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THE GEOMETRY OF THE
S8INGULARITIES OF HARMONIC FUNCTIONS

I. INTRODUCTION
l. Abstract

The objective of this investigation is to shed some light
on the problem of finding for harmonic functions in three
variables an analogue to the Mittag-Leffler representation

for meromorphic functions in one variable given their poles.

Mittag-Leffler Representation: Let {bv} be a sequence of
complex numbers with 1lim b“ = o , and let Pv(C) be poly-

\y=_c

nomials without constant term. Then there are functions which

are meromorphic in the whole plamne with poles at the points

bv and the corresponding singular parts P\)(l/(z-bv)) .

Moreover, the most general meromorphic function of this kind

can be written in the form

f(z) = z [Pv (z—_:_"s—) - pv(z)] + g(z) (I-1.1)
v v

where the pv(z) are suitably chosen fixed polynomials and

g(z) is snalytic in the whole plane.

A meromorphic function may also be represented in terms of
its poles by utilizing the Weierstrass representation which

expresses an entire function in terms of its zero's.

Weierstrass Representation: There exists a meromorphic

function with arbitrarily prescribed zeros an provided
that, in the case of infinitely many zeros, a ~*. Every
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entire function with these and no other zeros can be written

in the form

1(z 2 1l (2 n
£ HE e 2 @)
f(z) =z 98(2)” (1- -) ; T a2

where the product is taken over all. a #0 , the m  are

certain integers, and g(z) s an .entire function.

Since every meromorphic function is +he quotient of two
entire functions, the Welerstrass representation may be used
to express a meromorphic function in terms of ita poles and
its zeros.

The problem of exctending these results to analytic func-
tions of several complex variables was posed by Cousin [C.Z2]
in 1895. His "First Problem" was to find the analogue of
the Mittag-Leffler representation and his:"Second Problem"

was to find the analogue of the-Welerstrass representation.

Cousin's First Problem: Suppose that Yo svery point P of

the space c? there corresponds a neighborhood VP of P

and a function fp‘ moromorphic in that neighborhood. Sup-

pose also that if two such neighborhoods VP and VQ of

the points P and Q have a common portion, then the func=-

tion f, - fQ 1is holomerphic in VP n VQ o Find & function

F meromorphic at all points of the space c® and such that

F - fP is holomorphic in VP .
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Cousin's Second Problems Suppose that to every point P of
the space C" thers correspends a meighborhood V, of P
and & function fP meromorphic in that neighborhood. Sup-

pose also that if two such neighborhoods VP and VQ of

the points P and Q have a common portion, then the func-

tion fP/rQ is holomorphic and different from zero in

Vp N VQ o _Find a funetion F meromorphic at all points of

the space C' and such that F/f, is holomorphic snd differ-

ent from zero in VP .

One way in which harmonie functions differ from meromor=-
phic functions is that they form a linear space rather than
an algetra, Both the class of meromorphic functions and the
class of harmonic functions are closed under additidéon and sub-
traction, This allows for the possibility of finding for
harmonic functions an analogue to the Mittag-Leffler represen-
tation and Cousin's first problem. Unlike meromorphic func-
tions, however, the class of harmonic functions are not closed
under multiplication and division. As a result one would not
expect to find for harmonic functions an analogue to the
Welerstrass representation o to Cousin's second problem.

As a simple example of a harmoniec function and its singu-

larities consider
1 3
H(z) = 3 ZeC (I-1.3)
where, following the convantion of summing on i from 1 to 3,
r = [(z4-cy) (z5-¢;) 1%, (1-1.14)

The singularity points of this function are the solutions of
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(z-¢)% = 0 . (I-1.5)

This is the equation of a coné, in the ccmplex space C” ,
with its vertex at the point 2z = ¢ , and with isotropic
lines as its gensrators. We will express 2z and ¢ in terms

of their real and imaginary parts as

z

£ + iy (1“1'6)

and
c =4a-+ ib' . (1-107)~

When the vertex of the cone is a real point, i.e.

9- = 2 (I“lcs)
and we restrict our attention to the real space 33 s Wo
have an isplated singular point

5_ = 2 0 (I‘log)

To find the set of singularities in /3 when ¢ 1is not a
real point we take the real and imaginary parts of equation

(I-1.5) and set y =0 ,
(x-8)" = b~ =0 (I-1.10)
b*(x-8) =0 (I-1.11)

Equation (I-1.10) represents a sphere with its center at
x =8 and with a radius R = |b| . Equation (I-1.11) rep-

resents a plane with a normal vector b and passing through
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the point x = a . We obtain the set of singularities in
R3 by intersecting Equations (I-1,10) and (I-1.11) which
results in a circle with its center at x = a and with the
vector b normal to its plane.

We lmow that to specify the singularities of a meromorphie
function in one variable we should specify a discrete set of
points, Likewise, if we wish to specify the singularities of
a harmonic function, we should know what sort of geometric
objects may be used. The present work endeavors to answer
this question., Having determined the geometrical nature of
the singularities, we then proceed to determine how we may
represent a harmonic function in terms of its given singu-
larities,

We shall consider the geometry of certain sets of
possible singularities for harmonic functions dsefined over
C3 which we shall call singularity sets. The result will
be a characterization of the singularity sets by simpler
geometric forms which may be used to categorize the singu-
larity sets and their corresponding harmonic functions.

R. P. Gilbert [G.7, p. 70] has shown that the singu-
larity sets are developable surfaces in C3 « In the geometry
of the real space R3 a developable surface is either a
plane, a cylinder, a cone, a tangent surface, or a composition
of these [K.1l, p. 185)]. We may extend the definitions of
these surfaces in a natural way to the complex space 03 .

It 1s shown in Sections (I-3) and (III-3) that the singularity

sets We are considering are either tangent surfaces or cones

o
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in 03 N

A tangent surface may be completely characterized by
its edge of regression., It is found in Section (III-1) that
the edge of regression of a singularity set is characterized
by the faet that it is an isotropic curve. In Section (III-2)
it is shown that the edge of regression is also characterized
by the fact that its projection onto either the real or the
imaginary spacs is a minimal surface. We also find in Section
(III-2) that any minimal surface will in this way characterize
a singularity set.

If the singularity set is a cone, we find in Section
(ITI-3) that it may be characterized by its vertex along
with the fact that its generators are isotropic lines.

In analogy to the Mittag-Leffler representation for mero-
morphic functions in one variable, in Section (V-1) we give
a general representation for harmonic functions in terms of
their singularity sets, characterized by minimal surfaces
whose parametric equations are given., In Sections (V-2) and
(V=3) particular examples of this representation are given,
The minimal surfaces considered in these examples are the

catenoid and the right helicoid.

