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ABSTRACT

The behavior of the -3 tracker or filter which is found in frack-
while-scan radars was investigated under various situations. First
the target’s motion was translated into signals which excite the filter.
It was found that these signals cauld be characterized in terms of tar-
get performance capabilities such as velocity, acceleration, and
structural loading. Neglecting false alarms and fades, the probability
of breaking track was found to depend on the scan time, the measure
ment noise, the target trajectory, and the parameters o and . The
tracking errors could be categorized into variances and mean errors
which were investigated more fully. Using a postulated strategy, the
effects of false alarms and fades were found on the variances and
Mean errors,
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BEHAVIOR OF a-f TRACKER FOR MANEUVERING TARGETS UNDER NOISE,
FALSE TARGET, AND FADE CONDITIONS '

1.0 INTRODUCTION

The subjects of automatic detection and tracking have received a considerable:amount
of attention in the last several years. For instance, the NTDS, MTDS, and SPS-33.systems
are operational, and the Gilfillan Company and Applied Physics Laboratory (APL) systems
have been proposed for the SPS-48. These systems have varying degrees of automation,
and with the exception of NTDS, have the capability of automatic detection and’ tracking
of targets. The NTDS system, while having tracking equations and correlation reglons de-
pends on a manual updating of tracks.

A system which performs automatic tracking (not detection) is presently being in-
vestigated. The automatic tracking system (ATS) operates as follows. Tracks are inijtiated
either by an operator or possibly automatically if clutter is not present. After ini ahza-
tion, an a-f tracker makes smoothed esimates of a target’s position and velocity.
these estimates to predict the target position at the next update time. A correla :
is centered at the predicted position and an automatic detection is made in the correlatlon
region. The advantage of this system (in companson to other systems) is that there isa
high a priori probability of the target being in the small correlation region, and:conse-
quently, a much higher false-alarm rate than usual is tolerable. In other words, this pro-
cedure avoids system saturation due to the large number of false alarms which would be
inherent in a totally automatic detection system. It is believed that a system of this type
will be able to track targets through some degree of clutter.

The purpose of this report is to investigate the performance of the o-f tracker when
targets are maneuvering and the video processor is plagued with such difficulties.a
urement noise, false targets, and fading problems. In a more general sense onhe
learn what information is required from the radar to track adequately.

Section 2.0 investigates the relationship between the characteristics of maneuvering
targets and the signals as seen by the radar. Section 3.0 studies the errors associated with
o-f trackers caused by maneuvering targets and the measurement noise. In addition the -
probability of breaking track is discussed. Sections 4.0 and 5.0 investigate the perform-
ance limitations due to false targets and fades, respectively. A discussion of the results is
given in Section 8.0 '

2.0 TRANSLATION OF TARGET CHARACTERISTICS INTO RADAR
REQUIREMENTS

In describing the performance or design of any system, it is important to know the
characteristics of the signals which excite the system. The discussion given below is con-
cerned with the problem of obtaining these characteristics.




2 BEN H, CANTRELL

In examining target trajectories one finds that there exists an uneountable number of
possible trajectories and that they are random in character. Although in theory each tra-
jectory could be used individually to investigate the system performance, it does become
difficult, due to the vast number of trajectories, to assimilate and use the large amount of
information. The two procedures that are usually used to circumvent this problem are as
follows. The first procedure is concerned with constructing a probabilistic description of
the frajectories and the second procedure is concerned with the construction of a small set
of traiectories which are typical in their frequency confent. The latter of fhese fwo ap-
proaches is considered in this section,

The discussion begins by making the following a priori assumption: All target trajec-
tories can be aporoximated by either straight-line, constant-altitude frajectories, constant-g
turns, or changes in altitude associated with the previous {wo maneuvers over at least a seg-
ment of the trajectory. The number of trajectories is further limited due to the physical
laws the target must obey according to its design. In the case of aircraft, these limitations
can be characterized in terms of velocity, acceleration, and structural loading g. As a last
consideration the target performance must be translated into signals thai the vadar meas-
ures, which are range and azimuth. The limited set of frajectories described above is now

analyzed.

2.1 Straight-Line, Constant-Altitude Targets
The geometry of the target trajectory is shown in Fig. 2.1, where x and y are the

rectangular coordinates, r and § the range and azimuth, and ¢, v, and g are the heading,
velocity, angd acceleration of the target, respectively.

vk

<Y

o)

Fig. 2.1—Geometry of a straighi-line, constani-altitude target

The following quantities are defined:

~
l

Vi +y? {2.1}

8 = tan! %ﬁ- (2.2)
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Uy = bCOS ¢ _ (2.3)
vy =V sin ¢ . _ '  - (2.4)
Taking the Jderivatives of Bags. (2.1) and (2.2) and using Eas. (2.3) and (2.4) yiélfdgj:he _
range and azimuth velocities S
yp = UCOS (6 —¢) (2.9)
and
vg = —, S (6 —¢) ' | (2.6)
Taking the second derivatives gives the range and azimuth accelerations
2
e = o sin? (0 —¢) + acos (0 ~¢) (2.0
a . v? .
ag = gin (0 —® * 2~r—z—sm (B-d))cos(ﬁ—-qb). (2.8)

the total acceleration at of the target, one finds o
29

1f one computes
+ (rag + 2ugpvg)ig -

_ 25 5
ap = (aR~ruG)LR

) through (2.8) into Ea. (2.9) yields o
(2.10)

Substituting Fags. (2.5
= geos (0 —®ig T & sin (8 —9)ig -

ar

The magnitude of ap 18
lapl = @- (2.11)
that the range and azimuth accelerations as geen by the radar can
act the radar sees alt accelera-

the acceleration of the target. Inf :
eleration is next

It is interesting to note
{ the target. The effect of this apparent ace

be quite different from
tion just due to the motion 0

investigated.
The maximum magnitude of the range O azimuth acceleration is pro_portional to
v o |
Gmax = 7 - (2.12)
and the gy of the turn is defined to be

