
Approved for public release; distribution is unlimited.

Naval Research Laboratory
Stennis Space Center, MS 39529-5004

June 28, 2002

NRL/FR/7320--02-10,021

Parallel Implementation of
the QUODDY 3-D Finite-Element
Circulation Model

CHERYL ANN BLAIN

Ocean Dynamics and Prediction Branch
Oceanography Division

TIMOTHY J. CAMPBELL

Mississippi State University
NAVOCEANO MSRC PET

i

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT

NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

code)

b. ABSTRACT c. THIS PAGE

18. NUMBER

OF PAGES

17. LIMITATION

OF ABSTRACT

June 28, 2002

Parallel Implementation of the Quoddy 3-D Finite Element Circulation Model

Timothy J. Campbell and Cheryl Ann Blain

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

NRL/FR/7320--02-10,021

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 34

Cheryl Ann Blain

(228) 688-5450

Naval Research Laboratory Report

Parallel computing, Finite-element, Coastal ocean circulation

PE - 0602435N

Office of Naval Research
800 North Quincy Street
Arlingtonn, VA 22217-5660

 This report describes implementation of the QUODDY finite-element circulation model on shared-memory multiprocessor computers
using OpenMP. Because all code modifications were restricted to the main computational routines and no changes are required in the user
interface and configuration files, the parallel code can be seamlessly integrated into existing regional applications of the model. Bit-for-bit
matching between serial and parallel execution has been achieved. The code modifications reduced the execution time per model time step
of one test case from 21.1 s on a single processor to about 1.4 s on 32 processors. By reducing turnaround time and enabling substantial
increases in model resolution, the parallel code will benefit further coastal ocean circulation model development.

CONTENTS

1. INTRODUCTION . 1

2. DESCRIPTION OF THE QUODDY MODEL . 1

3. PROFILE OF SERIAL CODE . 2

4. PARALLEL IMPLEMENTATION . 5
4.1 Parallel Region . 5
4.2 Horizontal Node Loops . 6
4.3 Synchronization Between Parallel Loops . 9
4.4 Serial Regions . 10
4.5 Other Parallel Constructs . 11

5. VERIFICATION AND PERFORMANCE . 11

6. ALTERNATE APPROACHES USING OPENMP . 16

7. SUMMARY . 18

8. REFERENCES . 18

APPENDIX A – Description of OpenMP . 19

APPENDIX B – Source Code for Time-Stepping Loop 21

APPENDIX C – Source Code for Alternate Minimal OpenMP Approach 29

iii

PARALLEL IMPLEMENTATION OF THE QUODDY 3-D

FINITE-ELEMENT CIRCULATION MODEL

1. INTRODUCTION

Realistic representations of coastal ocean circulation require the use of three-dimensional (3-D)
numerical models. These models contain multiple equations that have a significant number of un-
known variables, e.g., water level, three velocity components, temperature, salinity, and turbulence-
related quantities, whose solutions translate into potentially large costs when using only a single
processor. Applications in coastal areas where grid refinement is high and/or grid boundaries
are located in offshore waters result in computational domains that can be rather large – fur-
ther exacerbating the computational overhead of 3-D simulations. The need for a multiprocessor
computational capability is clear when dealing with 3-D coastal circulation models.

One such coastal circulation model is QUODDY, the 3-D ocean circulation model that is part
of the Dartmouth College suite of models [1]. The QUODDY model has had tremendous success
in studies focused largely on continental shelf circulation [2], but such applications have been
purposefully limited in resolution and domain size due to computational constraints. Modifications
to the QUODDY software that permit the use of multiprocessor computational resources will
dramatically change the way in which this model is applied to coastal circulation problems. Coastal
circulation model development should also proceed more rapidly since the turn-around time for a
model application is reduced.

We chose to port the QUODDY model to shared-memory multiprocessor computers using
the OpenMP multithreading directives. These can provide a minimally intrusive and incremental
method for producing a parallel code. Appendix A briefly describes the OpenMP programming
model. With this approach, we have been able to produce a moderately scalable code that requires
no change to the user interface and configuration files. This report describes our development of
a scalable version of QUODDY using OpenMP. The necessary code modifications are documented
to provide a record for those who maintain the QUODDY model. Section 2 briefly describes the
QUODDY model; Section 3 provides an execution profile of the original serial code. Section 4
provides details on the development of the parallel version of QUODDY. Section 5 provides details
on how the performance of the parallel code and how the code changes were verified. Performance
comparisons with alternate approaches using OpenMP are described in Section 6, and a summary
is given in Section 7.

2. DESCRIPTION OF THE QUODDY MODEL

The QUODDY model, developed by the Numerical Methods Laboratory at Dartmouth College,
represents the most physically advanced finite-element circulation model to date [1]. The QUODDY

Manuscript approved February 8, 2002.

1

2 Campbell and Blain

model is a time marching simulator based on the 3-D hydrodynamic equations subject to conven-
tional Boussinesq and hydrostatic assumptions. A wave-continuity form of the mass conservation
equation [3,4], designed to eliminate numerical noise at or below two times the grid spacing, is
solved in conjunction with momentum conservation and transport equations for temperature and
salinity. Vertical mixing is represented with a level 2.5 turbulence closure [5]. This turbulence clo-
sure scheme accounts for processes occurring over the vertical extent of the water column such as
diffusion, shear production, buoyancy, production, and dissipation. Variable horizontal resolution is
provided on unstructured triangular meshes. A general terrain-following vertical coordinate allows
smooth resolution of surface and bottom boundary layers. The QUODDY model is dynamically
equivalent to the often used Princeton Ocean Model [6]. The advantage of the current model lies in
its finite-element formulation that allows for greater flexibility in representing geometric complexity
and strong horizontal gradients in either bathymetry and/or velocity.

The work described in this report pertains to Version 5 Release 1.0 of QUODDY (hereafter
referred to as QUODDY5). The QUODDY5 software is written in ANSI Fortran 77 and consists
of the following six program files and header file.

quoddy5 1.0 main.f: Main program for QUODDY5;

quoddy5 1.0 coresubs.f: Core subroutines for QUODDY5;

quoddy5 1.0 usrsubs resources.f: Supporting subroutines for QUODDY5 user-specified sub-
routines;

quoddy5 1.0 usrsubs.f: User-specified subroutines for QUODDY5;

DCMSPAK 000607.f: Routines from Dartmouth Circulation Models Software (Equation of
State routines, Baroclinic Pressure Gradient routines, routines from FUNDY6);

NMLPAKS 000607.f: Selected packages from the Dartmouth Numerical Methods Library
(FEMPAK, GOMPAK, IOSPAK, MAXPAK, and SPRSPAK);

DCMS.DIM: Header file with parameters for various Dartmouth Circulation Models Software.

The user-specified subroutines in quoddy5 1.0 usrsubs.f are built with a standardized interface.
These routines are used to specify physical forcing, vertical meshing, boundary conditions, and the
manner in which results are to be analyzed and written. The exact makeup of the user-specified
routines depends on the user and the region of application.

The main computational (time-stepping) loop of QUODDY5 can be described with four logical
sections, as illustrated in Fig. 1. Within each logical section, the numerics are carried out through
a combination of subroutine calls and operations local to the time-stepping loop. Figure 1 lists the
subroutines called within each section. For reference, Appendix B gives the Fortran source code
for the time-stepping loop (with OpenMP modifications).

3. PROFILE OF SERIAL CODE

Prior to making modifications for OpenMP it is useful to generate an execution profile and to
identify code regions where the most time is spent and which routines called which other routines
during execution. The execution profile for QUODDY5 is given in Table 1; only the subroutines
from the time-stepping loop are listed.1 The profile was performed over 10 time steps, with tem-
perature and salinity transport enabled, on a finite-element mesh with 17440 horizontal and 51

1In this work, a commonly available profiling application known as gprof was used. Gprof counts the number of times
a routine is called and estimates the amount of time spent in each routine using a sampling process. Because of the

Parallel Implementation of QUODDY 3

1. Setup for present time level K

• Load atmospheric forcing: ATMOSQ5

• Load point source information: POINTSOURCEQ5

• Compute linearized bottom stress coefficients: QUADSTRESS

• Evaluate baroclinic pressure gradients: RHOXYQ4

• Evaluate horizontal eddy viscosity/diffusivity: SMAGOR1

• Evaluate nonlinear advection and horizontal diffusion of momentum:
SPRSMLTIN2, SPRSCONV, CONVECTION

2. Solve wave equation for free surface elevation: ELEVATIONQ5

3. Solve for vertical structure of the 3-D dependent variables: VERTICALQ5

4. Update arrays and increment timing parameters

• Store present information as time level K-1

• Compute equation of state: EQSTATE 2D

• Compute vertical velocities: SPRSCONV, VERTVEL3 2, VERTAVG

Fig. 1 — Time stepping loop of QUODDY5 with logical sections enumerated. The subroutines
called within each section are also listed.

vertical nodes. The numbers in the first three columns express the time spent as a percentage of
the total execution time. The total execution time includes both the pre-time-stepping section and
the time stepping loop. However, the pre-time-stepping section is a small fraction of the total time
(less than 2%). Columns 2 and 3 separate the total time in column 1 into the time used only by
the subroutine itself (column 2) and the time used by that subroutine’s descendents (column 3).