2. Previous Results

One approach to the 3tudy of partial differential equa-
tions is the generation of solutions by means of integral
operators applied to analytic functions. As a simple example

of this idea we may consider Laplace's equation in two dimensions.



NRL REPORT 7651

The solutions, which are harmonic functions, may be generated
by taking the real parts of analytic functions. Although this
is not a true integral operator we will proceed to give some

tynical examples of integral operators.

“lliptic Equations in Two Variables

Censider the ellintic psesrtial differential equation

a2 32y

alul = =2 + T2 4 a(x,y) 2+ blx,y) 32 + olx,y)u = 0 (I-2.1)
ax? 3y v

where a , b , and c¢ are entire functions in a bicylinder
6(2) . Bergman's integral operator of the first kird [B.5,6]
will associate in a one-to-one manner the solutions of this
equation with aralytic functions of a complex variable, If

wa transform variables accordineg to the equations

N
n

x + iy (I-2.2)
2¥ = x - iy (1-2.3)

we obtain an equation of the form

{e]

i 3 .
(U) = U« + A(z,z*)uz +8(z,2 U , + Clz,2 )U = 0 .(I-2.it)
Z

Tne solutions of this equation may be rspresented by

the integral operator

U(z,2") = b,f = | B(z,z%,t) £(Z [1-t°] (I-2.5)
e o oot o 0est) —ry

E(z,z*,t) is the generating function for Equation (I-2.l4).
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It is given as
#*

Z
3(z,2",8)= Blz,2",t) exp{-f a(z,¢%)ac* + n(2)} (I-2.6)
0

wnere n(z) is an arbitrary analytic function of =z .

E(z,z",t) satisfies the partial differential equation

(23]

) =0. (I-2.7)

2\ -1 = x
(1-t )bz*t -t 2w * 2tz(Ezz* +D B st F

Vekua {V.1] has also obttained an integral operator rep-

resentation for solutions to cquation (I-2.1) . The class of

real solutions which are analytic in 5(2) are given by
u(x,y) = Re {Hy(2z,Z)(z) + IH(Z,E,t)w(t)dt} (1-2.8)
£
where
HO(Z,E) = R(z,052,z) , (1-2.9)

- 9 - -
H(z,z,t) = - 3t R(t,0;2z,z) + B(t,0) R(t,032,2) . (I-2.1

o(z) is an arbitrary holomorphic function and z 1is the
restriction of z* to real values of x and y .

The function R(C,C*;z,z*) is a complex Riemann func-
tion for Equation (I-2.4). It is analytic for (C,C*) € 6(2)
and satisfies the equation

3-:—2? R - -aé-c- (AR) = 'a% (BR) + CR = 0 (I-2.11)

and the conditions
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3%

¢
R(Z,C*;z,z*) = oXp f A(z,ﬂ)d'ﬂ » (1_2.12)
Z
¢ # (I-2.13)
R(c.z*:z.z*) = exp f B(g,z" )dg -2.13
2

The Generalized Biaxially Symmetric Helmholtz Equation

For the following equation we consider solutions which

o(2)

are of class in some neighborhood of the origin and are

even functions in x and in y,
2
u  ®w  2uwdu, 2w, 2

a2 ay2 *X &ty g rku=0 (u,v0) (I-2.14)

Lluv[u] =
Henrici [H.2] has given an integral representation for solu-
tions of this equation which was used by Gilbert and Howard
[G.H.6,7] to study the singularity structure of analytic

solutions. This 1s represented by the integral operator

(I-2.15)
-1
2v=1
u(x,y) = Euvf = ax”M f r(kc)o“(c- %‘) iz(u.l-u.v:é.n)%g ’
£+1
where
c=x + -iél (c + %) , (I-2.16)
2 1
(¢ - =)
= y -
E -Eg;;——i— ’ (I-2.17)
2 1
7 = K éc- 7 , (1-2.18)
1

[ <]
[}

{clc=e'®, 0spszn} , (I-2.19)
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with

2
a = (1'2020)
(21)2"1‘(\.»)1‘(%)

62 is a confluent hypergeometric function of two variables

[Be3, Vol. I, p. 225] defined by the double power series

o la) (B)
$,(a,B,v;X,y) = z -(—)——mx;—xy . (I-2.21)

m,n=0

Generalized Axially Symmetric Helmholtz Equation

This is a special case of the biaxially symmetric equa-

tion wnere g =0 . It is represented as

32\1 u 2y 2

Gilbert and Howard [G.H.2] have given the following integral

operator representation for solutions to this equation:

-1
Bt owoy ) 9y (FLESLED) rko) (- L) 4 (1-2.23)

+1
l¢l=1
where
=X + i iyl¢s —] (I-2.24)
l=v
2

The path of integration is the upper semicircle from +1

to =1 . Jv-l is a Bessel function, Colton [C.1l] has

<
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obtained uniqueness theorems for Equation (I-2,22) for the
case v < 0 , Previously, only the range of v > 0 had
been known [H.3],[(P.1].

Generalized Biaxially Symmetric Potential Equation

This is a special case of the Generalized Biaxially

Symmetric Helmholtz Equation where k =0 . It is repre-~

sented as
25 2y 38 32 2y ¥ .
.I.‘“\:[.] _5 12’.-3—;.;,-;;4.-’2%:0 » |J,,V>0 .(1-4026)

The work of Gilbert [G.6] gives the following integral opera-

tor for solutions of this equation:

1
bxy) = G f = ohp | f(M[1+ 12 c] [1+ £ c] ‘& (1-2.21)
[Cl=e
where
T = x2 - y2 + ixylc¢c+ %l (1-2.28)

Gensralized Axially Symmetric Potential Equation

This is a special case of both the generalized axially
symmetric Helmholtz equation and the generalized biaxially

symmetric potential equation. It is represented as
2

o
-
o

: -Zyﬁ =0 (1-2.29)

-~

[ ]

Gl

n

+
:
-2’|2‘

Gilvert [G.5) (see also Henrieci [H.1l,2]) has given the

following intqgral qperator representation for solutions to
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this equation:

2u=-1
(2 -1 d
¢ = Af = £(o)(C=¢"") (1-2.30)
A (41) T ()2 J; 15 ]
where

£ = {¢l¢=0" 0509 sn). (1-2.31)
The Elliptic Operator Tp+2

We will now consider the following class of elliptic
partial differential equations:

%4 2, 3% 2
T4oltl = 3;;3;; + AlrT)x, =, +Cc(r“)y =0, (1-2.32)

where A(r2) and C(rz) are analytic functions of ra .

