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A procedure for adjusting the gains in an a-p7 filter used in tracking air targets by search
radars is given for the case in which the track updates appear randomly in time. The filter
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ABSTRACT

A procedure for adjusting the gains in an L.-P filter used in track-
ing air targets by search radars is given for the case in which the
track updates appear randomly in time. The filter gains are given by
a = 1 - e-2tWoT and 3 = 1 + e-24WoT - 2 e-twoT cos WdT where ,
wo, and Wd are constants and T is the randomly varying time be-
tween updates. Using this gain adjustment procedure, we found that
the tracking errors are smaller than when the gains a and (3 are held
constant for tracks which are randomly updated.

Manuscript submitted August 21, 1973.
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GAIN ADJUSTMENT OF AN ALPHA-BETA FILTER
WITH RANDOM UPDATES

INTRODUC7ION

Search radars sometimes track air targets by use of an a-,8 filter [1]. The filter
computes the target's velocity from the measured position, smoothes both the position
and velocity, and finally predicts the position the target will have at the next look of the
radar. In most of these cases a uniform update time can be assumed and such a system
can be analyzed with standard techniques involving sampled-data systems 2-4 1.

Let us consider merging the target reports from a number of radars. The radars are
assumed to rotate at different speeds, and the detection capability oi any given radar on
a target depends on many environmental and radar factors. For these reasons the track
updates for a given target might be thought of as appearing randomly in time. Under
some circumstances a phased-array radar could also be modeled with a random update
time. In this report we analyze the a-J filter by using the postulated random updates,
and we consider a means of adjusting the filter's gain so as to improve its system response.

REVIEW OF THE a-(3 FILTER

The review of the a- filter with constant update times includes an examination of
the transfer function, its properties, and the response of the system in both the mean
and variance. We begin by defining the a-: filter [11:

x,(k) = xp(k) + a[xn2 (k) - xp(k)], (1)

us(k) = v(k - 1) + (T) [xn,(k) - xp(k)] , (2)

xp(k+1) = (k) + (k)T, (3)

where

x,(k) = smoothed position,

us(k) = smoothed velocity,

xp(k) predicted position,

Xm(k) measured position,

T sampling period (constant until specified otherwiso),

a, (3 = system gains.

1



BEN H. CANTRELL

We obtain a convenient form of the filter equations by substituting (3) into 1) and (2),
obtaining

[x5(k)4 5( - a) (1 - a) T x(k - 1)
= iF + (k) (4)LL(kJ[-IT (1- ) JL(k - 1)L tT

and

xp(k + 1) = [1T] .k (5)

Lus(k )

Applying the z transform [2,3] to (4) and (5), we find that the transfer functions of the
system are

Hx = xs(z)1xm (z) = azIz + (-a)/a] (6)
z2 - z(2-a-P + (1-a)

H = vs(z)xm(z) = (f/T)z(z- 1) (7)

z2 - z(2- a - ) + (1 -a) (7)

By setting z = eijwT, we find the frequency responses for a typical system (Fig. 1). The
smoothed position is obtained by passing the measured position through a low-pass filter,
and the smoothed velocity is obtained by differentiating the measured position. The
sampler itself acts as a low-pass filter, and any excitation whose frequency range is above
11T is simply folded into the frequency range from zero to 1T. The normally used
values of a and are shown in Fig. 2. This is obtained by examining the pole and zero
locations of the transfer functions (6), (7), and (8). The transfer functions (6), (7), (8)
are placed into standard notation for a second-order system:

H(.) H (9)
z2 - 2 etwoT cos WdT + ewoT (

Equating terms in the denominator of (9) with the denominators of (6), (7), and (8), we
obtain

a = 1 - e2twoT (10)
and

$ = 1 + e °- 2e twoT cos wdT, (11)

where is the damping coefficient of the second-order system, w0 is the natural frequency,
and 'd is the damped natural frequency. Equations (10) and (11) will be used later.

Before obsersing the system response, we consider incorporating a constant-rate high-
speed sampler in the system and defining xm(k) as

2
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X,,(k) = U(t) + w(tk), (12)

with w(tk) assumed to be a white stationary Gaussian noise having zero mean and having
variance aw2 representing measurement error of the radar and with (tk) assumed to be
samples from a deterministic target trajectory. A block diagram of the filter is shown in
Fig. 3. We define the matrices in Eqs. (4) and (5) as

(1- (1 -a) T-
A(T) = [

-01T (1 - )

B(T)

X(k' =x 1
Lva(k )

C(i) = [1 iA

waIk) A(T)X(k-I)l q 4

A DE (CONSTANT-RATE )
Fig. 3-An ap- filter incorporating a constant-rate high-speed sampler

where A is the time between samples of the high-speed sampler. We then write the filter
equations (4) and (5) as

X(k) = A(T) X(k - 1) + B(T; [u(t1,) + w(tj)] (13)
and

xp(kT + i) = C(i) X(k), (14)

where i = 1, 2, 3, ... , T/A, with T/A being an integer.