Table 1 shows that almost 50% of the execution time is spent in the subroutine VERTICALQ5
(which is called once every time step) and its descendents. The execution time used by VERTI-
CALQ5 is dominated by a single loop over the horizontal nodes (of the triangular mesh). In this
loop, the vertical structure is computed for vertical grid points directly under each horizontal node.
More detail on the profile for subroutine VERTICALQ5 is given in Table 2. All the descendents of
VERTICALQ5 with the exception of SPRSMLT are called from within the vertical structure loop.
Because the vertical data under a horizontal node does not depend on information from neighboring
horizontal nodes, each loop iteration is independent. Thus, the vertical structure loop can easily
be done in parallel.

Among the subroutines called once per time step that use the most time, ELEVATIONQ5 is
second after VERTICALQ5. From the profile of ELEVATIONQ5 given in Table 2, we see that
most of the time is spent in descendents BANSOLTR and VERTGRIDQ5. As it turns out, the
routines called by VERTGRIDQ5 (that set up the vertical grid spacing) consist of loops over
horizontal nodes that can be done in parallel. However, the matrix solve in BANSOLTR for the sea
surface elevation cannot be done in parallel without extensive modifications beyond loop parallel
constructs. At this point, it is not clear if modifications to the matrix solve would give any benefit.

sampling process, the timings are subject to statistical inaccuracy. Additional inaccuracy of timings is caused by the
overhead of profiling routines invoked during execution.

4 Campbell and Blain

Table 1 — Profile for MAIN of QUODDY5

Percent of total time Number of Parent
Total Self Descendents times called Children

100.0 8.2 91.8 1 MAIN
49.7 29.5 20.2 10 VERTICALQ5
8.7 8.7 0.0 348800 SPRSCONV
5.9 0.9 5.0 10 ELEVATIONQ5
5.8 5.8 0.0 174400 CONVECTION
5.6 5.4 0.2 11 RHOXYQ4
4.5 3.6 0.9 174400 VERTVEL3 2
3.0 2.2 0.8 10 SMAGOR1
3.0 3.0 0.0 174400 SPRSMLTIN2
2.9 2.9 0.0 20 VERTAVG
1.4 1.4 0.0 11 EQSTATE2 2D
0.3 0.3 0.0 11 VERTSUM
0.0 0.0 0.0 11 POINTSOURCEQ5
0.0 0.0 0.0 11 ATMOSQ5
0.0 0.0 0.0 12 SPRSINVMLT
0.0 0.0 0.0 10 QUADSTRESS

The 0.9% time used by ELEVATIONQ5 itself involves setting up the right-hand side of the matrix
equation that is solved for the sea surface elevation. Most of that time is spent in a single loop over
the elements of the horizontal triangular mesh. At each iteration of the element loop, data at each
of the three nodes associated with that particular element are modified. Because nodes are shared
by multiple elements, this results in data dependencies that prevent executing the element loop in
parallel. In other words, two threads processing different elements (iterations) that share a node
will try to modify the data at that node at the same time with no guarantee of correctness. This
same issue also occurs in the subroutine SMAGOR1 which, according to gprof, consumes 3.0% of
the execution time.

Table 2 — Profile for subroutines VERTICALQ5 and ELEVATIONQ5

Percent of total time Number of Parent
Total Self Descendents times called Children

49.7 29.5 20.2 10 VERTICALQ5
9.8 9.8 0.0 697600 SPRSMLTIN3
3.6 3.6 0.0 697600 THOMAS
3.4 3.4 0.0 174400 GALPERINQ5
2.4 2.4 0.0 174400 ELEMCOEFS
0.9 0.9 0.0 174610 CTHOMAS
0.1 0.1 0.0 20 SPRSMLT
0.0 0.0 0.0 630 VERTINTI

5.9 0.9 5.0 10 ELEVATIONQ5
3.3 3.3 0.0 10 BANSOLTR
1.7 0.0 1.7 10 VERTGRIDQ5
0.0 0.0 0.0 10 BCQ5
0.0 0.0 0.0 10 RHSMULT

Parallel Implementation of QUODDY 5

The subroutines SPRSCONV, CONVECTION, VERTVEL3 2, and SPRSMLTIN2 collectively
use about 22% of the total execution time. This is because they are called for each horizontal node
from within the time stepping loop. When called for a particular horizontal node I, each of the
above subroutines works only on the vertical grid data that are associated with I. This indicates
that the horizontal node loops involving these subroutines can be executed in parallel.

4. PARALLEL IMPLEMENTATION

The approach used in this project is in the spirit of the Single Program Multiple Data (SPMD)
model that is common in programming for distributed memory. The PARALLEL and END PARALLEL

directives were used to enclose the entire initialization and time-stepping portion of the code,
including subprogram calls, within a single parallel execution region. The decomposition of work
among the threads within the parallel region occurs in the horizontal dimension (i.e., the nodes and
elements of the 2-D triangular mesh). During execution in the parallel region, the threads remain
in existence and proper data flow is ensured through minimal use of the BARRIER synchronization
directive. Code that must be executed in serial is handled by the master thread. Since the BARRIER
can be 30% to 50% less expensive than a PARALLEL DO, this approach significantly reduces the
amount of overhead associated with OpenMP. This section describes the source code modifications
made in QUODDY5 for OpenMP multithreaded processing. Many of the code modifications are
similar; therefore, only representative modifications are shown. All modifications can be found by
searching the source code on both the CTJC and C$OMP strings.

The following QUODDY5 program files and subroutines they contain have been modified for
multithreaded processing.

quoddy5 1.0 main.f: PROGRAM QUODDY5

quoddy5 1.0 coresubs.f: INITIALIZEQ5, STATIONARYQ5, ELEVATIONQ5, VERTICALQ5,
SMAGOR1, QUADSTRESS

quoddy5 1.0 usrsubs resources.f: UNISIGMAQ5, SINEGRIDQ5

DCMSPAK 000607.f: EQSTATE1 2D, EQSTATE2 2D, RHOXYQ4

NMLPAKS 000607.f: VERTSUM, VERTAVG, SPRSINVMLT, SPRSMLT

To minimize the number of code modifications, the multithreaded subroutines in the quoddy5 1.0 *
files retain the same name and calling parameters as the original subroutines. With respect to
DCMSPAK and NMLPAKS, separate multithreaded versions have been created. The new routines
retain the same name except for a “ MT” suffix added to the end. This choice was made to maintain
compatibility of the DCMSPAK and NMLPAKS with other non-OpenMP NML applications, and
to allow for calls to these routines from non-OpenMP or master thread regions of QUODDY5.
No OpenMP code changes were made to the user-specified subroutines in quoddy5 1.0 usrsubs.f.
By restricting the OpenMP code changes in this manner, the user is able to seamlessly switch
to the parallel QUODDY5 by compiling the OpenMP code with the appropriate (unmodified)
user-specified subroutines.

4.1 Parallel Region

A single parallel region is defined that begins in MAIN just before the initialization section.
The code that initiates the parallel region in quoddy5 1.0 main.f is shown here.

6 Campbell and Blain

CTJCCC

CTJC: Begin OpenMP parallel region

C$OMP PARALLEL DEFAULT(SHARED)

C$OMP+PRIVATE(I,J,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY)

C$OMP+PRIVATE(VISCX,VISCY,VALMID)

CTJCCC

At this point, the team of threads is spawned, with the initial thread being the master or thread
number 0. The number of threads in the team is determined by the OMP NUM THREADS
environment variable set in the shell in which the program executes. By default, all variables
declared in MAIN are scoped as shared, i.e., accessible to all threads. Those variables scoped as
private to each thread are loop indices, some local scalars, and arrays are used only for data in the
vertical direction. The parallel region ends in MAIN just after the time stepping section is finished.
The code that finalizes the parallel region in quoddy5 1.0 main.f is shown here.

CTJCCC

CTJC: End OpenMP parallel region

C$OMP END PARALLEL

CTJCCC

At this point, all threads except the master thread are terminated. The master thread continues
with the program finalization.

The parallel region in QUODDY5 encloses a block of code that includes calls to other sub-
routines. According to the OpenMP standard, parameters passed to these subroutines carry the
same scope of accessibility by threads that was assigned in the lexical extent of the parallel region
(i.e., the code contained directly within the PARALLEL/END PARALLEL directive pair). Variables
that are defined only within the lexical extent of a subroutine (i.e., local variables) are by default
scoped as private. Common blocks and saved variables are automatically scoped as shared. Several
QUODDY5 subroutines contained local variables that were required to be scoped as shared. This
was handled by placing the local variables in a common block uniquely identified with the enclosing
subroutine. For example, the following common block was added to the subroutine VERTICALQ5.