Bergman [B.3,4,8] has given an operator wnich generates solu-
tions to this equation for p = 0,1. Gilbert and Howard
[{G.H.1] hava generalized this result to include p 2 2 . The

integral operator is given by

P +1
s =t (Ghy) [ X[ se,orevi-e?loas , (1-2.33)

p t==-1
where f(v,{) 4is an analytic function of p+l variables.

The auxiliary variable v 1is given by

v = N ’ (1-2031.;)

x
bW
where she analytic functions NH(C) satisfy the relation,

NuNu =0 . (I-2.35)

A vector satisfying this relation is called isotropic. ‘p
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is a product of regular contours Sk in the ck-plmn which
do not pass through their respective origins, The function
E(r,t) is given by
r
E(r,t) = exp{- % J‘ rA dr} H(r,t) , (I-2.36)
0

where the function H(r,t), |t|Sl is a solution of the equation

2 o~ -1 2 ~ 22 - -~ = -
(1-¢5)F_ - 7 (65+1)E + rt{u"+ =L 7+ BH} 0, (I-2.37)

where B 1is given by

2,2
B!-%A-pi-z-A-ruAi»C. (I-2,38)

we ,furthermors, impose the restriction that 'I:fr/rt be cone-
tinuous at r =t =0 .

Laplace's Equabion in Three Variables

Laplace's Equation in three variables is a special case

of tne elliptic operator Tp+ The solutions of Laplace's

equation, wnich are harmonic iunctions s, may be generated by
applying an integral dperator to holomorphic functions in
two variables., Consider a holomorphic function with a Laurent
series representation

® n

f(u,g) = z 2 anmuncm (1-2.39)

n=0 m=-n
in the region {(u,c)‘ jlul < p and 1-8 < |¢| = 148} . Using
the same coefficients a . We may represent a formal harmonic

’"t

function as

® n

H(z) =2 2 "on® 1P M(cos 0) ol™® (1-2.40)

SR (n+m) 1 n ’ *
=0 m=-

13
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2= (rsin @ sin o , rsin ® cos 9 , r cos 0) . (I-2.41)

The functions an are the Legendre functions, [£.3] . This
formal harmonic function may be represented in terms of the
holomorphic function, wnose Laurent coefficients are also

these a , by using the Bergman-Whittaker operator [Be3,U4;

W.1l]. The Bergman-Whittaker operator is defined as

H(z) = =57 J"r(u,c) » £ {]c] =1} . (I-2.42)

The auxiliary variable u depends upon { in the following

manner,
w= ¢ ugledz, , 1=1,2,3. (1-2.43)

The functions ui(c) are analytic. They are also the cofm-

ponents of an isotroplc vector and thus satisfy the relation
u.u =0 . (I‘ZOL’J-I-)

A suitable choice for the components of the vector ui(C)

is
u =2 (21, (I-2.45)
u, =-;~ (c2+41) , (I-2.146)
uy = ¢ (I-2.47)

Another choice four the components of u, is obtained by
making the substitution

¢ =eol®, (1-2.48)
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This gives the following expressions for the u

i
w =1 e1%in a , (I-2.49)
u, =1 ol%os @ . (I-2.50)
vy = ol (I-2.51)

To econtinue the function H(z) and remain on the same
branch, the path of integration £ should be deformed, 1if
necessary, to prevent a singularity from crossing over it.
The effect of letting a pole cross over the path of inte-
gration corresvonds to a jump in the value of H(E)’

If the path of integration & 1is regarded as fixed,
‘the spacé becomes separated into regions called domains of

association separated by suxpfaces called surfaces of separa-

tion [B.8, p.49]. Passing through a surface of separation

represents a pole crossing over the path of integration, and

the value of H(z) will} jump from one branch to another.
Bergnann(B.2,8] has given an integral formula which

transforms a harmonic function H(z) into its B_-associate.

3
We first define the 03-associate of H(z) which is expressed
in terms of the variables
W= (2, + iz,) (I-2.52)
2 1 2y * *
3 1
S - = - -2.
) > (z1 122) » (1-2.53)

and is equal to the restriction of H(z) to the (complex)

characteristic space

15
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= 0 . (I-ZOE,'")

The 03-associate is given by

"vEy . (1-2.55)

xlw,w') = n(w-w*,-i(wm*),a(w )

The BB-asaociate is expressed in terms of the C_-assdciate

3
by

1
£, 0 = 2] w2 Z {x(cut Zuct2-0)%)}at . (1-2.56)
0

The B3-lssoc1ate resulting from the application of Equations
(I-2.55) and (I-2.56) to H(z) 4s called the normalized
By-associate, and is the funetion given by Equation (I-2.39).
We may add to it a null-associata and the resulting holo-

morphic function will be mapped by the Bergmann-Whitaker
operator into the same harmonic function. The null-associates

are all mapped omto the zero harmonic function and are given

by

k-
awe) = Y Y epate (1-2.57)
n=0 kf>n

The 03-aasociatos are holomorphic functions of two complex
varjables which may be used to generate harmonic functions.
This is done by applyang successively the operators defined
by Equations (I-2.56) and (I-2.42).

Bergmann [B.1,7,8) has obtained a result regarding the

singularities of a harmonic funetion when f(u,c)c-l is a
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rational function of u and ¢ . In this case we may ex~-

press the harmonic function as follows

H(z) = B, & 2 - 1 j’ ac , (1-2.58)

where p and q are polynomials., Defining Q(z,() as
Qz,¢) = q(ulz,¢),¢) , (1-2.59)

it is clearly seen that H(z) becomes singular for those

values of z which satisfy simultaneously the equations

Q(z,¢)

0 ) (1-2060)

|
o

d
a—C- Q(-z"C) = ° (1-2061)

Gilbert [G.2,3] has obtainsd a more general result of
this type. It is as follows:

Theorem: Let the defining function for the set of

singularities of f(u,c)¢”) be a global defining function

in ¢® . Then if n(u,z) = s(z,C) = 0 1is such a defining

function we have that H(z) = §3f is regular for all points

2z , ¥Which may be reached by continuation along & curve T

starting at some point of definition g? » provided 2z (and

hence the curve I') does riot lie on the set

6= uc‘({y s(z,0)=0} n {zl sc(z,¢)=0}) . (I-2.62)

We shall refer to the set of possible singularities 6
as a singularity set. If the function I‘(u,':)c-1 is a ra-

tional function, every point of the singularity set 6 Is
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a singularity. Whether this is so for any f(u,c)c'l is an
.opdn question. The singularity set is in general a four-
dimensional manifold in the six-dimensional space 03 . Its
intersection with the three-dimensional real space 33 is a
one-dimensional curve.

Kreyszig [K.2] has given several examples of the func-
tion h(u,g) along with the resultirig set of singularities
of H(x) =B,f in R3 .