(2.13)

where g is the gravitational constant.
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(dﬁmensionlesa;)

Iy

Q 10,000 20000 30,000 40,000 50,000
TARGET RANGE - (413

Fig. 2. Z—Range 2ceeleration at eloge ranges for straight-
line, constani—a!gémf}e, and velogity target trajectorias

A target moving in g cireulay path with a constant velocity is useg to abproximate g
turn, The geometry is shown in Fig. 2.8,

The law of cosines for the triangle is written
rZ = p2 4 p2 _ 2pR cos ¢ (2.14;

and can be rewritten ag

r 2pR
B VA B . 215
V= (6% B) c%0 e

Reeall the f@!!{}wiﬁg €Xpansion,
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3
. -1 - % _ 1,1, 1133,
1-x =1 5 5 4% 5 1'% 0 _(2.1§)
where
x2 <1
Using the series expansion Eq. {(2.15H) is written as
= \/TRZ - ————— 08¢ — = 75— cos
3p3
_1_POR% o o
9 W cos ¢ Q ) (2.17}
For p << R, Eq. (2.17) can be approximated as
r = R — pcos (cj;t) ' -(2.18).

where

- 9)

s =(2).
The range is found to vary in a sinusoidal manner. In addition B must be r_eas_o_ﬁably
large. To show that this condition must also be satisfied such that Eq. (2.18) is valid, one
only needs to differentiate Eq. (2.17) twice to find the range acceleration ap. First noting
that o

¢ = (2.19)

v
p 7

the range acceleration becomes
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Ug U2
ag = 7}“ sing + “?:!j cosZéd + 0 . {2.20)
for g <L R,

In observing Eq. {2.20) one finds the same froublesome apparent accelerations as found for
the constant-altitude, straight-line targel trajectories, Even though the amplifude of the
harmonties in range can be rather small at close ranges, the acceleration of the target as
geen hy the radar can be quite large over af least a short interval of time, This effect is
similar to a harmonic approximation of a square wave. Considering the first few harmonics
which are all reasonably small compared to the fundamental one, we see that rapid changes
in slope can oecur over small intervals of time.

The analysis of the azimuth measurement for a target moving in a circle closely parai-
lels the range measurement analysis. One begins by writing the law of sines for the triangle
shown in Fig. 2.3,

sin(f—fg) _ sing

(2,21}
o r
Solving for 4, one finds
§ = fg + sin7t (% siggi) . (2.22)
Expansion into a series yields
= CAUPRR 2 (U
& = tp +}—sm¢i -/ sin g+ 0. (2.23y
For the case g/r << 1, Eq. {2.18) can be substituted into Bq. (2,23}, yiclding
g =4 + m_ + 0 {2 24}
B R—pcosg¢ - )
Using a division process, Bg. {2.24) can be rewritien as
6 =6, + 2 sngt + Lo sin2ft + 0 (2.25)
B R 2R% = )
The azimuth acceleration is computed to be
1 /v . 2 {2 :
= ——1— sl - == isi t+ 0. 2.26
ag E(p)smét R(R)sm‘a‘é} O { ¥

Again one finds that if p << R and if R is large, the azimuth variation is nearly a sinusoid.
If these condiiions are not met, the harmonics can cause a considerable azimuth deviation
aover a small interval of time,

it is ingtructive to show an examnple of the range and azimuth measurements and their
derivatives for a circular-motion target for two different ranges, The target was moved in
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a circle at a constant altitude of 1000 £t, the center of curvature was located at an azimuth
of 45°, and ranges of 14,140 ft or 141,400 ft were used. The target velocity was 1200
ft/sec and the gy of the turn was 6. The range and azimuth variations with their. deriva-
tives are shown in Figs. 2.4 and 2.5, Observing these curves one finds that at the-large
ranges the variations are nearly sinusoidal. At the shorter distances it is found. that the .
signals are rich in harmonics and large accelerations can result. In addition it is found that
the azimuth variations are quite small for the far ranges in comparison to the near ones.

2.3 Accelerating, Circular-Motion Targets

It is first assumed that the target is operting in the far region such that the range and
azimuth variations can be assumed to be sinusoids. The target is assumed to be moving in
a circular path except that now it may have a tangential component of acceleration. This
tangential acceleration is expressed in terms of angular acceleration, and is assumed to be
sinusoidal; i.e., '

ap = sin wpyt . - (2.27)

a
p

Integrating twice to find the phase, it is then placed into Eq. {2.18), yielding

r =R + pcos (wot + _a_ﬁ sin wmt) . 1 (2.28)
puy
where
; v
wg = ¢ = — .
P

A well-known Fourier series expansion exists for this waveform in terms of Bessel functions

(1);

a a
= R + pJ + 2
r p 0<pw z)cos wot ,ng(pw

) cos 2(wg—wy)t
m

2
m
a

— 90d; (pw 2)(:05 2wo + wy)t + 0. . (2.29)

m

As the tangential acceleration goes to zero, Eq. (2.29) reduces to that of the ddnstan-t-
velocity, circular-motion target S

r=R + pcoswgt. ' o (2.30)

The tangential acceleration in a turn has the effect of spreading the frequency spec-

tra. The above analysis is only valid for small values of (a/pwn?) because of physical con-
siderations. o

It is probably worthwhile commenting on targets changing altitude. If one allows no
azimuth changes, the analysis so far applies to this problem by merely exchanging the word
elevation for azimuth. An analysis of target characteristics considering all three measure-
ments is not attempted. ' '
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Fig. Z.4—Comparison of range and derivatives for circular-motion

targets at two ranges

2.4 Fregquency Hesponse Characteristics

The discussion is begun by considering only constant-velocity, circular-motion targets.
In these cases only the fundamental sinusoid {s present, Thus

r = R — pcos ¢t
g =485+ isinét
R
- v
¢ = =
4
32
2= g

{2.51)

(2.32)

(2.33)