CTJC: Place some local variables in common to scope them as shared

COMMON/VERTICALQ5_MT_COM/UNEW,VNEW,SURF

Similar uniquely defined common blocks have been added to INITIALIZEQ5, STATIONARYQ5,
ELEVATIONQ5, and RHOXYQ4. As an alternative to the common block, the Fortran SAVE state-
ment could also be used to scope local variables as shared. It is not clear which approach, if any,
is preferable.

4.2 Horizontal Node Loops

Most of the computation in QUODDY5 occurs in loops over nodes of the horizontal triangular
mesh. In practice, the size of the horizontal dimension will always be larger than the vertical.
Therefore, to maintain good scalability, it is necessary to parallelize in the horizontal dimension.
To minimize overhead, the choice was made to explicitly partition the horizontal node loops without
the use of OMP DO. This required that each thread compute and maintain its own horizontal node
loop bounds. The horizontal node loop bounds are computed by an equal partition among threads.

Parallel Implementation of QUODDY 7

In general if the number of threads is Nth, then the loop bounds, M1 and M2, for thread number
Ith (I = 0, ..., Nth − 1) can be computed as

M1 = Ith

⌊

N2 − N1 + 1

Nth

⌋

+ N1, (1)

M2 =

{

N2 when Ith = Nth − 1,

(Ith + 1)
⌊

N2−N1+1

Nth

⌋

+ N1 − 1 otherwise
, (2)

where the original loop bounds are N1 and N2.

Equations 1 and 2 are realized in the following subroutine that has been added to the end of
quoddy5 1.0 main.f for computing loop bounds for a thread.

SUBROUTINE GET_MT_LOOP_BOUNDS(N1,N2,M1,M2)

IMPLICIT NONE

INTEGER ID,NTH,NCH,N1,N2,M1,M2

C$ INTEGER OMP_GET_NUM_THREADS,OMP_GET_THREAD_NUM

C$ EXTERNAL OMP_GET_NUM_THREADS,OMP_GET_THREAD_NUM

NTH=1

ID=0

C$ NTH=OMP_GET_NUM_THREADS()

C$ ID=OMP_GET_THREAD_NUM()

NCH=(N2-N1+1)/NTH

M1=ID*NCH+N1

M2=(ID+1)*NCH+N1-1

IF(ID.EQ.NTH-1) M2=N2

RETURN

END

Subroutine GET MT LOOP BOUNDS takes as input the serial loop bounds (N1 & N2) and computes the
new loop bounds (M1 & M2) for the calling thread. Two runtime OpenMP functions are required:
OMP GET NUM THREADS, which returns the number of threads defined in the encompassing parallel
region; and OMP GET THREAD NUM, which returns the identifier for the calling thread. The C$ sentinal
indicates to an OpenMP compiler that the executable statement that follows is to be compiled.
Non-OpenMP compilers will treat the lines prefixed with C$ as comments. The local variables
NTH and ID are initialized to the single thread (serial) values. This setup allows the OpenMP
QUODDY5 to compile and execute correctly with a non-OpenMP compiler.

At the beginning of the parallel region, each thread makes the following call to determine its
own horizontal node loop bounds.

CALL GET_MT_LOOP_BOUNDS(1,NN,INMIN,INMAX)

The horizontal nodes are indexed from 1 to NN; INMIN and INMAX are the minimum and maximum
horizontal node loop indices for the calling thread. These variables are stored in the following com-
mon block that is declared in all subroutines that have been converted to multithreaded processing.

INTEGER INMIN,INMAX

COMMON/MGMT_MT_COM/INMIN,INMAX

C$OMP THREADPRIVATE(/MGMT_MT_COM/)

8 Campbell and Blain

The THREADPRIVATE directive is required wherever this common block is declared. It results in
each thread accessing its own private copy of the common block. The alternative to this approach
would have been to list INMIN and INMAX as calling parameters in all subroutines converted to
multithreaded processing. However, this alternative would have required changes in some of the
user-specified subroutines – something that was avoided in this project.

Within the parallel region and the subroutines converted to multithreaded processing, the
horizontal node loops have been modified to use the computed thread loop bounds by replacing oc-
curences of DO I=1,NN with DO I=INMIN,INMAX. For example, the following loops from the vertical
structure section of the time-stepping loop,

DO I=1,NN

ATMxMID(I)=0.5*(ATMxMID(I)+ATMxNEW(I))

ATMyMID(I)=0.5*(ATMyMID(I)+ATMyNEW(I))

ATEMPmid(I)=0.5*(ATEMPmid(I)+ATEMPnew(I))

BTEMPmid(I)=0.5*(BTEMPmid(I)+BTEMPnew(I))

ENDDO

DO J=1,NEV

DO I=1,NN

SRCmid(I,J)=0.5*(SRCmid(I,J)+SRCnew(I,J))

ENDDO

ENDDO

have been modified to become

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

ATMxMID(I)=0.5*(ATMxMID(I)+ATMxNEW(I))

ATMyMID(I)=0.5*(ATMyMID(I)+ATMyNEW(I))

ATEMPmid(I)=0.5*(ATEMPmid(I)+ATEMPnew(I))

BTEMPmid(I)=0.5*(BTEMPmid(I)+BTEMPnew(I))

ENDDO

DO J=1,NEV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

SRCmid(I,J)=0.5*(SRCmid(I,J)+SRCnew(I,J))

ENDDO

ENDDO

in the OpenMP QUODDY5. Note that because the thread loop bounds are already computed, no
overhead is incurred when executing these loops in parallel. This is true even though the horizontal
node loop is nested within the loop over the vertical dimension (J=1,NEV). Using OMP DO on the
nested horizontal node loop would be impractical, since the nested code generated by the OpenMP
construct would incur excessive overhead. The alternative would be to reorder the loops so that
the vertical is nested within the horizontal. However, this would also incur overhead due to poor
utilization of the memory cache because the vertical is the outer dimension of the 2D arrays.

Parallel Implementation of QUODDY 9

4.3 Synchronization Between Parallel Loops

The association of a thread with a set of horizontal nodes remains fixed in the parallel region.
Therefore thread synchronization between successive loops is required only when data conflicts exist
between the loops. A data conflict between two loops occurs when the data being accessed by a
thread in the second loop are at the same time being modified by another thread still executing in
the previous loop. This is illustrated in the following code taken from subroutine VERTICALQ5:

DO I=1,NN

SURF(I)=-G*(0.5*(HNEW(I)+HMID(I))-HDOWN(I))

ENDDO

CALL SPRSMLT(PPX,IQ,JQ,SURF,UNEW,NN)

CALL SPRSMLT(PPY,IQ,JQ,SURF,VNEW,NN)

where the subroutine SPRSMLT is defined as:

SUBROUTINE SPRSMLT(QV,IQ,JQ,X,B,NN)

DIMENSION QV(*),X(*),B(*),IQ(*),JQ(*)

KMAX=0

DO I=1,NN

SUM=0.

KMIN=KMAX+1

KMAX=IQ(I)

DO K=KMIN,KMAX

SUM=SUM+QV(K)*X(JQ(K))

ENDDO

B(I)=SUM

ENDDO

RETURN

END

The I’th value of UNEW and VNEW (B in SPRSMLT) depends on a range of values of SURF (X in SPRSMLT).
This means that a thread computing UNEW and VNEW for the set of nodes in its domain will require
values of SURF that may be computed by other threads. To ensure that all of SURF is updated
prior to computing UNEW and VNEW, the threads must be synchronized before calling SPRSMLT. This
is accomplished by inserting a BARRIER directive between the I loop and the calls to SPRSMLT. The
multithreaded version of the above example is

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

SURF(I)=-G*0.5*(ZETANEW(I)+ZETAMID(I))

ENDDO

C$OMP BARRIER

CTJC: Call multithreaded version: SPRSMLT_MT

CALL SPRSMLT_MT(PPx,IQ,JQ,SURF,Unew,NN)

CALL SPRSMLT_MT(PPy,IQ,JQ,SURF,Vnew,NN)

where the multithreaded subroutine SPRSMLT is defined as

SUBROUTINE SPRSMLT_MT(QV,IQ,JQ,X,B,NN)

CTJC: Variables for thread management

10 Campbell and Blain

INTEGER INMIN,INMAX

COMMON/MGMT_MT_COM/INMIN,INMAX

C$OMP THREADPRIVATE(/MGMT_MT_COM/)

DIMENSION QV(*),X(*),B(*),IQ(*),JQ(*)

CTJC: Set proper KMAX for thread domain

KMAX=0

IF(INMIN.NE.1) KMAX=IQ(INMIN-1)

CTJC: Loop restricted to thread

DO 10 I=INMIN,INMAX

SUM=0.

KMIN=KMAX+1

KMAX=IQ(I)

DO 20 K=KMIN,KMAX

20 SUM=SUM+QV(K)*X(JQ(K))

10 B(I)=SUM

RETURN

END

Note that additional code was added in SPRSMLT MT to ensure that each thread properly initialized
KMAX before entering the 10 loop. Barriers are also used in the code before and after serial regions,
as discussed in the next subsection.