The response of the filter is obtained in terms of means and covariances. The equa-
tions describing the covariances are of the form 4].

P(k + 1) = A(T) P(k) A(T) + B(T) O;^2 '(7') (15)
where

PX X (k) Px U. (k)]P ~ok)k =o~)
in wl-ich

4
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P =(k) covlx,(k) x,(A)].

The covariance equations for the a-p filter are derived using (13), (14), and (15):

P,x,(k) (1 -a) 2(1 - a T (1 - a)2 T2 1 PxI(k - 1)

PxU,(k) = -0(1 - a)!T (1 - a)(1 - 2) (1 - a)(1 - P)T Pxu,(k - )

Puju(k) (P/T)2 -2j(1 - )/T (1- 0)2 ] PVU,,(k - )

~a21

+ 2 2w (16)

pxpx(kT+iA) = Px(k) + 2iAP.,,,,(k) + (iA)2PV,(k), (17)

for i = 1, 2, ... , T/A. The steady-state solution of (15) is obtained by setting P(k + 1)
and P(k) and solving the resulting algebraic equation. The results are

2 20 - 3 + 2a2
{ ~~~~~~~~~~P,x (k)louw =- (- a (18)a(4 - 2a-0

2 1(2a-0PI
Pxv(k)/cW = a(4 - 2a- ' (19)

2 0(2a2 -a 3 +20 - a)
Pvv,(k)/lo = a(4 a 2a - (20)

We define o02(i) to be

002(i) = Pp ,(kT+ i)/o 2 * (21)

Combining (17) through (21), we plot the normalized variance of the predicted position
aO 2(i = T/A at the update time of the filter as a function of a and (Fig. 4). In Fig. 5
we plot oo (i) for a given a and to show t.. intrasample ripple in the variance of the
predicted position.

We now consider the mean response of the filter. A target is flown in a circle at a
large distance from the radar. (This trajectory represents a turning target, and the full
circle is used such that steady state is obtained.) The range variation as a function of
time is [5]

u(t) = Ro + ( 2 /,,) cos (a,2/v) t , (22)

where R is the range to the center of circle (ft), a,, is the normal acceleration ft/s 2 ),
and v is the velocity of targct (ft/s). When the filter is excited by samples of u(t) taken
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Fig. 5-Normalized variance of the predicted
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at uniform instants in time (constant ), the response of the filter x,(k), v,(k), and
xp(kT + T) are sinusoids of the same frequency but different amplitudes and phases at
the sampling instants. This result is well known [2,31, and is easily obtained by re-
cursively solving the filter equations using the sampled values U(tk). The intrasample
ripple is obtained by using the constant-rate high-speed sampler i = 1, 2, ... , T/A. A
system response including the intrasamnple ripple is shown in Fig. 6. This filter was mis-
designed purposely so that the error could be shown easily.

The various ways of designing the filter basically attempt to reject the influence of
w(t) while maintaining xp(k) as close as possible to (tk) 1,6-101. We now consider
the filter's operation when it is randomly updated.

0 75 I 0
13 ,
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Fig. 6-Mean response of a filter excited by u(t) with T 
8 s, a - 0.798, - 0.534, a, 96.6 ft/s2 , and = 1100
ft/s

GAIN ADJUSTMENT WITH RNDOM SAMPLING

We begin by computing the means and covariances of the filter under random sam-
pling, considering only the excitation w(tk) for a fixed-gain and a variable-gain a-fl filter.
We then compute the mean and covariances of the c&-f filter considering only the excita-
tions u(tk) and X(O). The total mean and covariance response can be found by super-
imposing the two solutions. A procedure for showing that superposition is permissible is
shown in Appendix A.