(2.34)
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Fig. 2.5-~Comparison of azimuth and derivatives for circular-motion
targets at two ranges

Substituting Eq. (2.34) into {2.31), (2.32), and (2.33), one cbtains

2 T
r =R — — cos (@ t) . - (2.39)
88N v _ .
0= 0g +(i)sm(g—gﬂ t) . o (2.36)
Rggn v

Observing Egs. (2.35) and (2.36) one finds that the amplitude frequency characteristics of
range depend only on the aircraft parameters of the structural loading g and velocity, The
azimuth in addition depends on range. The amplitude is plotted vs frequency:for.various
velocities and for sharpness of the turn indicated by gy in Fig. 2.6. One finds-that as gy
for fixed v is increased, the amplitude decreases and the frequency increases. As the ve-
locity for fixed gy is increased, the amplitude increases and frequency decreases.
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1,00G,600

100,000

15,000
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{alale}

10G

¥ 2[00 ft/sec
9] L L i [
2001 2010 400 LO00 [ae’s)

RADIAN FREQUENCY {rod/secy

Fig. 2.6—Amplitude vs frequency plot for a cireular-
motion target

An example of the {rajectory of a high-performance aireraft performming “doglight”
type maneuvers Is given in Fig. 2.7. The range and azimuth variations with time are given
in Fige, 2.8 and 2.9 for this maneuver. This example again shows that the frequencies en-
countered in even high-performance fargeis are quite low,

2.5 Discussion of Besulis

The purpose of this section is to translate the target characteristics into signals on
which the radar must track, It was found that the three target parameters g, v, and g can
be used to characterize the limifations on the received signals in ferms of amplitude and
frequency characteristics. If the near effects could be ignored, the signals set up by the
target were found to be quite low in frequency; typical values may be in the order of 0.2
Hz or lower, However, if the target has a tangential component of acceleration as well as
a turning meotion, higher harmonies in the radar signal may be observed in which the high-
est significant observable frequency may be 6.6 to 0.8 Hz.

It is assumed throughout the remainder of this discussion that only the polar coor-
dinate system will be used for tracking and that the near effects for all practical purposes
can be ignored.
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Fig. 2.7—Highly maneuverable target trajectory of ¢ shown in xy coordinates
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Fig. 2.8—Time history of range for a target performing maneu-
vers in a limited space; range about 35 naut. mi.
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TIME-VARYING AZIMUTH {deg)

-3 i i s ! L
o 10 20 Y &0 5C [5is)

THME {sech

PFig, 2.9—Time history of azimuth for a fargel maneuvering
in a limited space; range abouf 35 naut. mi.

3.0 OPERATION OF TRACKING EQUATIONS EXCLUDING FALSE TARGET
AND FADING CONDITIONS

In general the tracking equations must perform three functions. They must comptite
the velocity, smooth both the measured position and computed velocity, and finally pre-
dict a new coordinate on which to center the correlation region. The a-f tracking equa-
tions are first defined and the errors in both the mean and variance of the predicted coor-
dinates are investigated, Finally the probability of preaking frack is discussed.

3.1 Definition of Tracking Equations

The well-known o-ff tracking equations are defined as

N _ N-1 N-1
o= xIT e vTT

N _ N N N

Xs - Xp + CY(X??.%—X?:I
N N

VN — VN_I + 5{Xm_Xp}

5

§ T

Xy = predicted pasition
X, = smoothed position
smoothed veloeity
measured position
o, § = filter parameters
sampling time

!
]
o

li
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For purposes of analysis, these equations are more usable if one substitutes Eq. {3.1) into
Eqgs. (3.2) and (3.3), yielding

x 1V [a-o « _.a)T] [ XT-l { « :\[Xm]N |
_ N L (34)
Lj 5T a-p || v B/T o

[Xp] N+1 _ [1 T] [XS}N

Vs

and

(3.5)

For convenience, Egs. (3.4) and (3.5) are put in block diagram form in Fig. 3.1 and the
following matrixes and vectors are defined:

(1-a) @A-a)T
A =
L —B/T (1-0)
"
B =
B/T
c=[1 7]
X

]
1
=&
| I

At this point the system has been reduced into a more tractable form for analysis. -

[xM:IN [x]” I:XP]-N“ '
s .

=]
-
1

A DELAY

Fig. 3.1—Block diagram of an ¢-fj tracker

3.2 Stability Analysis

Since the system is in the form of difference equations, it is proposed to ;_inv;estigate
the stability through the use of the Z-transform (2). Taking the Z-transform of Eq. (3.4)
results in o

X(Z) = AZ™! X(Z) + BX,,(2). ' - (3.8)
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The system transfer function is defined as

X(Z)

G4 = 3@

= U-AzZ71171B. (3.7}

For the specific system in question, Eq. (1.7) becomes

f—a
aZlZ + ——
_ XJAZYy ( & )
Gx{Z) = Xu(Z)  Z2Det [I—-AZ 1] (3.8)
B
£ 27— 1)
Gu(Z) = VslZ) T (3.9)

X2y Z2 Det ff—AZ 1171
where
Z2Det[I-4Z2°11 =22 - Z2-a—- B + (1 —a). (3.10)

The stability of the system depends on the case for which af least one root of the
22 Det {f — AZ-1] lies outside the unit circle. Several typical root loct are shown in Figs.
3.2 and 3.3. As can be seen, the parameter v seems to conirol the radius of the loci and
B controls the amount the pole has moved. For cases in which « > 1, the loci never leaves
the real axis. The stability criterion can be found by setting the most negative root equal
to — 1;

zZ=-1-= {—%%——_5) - -% (a+B)Z—48 . (3.11)

Solving, one finds that
84— 20. (3.12)
In addition to the stabilily criterion, a zero in Eq. (3.7} can lie cutside the unit cirele.
This situation will not be allowed sinece it usually leads to undesirable system response (2}
The condition one must satisfy is

B < 2. {3.13)

The permissible values of o and § are shown in Fig. 3.4, Further restrictions will be placed
on this region later,

3.3 Frequency Response Characteristies

The frequency response of the filter can be found by placing Z = ¢/“7T into Egs. (3.8)
and {3.9), The magnitude and phase characferistics of G,.(Z) and G,(Z} are shown in Figs.
3.5, 3.6, and 3.7.