4.4 Serial Regions

Calls to user-modifiable subroutines and otherwise non-multithreaded (serial) regions are han-
dled by the master thread (thread id = 0) using the OpenMP MASTER/END MASTER directives.
This requires synchronization before the call or serial region to ensure that all threads have up-
dated the data required in the master region. Another synchronization is required after the serial
region to ensure that data are updated before the threads continue. The following code from
quoddy5 1.0 main.f illustrates how the barriers are used and serial regions are constructed.

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

UZnew(I,J)=0.0

VZnew(I,J)=0.0

Tnew(I,J)=0.0

Snew(I,J)=0.0

SRCnew(I,J)=0.0

ENDDO

ENDDO

CTJC: Let master thread handle point sources

C$OMP BARRIER

C$OMP MASTER

CALL POINTSOURCEQ5(KDnew,SECnew,ITER,NN,NNV,Zmid,

&SRCnew,UZnew,VZnew,Tnew,Snew)

C$OMP END MASTER

C$OMP BARRIER

CTJC: Call multithreaded version: VERTSUM_MT

Parallel Implementation of QUODDY 11

CALL VERTSUM_MT(SRCnew,SRCSUMnew,NN,NEV,NNdim)

The first BARRIER guarantees that each thread finishes zeroing its portion of the *new arrays prior
to the call to POINTSOURCEQ5. The second BARRIER guarantees that the master thread is done and
all values of SRCnew are updated before the threads continue with the call to VERTSUM. The MASTER
END MASTER directives define the region where only the master thread functions. All other threads
skip the code within the master region and proceed to the first executable statement that follows.
In this case, the first executable statement is the BARRIER, where the threads will wait until the
master thread also reaches the BARRIER.

4.5 Other Parallel Constructs

The OMP DO directive was also used in QUODDY5 to execute loops in parallel that were not over
horizontal nodes (such as loops over horizontal elements) or did not have bounds that matched those
used to define the explicit thread loop bounds (such as the boundary conditions in VERTICALQ5).
The following code from subroutine STATIONARYQ5 is an example of how this construct was used
to execute a horizontal element loop in parallel.

CTJC: Horizontal element loop in parallel using OMP DO

C$OMP DO

DO L=1,NE

I1=IN(1,L)

I2=IN(2,L)

I3=IN(3,L)

DX(1,L)=X(I2)-X(I3)

DX(2,L)=X(I3)-X(I1)

DX(3,L)=X(I1)-X(I2)

DY(1,L)=Y(I2)-Y(I3)

DY(2,L)=Y(I3)-Y(I1)

DY(3,L)=Y(I1)-Y(I2)

AR(L)=0.5*(X(I1)*DY(1,L)+X(I2)*DY(2,L)+X(I3)*DY(3,L))

IF(AR(L).LE.0.0)WRITE(2,*)’ NEGATIVE AREA IN ELEMENT’, L

ENDDO

C$OMP ENDDO NOWAIT

The default static scheduling of threads is used. There is an implicit barrier at the end of a loop
associated with an OMP DO. When the barrier is not necessary, as in this case, the NOWAIT clause is
placed at the end of the loop to remove the barrier.

5. VERIFICATION AND PERFORMANCE

Correctness of the parallel program execution has been verified through direct comparison with
the original serial program execution for the Yellow Sea regional model (6847 horizontal and 21
vertical nodes) [2]. The verification was done using the full seasonal mode in which wind is applied
and temperature and salinity are transported prognostically. Since the user-defined output data
were of limited precision, verification was done by directly comparing (at full precision) all time-
integrated variables using the following process. First, a 10 model day run was executed using the
original serial QUODDY5 with a time step of 225 seconds. Every four model hours, the following
time-integrated data were written in binary form to a file (tagged with the iteration number):

12 Campbell and Blain

Hmid(I): Total water column depth;

Umid(I), Vmid(I): Vertically averaged velocity;

Zmid(I,J): Nodal coordinate locations in 3-D;

UZmid(I,J), VZmid(I,J), WZmid(I,J): Nodal values of the X, Y, and Z components of veloc-
ity;

Q2mid(I,J), Q2Lmid(I,J): Nodal values of turbulent kinetic energy and the turbulent kinetic
energy times the master length scale;

RHOmid(I,J), Tmid(I,J), Smid(I,J): Nodal values of density, temperature, and salinity;

ENZM(I,L), ENZH(I,L), ENZQ(I,L): Elemental values of the vertical diffusivities for momen-
tum, mass variables, and the turbulent variables.

The output was performed near the end of the time stepping loop, after all time integrated variables
had been updated. The set of files generated from the original QUODDY5 run provided a baseline
for checking the OpenMP QUODDY5 as it was developed. The 10 model day run was repeated with
the OpenMP QUODDY5 on different numbers of processors (ranging from 1 to 60). Data written
from the OpenMP QUODDY5 runs were compared with the data from the original using a Fortran
routine that read the two sets of data and checked for differences. Since the data were written in
binary form, the comparison was made at full precision. Possible data conflicts between loops (as
described earlier) that were not obvious from studying the program were found by executing the
OpenMP QUODDY5 with the number of threads specified greater than the number of processors.
This forced threads to contend for resources and disrupted any natural thread ordering that might
otherwise occur that could hide data conflicts. Since the modifications in the OpenMP QUODDY5
do not alter any of the algorithms or order of numerical operations established in the original
program, exact match (bit-for-bit) between the serial and parallel execution has been achieved.

Performance measurements of the OpenMP QUODDY5 were done using both the Yellow Sea
model (6847 horizontal nodes) and the Arabian Gulf model (17440 horizontal nodes) with two
vertical resolutions of 21 and 51 vertical nodes [7]. During these measurments, transport of tem-
perature and salinity was enabled and file output was disabled. Table 3 lists the results of timing
measurments performed on a Sun Enterprise 10000 with 64 Ultra Sparc II 400 MHz processors
and 64 GB of memory. The timings are expressed as seconds per model time step. Because the
processing on the Sun was not dedicated, each run was repeated 5 times with the minimum time
reported in Table 3. The performance of the OpenMP QUODDY5 on a single processor is the same
as that of the original serial QUODDY5.

Table 3 — Timing of OpenMP QUODDY5 for Two Horizontal Mesh Sizes,
Each with Two Vertical Resolutions

Number of 17440 Horizontal Nodes 6840 Horizontal Nodes
Processors 21 Vertical 51 Vertical 21 Vertical 51 Vertical

1 9.23 21.10 3.33 8.13
2 4.91 10.86 1.74 4.15
4 2.74 5.78 0.94 2.20
8 1.77 3.59 0.52 1.20
16 1.24 2.25 0.33 0.63
32 0.89 1.39 0.23 0.39

Parallel Implementation of QUODDY 13

To understand the parallel performance of the OpenMP QUODDY5 it is useful to examine two
quantities known as speedup and efficiency. For a fixed problem size, the speedup on p processors
over the single processor execution is defined as Sp = T1/Tp, where T1 is the serial execution time
and Tp is the execution time on p processors. Theoretically, the speedup can never exceed the
number of processors. The efficiency, defined as Ep = Sp/p, is a measure of the fraction of time for
which a processor is usefully employed. In an ideal parallel system and implementation, the speedup
is equal to p and the efficiency is equal to one. In practice, the speedup is less than p and efficiency
is between zero and one, depending on the design of the parallel system and the parallel program.
If we assume that the underlying parallel system is ideal, then the limitations to the scalability
of a parallel program can be simply understood by separating its serial and parallel components.
Suppose that a parallel program has a remaining serial portion that requires an execution time
that is a fraction f of the total single processor execution time. If we assume ideal speedup for the
remaining parallel portion of the program, then the overall speedup is given by

Sp =
1

f + 1−f
p

. (3)

This means that the remaining serial component of the program places an upper bound of 1/f on
the speedup, no matter how many processors are used.

Figure 2 shows the speedup of the OpenMP QUODDY5 for different mesh sizes as computed
from Table 3. We see that for the largest problem size (h=17440, v=51) the OpenMP QUODDY5
on 32 processors is more than 15 times faster than the serial version. This clearly means that
with the OpenMP QUODDY5, one has the ability to tackle problem sizes that were not previously
practical due to excessively long execution times. One trend that is clear from Fig. 2 is that, as

4

8

12

16

20

5 10 15 20 25 30 35

Sp
ee

du
p

Number of processors

Linear

Mesh size (nodes)
h=6840, v=21
h=6840, v=51

h=17440, v=21
h=17440, v=51

Fig. 2 — Speedup of OpenMP QUODDY5 for Yellow Sea (h=6840) and Arabian Gulf
(h=17440) models with two vertical resolutions: v=21 (open points) and v=51 (filled
points)

14 Campbell and Blain

the vertical resolution is increased, the parallel performance improves. This is to be expected, since
all of the parallelism is based on the horizontal dimension, and increasing the vertical resolution
corresponds to more work at each horizontal node. One unexpected result observed in Fig. 2 is
that the overall parallel performance degraded as the horizontal mesh size increased. Performance
measurements on other platforms (such as the SGI Origin and the IBM SP) did not exhibit the
same behavior. More detailed timing analysis reveals that this is probably due to better cache
utilization on the Sun for the smaller mesh size.