Fixed-Gain a-O Filter

The a-p filter with random updates can be placed in the form

X(k) = A(Tk) X(k- 1) + B(Tk)[u(tk) + (tk)] X (23)

xp(tk+1) = C(7'k+1) X(k), (24)

where Tk is a random variable representing the time between the (k - 1)th and kth
sample, tk = T + T2 + ... + Tk is the time of occurrence of the kth sample, and A(Tk),
B(Tk), and C(Tk) are matrices whose elements depend on Tk. The joint probability den-sity f of the process is

f(TI) f(T2) .. A(T f X ()I ftv(tl) f[W (t2)1.. f[W (tk) fU (), Ut2), ... (t~t)] -
(25)

Random samples tk from a continuous deterministic process u(t) are not independent.
The time interval T between samples is assumed to be identically distributed for all 
from the uniform distribution shown in Fig. 7. The subscript on Tk will be dropped for
convenience.

7
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The covariances of the system states are next considered. Considering the responseonly due to w(tk), we find X(k) = 0, where the bar denotes expected value. As shown
in Appendix A, the recursive equation

P(k) = A(T) P(k - 1) A'(T) + B(T) a 2B'(T) (26)

can be used to find the covariances P(k) due to w(tk). The covariance equations for thece- filter are

2(1 - )2 T

(1 - )(1 - 20)

- 2P(1 -p)/T

(1 - a)2 T2 Pxx, (k - 1

(1- a)(1 - ) T P,(k - 1)

(1 -) 2 iL,,,(1k 1

r-
+ c4P/T Uw2 ,

(/7)2

PXeXp(tk+l) = Pxx,(k) + 2T Ptus(k) + T2PU,(k) .

Since a and are constant, the coefficients in Eqs. (27) and (28) are

d+e

T = (Id)
C

T dT = (d/2) + e,

T2 = (d2 /3) + de + 2 , (30)

lIT = [Qn (d + e) - n e/Id, (31)

1/T2 = 1/fe(T+e)j . (32)

As the results of using the coefficients (29) through (32) in (27) and (28), the normalizedvariance of the predicted position

8

Px,x, (k)

PXu,(k) =

PV V( )j

(1 - o)2

(p/T) 2

(27)

(28)

(29)

d +e
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a02 = Pxx(tk+ )0w 2 (33)

is s ..wn in Fig. 8 as a function of e for steady-state conditions. These results were also
computed using Monte Carlo techniques. Observing Fig. 8, we find that oa increases
rapidly for small values of e. This can be explained as follows: In a uniform update
system, if the update time becomes short, the variance in the velocity increases rapidly.
However, this effect is directly canceled in the variance of the predicted position, because
one needs to predict only over this same small interval of time. In the random update
system the time between updates can first be short, creating a large error in velocity.
This can then be followed by a long time interval in which the target's position must be

estimated using the poor velocity estimate. Therefore c02 increases under these condi-
tions. A method of avoiding these large errors is next considered.

103

102

. tO

0.01 0.1 1.0 10.0

(SECONDS)

Fig. 8-Normalized predicted position variance as a
function of e with d - 6 seconds for a fixed-gain
a- filter

Variable-Gain ad-0 Filter

The method of avoiding large errors in the random update system adjusts the system
gains a and J0 according to (10) and (11), where T is the random update time. The
covariance equations considering only w(tk) as an excitation is again given by Eqs. (27)
and (28). The coefficients are computed by numerical integration with the use of the
uniform probability density given in Fig. 7. The normalized variance of the predicted
position (33) is shown in Fig. 9 as a function of e. We find that o02 is not a strong
function of e, as was the case in Fig. 8. This can be explained as follows: When the
time interval between samples becomes short, a and it approach 0, thus smoothing the
data heavily and negating the rise in velocity errors. As the time between samples be-
comes long, a and f3 approach 1 and in effect no smoothing is used. The gain adjustments
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Fig. 9-Normalized predicted position variance as a
function of e with t - 0.4 and d - 6 seconds for a
variable-gain a-p filter

(10) and (11) appear to maintain a rather constant o2 under the random sampling dis-
tribution proposed.

We now investigate the effects of the excitation u(t) and X(0) on the system re-
sponse using the gains (10) and (11). We will find the effect of u(tk) and X(0) on the

randomly updated filter by using simulation procedures. (Because El[u(tj) - u(tj)]
Mu(t) - 5Wj)1 In not 0 for all , an analytic formulation appears to be very difficult.)