Observing these figures one finds that « should never be larger than one. Fera <1,
a seems to control the bandwidth of the low-pass filter and § has more controt over the
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Fig. 3.5—Ampiitude and phase characteristics of the iracking equations
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damping. In fact § should be somewhat smaller than & such that resonant spikes do neot
occur, Observing Fig. 3.5, one finds that the measured position is nearly unsmoothed and
that G,(Z) is in the form of a differentiator. In general o and § should be set such that
G {7} passes the highest expected frequency undistorted, and G,{Z) acts a5 a good &if-
ferentiator up to the highest cxpected frequency,

3.4 Noise Characteristics of Filter
The discussion is begun by making the following change of variabie:
AX = V,T. (3.14)
Equations {3.4) and (3.5) describing the filier can be rewritfen as

X ¥ (1-a) (1-a)][X, ] a [Xm]¥
= ‘ + (3.15)

9.4 -8 (1-pAX g

[Xxp)¥ =1 1][ X, (3.16)




AMPLITUDE,IGx(jw)|

AMPLITUDE, |6, ( jw) |

where how

wT/4

0

wT/4

ig. 3.6—Amplitude and

Cl’

[X]n

PN

NRL REPORT 7434

wT/2

wT/2

OO

~45°

PHASE, ¢g,

_900

90°

00

PHASE, quE

-90°

wT/4

wT/2

phase characteristics of tracking eguations for
a=0.1

where [ XN = E[XN] | the expected value,
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The mean and covariance equations are defined as (3)

g N-1 N
AXNT + pXN

A'PN-1A'T + B'g2B'T

|
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Pyi Pig
P =
Poy  Pogo
Pi1 = E[(Xs — XoHXs — X5) ]
Py = E[(X;— X HAX - AX)] = Pn
Pyy = E[(AX —AXNAX —AX)]
O.m = standard deviation of measurement error .

The mean equations are just the response of the system to a deterministic input which will
be studied later. The covariance eguation hecomes

Py, (- 2(1 — )2 (1 —a)2 IV rerok,
Pial =|-Bl-a) (1-28)1-0a) (1-BNl-o}||Prz| +]|cB

Psg B2 —2((1 - 6) (1-p2 Pag 21 319
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The variance of the predicted position is easily computed in terms of the variances given
in Eq. (3.19):

2
OXp, = P11 + 2P1p + Pag. (3.20)

Ignoring the transients during the time the track is being established, the steady state
solution is found by recursively solving Eq. (3.19). The predicted noise power is normal-
ized,

2

. o
o = 2, (3.21)

UXm

and plotted as a function of « and § in Fig. 3.8. Observing Fig. 3.8 one finds that the in-
put noise power can be reduced or filtered if « and § are appropriately adjusted. One also
finds that the parameter f greatly affects the predicted noise power. This effect should be
expected since differentiated noise is quite noisy and f§ affects this quantity, In fact the
variance of the predicted position can be larger than the input noise because of differen-
tiation.

[«]
I

NORMALIZED NOISE POWER OF
PREDICTED POSITION, ¢}
D
I
T W W ®
c 0 o =
> o o o

Mo
T

o 0.25 0.5 075 1.0
ALPHA, a

Fig. 3.8—Predicted position noise power as a function of

a8

An interesting phenemenon occurs for small values of & and large values of 8. The
noise power increases sharply. The reason for this may most easily be seen by lookmg at
the frequency responses in Fig. 3.6. The large resonant peaks in the response allowa lot
of noise to come through. In addition a non-minimal phase condition can be reached and
the noise then increases rapidly.

The noise power is not a function of the sampling time. As the sampling time de-
creases the variance of the velocity increases; however, this effect is canceled out by having
to predict over a shorter interval of time.




AL BEN H. CANTRELL
3.5 Deterministic Error Analysis

Various sinusoidal waveforms are passed through the filter and the root mean square
error & between the predicted and true positions is

N
‘- %Z xi - x' %, (3.22)
=1
where
X}, = [Gelje)l sin (T + g, ) + [Gy(jw)isin (T +¢g,) ,
given that

X = sin (i +1)wT).

{the amplitude of the sinusoid equals one for normalization}

The rms error is plotted vs the ratio of the frequency f of the sinusoid f to the sampling fre-
quency fr for various vatues of &« and § in Figs. 3.9 through 3.11.

Upon inspecting these curves one finds that if either the waveform is sampled faster
or the frequency of the waveform is lessened, then the error decreases. In addition the
lightly filtered systems have fewer errors in the means than the heavily filtered systems.
The regions of the curves where the error is near unity only indicate that one is not
sampling at a sufficient rate.
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Fig. 3.9—Deterministic predietion error as a function
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3.6 Probability of Breaking Track

A correlation region, as shown in Fig. 3.12, is defined to be a region of space cen-

tered about the predicted value. If IX,, — X pl <y, then the measured value is said to lie
in the correlation region.

The random variables X,, and Xp are gaussian-distributed random variables as shown
in Fig. 3.13. The random variable w is defined as

w =Xy — Xp. (329

Since X, and X,, are gaussian, w is also gaussian. The mean and variance of @ are

w =X, - X, L (3.24)
o2 = o?(p +of . (3.25)

The probability of breaking track* at a particular sample instance is defined as the
probability that |X,, — Xpl > 1. '

*This assumes that once the target is outside the correlation region it will remain outside of it for all time.