If h(u,g) 1is of the form

h(u,¢) = a + (c+u)g + kC2 s (1-2.63)

then H(x) 1is singular at a point, if ¢ is real, or on a

circle otherwise. The point or the center of the circle is

given by
x, = -Re c, (I-2.6l4)
x, = -Im (a+k) , (I-2.65)
X, = Re (a-k) . (I-2.66)

The components of a vector b normel to .the plane of the

circle are given by

b, = Ime , (I-2.67)
b2 = -Re (a+k) , (I-2.68)
b, = Im (k-a) , (I-2.69)
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and the radius of the circle is given by
R = |b| . (I'207°)

-~

If h(u,{) 1is of the form

h(u,¢) = ¢(1+¢)u , (I=2.71)
then: H(g_)- is singular along tne xl'- and x3-axos.
7 h(u,¢) 1is of the form
h(u,¢) = c1u+c2) s (1-2.72)

then H(x) 1s singular along twWwo plane curves. One of
them 1lies in the xl,xs-plane and can be represented in the

form
- - - - 3 3 e . -
X3| + (Xl 18x1 27)x3 16X1 0 (1 2073)

the other lies in the X1s X -plane and can be rebr'esanted

2
in the form

b 2 - 2 3 _ -
X5 + (xl + 18xl 27)x2 + 16x,” =0 . (I-2.74)

If h(u,{) is of the form

h(u,¢) = 1 + ug + u;2 + 3 (£=2.75)
then H(x) 1is singular on the line
x2 =0 (1-2076)
and
X =<2, (1'2077)

19
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on the two curves in thne X, x3-p1ane
x, =3, (1-2.78)
and
(x,+1)(x.+3)% + x_2(x -3) =0, (1-2.79)
1 1 371
and on the curve given by the following pair of equations,
2 2 2 2/, 2,4 2
(-3 [(xy ) (543 + (xp-30x? - 1207 ] - x 2 (x,Pem 2)
=0, (I-2.80)
2, 2 2
(x,-3)(x; +x3 -9) + x, (x,-5) =0 . (I-2.81)
We shall consider the special case where the equation
h(u,g) =0 (I-2.82)

may be solved for u . This will be the cass if

% h(u,g) #0 . (I-2.83)

After solving for u we may express Equation (I-2.82) in

terms of an analytic function o(¢) as
u¢ + o(¢) =0 . (I-2.81)

We henceforth define the functions s(z,{) and h(u,¢)

by
8(z,¢) = h(u,§) = u¢ + o(¢) . (1-2.85)

Gilbert [G.7, p.70] has demonstrated the following

theorem regarding the singularities of a harmonic function.
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Theorem: Let H(z) be a harmonic function given by

d(z) = gaf where the singularities of t‘(u,;)c"1 have a

global representation, h(u,{) = su + o(¢) = 0 . Then the

singularity set © is a developable surface in S .

In the special case where the components u, are given

by Equations (I-2.45) - (I-2.47) the singularity set © is

given by the parametric Equations [G.7, p.65]

2 = (W/2)[6- 1/¢] + ® = 3¢+ 1/¢le’ (1-2.86)
z, = (1u/2)(¢+ 1/2] + i(o - %[c- 1/¢leo’) , (1-2.87)
23 =B . (I-2.88)

3. The Edge of Regression

If ¢ 13 not of the form
2
=8 +bl+c, (I-3.1)

Equations (I-2.86) - (I-2,88), representing the singularity

set S , may be put into tne form

2

z, =¥, (C) + aYi’(c) » (E,C) € C . (1-3.2)

A complex surface which may be representsd by an equation of

this form is called a tangent surface. The complex curve

represented by

zi = Yi(C) ’ C € c) (1’303)
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is called the edge of regression of the tangent surface.

These are natural extensions of definitions from real geom=-
etry. Equations (I-2.36) - (I-2.88) may be put into the
form represented by &Zquation (I-3.2) by making the substi-

tution
p==0" + (" + B’ . (I-3.4)
This gives
2 =0 G + 20?1 + Jpo” (¢Pe1),  (1-3.5)
25 = 19 - 100’ + £ 19°(cP41) + 3 po” (B41) ,  (I-3.6)
z, = -0’ + co” + L™ . (1-3.7)

It follows that the edge of regression is given by

2, =0 - Co' +39"(c51) , (1-3.8)
’ i .2

z, = 19 - i(o’ + >® (¢5+1) , (I-3.9)

zy = -0’ + Co” (I-3,10)

The derivative with respect to ({ of the position vector 2z

can be represented coordinate-wise as
z ' = uio", (I-3.11)

where u, is given by Equations (I=2.45) - (I-2.47). We

shall consider, however, the more general cass where u1

is taken to be any analytic isotropic vector.
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II. THE “ETRIC TENSOR FOR THE EDGE OF REGZRESSION

1. The Six-Dimensional Real Space n6

In addition to regarding the edge of regression as a

~ complex curvs over 3 we may also regard it as a two-
dimensional manifold over r® « The coordinates of a point
(21,22,23) in c3 shall be denoted in R6 by

(xl,xz,xB,yl,yz,yB) o A point on the edge of regression

2

¢ = vl + iv (11-1.1)

shall have the coordinates (vl,vz) on the corresponding
surface.

2. The Metric Tensor in r®

The edge of regression is a two-dimensional surface in

R6 Wwhose metric tensor is given by

axi axi ayi ayi
g . = + o
B 3w® awP  av® agf

(II-ZQI)

We are following the convention of summing upon repeated
indices. A latin index shall take on the values 1,2, and 3;
while a greek index shall take on the values 1 and 2. Using
equation (I-3.11) to calculate the partial derivatives

Bxilava and ayilava and substituting into EZquation (II-2.1)

gives the following expression for the metric tensor,

- 2
Bap = g layo” 1%, - (11-2.2)
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Equation (II-2.2) follows solely from the assumotion that
the functions u, are analytic. Tne assumption that uf
is an isotropic vector has not been used. (The derivation
of this result is discussed further in Appendix A.)

We see that the metric tensor is of the gengral form

_ 1 2
gap = A(v,v )baﬁ R (II-2,.3)
where
w32
A=) luge®™ S, (1I-2.4)
i

Whenever this is the case we say that the surface parameters
are isothermal, [E.l, p.93]. The coordinate curves form an
orthogonal system. When they are spaced accordimg to equal

1 and v2 they

infinitesimal increments in the values of v
divide the surface invo a network of small squares. The
size of these squares may vary as onme moves about the surface.