Figure 3 shows the corresponding efficiencies as computed from Table 3. For the largest problem
size (h=17440, v=51), the efficiency drops to 74% by 8 processors, after which the decrease becomes
more gradual. By 32 processors, the efficiency is about 48%. The efficiency is a measure of how
well the parallel program utilizes the assigned processors. If one is only interested in elapsed wall
time, not resource utilization, then the efficiency is not an issue. In that case, the choice would be
made to run on the number of processors that yields the desired turnaround time. However, when
resource utilization is an issue, as in the case of allocations based on processor count as well as
wall time, one should choose the number of processors such that the efficiency is higher (say above
70%).

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35

E
ff

ic
ie

nc
y

Number of processors

Mesh size (nodes)
h=6840, v=21
h=6840, v=51

h=17440, v=21
h=17440, v=51

Fig. 3 — Efficiency of OpenMP QUODDY5 for Yellow Sea (h=6840) and Arabian Gulf
(h=17440) models with two vertical resolutions: v=21 (open points) and v=51 (filled
points)

The logical sections of the time-stepping loop described in Fig. 1 and shown in Appendix B
provide a useful approach to further analyze the parallel performance. Figure 4 shows the execution
times for each of the logical sections as a function of number of processors. Of the four sections
defined, the wave equation section is the only one that clearly exhibits serial behavior. (As can be
seen from Appendix B2, the wave equation section consists only of the subroutine ELEVATIONQ5.)
The initial drop in time for the wave equation section is because the loops that set up the vertical
grid spacing in subroutines called by VERTGRIDQ5 are executed in parallel. After 4 processors, the

Parallel Implementation of QUODDY 15

execution time in the wave equation section is dominated by BANSOLTR and the element loop in
ELEVATIONQ5, which are completely serial.

0.1

1

10

5 10 15 20 25 30 35

T
im

e
pe

r
ite

ra
tio

n
(s

)

Number of processors

Mesh Size: h=17440, v=51
Total Time Step

Setup Section
Wave Eq Section
Vertical Section
Update Section

Fig. 4 — Performance of time stepping sections of OpenMP QUODDY5 for the Arabian
Gulf model with a vertical resolution of 51 nodes

Figure 4 also shows that the execution time in the setup section begins exhibiting serial behav-
ior after eight processors. A quick look at the code for the setup section in Appendix B1 reveals
that the scalability will be limited, in part, by ATMOSQ5 and POINTSOURCEQ5 because these routines
are handled by the master thread. However, for the test cases used in this work there was no atmo-
spheric forcing or point sources. In cases with atmospheric forcing or point sources, the QUODDY5
user could choose to remove the MASTER/END MASTER and BARRIER directives and implement loops
or sections of code within ATMOSQ5 and POINTSOURCEQ5 in parallel. The main limitation to the
scalability of the setup section is the subroutine SMAGOR1, which consists of an element loop that
must be executed in serial because of data dependencies similar to those in the element loop of
ELEVATIONQ5 (described in Section 3).

Figure 5 shows the speedup for each of the logical sections. One notable feature is that the
update section exhibits super-linear speedup. This type of behavior occurs in parallel programs
because the decrease in the range of loop indices assigned to a thread can result in improved cache
utilization. The result of the super-linear speedup of the update section at 32 processors is not large:
an increase of about 0.2 in the overall speedup. It is disappointing that the speedup of the vertical

structure section is only about 21 on 32 processors. Detailed timing of the vertical structure section
shows that the execution time is dominated by a single loop in VERTICALQ5 in which the vertical
structure is computed for vertical grid points directly under each horizontal node. The loop has no
data dependencies and should exhibit perfect scaling. In fact, the higher speedups attained for the
Yellow Sea mesh are due to near perfect scaling of the vertical structure section. This leads us to
conclude that the less than desirable performance of the Arabian Gulf model on the Sun E10000 is
due to the underlying memory system, not to limitations in the OpenMP QUODDY5 itself.

16 Campbell and Blain

4

8

12

16

20

24

28

32

36

40

5 10 15 20 25 30 35

S
p

ee
d

u
p

Number of processors

Mesh Size: h=17440, v=51

Total Time Step
Setup Section

Wave Eq Section
Vertical Section
Update Section

Fig. 5 — Speedup of time stepping sections of OpenMP QUODDY5 for the Arabian Gulf
model with a vertical resolution of 51 nodes

Other than calls to some user-specified routines, the only serial regions that remain in OpenMP
QUODDY5 are the element loops in SMAGOR1 and ELEVATIONQ5 and the matrix solve routine
BANSOLTR, which is called from within ELEVATIONQ5. We can use the profile data in Tables 1
and 2 to estimate the fraction of execution time that is serial and then use Eq. (3) to compute
the expected speedup, assuming that the parallel portion of the program scales perfectly. From
Tables 1 and 2, the estimated serial fraction is 7.2% (3.0% for SMAGOR1, 0.9% for ELEVATIONQ5

itself, and 3.3% for BANSOLTR). Using Eq. (3), a serial fraction of 7.2% on 32 processors gives an
expected speedup of only 9.9, which is much lower than the actual speedup of 15.2 achieved for
the Arabian Gulf model (with 51 vertical nodes). As it turns out, a lot of overhead is associated
with the profile data obtained from gprof; this causes many of the timings in Tables 1 and 2 to
be too large. The gprof profile is still useful as a guide for identifying routines where most of the
execution time is spent. Explicit timing of these serial regions in the original QUODDY5 yields
the following profile: 0.7% for the SMAGOR1 element loop, 0.9% for the ELEVATIONQ5 element loop,
and 1.4% for BANSOLTR. The newly computed serial fraction of 3.0% for the Arabian Gulf model
gives an estimated speedup of 16.6 on 32 processors and an upper bound of 33.3. This analysis
indicates that the parallel performance of the OpenMP QUODDY is quite qood and that the only
programming limitations to the scalability come from the remaining serial regions.

6. ALTERNATE APPROACHES USING OPENMP

The degree of parallel performance achieved from the SPMD approach described above is
because overhead due to OpenMP constructs and reordering of loops has been minimized. The
downside to the SPMD approach is that it can require more programming effort than just direct

Parallel Implementation of QUODDY 17

use of OpenMP directives. In this section, we describe two alternative approaches using OpenMP
and compare their parallel performance with the SPMD approach. As it turns out, the extra
programming required for the SPMD approach is well worth the effort.

The minimal approach to using OpenMP in QUODDY5 is to place directives only on selected
computational loops that occupy most of the execution time. This approach does not require any
program changes other that inserting a few OpenMP directives. The target regions of code are the
nonlinear advection and horizontal diffusion part of the setup section, several loops in RHOXYQ4, the
vertical structure loop in VERTICALQ5, and the vertical velocities part of the update section. The
source code for each of the modifications is listed in Appendix C.

The second alternate approach, which we call full OpenMP, is similar to the SPMD approach
in that the same single parallel region is used and all the same loops are executed in parallel. The
difference is that in the full OpenMP approach the OMP DO directive is used, instead of explicit
partitioning, for all loops executed in parallel. All loops over horizontal nodes that are nested
within a loop over vertical nodes require swapping so that the loop over horizontal nodes is the
outer loop. Because the horizontal dimension is the inner dimension on many arrays, this change
causes overhead due to poor utilization of cache. Additional overhead is incurred from the OMP DO

itself.

Figure 6 shows the speedup for each of the programming approaches for the Arabian Gulf
model (51 vertical nodes). Although the minimal approach requires fewer code modifications, the
speedup is severely limited (less than 5 for any number of processors greater than 16). This is a
clear demonstration of how the remaining serial portion of a program, in addition to the overhead
of thread creation and destruction, can dominate the execution time, even at a moderate number

4

8

12

16

5 10 15 20 25 30 35

Sp
ee

du
p

Number of processors

Mesh Size: h=17440, v=51

Linear

Approach
Minimal OpenMP

Full OpenMP
SPMD OpenMP

Fig. 6 — Speedup of different OpenMP implementation styles in QUODDY5 for the
Arabian Gulf model with a vertical resolution of 51 nodes

18 Campbell and Blain

of processors. The full approach almost doubles the speedup at 32 processors over the minimal

approach. However, memory and thread overhead are clearly beginning to dominate, and the
speedup of the full approach will not rise much above 8. At 32 processors, the speedup of the
SPMD approach is still increasing and does not show signs of saturation. These tests clearly show
that the SPMD approach provides the ability to capture more of the computation in parallel with
less overhead than the other approaches discussed.