L ——
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_aY o0
P[break track] =f Plw)dw +J PlwYdw , : (3.26)
- ’Y
which reduces to

Y — w v+ w
Pl[break track}] = 1 — % erf\i—} - é— erf{—} . (3.27)

\/EUw

This probability can be bounded by

v~ ol
Plbreak track] < 1 —erf|——| , - (3.28)

\/Eow

where

Xm — Xp = fBT,Xm)

2 2 2 _
0w GXP + UXm - f((l’f,ﬁ,(]’xm) .

w

Observing Eq. (3.8) one might infer that the real problem in minimizing the probability of
breaking track for a given T' and measurement noise is that the target trajectory is so un-
predictable. Digressing for a moment, we discuss below several possible approaches to filter
design.

Some filters assume that the target trajectory is known and adjust o and § in an adap-
tive way such as to minimize the error, i.e., the Kalman filter (4). Some adaptive filters
try to estimate the future bandwidth requirement (how fast X, is varying) and adjust «
and § to minimize the error. Other filters assume a given trajectory and minimize a cost
function such as to determine 8 in terms of « (5). Other filters use fixed « and 8, ad-
justed such that the error is minimized for the worst-case target trajectory; the error is
bounded in this manner. In this author’s opinion many of the types of filters discussed
are not well suited to track-while-scan radar operation. Most of the difficulty seems to
arise from assuming a priori target trajectories or making future predictions based upon too
little information. A filier design will be discussed in a subsequent report. '

3.7 Some Examples

The o-ff tracker is used to track the highly maneuverable targets described.in Section
2.4. The true and predicted range and azimuth are plotted vs time in Figs, 3.14 through
3.17. The correlation region was made sufficiently large such that the track would not be
broken. The sampling time is 4 sec. Two different values of o and § were used. The
standard deviation of range and azimuth noise are 250 {t and 0.52 degrees, respectively.
The filtered-noise standard deviation o, is shown with the predicted position. The meas-
urement noise of the true trajectory is not shown since it tends to make the graph difficuit
to read.

Observing these figures we find that the lightly filtered case had less error in'the mean
but a larger standard deviation oy, than the more heavily filtered case, '

The same tracking situation as found in Fig. 3.14 is again shown in Fig. 3.18 except
that the sampling time is reduced to 1 sec. One finds that the mean of the predicted




24 BEN H, CANTRELTL

14,000
PREDICTED FLIGHT PATH
PLUS AND MINUS NOISE
12000} [ STANDARD DEVIATION
i
TRUE FLIGHT [
10000k A i
e
2 sooor
<I
[+
0
=
E 6000
g
4
L1}
=
= so0of
a=05
B=07
2000 T =4 sec
oy, 2504
a i
a 10 20 30 ag ) g0

TIME (sec}

Fig. 3.14—Comparison of true and predicted signals for a highly maneuverable target

16,000

14,000k

TRUE FLIGHT

12,000

T

)

o000

=]
[«
(%)
[«]
T

TIME - VARYING RANGE
o
(=]
C
(=]
T

¥ PREDICTED FLIGHT PATH
PLLIS AND MINUS NOISE
STANDARD DEVIATION

4000

2000

L 1 H L
0 0 20 30 a0 50 60

TIME (sec}

Fig, 3,15-Comparison of true and predicted signals for a highly maneuverable target




NRL REPORT 7434 25

* STANDARD DEVIATION OF PREDICTED POSITION

4 —
PREDICTED TARGET PCSITION
3 TRUE TARGET TRAJECTORY,
)
[T
=
r [
£
3
=
&
<f s
(L]
=
I~
o
<1
>
[ ] =
wi
=
[=

a=09

B8=07
-2 T=4 sec
oxy= 0.52 deg
-3 L 1 L 1 1
o] 10 20 30 40 50 60

TIME (sec)
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position tracks very close to the true trajectory (the standard deviation of the noise is the
same as found before). This agrees with the theory in that a decrease in sampling time re-
sults in improved system performance. The same effect could be achieved if the target
did not maneuver quite so violently such that the frequency content of the signal ‘was less.
This example shows how critical it is to know the frequency content of the target trajec-
tory in order to design a good tracking system.

3.8 Discussion of Results

The behavior of the «-8 tracker excluding the effects of false targets and fades was
discussed. Although the analysis was quite straightforward, no reasonable way of adjust-
ing a-f to minimize the probability of breaking track for a given v was found. .This diffi-
culty arose from the fact that the probability of breaking track depended on the target
trajectory and therefore the minima would be different for each trajectory. Adaptive and

worst-case design solutions were mentioned. Several examples were given to illustrate the
theory.
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4.0 SYSTEM LIMITATION DUE TO CLUTTER

As seen in the previous section one could make the probability of breaking track as
small as one wishes by making the correlation region larger. In reality this is not the case
because false targets caused by clutter or other targets place a basic limitation on this quan-
tity. This effect is investigated next. '

4.1 Average-Target Strategy

It is not known, at least to this author, what constitutes an optimum strategy for
processing multiple targets within the correlation region nor how one would construct such
a procedure. As an alternative to searching for an optimum processor, a strategy is pos-
tulated and analyzed.

It is assumed that any target present in the correlation region is an equally likely can-
didate for being the true target. In other words no a priori knowledge is available and the
measurements are indistinguishable, Since it has been assumed that all targets are equally
likely, the information from all targets will be used. The strategy postulated to achieve
this goal is to average the position of all the targets in the correlation region; i.e., '

K
Xy Z (Xp +n;)
) i=1 |

N
X
; K1) ) (4.1)
where
K = number of false targets in correlation region
n; = zero mean uniform noise shown in Fig, 4.1.

X,N becomes the filter input rather than X ﬁ as previously discussed. The filter equa-
tions can be written as S

X1V = A[XIV1 + B[x; Y (4.2)
K
XN+ ) @& ey
AN L
(K+1) (4.8)
X1V = cIxIV-. (44)

Equations (4.2) and (4.3) are combined, yielding

[ — — —

~ K
N N-1
X, _ [0d _ 04 o N "
8 (1 K+ 1) (1 K+ ]_)T s E+1 Xy + z ni

__ B B )
Vs — - P
(K+1)T (1 K+1 Vs T(K + 1)

— —
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Define & and 8’ as
o
f = 4.6
& K+ 1) {4.6)
F_ B
8 E+D 4.%)
By using these definitions, Eq. {4.5) becomes
K
X, N {i—-ay (-a"YFi1X; N-1 & X;?: + Z: ”it. {4.8)
= + ™
v, /T -8 |V g/T =t

In this equation, the number of false targets K controls the amount of smoothing and the
amount of measurement uncertainty.