Let us proceed to evaluate the metric tensor when ui

is given by Equations (I-2.45) - (I-2.47).

uiﬁi =-11; (53-1)(2‘2-1) + IIZ (‘52+1)(E'2+1) + (C

R R R R A R A S R T 33

-} @ e nT e = 2@+ 1), (I1-2.5)

In this case the expression for the metric tenspr becomes

gap =3 (S1%+1)% 107 1 (11-2.6)

ap *
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3. The Assumption that a Vector is Isotropic

For future reference we shall derive a number of equations
that follow from the assumption that a vector N1 is isotropic.
Taking the real part of the equation

NiNi =0 (II-3.1)

gives

Taking the imaginary part of Zquation (II-3.1) gives

RN,IN, =0 . (II1-3.3)
Multiplying N1 by its complex conjugate gives
NiNi = RNiRNi + INiINi (II-3.4)

Using Equation (II-3.2) we obtain

R,RN, =2 ) N, )2 (I1-3.5)
i

and
1 2
N, IN, = 3 E:lni] (I1-3.6)
i
Differentiating Equation (II-3.1) gives
NN =0. (I1-3.7)
Taking the real part of this equation yields

w,’ =0 ; (11-3.8)

4
RN_RN - Igi 1

i1
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whereas, taking the imaginary part yields

mN.’+ INRN ‘=0, (1I-3.9)

RN, IN, 0y

Let us consider the real and imaginary parts of Niﬁi' .

One has

R(Niﬂ'i') = aninni' + mimi’ , (IT-3.10)
and

I(Niifi') = -Rnimi’ + mim«i’ (I1-3.11)

Using Equations (II-3.8) and (II-3.10)

. _ N § ' -
RNJRNj = INJIN‘1 R(NJN'J ) » (11-3.12)

and from Equations (II-3.9) and (II-3.11)

N

¢ _ . I=-l ‘Y. -3,
RNJINJ = mjmx‘1 ZI(Njﬁ'j) (II-3.13)

4. The Metric Tensor in R3

Let us consider the projection of the edge of regression

onto the real space 33 e This time it is necessary to use

the assumption that u is an i1sotropic vector in order to

i
obtain a result wnich closely resembles Zquation (II-2.2).
The metric tensor in R°> 1s given by
3
X &xi

= __1

Sap = ;;E>S;E (II-4.1)

We will denote the right hand side of =quation (I-3.11) by
Ni , that is
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4 i II-4.2
z," =ue” = N1 . (II-4.2)

Substituting the partial derivatives Bxilbva as de-
termined from Equation (II-4.2) into Equation (II-4.l1) gives

the following expression for the components of the metriec

tensor
812 = 8y = -FN;IN, (II-h.4)
8yp = IN,IN, (II-4.5)

At this point by means of Equations (II-3.3), (II-3.5) and
(II-3.6) we introduce the assumption that uy is isotropic.
This gives by (II-3.3), (II-3.5), and (II-3.6) that

1 2
Bap = 5; Ny 1% 8 (I1I-44.6)

Substituting for Ni the expression of Equation (II-4.2)

gives the following result for the metric tensor
2
1
Bap = Ez luge™ 8,0 . (IT-4.7)
i

(The derivation of this result is discussed further in
Appendix B.)

Equation (II-4.7) is of the form of Equation (II-2.3)
where A 1s given by

\ = %X lu o™ 12 . (II-4.8)
1

27
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It follows that vl and v2 are isothermal parameters for

the surface under consideration. 1In the special case where

u, 1is given by Equations (I-2.45) = (I-2.47), i.e. the

i
Bergman formulation, the metric tensor is given by

gap = & (161%41)% 10" 12 6y (11-4.9)

S. The Metric Tensor in 13

Similarly, we may consider the projection of the edge
of regression onto the imaginary space I3 « The metric
tensor for 13 is given by

%3 3y
8ap = 290 298 ° (I1-5.1)
Substituting the péartial derivatives ayi/av‘JL as determined
from Equation (II-4.2) into Equation (II-5.1) gives the fol-

lowing result for the metric tensor:

812 = 821 = mlRNi » (11‘503)
gy = RN,AN . (II-5.4)

Using Equations (II-3.3), (II-3.5), and (II-3.6) gives:
1 b
Bep §§ Ny 1% egp - (1I-5.5)

Wo see that In the case of the imaginary space we obtain

the same metric tensor as for the real space. (The derivation

of this result is -discussed further in Aopendix C.)
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III. CHARACTERIZING THE SINGULARITY SETS

1. The Edge of Regression is an Isotropic Jurve

Considering the points on the edge of regression as

points in the complex space c3 ,» the length of an infini-

tesimal line segment is given by
dz,dz, =2z, 'z ’(dc)2 (I11-1.1)
171 1% ’

and substituting Equation (II-}4.2) into this gives

dzidzi uiui(o" dc')2 . (I1I-1.2)
Purthermore, since
ugu, = 0 (III-1.3)

1t folldws that

A complex curve that satisfies this equation is called an

isotropic curve [K.3, p.186]. 1In particular the edge of

regression represented by Zquatigns (I-3.8), (I-3.9) and
(I-3.10) is an isotropic curve. From the following lemma
we have that any isotropic analytic curve is the edge of

regression of some singularity set.

Lemma: Any isotropic analytic curve may be expressed

using Ejuations (I-3.8) - (I-3.10) .

29
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Proof: Equatiow (ITII-1.l) may be written
r 0152
z 'z ‘d¢ =0 (III-1.5)
It follows tnat
(z])2 + (z;)z + (zé)z =0 (ITI-1.6)

Using Equation (III-1.,6) define the parameter & as follows,

21=12 -z
192 3
E = = = — 7 (III-1.7)
/ z3 zl+122
A change of parameter given by
¢ = ¢c(&) (I1I-1.8)

leaves the form of the second and third members of Equation

(III-1.7) invariant. Equation (III-1.7) can also be written

as
zi - 1zé = gz; , (I1I-1,9)
' 4 = 4 -
Ezl + 1522 23 o (ITI-1.10)
Defining p* as
z'
pr = -2 (TII-1.11)

and solving Equations (III-1.9) - (III-1,11) simulteneocusly

’ ’

4
for Z) » 2, and 23 yields

(52-1)5" s (IT1I-1.12)

-
N == o=

(£241)p” , (III-1.13)



NRL REPORT 7651 31

2! = gﬁ‘" . (ITI-1.1L4)

Integrating Equations (T1II-1,12) - (III-1,14) gives

zi = £ - gp‘ + % p”(gz—l) + s (IIT-1.15)

2z, = 1p -1’ + % 1p7(&%+1) + le, » (II1-1,16)

23 =-p’ + £" + oy, (II1-1.17)
where €y » S5 s and c_ are arbitrary constants of inte-

3

gration. R(&) may be expressed in terms of a function o
asg

E=o +% (62-1)c1 - % (§2+1)02 + Ec (111-1.18)

3 L
Substituting Equation (III-1.18) into Equations(III-1.15) =
(ITI-1.17) will give equations which are identical to Equa-

tions (I-3,8) - (I.3.10).