7. SUMMARY

This report has presented the development of a parallel version of the 3-D finite-element ocean
circulation model known as QUODDY. The model and an execution profile of the original serial code
were described. Parallel implementation was accomplished using the OpenMP programming model
for shared-memory multiprocessors. The user interface and configuration files remain unchanged,
thus providing the possibility for transparent migration of users to the parallel code. Correctness of
the parallel program execution was verified by direct comparison at full precision with the original
serial program execution in full seasonal mode. Exact match (bit-for-bit) between the serial and
parallel execution has been achieved. Performance tests on the Sun E10000 demonstrate that
the code is moderately scalable. For the largest problem on hand (17400 nodes in the horizontal
mesh, 51 nodes in the vertical mesh), a speedup of 15 over the single-processor execution has been
achieved. Better speedups are obtained on other platforms that have lower thread and memory
overhead, but these are not presented in this paper. A comparison with alternate approaches
using OpenMP was also presented, showing that the approach taking herein provided the best
performance. With the new capacity for parallel execution, the time required for high-resolution
coastal circulation simulations can be significantly reduced. The viability of applying the model to
a new class of problems will aid further developments in coastal ocean circulation modeling.

8. REFERENCES

1. D.R. Lynch, J.T.C. Ip, C.E. Naimie, and F.E. Werner, “Comprehensive Coastal Circulation
Model with Application to the Gulf of Maine,” Continental Shelf Res. 16(7), 875-906 (1996).

2. C.E. Naimie, C.A. Blain, and D.R. Lynch, “Seasonal Mean Circulation in the Yellow Sea – A
Model Generated Climatology,” Continental Shelf Res. 21(6-7), 667-695 (2001).

3. D.R. Lynch and W.G. Gray, “A Wave Equation Model for Finite Element Tidal Computations,”
Comp. Fluids 7, 207-228 (1979).

4. I.P.E. Kinnmark, “The Shallow Water Wave Equations: Formulation, Analysis and Applica-
tion,” Ph.D. dissertation, Department of Civil Engineering, Princeton University, 1985.

5. G.L. Mellor and T. Yamada, “Development of a Turbulence Closure Model for Geophysical
Fluid Problems,” Rev. Geophys. Space Phys. 20, 851-875 (1982).

6. A.F. Blumberg and G.L. Mellor, “A Description of a Three-Dimensional Coastal Ocean Circu-
lation Model,” in Three-Dimensional Coastal Models, N.S. Heaps, ed. (American Geophysical
Union, Washington, D.C., 1987) Coastal and Estuarine Series 4, 1-16.

7. C.A. Blain, “Modeling Three-Dimensional, Thermohaline-Driven Circulation in the Arabian
Gulf,” Estuarine and Coastal Modeling, Proceedings of the Sixth International Conference, M.L.
Spaulding and H.L. Butler, eds. (American Society of Civil Engineers, 2000), pp. 74-93.

Appendix A

DESCRIPTION OF OPENMP

OpenMP is a parallel programming model for shared memory and distributed shared memory
multiprocessor computers. The OpenMP Fortan API consists of compiler directives, which take the
form of source code comments and describe the parallelism in the source code. A supporting library
of subroutines is also available to applications. The OpenMP specification and related material can
be found at the OpenMP web site: http://www.openmp.org. Designed for application developers,
Ref. A1 provides a useful introduction to programming with OpenMP.

In Fortran, OpenMP compiler directives (which are treated as comments by a non-OpenMP
compiler) have the following possible forms:

C$OMP <directive>

!$OMP <directive>

*$OMP <directive>.

In fixed-form Fortran source, a directive that contains a character other than a space or a zero in
the sixth column is treated as a continuation directive line by the OpenMP compiler. The PARALLEL
and END PARALLEL directive pair constitutes the parallel construct. An OpenMP program begins as
a single process, called the master thread of execution. When a parallel construct is encountered,
a team of threads, with the master thread as the master of the team, is created. The team of
threads executes the statements enclosed within the parallel construct, including routines called
from within the enclosed statements. At the end of the parallel construct, the threads synchronize
and only the master thread remains to continue execution of the program.

The DO directive is used within a parallel region to specify that the iterations of the immediately
following DO loop must be executed in parallel. The iterations of the DO loop are divided among the
threads according to a SCHEDULE clause that may be specified with the DO directive. The default
schedule specifies that the iterations be divided into equal size chunks and statically assigned to
threads in the team in a round-robin fashion in the order of the thread number. By default, the
number of chunks is equal to the number of threads. The following is a simple example that
illustrates how the parallel construct and the DO directive are used.

C$OMP PARALLEL

C$OMP DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0

ENDDO

C$OMP ENDDO NOWAIT

C$OMP DO

DO I=1,M

19

20 Campbell and Blain

C(I) = SQRT(D(I))

ENDDO

C$OMP ENDDO NOWAIT

C$OMP END PARALLEL

There is an implied barrier at the end of a do loop that is parallelized using the DO directive. In
the above example, the ENDDO NOWAIT directive is optional and allows the implied barrier to be
avoided.

The PARALLEL DO directive provides the application programmer a short cut to specifying a
parallel region that contains a single DO directive. It is commonly discussed in OpenMP literature
and provides a convenient and incremental way to parallelize computationally intensive loops within
a program. The above example could be parallelized using the PARALLEL DO directive in the
following manner.

C$OMP PARALLEL DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0

ENDDO

C$OMP PARALLEL DO

DO I=1,M

C(I) = SQRT(D(I))

ENDDO

The downside to this approach is that the creation of threads at the beginning and their subsequent
destruction at the end of the loop can require a large number of cycles. The developer must be
sure that the loop being parallelized has enough computational work to make the overhead due to
the OpenMP constructs worthwhile.

REFERENCE

A1. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel Program-

ming in OpenMP (Academic Press, San Diego, 2001).

Appendix B

SOURCE CODE FOR TIME-STEPPING LOOP

This appendix shows the source code for the time-stepping loop from quoddy5 1.0 main.f with
OpenMP modifications. The source code is separated into the four logical sections that were used
for timing, as described in the Verification and Performance section.

B1. Setup Section

C---

C SET UP FOR THIS TIME STEP

C

C KDmid,SECmid are the timing parameters for the beginning of the

C current time step => time level K

C Set the timing parameters for the time at the end of the current

C time step => time level K+1

C

CTJC: Let master thread set timing parameters

C$OMP MASTER

KDnew=KDmid

SECnew=SECmid+DelT

ITER=ITER+1

IF(SECnew.GE.86400.)CALL UP_DATE(KDnew,SECnew)

C$OMP END MASTER

C

C Zero appropriate arrays and load atmospheric forcing for the end of

C time step (i.e., at time level K+1)

C

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

ATMxNEW(I)=0.0

ATMyNEW(I)=0.0

ATEMPnew(I)=0.0

BTEMPnew(I)=0.0

PMEnew(I)=0.0

ENDDO

CTJC: Let master thread handle atmospheric forcing

C$OMP BARRIER

C$OMP MASTER

CALL ATMOSQ5(KDnew,SECnew,ITER,NN,NNV,XNOD,YNOD,TMID,SMID,

&ATMxNEW,ATMyNEW,ATEMPnew,BTEMPnew,PMEnew)

21

22 Campbell and Blain

C$OMP END MASTER

C

C Zero appropriate arrays, load point source information, and compute

C the vertical integral of the volumetric source rate for the end of

C the time step (i.e., at time level K+1). The source information is

C written to the *NEW arrays for efficiency purposes.

C

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

UZnew(I,J)=0.0

VZnew(I,J)=0.0

Tnew(I,J)=0.0

Snew(I,J)=0.0

SRCnew(I,J)=0.0

ENDDO

ENDDO

CTJC: Let master thread handle point sources

C$OMP BARRIER

C$OMP MASTER

CALL POINTSOURCEQ5(KDnew,SECnew,ITER,NN,NNV,Zmid,

&SRCnew,UZnew,VZnew,Tnew,Snew)

C$OMP END MASTER

C$OMP BARRIER

CTJC: Call multithreaded version: VERTSUM_MT

CALL VERTSUM_MT(SRCnew,SRCSUMnew,NN,NEV,NNdim)

C

C Evaluate the following explicitly for the current time step (i.e., at

C time level K):

C

C Linearized Bottom Stress Coefficients

C Baroclinic Pressure Gradients

C Horizontal Eddy Viscosity/Diffusivity

C Nonlinear Advection and Horizontal Diffusion of Momentum:

C

C CONxZ(I,J),CONyZ(I,J) are the 3-D advective plus diffusion terms

C without FL*DV/DZ => CONxZ=(+UDUDX+VDUDY-Ah*DEL^2 U,ETC).

C The vertical part is implicit in the tri-diagonal velocity matrix.

C CONx(I),CONy(I) are the vertical integrals of the advective

C plus diffusion terms for the wave equation

C => CONx=INT[CONxZ+(FL+Wmesh)*DU/DZ]dz.

C Convective terms are turned off along all boundaries by INCONV.

C NONLIN=0 is implemented by setting INCONV=0 for all nodes.