The solution for the noise power of Eq. (4.5) is not nearly as easy as before. The
reason is that K is a random variable. Equation {4.8) involves the product of two random
variables and in general the probability density changes form from one iteration to the
next. Far this reason, only special solutions will be found.

4.2 Noise Characteristics for Given Clutter Conditions

Special sotutions to Eqg. {4.8) can be obtained by assuming that K is a deferministic
sequence, For example,

1000010000100...
44004400440......

The equation becomes a stochastic difference equation with time-varying coeffieients. In
addition, the uniform probability density of the clutter is approximated as gaussiait with
the variance set equal to the variance of a uniform variable. The covariance equations are

found in the same manner as before, lLe.,
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P11 |V (1—a')2 2(1 — )2 (1—c)2 P11 |N-1
Pig| =|-f1-o) (@1-268)1-a) (1-fY1-d)| P12
Py g'2 —26'(1 - 6") (1 -2 Pag

o' 2 2 K 2
o .
[Xm t K12 "ns] ’

+| o' (4.9)
g2
where
o = a/(K+1)
B = BIK +1)
On; = VIV 3
K = a deterministic sequence taking on the value of the number of false alarms at

each iteration.

The following terms are defined:

(1)

0o = B (4.10)
UXm
[# 8

O = —2 (4.11)
UXm

The predicted noise power is plotted vs time, for various conditions, in Figs. 4.2 through
4.9. .
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These figures show that when false targets appear periodically then a steady state solu-
tion exists for the noise power of the predicted position. The noise power increases dur-
ing the time the clutter is present (it will be shown later that the noise power saturates at
a given value in extended clutfer), and drops back to its steady state value after the false
targets are removed. In all cases it was found that when the correlation region size became
larger as indicated by a., the predicted noise power became larger during the period of the
falze alarms. The heavy smoothing case {& = 0.2, § = 0.05) was generally less noisy than
the light smoothing (& = 0.9, § = 0.7} case. The sequences with extensive clutier {more
than one false alarm in a row} were generally much more noisy than the single false alarm

case.,

If the sequences are such that K is the same value for all sampling instances, the pre-
dicted noise power saturates at a given value, These results are shown in Figs. 4.10 and
411, These figures indicate that larger correlation regions, more false alarms, and lighter

damping all result in larger predicted noise power,

4.3 Deterministic System Behavior Under Clutter Conditions

If one either finds the mean value or eliminates the noise in the system described by
Eq. {4.8) one has the following equation:

WV la-ey (1-aT XN o (x5 (4.12)

= +

Vs /T (18 ||V §/T

The system is excited with a sinusoid and the root mean square error is found in the same
manner as described in Section 3.5, The only diffetence in the solutions obtained here i
that ol and § vary {rom sample to sample acconding to  deterministc sequence in K 1,
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o = %
K+1
{4131
A
8 K+l

where
K=1100011000110....

The errors are shown as a function of various false alarm sequences and parameters o atrct
f in Pigs. 4.12 and 4.13.
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It is found that the error in the mean grows as the number of false alarms increases.
Of course, it is again found that as the sampling frequency increases or the excitation fre-
quency decreases the errors are less. Also, the more lightly filtered system has less error
than the more heavily filtered system.

4.4 Probability of Breaking Track

In Section 3.6 the probability of breaking track was found to be

— lwl
Plbreak track] < 1.1 erf T . (4.14)
2 2 V2 g, |.

In the presence of clutter both [w| and O, increase, making the probability of breaking
track worse.

It is not always possible to make the probability of breaking track smaller by making
correlation region larger as can be seen from the following argument. As one inereases the
size of the correlation region, the chances of receiving one or more false alarms increases.
At some point the probability of breaking track would start increasing with increasing +y
due to the large errors set up by the false alarms. Thus for a given clutter environment,
the probability of breaking track can not be made arbitrarily small.

4.5 An Example

The same tracking situation as shown in Fig. 3.16 is used except that in this case four
false alarms per correlation region are assumed to occur at ¢ = 16, 20, and 24 sec. The
correlation region is assumed to be 16 times larger than the measured standard ‘deviation,
The resulting track is shown in Fig. 4.14, '

One finds that when clutter is present, the filter has heavy smoothing and does not
negotiate the turn well. In other words the mean of the predicted position is further in
error. In addition, the standard deviation 0x, of the filtered noise grows during the time
the false alarms are present due to the added noise. Of course if the heavy clutter would
have appeared during a time that the target was not maneuvering so violently, the: errors
would have been much less. This suggests that the system could be improved by sampling
faster. There is, however, an upper limit to this procedure, and that occurs when the clutter
begins to be correlated. : '

4.6 Discussion of Results

amount of clutter increased, when the correlation region was made larger, and when the
system used lighter filtering. In addition, the deterministic error grew as the clutter levels
increased, as the system used heavier smoothing, and as the sampling frequency was de-
creased. It was argued that the probability of breaking track could not be made arbitrarily
small in the presence of clutter by making the correlation region larger,
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5.0 SYSTEM LIMITATION DUE TO FADES

Target fading can be caused by many tactors of which the multipath effect is possibiy
one of the most troublesome. Considering this fading source only, one investigates the
parameters that effect the interval of time during which the fade occurs. The effects of
muitipath fades on the system performance are analyzed by postulating a sirategy and
determining the characteristics of both the noise and the deterministic errors. It is assumed
that no false targets are present.