2. Minimael Surfaces Characterize the Singularity Sets

Tneorem: A complex curve in 03 is an isotropic ana-

lytic curve if and only if its projection onto the real space
3
]

is a minimal surface. Two isotropic analytic curves

with the same projection in ®> differ only by sn imaginary.

translation.

Proof: First we will assume that we have an isotropic

analytic curve in e3 represented by

z, = zk(C) ’ © (III-2.1)

where
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dzkdz_k =0 . (I1I-2.2)

zé can be expressed as

ax 2
' (II1-2.3)

Substituting this expression for(/zé into Equation (III-1.6)

yields
(axk - ) (axk ) =0. (III-2.4)
Expanding the left hand side we obtain
o e s e S S (III-2.5)
avl vt vl av? vl aw2

Substituting Equation (II-4.1l) into Equation (III-2.5) and
setting the real and imaginary parts individually equal to

zero gives

We see that vl and v2 are isothermal parameters for the

surface in R3 « Also, the surface is represented by the

harmonic functions

x, = xk(vl,va) . (111-2.8)

A surface expressed using isothermal parameters is & minimal
surface if and only if each coordinate function xk(vl,vz)
is & harmonic function (0.1, p.1099]. It follows that the
surface under consideration is a minimal surface.

Let us now assume that we are given a minimal surface
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3

in R . Any minimal surface may be represented by tquation

1 and vz

(If1-2.8) where xk(vl,vz) is harmonic and v
are isothermal parameters. Now introduce yk(vl,ve) as the

harmonic functions conjugate to the x . The Ty are de-

k
terminsd to within arbitrary constants. An analytic curve
in c3 whose projection onto RB is the given minimal

surface is given by
2, =% + 1y, . (II1I-2.9)

Let us proceed to calculate dzkdzk o« Using the assumption
that x, and y, are conjugate harmonic functions and re-
peating the calculations represented by Equations (III-1.2)

and (III-2.3) - (III-2.5) we obtain

3x, ¥x 3x, 3¥x ox, ox
dz,dz, = —3 — - —5 —% - 21 — % (I1I-2.10)
kK ayt 2y 3v" v v v

Substituting Equation (II-4.1l) into 4this equation gives
dzkdzk = (811'822) - 2ig,, . ' (IrI-2.11)

Since we have isothermal parameters we may use Equations

(II1-2.6) and (III-2.7). This gives:

dzkdzk = Q . (III"2012)

Therefore our analytic curve is also an isotropic curve,
This completes the proof.
The results of this and the previous section lead us to

the following

33
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Theorem: Assume @(() 1is not of the form ac2+ b + ¢ .

Then & singularity set has an edge of regression which is &n

isotropic curve in 03 and its projection onto 33 ig_g

minimal surface. Any two singularity sets that determine in

this way the same minimal surface differ only by an imaginary

translation. Any minimal surface will characterise in this

way a singularity set.

3. The Cone as a Special Case

We will now consider the case where ¢ 1is of the form
o = acz +bf +c . (III-3.1)

We may perform the followling change of parameter on zZquations

(I-2.86) « (I-2.88)%
B =00 -0 +o” . (III-3.2)

we will then have

z) =¢-a+ 2 o(c?1) , (III-3.3)
22 = i(c+a) + % a(c2+1) R (II1I-3.4)
23 = «b + UC ° (III‘B.S)

These equations are of the form:

2, =V, + cui (III-3,.6)

ang represent a family of cones which differ only in the

location of their vertices, The vertex of a cone is given
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by
v, =c-a, (IIL{=3.7)
v, = i(c*a) , (I1I1-3,.8)
V3 = ‘b 3 (III-309)

The family of isotrovnic vectors ui determine the orienta-
tions of the generators of a cone., wWe see that in this case
the singularity set may be characterizel by a point, the

vertex of the cone,

35
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IV. THE EXTRINSIC GEOMETRY OF THE EDGE OR REGRESSION

1. The Geometry of the Frojections onto 93 and I3

The extrinsic geomstry of a surface may be specified
by its second fundamental form ?aﬁ . Which is dwefined by

the formula

2_1 P 5.3 a2, J
_{ ¥x Sy Ox~ 3¥xY ¥x i
vas = (3ooa0p - F oy aep) (TV-1.1)
v av dv dv' dv v

where y 1s a unit vector normal to the surface. Tne

second fundamental form may be interpreted gsometrically
by the fact that the curvature x of a geodesic passing
through a point in the direction of a unit surface vector

a

n is given by the formula

x = bapn“ﬂﬁ. (IV-1.2)

The second fundamenta® forms and also the unit normal vectors
for tne projections of the edge of regression onto the spaces
#3 and 13 are calculated in Appendices D, E; and F.

For both ®° and I3 the components vl of the unit

normal are the same, and are as folllows,

1
1 2v
v 1+(vl)?;$x§li (L)
2 _ -2v° v
VT 1+(v1)2+(v2)2 (TV-1.4)
1,2 2,2
93 = 1"‘(v ) -(v ) (IV'loS)

1+(v1)2+(v2)2
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3

For R it i3 found that the components of the second

fundamental form are

b,, = =b__ = p” (IV-1.6)

11 22

b12 = b21 = «Q (IV-1.7)

where P and Q are the real and imaginary parts of o .
3

For I the second fundamental for+m has the components

- - ~
by = -b,, =17, (Iv-1.8)

byp = by, = P (1v-1.9)

A minimal surface may be defined as a surface with its mean

curvature M 1identically equal to zero,

=
]
o 8]
aQ
v
o
1}
o

e (IV'lolo)

Since the parameters are isothermal one may express this

condition as

aa

Observing that the set of Equations (IV-1,6) and (IV-1.7)
and also the set of Zquations (IV-1.8) and (IV-1.9) satisfy
Equation (IV-1.1l), we have an additional demonstration that
the surfaces in ®3 and & are minimal surfaces.

In Appendix G we calculats the Gaussian curvature for

the surfaces in R3 and 13 « The result, which is the
same in both casés, is given by the formula

~L(uuju,u,-u,uu,a;)
g o CHlugugugug-uu gy

= — (IV-1.12)
(u, 4, )30 " 3"

37
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This expression for the Gaussian curvature is nowhere posi
tive. Evaluating dquation (IV-1.,12) in the special case
wnere u, is given by Zquations (I-2.45) - (I-2.47), we

i
obtain
e § oo @]
3 (To)beBm
-32[} (2€T+1) -¢t] -16
= _ —— = s . (Iv-1.13)
(cT+1) e ® (el%+1)™ o™ |

At a point determined by the parameters v® the sur-
faces in 33 and I3 have the same normal i 'R Since
they are minimal surfaces with the same Gaussian curvature,
they have the same local shape. It is saddlqpdike with
principal curvatures of the sameé maenitude. By comparing
their second fundamental forms, we see that the orlentations
of the two surface elements differ by forty-five degrees as

is shown in the diagram on page Lh.