C

IF(NLBS.EQ.1)THEN

CALL QUADSTRESS(aK,Cd,aKMIN,NN,UZmid,VZmid,NNdim)

ENDIF

Parallel Implementation of QUODDY 23

IF(PRESSURE.EQ.’BAROCLINIC’)THEN

CTJC: Call multithreaded version: RHOXYQ4_MT

CALL RHOXYQ4_MT(ITER,G,NN,NE,X,Y,IN,PPx,PPy,IQ,JQ,NNV,

& Zmid,RHOmid,NLEV,ZL,BPGx,BPGy,HRBARx,HRBARy,cs)

ENDIF

C

C Beginning of quoddy4_2.1_P1_main.f modification wrt quoddy4_2.1_main.f

C => new calculation of 2-D horizontal mixing. Note that dimensioning

C of addition real nodal array SVHmid is required.

C (DRL/JTCI/CEN 10/14/98)

C

IF(ISMAG.EQ.1)THEN

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

HMID(I)=ZETAMID(I)+HDOWN(I)

ENDDO

CALL SMAGOR1(AGPGP,Hmid,Umid,Vmid,AR,X,Y,IN,IQ,JQ,NE,SV,NN,

& AHI,AH,AHMIN,NFTR,CS)

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

SVHmid(I)=SV(I)*Hmid(I)

ENDDO

CTJC: Call multithreaded version: SPRSINVMLT_MT

CALL SPRSINVMLT_MT(AGPGP,IQ,SVHmid,NN)

ENDIF

C

C End of quoddy4_2.1_P1_main.f modification wrt quoddy4_2.1_main.f.

C

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

CALL SPRSMLTIN2(I,AGPGP,IQ,JQ,

& UZmid,VISCX,VZmid,VISCY,NNV,NNdim)

CALL SPRSCONV(I,PPx,PPy,IQ,JQ,UZmid,VZmid,

& Zmid,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,NNV,NNdim)

CALL CONVECTION(I,NNV,UZmid,VZmid,WZmid,Zmid,Zold,DelT,

& INCONV,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,VISCX,VISCY,

& CONxZ,CONyZ,VERTFLX,CONx,CONy,CS)

ENDDO

B2. Wave Equation Section

C---

C SOLVE THE WAVE EQUATION

C

C Objectives:Determine total depth at time level K+1 (=>ZETANEW)

C and vertical grid at time level K+1/2 (=>Znew)

C using known info at time levels K-1 (=>*OLD)

24 Campbell and Blain

C and K (=>*MID)

C with user supplied BC’s at various

C time levels

C

CALL ELEVATIONQ5(MESHNAME,NN,NE,NHBW,NNV,DelT,G,Tau0,

&KDnew,SECnew,ITER,DEGLAT,NR,NVN,THETA,XNOD,YNOD,IN,DX,DY,AR,Hdown,

&ZETAOLD,Uold,Vold,ZETAMID,Umid,Vmid,Zmid,UZmid,VZmid,

&CONx,CONy,ATMxMID,ATMyMID,aK,HRBARx,HRBARy,

&SRCSUMold,SRCSUMmid,SRCSUMnew,PMEold,PMEmid,PMEnew,

&LRVS,NORM,SUMx,SUMy,DSbdry,SUMx1,SUMy1,DSbdry1,QP,SV,SH,DIRICH,

Ccgm-\/

&ZETANEW,Znew,RAD,CS,COR,TS)

Ccgm-/\

Ccgm IQ, and JQ is needed in conection with the sparse storage of SH

Ccgm+ &ZETANEW,Znew,IQ,JQ,RAD,CS,COR,TS)

Ccgm

B3. Vertical Structure Section

C---

C SOLVE FOR THE VERTICAL STRUCTURE OF THE 3-D VARIABLES

C

C Objectives: Assemble and solve tridiagonal momentum, Q2, Q2L, T, and S

C equations at the center of the time step, then convert to

C values at the end of the time step.

C => Znew, UZnew, VZnew, Q2new, Q2Lnew, Tnew, and Snew

C at time level K+1

C

C Overwrite *MID atmospheric and sourcerate arrays with values at K+1/2

C

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

ATMxMID(I)=0.5*(ATMxMID(I)+ATMxNEW(I))

ATMyMID(I)=0.5*(ATMyMID(I)+ATMyNEW(I))

ATEMPmid(I)=0.5*(ATEMPmid(I)+ATEMPnew(I))

BTEMPmid(I)=0.5*(BTEMPmid(I)+BTEMPnew(I))

ENDDO

DO J=1,NEV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

SRCmid(I,J)=0.5*(SRCmid(I,J)+SRCnew(I,J))

ENDDO

ENDDO

C

C Overwrite *NEW dependent variables with source values at K+1/2.

C Increment *SRCmid source term values such that the next time they

C are required, the *SRCmid values will contain the

Parallel Implementation of QUODDY 25

C values at time level K for that time step (memory efficiency device).

C Note that *NEW(I,NNV) entries are not altered => the neutrality

C flags are not affected by this evolution.

C

DO J=1,NEV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

VALMID=UZSRCmid(I,J)

UZSRCmid(I,J)=UZnew(I,J)

UZnew(I,J)=0.5*(VALMID+UZnew(I,J))

VALMID=VZSRCmid(I,J)

VZSRCmid(I,J)=VZnew(I,J)

VZnew(I,J)=0.5*(VALMID+VZnew(I,J))

VALMID=TSRCmid(I,J)

TSRCmid(I,J)=Tnew(I,J)

Tnew(I,J)=0.5*(VALMID+Tnew(I,J))

VALMID=SSRCmid(I,J)

SSRCmid(I,J)=Snew(I,J)

Snew(I,J)=0.5*(VALMID+Snew(I,J))

ENDDO

ENDDO

C

C Compute vertical structure

C

CALL VERTICALQ5(NN,NNV,DelT,G,Cd,CLOSURE,MASSVAR,

&ZLOGBOT,ZLOGTOP,EPSN,KST,NR,NPCN,EPSH,IHHBC,

&EPSQ,IQADVDIF,IQ2TBC,IQ2BBC,IQ2LTBC,IQ2LBBC,Q2min,Q2Lmin,ELLmin,

&NORM,LRVS,Hdown,SUMx,SUMy,SUMx1,SUMy1,QP,SV,AGPGP,PPx,PPy,IQ,JQ,

&INCONV,VERTFLX,aK,BPGx,BPGy,BCFTR,ITER,IUSTARQ2,

&SRCmid,ATMxMID,ATMyMID,ATEMPmid,BTEMPmid,

&ZETAMID,Zmid,UZmid,VZmid,Q2mid,Q2Lmid,RHOmid,Tmid,Smid,

&CONxZ,CONyZ,

&ZETANEW,Znew,UZnew,VZnew,Q2new,Q2Lnew,Tnew,Snew,

&EKMMIN,EKHMIN,EKQMIN,ENZM,ENZH,ENZQ,RAD,CS,COR,TS)

B4. Update Section

C---

C INCREMENT TIMING PARAMETERS AND UPDATE/JUGGLE ARRAYS

C

C Objectives: Increment time such that, for the next time step:

C *OLD arrays contain information at time level K-1

C *MID arrays contain information at time level K

C

C *OLD<=*MID:

C

DO J=1,NNV

26 Campbell and Blain

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

Zold(I,J)=Zmid(I,J)

ENDDO

ENDDO

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

ZETAOLD(I)=ZETAMID(I)

Uold(I)=Umid(I)

Vold(I)=Vmid(I)

PMEold(I)=PMEmid(I)

SRCSUMold(I)=SRCSUMmid(I)

ENDDO

C

C *MID<=*NEW: Thus *MID arrays will contain information for the

C current time => (KDmid,SECmid), which is time level K

C for the next time step.