5.1 Multipath Fading

The signal-to-noise ratio at the receiver can be computed from the radar range equa-
tion operating in the noise-limited region {6});

PrGrGrONSFAF S
(S)___ PUTUR ol (5.1)

N (473K TBNRAL
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where the pattern propagation factors Fp and Fg are due to the multipath effect. They
are found by adding the electric field from both the direct path E4 and reflected path Ep

as shown in Fig. 5.1;
TARGET\

RADAR ANTENNA
5 :

REFLECTION POINT

Fig. 5.1—Multipath effect

E = |Eg] + |E;le7®
£
F=|1+ eJY 5.2
Eql ¢ _ (5.2)
¢« = phase distance between the two paths .

These patterns have been studied quite extensively by Blake (7). Several antenna patterns
reproduced from his work are shown in Figs. 5.2 through 5.4. Only two of the more im-
portant parameters, frequency and antenna height, which effect the patterns are listed with
each figure.

An example is next considered. A target is flown from over the horizon toward the
radar at a constant altitude of 10,000 ft. The radar is assumed to be a two-dimensional
continuous-scanning search radar with an antenna height of 80 ft and a frequency of 1300
MHz, If the signal-to-noise ratio is above 13 dB (corresponds to a Py = 0.9 and Pgg = 10-6)
a detection is assumed to be made; below 13 dB a fade is said to occur. For the target
considered, the mgnal to-noise ratio is assumed to be 17 dB at the center of the first lobe
in which the target is detected, the lobe structure is computed using Blake’s programs The
detection zones are shown in Fig. 5.5.

One finds that both the detection and fade zones decrease in size as the range is de-
creased. The main cause for this is that the angle of the lobe or angle between the lobes
multiplied by the range gives the distance across the lobe or the distance between the lobes.
These distances decrease as the range decreases. The fade zone decreases more rapidly than
the detection zone with range. This can be attributed to an improved signal-to-noise ratio
due to the decreased range. From this simple example one may estimate that fade zone
distances may range from 10 naut. mi. to several thousand feet.

The length of time the target fades is given by
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Fig. 5.5—Detection and fade zones vs range for a target at 10,000 ft, radar height 80 ft,
frequency 1300 MHz, threshold S/N of 13 dB, and S/N ratio at 580,000 ft of 17 dB

T = Distance between detection regions (5.3)
Target’s radial velocity ’ : )

This fade time is plotted vs radial velocity in Fig. 5.6 for a 10-naut.-mi. and a IO;OOO-ft
fade zone. o

Using the same example, we find that, at the far ranges where the fade zones are
quite wide, the signal can fade from about 10 min at the low velocities to 0.5 min at the
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Fig. 5.6—8ignal fade time vs radial velocity

high vetocities. At the closer ranges where the fade zones are much narrower, the signal
can fade from about a minute to several seconds or lower at the higher velocities.

It is desirable for later considrations to construct a sample sequence in which a i
denotes 2 fade and a “0” a detection. Targets are flown through the detection and fade
zones ab various velocities. The position of the target is sampled every T seconds, accord-
ing to the scan time of the radar. A 1 or a € is assigned to each sample instant according
to whether the target is in the fade or detection zone. Several sequences are given in Figs.
5.7 and 5.8. The effects of fading sequences on the noise properties of the filter are now
examined.

5,2 Predicied Value Sirategy

When a fade occurs or no targets are present in the correlation regions, the usual
policy to follow is to use the predicted coordinate as the measured one. This policy moves
the target in a straight line trajectory at the last known velocity., This seems like a sensible
policy, since there exists no a priori or current information about the gtatus of the fargef,

The effects of this practice on the tracking equations are shown below, Equations
{8.4) and (3.5 are rewritten as
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Fig. 5.7—detection and fade sequences for fade zone lengths of 40,000 ft and
detection zone lengths of 60,000 ft for two different radial velocities;
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Fig. 5.8—Detection and fade sequences for fade zone lengths of 10,000
ft and detection zone lengths of 40,000 ft for two different radial

velocities; T = 4 sec

{XS]N [(1 —a) {(1- a)T] rs N-1 @ [Xm]Y '
= + (5.4)
v, T (1-8) Vs] [6/’1‘]
XV =1 7] [Xs}N

Vs

(5.5)
Equation (5.5) is substituted into Eq. (5.4) to obtain
x, IV 1 T|[ X |N7?
= ; - (5.6)
s 0 1|V

N _ yN
xN = xn.

where

It can be seen that Eq. (5.6) is identical to Eq. (5.4) but with o and § set equal to zero.
Therefore Eq. (5.4) describes the system under fading conditions where the parameters are

time varying.
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5.3 Fiiter Noise Characteristics Under Fading Conditions

"The covariance Egs. ( 3.18) and (3.19) are rewritten as

PV [@-a2 %1 — )2 (-2 PN Faflg?
Pzt =1 Bl-a) (1-28)1-a) (1 =K1 —a)[{p;y + of (6.7)
Poa 82 —28(1 - ) (1-8)2 Poy il

Gz%p = Pyt + 2Pz + Pyg . (5.8}

The solutions for gy = ax, lex,, for various fading sequences, say 11001100, .., are found
such that if a one occwrs, a = 0, § = 0, and if a zero occurs « and § take on their ordinary
values. The solutions are shown in Figs. 5.9 through 5.13. Several general comments can
be made concerning Figs. 5.9 through 5.13. First, the heavily smoothed filters {small o
and f) are much less noisy than the lightly smoothed filters. In addition, the variances
seem to become unstable if too many successive fades ocour repeatedly.

It was found that the heavily damped filters were much more susceptible to insta-
bilities than the lightly damped ones. A plausible explanation for this is as follows. When
a fade occurs the estimate of the new position can become worse as time goes on. When

a = 20

)
I

8 =005
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© (11000000001 1G0G--1
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® (1111000001 111 1000--}{ UNSTABLE SOLUTIONS
& ETC.