6

2. Tne Geometry of the Edge of Regression in R

In Appendices H, I, and J we calculate the Gaussian
curvature for the edge of regression in %6 « The. result
is given by the formula

2(Uz U u a =u,uu ay)

Kﬂijji"jj. (IV-2.1)

r—n

(w,3,)° o7

This expression for the Gaussian curvature is nowhere posi-

tive, It is one-half of the result obtained for the pro-

jections of the edge of ragression onto R3 and 13 s hence,
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-curve

v1

=-curve

Surface element in I3

Diagram of surface elements in @3 end I’ for the point

with surface coordinates v% .
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6
for R one has

-8
= (Iv-2.2)

In Appendix K we calculate the curvature x of a geo-

desic passing through a peint on the edge of regression in
6

®  , in the direction of the unit surface vector e , as
U u u,
- 2
=220 - ) 10t 10, (1v-2.3)

where A, is given by Equation (II-2.4). We see that the
curvature x is independent of the direction 1% . A

point with this property is called an umbilical point.

An isolated umbilical point on a surface in R3 is a
point of positive Gaussian curvature. If & surface in R3
is not a plane, and if every point is an umbilical point,
then it is a sphere. This is not so, however, for a surface

N

in ® with N > 3 . The edge o! repsression, which is a

surface in 36 ,» glves us an example.

Tneorem: For the surface in 2% determined by Zqua-

tions (I-3.8) - (I-3.10) the Gaussian curvature is nowhere

positive and every point is an umbilical point.

In order to understand this we refer to the diagram on

6 is determined

by tane e@ontributions from g3 and I3 « Tor 1N = 3}

page Lli. The curvature of a geodesic in R
there
is a naximum contribution from 33 and no coqtribution from

13 e« For 1= nz we have the reverse situation. For an
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"1 located at some intermediate position between 3} and B?
the econstant curvature in 36 results from a composition of

the curvatures in R3 and 13 .
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V. EXAMPLES OF MINIMAL SURFACES

l. To Find v Given a Minimal Surface

Suppose we are given a minimal surface which is repre-

sented by parametric equations in the form

xy = x3 (wl,w2) . (V-1.1)

The three components of a unit normal v to this surface
are surface scalars. In terms of the isothermal parameters
vl and v2 the components v are given Yy Equations

(IV=1.3) - (IV-1.5). We may use the equations
v(wl,w2) = + i(v1,v2) (V-1.2)

to find the functions wo(vl,v2) . From the second fundamental
form in the w&coordinate systenm, bEY , we may find the
second fundamental form in the v%coordinate system, baB ’

by using the equations

MO % Y

b L= b . (V"103)
o av” 6Y’avB
Theorem: Given a minimal surface whose second fundamental form

has components b,g with respect to isothermal parameters, let
"=ty - b2 . (V-1.4)

characterized by the given minimal surface. Moreover, the most

H(z) = By ] + Ho(2) (V-1.5)
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where H,(z) 1is an arbitrary entire harmenic funckion.

2. The Oatenoid

As an example wWe wWill consider a catenoid as the given
minimal surfacs., We may represent this surface with the

set of equations

x, = sin W cosa wh ’ (v-2.1)

x. =W, v-2.2)
2

x = cos w? cosh wt . (V-2.3)

Taking the partial derivatiyss“ef these equations with re-
spect to w® and saubstituting the resulting expressions
into Bquation (II-4.l1l) gives the expression for the metric

tensor, namely

= (cosh wl)2 ] (V-2.4)

ap ap °

Since this is of the form of Zquation (II-2.3) we have iso-

thermal perameters with A given by
A = cosh® wl . (V-2.5)

In Appendix L we find that the components of the unit vector

normal to the surface are

2

yl = - 8in W T (V=2.6)
cosh w

v2 = tenh w' . (V-2.7)
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2

W = - SEE—E—I , (v-2.8)

cosh w

and that the components of the second fundamental form are

given by
L - J 3t
by) = =by, = -1, (V-2.9)
NG -
b12 = b21 0. (V=2.10)

The catenoid may also be parameterized in terms of the iso-

thermal parameters v® , In tnis case the components of the

unit normal vector are given by Equations (IV-1l.3) - (IV-1l.5).

Tde relationship between the w® and the v® parameteriza-

tions is given'ty Equation (V-1.2) from which we have
vl(wl,wZ) _ vl vl,v2) (V-Z.il)
Vwlwl)  3(el,v2)

v2(vi,v2) . (V-2.12)

v2(w1’w2)

Substituting squations (V-2.6) - (V-2.8) and {IV-1l.3)
(IV-1.5) into Equations (V-2.11) and (V-2.12) gives

tan w2 =‘ff§? s WV-2.13)

and

gann wh = {&=8lL (V-2.14)
1+C¢

Equation (V-2.1llL) may be written as

1 _ (8-¢)
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We may express the parameters we using the complex variable

n = wh + 1wl . - (V=2.16)

Substituting Equations (V-2.13) and (V-2.15) into the
identity

tan 1w1-tan w2

tan iT

tan (Jwi-w2) = (V-2.17)

l+tan 1w1tan w2

yields

(¢=¢) . 5+C
1+¢C 1-¢T

1 + (€=€)(C+¢)
1-(¢%)

B — 2= 2

Con -+ wl- ol -

1+32452-(¢T)2

tan in

=2
- -2%1% 12 = _-.2_% , (v-2.18)
(1-¢7)(1+¢7) 1-¢

which in standard quadratic form, bscomes
{tan iTI)C2 ~2( - tan 1M =0 . (v-2.19)

The solutions to this equation are given by:

_ 1+ J1+ta§2 im _ 1 X sec in

tan im ~ tan im

1
12355 IM _ cos int
=TSl in - sin In (v-2.20)

gos in

We may simplify the two solutions as follows:
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cot % in (v-2.21)

Pay
i

(v-2,22)

)
1}
|

B

ol
e
=

9nly Equation (V-2.21) checks with =guation (V-1.2). The
other solution 1is therefore extraneous. Solving Equation

(V=2.21) for , we have

1

= -2f cot™ " ¢ . (V-2.23)
Differentiating Equation (V-2.23) with respect to vl and
v2 gives