C

CTJC: KDmid & SECmid are handled by master thread

C$OMP MASTER

KDmid=KDnew

SECmid=SECnew

C$OMP END MASTER

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

Zmid(I,J) =Znew(I,J)

UZmid(I,J)=UZnew(I,J)

VZmid(I,J)=VZnew(I,J)

SRCmid(I,J)=SRCnew(I,J)

ENDDO

ENDDO

IF(CLOSURE.EQ.’MY25’)THEN

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

Q2mid(I,J)=Q2new(I,J)

Q2Lmid(I,J)=Q2Lnew(I,J)

ENDDO

ENDDO

ENDIF

IF(MASSVAR.EQ.’TWO-PROG’)THEN

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

Tmid(I,J)=Tnew(I,J)

Smid(I,J)=Snew(I,J)

Parallel Implementation of QUODDY 27

ENDDO

ENDDO

CTJC: Call multithreaded version: EQSTATE2_2D_MT

CALL EQSTATE2_2D_MT(T0,S0,NN,NNV,TMID,SMID,RHOMID)

ELSE IF(MASSVAR.EQ.’ONE-PROG’)THEN

DO J=1,NNV

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

Tmid(I,J)=Tnew(I,J)

ENDDO

ENDDO

CTJC: Call multithreaded version: EQSTATE1_2D_MT

CALL EQSTATE1_2D_MT(T0,NN,NNV,TMID,RHOMID)

ENDIF

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

ZETAMID(I)=ZETANEW(I)

ATMxMID(I)=ATMxNEW(I)

ATMyMID(I)=ATMyNEW(I)

ATEMPmid(I)=ATEMPnew(I)

BTEMPmid(I)=BTEMPnew(I)

PMEmid(I)=PMEnew(I)

SRCSUMmid(I)=SRCSUMnew(I)

ENDDO

C$OMP BARRIER

C Result: Arrays for the *current* time (i.e., the end of the current

C time step) are now stored as *MID

C

C---

C COMPUTE VERTICAL VELOCITIES AND VERTICALLY AVERAGED VELOCITIES

C AT CURRENT TIME (*MID)

C

CTJC: Horizontal node loop restricted to thread

DO I=INMIN,INMAX

CALL SPRSCONV(I,PPx,PPy,IQ,JQ,UZmid,VZmid,

& Zmid,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,NNV,NNdim)

CALL VERTVEL3_2(I,NNV,UZmid,VZmid,WZmid,PMEmid,SRCmid,SV,

& Zmid,Zold,DelT,DUZDX,DVZDY,DZDX,DZDY)

ENDDO

CTJC: Call multithreaded version -- VERTAVG_MT

CALL VERTAVG_MT(UZmid,Umid,Zmid,NN,NNV,NNdim)

CALL VERTAVG_MT(VZmid,Vmid,Zmid,NN,NNV,NNdim)

Appendix C

SOURCE CODE FOR ALTERNATE MINIMAL OPENMP APPROACH

This appendix lists all source code modifications that were made for the alternate minimal
OpenMP approach. The modifications involve only the use of OpenMP directives; no Fortran
executable lines were modified. Four regions of the QUODDY5 code were modified: the nonlinear
advection and horizontal diffusion part of the setup section in the time-stepping loop, several loops
in RHOXYQ4, the vertical structure loop in VERTICALQ5, and the vertical velocities part of the update

section of the time-stepping loop.

The nonlinear advection and horizontal diffusion part of the setup section consists of a single
loop over horizontal nodes in which the subroutines SPRSMLTIN2, SPRSCONV, and CONVECTION are
called for each node. The OpenMP PARALLEL DO directive is used to execute this loop in parallel.
The variables scoped as private are the loop index and those that depend only on the vertical grid.
The following is the source code for this modification.

C$OMP PARALLEL DO DEFAULT(SHARED)

C$OMP+PRIVATE(I,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,VISCX,VISCY)

DO I=1,NN

CALL SPRSMLTIN2(I,AGPGP,IQ,JQ,

& UZmid,VISCX,VZmid,VISCY,NNV,NNdim)

CALL SPRSCONV(I,PPx,PPy,IQ,JQ,UZmid,VZmid,

& Zmid,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,NNV,NNdim)

CALL CONVECTION(I,NNV,UZmid,VZmid,WZmid,Zmid,Zold,DelT,

& INCONV,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,VISCX,VISCY,

& CONxZ,CONyZ,VERTFLX,CONx,CONy,CS)

ENDDO

C$OMP END PARALLEL DO

The vertical structure loop in VERTICALQ5 is executed in parallel using the OpenMP PARALLEL

DO directive. The default scope for data is made to be private because this is the proper scope for
most of the local variables. The variables scoped as shared are the those passed in as arguments to
the subroutine and some local variables that are not modified in the vertical structure loop (Unew,
Vnew, SURF, USTARQ2, EYE, NEV). The following is the source code for this modification; the details
of the vertical structure loop are not included.

C$OMP PARALLEL DO DEFAULT(PRIVATE)

C$OMP+SHARED(NN,NNV,DelT,G,Cd,CLOSURE,MASSVAR,ZLOGBOT,ZLOGTOP,EPSN,KST)

C$OMP+SHARED(NR,NPCN,EPSH,IHHBC,EPSQ,IQADVDIF,IQ2TBC,IQ2BBC,IQ2LTBC)

C$OMP+SHARED(IQ2LBBC,Q2min,Q2Lmin,ELLmin,NORM,LRVS,Hdown,SUMx,SUMy)

C$OMP+SHARED(SUMx1,SUMy1,QP,SV,AGPGP,PPx,PPy,IQ,JQ,INCONV,VERTFLX,aK)

C$OMP+SHARED(BPGx,BPGy,BCFTR,ITER,IUSTARQ2,SRC,ATMx,ATMy,ATEMP,BTEMP)

29

30 Campbell and Blain

C$OMP+SHARED(ZETAMID,Zmid,UZmid,VZmid,Q2mid,Q2Lmid,RHOmid,Tmid,Smid)

C$OMP+SHARED(CONxZ,CONyZ,ZETANEW,Znew,UZnew,VZnew,Q2new,Q2Lnew,Tnew)

C$OMP+SHARED(Snew,EKMMIN,EKHMIN,EKQMIN,ENZM,ENZH,ENZQ,RAD,CS,COR,TS)

C$OMP+SHARED(Unew,Vnew,SURF,USTARQ2,EYE,NEV)

DO 100 I=1,NN

...

...

100 CONTINUE

C$OMP END PARALLEL DO

In RHOXYQ4, a single parallel region that begins after the initialization is used to enclose the
three loops that can be executed in parallel. The default scope for data is private. Variables passed
in as arguments and some local variables (RHOL, PPX1, PPY1, DNEIGH) are scoped as shared. The
OMP DO directive is used for parallel execution of three loops enclosed in the parallel region. The
following is the source code with the modifications to RHOXYQ4.

C

C Build nonstandard sprspak arrays on first call

C

if(ITER.EQ.0)then

do 5 i=1,nn

bathy(i)=-z(i,1)

5 continue

CALL CALCDNEIGH(nndim,nedim,x,y,in,bathy,nn,ne,DNEIGH)

CALL BUILDPPX1PPY1(NN,NE,X,Y,IN,BATHY,IQ,JQ,PPX1,PPY1,CS)

endif

C

C$OMP PARALLEL DEFAULT(PRIVATE)

C$OMP+SHARED(ITER,G,NN,NE,X,Y,IN,PPX,PPY,IQ,JQ,NNV,Z,RHO,NLEV,ZL)

C$OMP+SHARED(RHOX,RHOY,HRBARXE,HRBARYE,CS,RHOL,PPX1,PPY1,DNEIGH)

C

C Interpolate z mesh rho data to level mesh from the top of the

C level mesh to the level mesh node just above the bottom of the z

C mesh. Set level mesh values of rho equal to zero for level surfaces

C below the bottom of the z mesh.

C$OMP DO

do 10 i=1,NN

...

...

10 continue

C

C Begin node loop to compute rhox and rhoy

C$OMP DO

do 40 i=1,NN

...

...

40 continue

C

C Begin element loop to compute hrbarxe and hrbarye

Parallel Implementation of QUODDY 31

C$OMP DO

do 70 k=1,ne

...

...

70 continue

C

C$OMP END PARALLEL

C

C End of routine

return

end

The vertical velocities part of the update section consists of a single loop over horizontal nodes
followed by two calls to VERTAVG. A single PARALLEL/END PARALLEL directive pair is used to enclose
this region. The horizontal node loop and the loop in VERTAVG are executed in parallel using the
OMP DO directive. The default data scope is set to shared. The variables scoped as private are
the loop index and those that depend only on the vertical grid. The modified source code for the
update section is listed here.

C$OMP PARALLEL DEFAULT(SHARED)

C$OMP+PRIVATE(I,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY)

C$OMP DO

DO I=1,NN

CALL SPRSCONV(I,PPx,PPy,IQ,JQ,UZmid,VZmid,

& Zmid,DUZDX,DUZDY,DVZDX,DVZDY,DZDX,DZDY,NNV,NNdim)

CALL VERTVEL3_2(I,NNV,UZmid,VZmid,WZmid,PMEmid,SRCmid,SV,

& Zmid,Zold,DelT,DUZDX,DVZDY,DZDX,DZDY)

ENDDO

C$OMP ENDDO NOWAIT

CALL VERTAVG(UZmid,Umid,Zmid,NN,NNV,NNdim)

CALL VERTAVG(VZmid,Vmid,Zmid,NN,NNV,NNdim)

C$OMP END PARALLEL

Next is the modified source code for the subroutine VERTAVG.

SUBROUTINE VERTAVG(F,FAVG,Z,NN,NNV,NNDIM)

REAL F(NNDIM,*),FAVG(*),Z(NNDIM,*)

C$OMP DO

DO I=1,NN

FINT=0.0

DO J=2,NNV

FINT=FINT+0.5*(F(I,J)+F(I,J-1))*(Z(I,J)-Z(I,J-1))

ENDDO

FAVG(I)=FINT/(Z(I,NNV)-Z(I,1))

ENDDO

C$OMP ENDDO NOWAIT

RETURN

END