An approach to the problem would be to find the mean and covarlhnce of the prettletd

position at the kth sample. However the kth sample appears randomly in time. A more
meaningful calculation would be to find these quantities at a given instant of time. Con-
sider the constant-rate high-speed sampler defined in Fig. 3. Under any randomly sampled

excitation the filter response can be found at a given sample of the high-speed constant-
rate sampler which corresponds to a given instant of time. The quantity A is made smaller

than e such that the effect of each random sample can be easily seen. The adjustable-gain

filter is excited by taking random samples, distributed as shown in Fig. 7, from a sinusoid,

given by Eq. (22). Over many trials the mean and variance of xp is computed at each

switch closing of the constant-rate high-speed sampler. The results are shown in Figs. 10

and 11. Even though u(t) is a deterministic process, under random sampling the filter

output is a random variable. One finds that if the filter has a sufficient bandwidth, the
filter with adjustable gains (10) and (11) follows u(t) quite well (Fig. 11).

The reason xp follows u(t) fairly well with the adjustable-gain filter may be explained

as follows: As the time between samples becomes short, the system smoothes heavily,

which counteracts the increase in bandwidth due to the rapid sampling. Conversely, as
the time between samples becomes large, the system lightly smoothes, counteracting the
sluggishness induced by the long time between samples. In fact the system attempts to
maintain a constant bandwidth, and if this bandwidth is wider than the frequency content
of the signal, then xp follows u(t) fairly closely. This system behaves like a continuous
system of fixed bandwidth being excited with inputs appearing randomly in time.

10
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Fig. 10-Mean (and mean plus and minus a standard deviation) of xp
vs time for - 0.4, wo 0.1 rad/s, d 8 s, and e - 0.1 s
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Fig. 11-Mean (and mean plus and minus a standard deviation) of
xPvs time for t - 0.4, 0 =0.314 rad/s, d 6 s, and c 0.1 
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The total filter response in both the mean and covariance can be obtained by super-
imposing the effects of w(t) and [X(C), u(t)J. The filter design would adjust t and o
such that xp followed u(t) as closely as possible while minimizing P, , which is com-
posed of the variance PXPXP due to w(t) plus the variance PXPXP due ('b.

SUMMARY

The constant-coefficient -p filter when randomly updated was found to have large
errors in the variance under certain conditions, namely, a short time between updates
followed bv a long time between updates. To circumvent this problem, variable gains
a = 1 - e wOT and = 1 + e2POT- 2 ewoT cos WdT, where , wo, and Wd are
constants and T is the randomly varying time between updates, were postulated. Using
these gains, one found that the variance in the predicted position remained at reasonably
low values under the same conditions. Also it was shown that the variable-gain filter's
response to a given trajectory could achieve a reasonable small error.

Although the gain adjustments were simply postulated and shown to work well with
the examples cited, no exact justification for their use was given. However arguments
were given as to why the system seemed to work well.
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Appendix A

FORMULATIONS OF MEAN AND'COVARIANCE EQUATIONS

The purpose of this appendix is to outline a procedure for showing that superposi-
tion can be used in computing the means and covariances of (23) and to outline a method
of obtaining (26). We begin by writing the system equations (23) using a convenient
form.

X(k) = A X(k - 1) + B[(tk) + (tk)], (Al)
where

A = random variable which is identically distributed and independent from
sample to sample,

B = random variable which is identically distributed and independent from
sample to sample,

u(tk) = random samples from an arbitrary function,

X(O) = initial condition,

W(tk) = zero-mean white Gaussian noise with variance ow2 .

Recursively solving (Al), we can obtain the solution in the form

X(k) = g[A, B, X(O), U(tk), (tk)1 . (A2)

The mean M(k) and covariance P(k) of X(k) are computed using the probability density
(25). The means M'(k) and M"(k) and the covariances P(k) and P"(k) are computed in
the same manner by first using X(O) and (tk) as excitations and then using w(tk) as an
excitation. Superposition is then shown to hold by noting

M(k) = M'(k) + M"(k), (A3)

P(k) = P'(k) + P"(k). (A4)

The computation is straightforward but quite lengthy.

We compute (26) by noting the mean value of X(k) excited with only w(tk) is 0
and forming the covariance:

Xk) X(k) = A X(k - 1) X'(k - 1) A' + B w(tk) w(tk) B'

+ A X(k - 1) W(tk) B' + B w(tk) X(k - 1) A' (A5)

13
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14 BEN H. CANTRELL

where the bar denotes expected value and the prime denotes transpose. Because of the
independence-assumed, (A6) becomes

X(k) X'(k) = AX(k - 1) X'(h - 1) A' + B W(tk) W(tk) B'

+ A X(k - 1) W(t) B' + B w(tk) X(k - 1) A'. (A6)

Defining P(k) = X(k) X'(k) and noting X(k - 1) w(tk) = 0, we obtain

P(k) = A P(k - ) A' + B w2 B'. (A7)