Fig. 5.9—Normalized predicted noise power as a function of time for
& giverr fading sequence
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Fig. 5.11—Normalized predicied noise power asa function of time

far various fading sequences: @no fades, 1000100010 . . .,
(©11001100110...,(D 11101110 .. . . unstable.
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Fig. 5.12—Nermalized predicted noise powerasa function of time for various

fading sequences: @m} f&f}es,l%}%}{}i{}g%g e ,@llﬂﬂllﬂﬂllﬂ ey
(0111011101110 . . . ,(Elete. The last four are unstable.

a signal appears the heavily damped system recovers very slowly and only a poor estimate
of the velocity and new position is found before a fade again occurs, If too many fades
oceur, the estimate continues to become worse. The lightly smoothed system recovers
more rapidly after a fade and thus can handle longer fade sequences without becoming

unstabile.

It can also be observed that as the number of fades increases the noise power increases
rapidly. One could decrease this by sampling at a slower rate which yields fewer fades at
the expense of deterministic error increases. Yet this can lead to trouble; Figs. 5.10 and
5.11 can be considered to be sampled at two different rates. One finds in Fig. 5.11 that




NRL REPORT 7434 : 45

bo a=09
T el B=o07
3
a
17]
2]
=]
=
o 4
w
-
Q
(=]
g I@
a
(=]
@ 2
~d
<
: %
144
o
=
0
o] 10 20 30 40
SAMPLES

Fig. 5.13—Normalized predicted noise power as a function of time for var-
ious fading sequences: @ no fades, 110000000000000000001100 v
@11110000000000000000111100 ves ,@ 11111100000000000000111111....,
(E) 1111111100000000000011111111 . . . ,® ete. & and @ are unstable.

if the rate is slower the system becomes unstable for shorter fade zone lengths than it would
have in Fig. 5.10. These comments are not necessarily true when the target moves through
several fade zones between sampling times. Alternatively, rather than change. the sampling
rate, one could change the target’s radial velocity and the same effect is observed.

If one increases the sampling rate, one in general reduces o and B. The effect of in-
creasing the sampling rate with fades is to increase the noise, and the effect of reducing
o and § is to reduce the noise. Unfortunately the prediction noise, when fading oceurs, in-
creases with sampling rate much faster than can be compensated for in changes in o and
B as can be seen by comparing Figs. 5.9 and 5.13. The same effect would be observed by
reducing the radial velocity of the target.

5.4 Deterministic Errors Under Fading Conditions

The error between the predicted and the true target position can probably best be
studied by considering some examples. These are shown in Figs. 5.14 and 5.15. Figure
5.14 shows that for a realistic maneuver, the deterministic error between the true and the
predicted coordinates was nearly 6 naut. mi. for about a medium-size fade zone, Figure
5.15 shows that even with fairly short fade zones as one might find in the region of 30
naut. mi. in range, one can easily be over a mile in error due to the deterministic process.
If the target turned such that it flew parallel to the fade zone for some time, the- errors
could become enormous. Of course the total error is larger than that shown in-these fig-
ures due to the addition of the random errors discussed in Section 5.3. S '
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Fig. 5.15—Error between predieted and trwe coordinates during time of fade for Target 2

5.5 Probability of Breaking Track

Recall from Section 2.0 that the probability of breaking track depends on the variance
of the predicted coordinate, the deterministic error between the frue and predicted caor-
dinates, and the size of the correlation region. Under long fading conditions it was found
that the variance of the predicted coordinate grows rapidly and in addition the determinis-
tic errors during fades can become quite large. This requires the correlation region to be
quite large in order to obfain a reasonable probability of breaking track for many of the
possible fading sequences and target trajectories, If the correlation region is large, the
chances of tracking through regions containing false alarms pecome small. One could raise
the threshold to eliminate some of the false alarms but then one does not detect the true
farget as often, thus making the fade problem worse.
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5.6 Discussion of Results

The fading problem due to the multipath effect was reviewed and a procedure for the
tracking equations to follow during the time of the fade was postulated. The variance of
the predicted position was found for various fading sequences which depended for the most
part on the distance between the lobes, the radial velocity, and the sampling time. The
deterministic error between the predicted and true target positions was found for several
examples. In a general way, the total error grows rapidly during a fade causing the corre-
lation region size to grow in order to keep a track established. Of course, other considera-
tions such as multiple targets, clutter, and resolution keep the correlation region from be-
coming too large,

6.0 CONCLUSIONS

The purpose of this report was to investigate the behavior of the a-f tracker under
various conditions such as maneuvering targets, measurement noise, false targets, and fad-
ing conditions. Well-known elementary solution procedures were used throughout the
report.

The probability of breaking track was found to depend on the measurement noise,
@, 8, sampling time, target trajectory, correlation region size, false alarm structure, and fad-
ing sequences. Excluding fades, the system error can be improved by increasing the sam-
pling rate at least until the noise sources become correlated. For light filtering the noise
was higher but the system tracked better in the mean. Conversely for heavy filtering, the
noise was lower but the error was higher in the mean. The average-target strategy seemed
like a good procedure to track through light or spotty clutter as long as the correlation .
region was small enough and the target did not perform extreme maneuvers during the
time the false alarms were present. The predicted value strategy for fades probably would
work reasonably well if the target did not maneuver just before or during the fade, if the
fade time were reasonably short compared to the detection zone, and if the sampling time
were slow enough. If these conditions are not met, quite large correlation regi{ins are re-
quired which severely limit the ability to track through clutter and to resolve multiple
targets. Examples were given throughout the report to indicate magnitudes of the func-
tions that are typically found.

Secondary information can also be extracted from this report. The radar characteris-
tics can be easily translated into tracking equation parameters. For example, pulse widths,
beam widths, scanning rates, prf’s, signal-to-noise ratios, antenna pattern characteristics
due to multipath effects, clutter rejection capability, etc. can be translated into measure-
ment accuracies, sampling times, fade conditions, and false alarm characteristics. Given a
particular radar, one should be able, at least in a rudimentary way, to determine what types
of tracks could be maintained. .
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