-}
0 - 2, (v-2.2h)
ov 1+
and
a7 -2
_‘_272 2 L[] (V-2.25)
ov 1+4¢
These Equations can be written as
1 2
ow W 2
— = 3 -I (V"2.26)
avl oy (1+52) ’
and
2 1
ow dw 2
= - =...'..‘R L] (V-2.27)
1= - 27 2n ()

Substituting Equations (V-2.9), (V-2.10), (V-2.26) and (V-2.27)
into Equation (V-1.3) eives the second fundamental form in

the v%-coordinate system, nameX
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by, = by, = R (T#CZL)Z) , tv-2.28)

and

b

A
b__=-=I . V-2.29)
1221 (1+c2)2) (

The derivation of this result is didcussed further in Appen-
dix L. Using Squation (V-1.4).we obtain the function o

modulo & quadratic by

vﬁ’ = ?I;‘L:'z? ° (V"2030)

3. The Right Helicoid

Another example of a minimal surface is the right

helicoid. It may be represented by the set of parametric

equations
x, = wl cos wl s (v-3.1)
x, = w' sin w2 , (v-3.2)
2
13 = kw . (V-303)

Taking the partial derivatives of these equations with
respect to w® and substituting the resulting expressions
into Equation (II-y.l) gives the expression for the metric

tensor, namely

811 =1, (V=3.4)

47
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g =g _ =0, (Vv-3.5)
_ 1,2 2
In Appendix M we find that the components of the unit vector

normal to the surface are given by

2
i = —-EIE%E—S—I72 ’ (V=3.7)
[(Ww)T+k“T
2
2 -k cos W .
and
3 "1
T T a2 e

and tnat the components of the second fundamental form are

given by

bil = bze =0, (V-3.10)
and 1

biz = bgl = -k [(wl)2 + kz] z (V-3.11)

Wo may also parameterize the right helicoid in terms of the
isotnermal parameters v® . For this parameterization the

components of tne unit normal vector are given by Equations

(IV-1.3) - (IV-1.5). The relationship between the w® and

the v® varameterizations is given by Equation (V-1.,2) from

which wa obtain
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vl w?) | vl vd)
vl(wl,we) vl(vl,vz)

, ' (v-3.12)

and

3,.1 .2 3,1 2
vo(w,w) _ v (v ,v7) (V-3.13)
vz(wl,wz) v2(v1,v23

Substituting Equations (IV-1.3) - (IV-1,5) and (V=3,7) =
(V-3.9) into Equations (V-2.12) and (v-2.13) gives

1 1,2 2,2
W 5 = l-(v )1-(v ) . (Vv-3.1h)
k sin w-~ 2v
and
1 ' 1.2 2,2
W 1=(v>)"=(v“)
= . V-3.
— - (Vv-3.15)

These equatiorns can ke expressed as

2viwl = k sin wl [1 - (vhH2 . (v2)2J , (V=3.16)

2v?wl =k cos W [r - w12 - (vD)B] . (v-3a7)

2

Eliminating Ww° we have

2
v (D2 (B2] =1 [1 - D2 - ®2] . (v-3.18)

Solving for wl gives

1 ik[l-(vl)z-(vz)zl
L = 2[(v1)2+(v2)2]1/2 (V'Bolg)

Eliminating wl from Equations (V-3.16) and (V-3.17) gives

49
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1l
tan wo = =, (V-3,20)
v
or inverting this
1
W = tan™t L | (v-3.21)
v2

Taking the partial derivative of Equation (V-3.19) with re-

spect to vl .and v2 gives

awl  —kvll1+(v})2+(v?)?]
= R (v-3.22)
1 2[(vl)2+(v2)2]3/2

ov

and

1 2 1,2,;.242
v~ _ =kv [1+(v7)S+(vT)°]
- 2 2 3/2 o (V-3'23)

e 2l (vh) k(v

Performing these operations on fquation (V-3.21) gives

2 2
oW _ 1 1) . v ]
avl 1 _(l]_-_LZ (V2) (Vl)2+(V2)2 ’ (V 3.2)4_)
(V2)2
and
2 - 1
w 1 1 _ v
i - . (V-3.25)
we  ,, Y° [(v2)2] D252
(v<)

Substituting Equations (V-3.19), (V-3.22) - (V-3.25), (V-3.10)
and (V-3,11) into Equation (V-1.3) gives the following expres-
sion for the second fundamental form. in the v%-coordinate

system,
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b = =b = 2kvlv2 535 ? (V-3.26)
11 22 [(V1)2+(V2)2]
k[(v2)2-(v1)2]
b b = — . (V-3.27)

(Tne derivation of  this result is discussed further in Appen-

dix M.) Using =Zquatior (V-1.4) we obtain

o” =k [(v1)2 + (v2)2]3{2v}v? « [(+1)2 - vB)2] 1}

kel (v 22 (vl (192 + (1v2) 2

]
[(vl)z-(ivz)z]2
ikl (vi)-1(v2) ]2 = ik (v
= = . "3028)
[vl-iv2]2[v1+iv2]2 (V1+1V2)2

Using iquation (II-1.1) we may express this as

(V'3029)
¢
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VI. FURTHER COYSID&RATIONS

.3

It has been shown that a minimal surface in &~ will
determine a singularity set. However, a minimal surface
will be determinsd by a boundary curve. This is known as
Plateau's problem., It often but not always nas a unique
solution. Wnen it does have a unique solution, & closed
curve in R3 is sufficient to determine the singularity
o3

set in . This inay also be a fruitful way in which to

characterize the singularity sets.

The singularity set is a four-dimensional manifold in
3
c

the six-dimensional space . It will, in general, inter-

sect the real space 23 .in a ons-dimensional curve. In other
words the singularity set for a harmonic function on 83 is

in peneral a curve, One area for future study is to cate-

vorize these curves in 33

Boundary curves of the minimal surfaces are sufficient

to determine the singularity sets. This raises the question

as to whether a singularity set in R3 , which is also &

curve, will determine the singularity set in 03 .

Another possibility for further developments is tne ex-
tension of the study of the geometry of singularities to
harmonic functions in four d’nensions. Gilbert [G.2,4] has
introduced an operator wnich is a four dimensional analosue
of the Bergman-wWhittaker operator. It maps holomorphic
functions of three complex variahles f(r,M,E) into harmonic

functions in four variables. It is expressed as
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H(z) = - =5 Jﬁ %? Jj %§ f(r,n,&) (VI-1.1)
b g l=1 [n]=1

T = Nu(ﬂ,g)zu s B =1,2,3,4 , (VI-1.2)
NN = o -1,
Wy =0 (VI-1.3)
Let
h('r:'n:g) = S(E_:‘“:‘E) =0 (VI-l.LL)
be a global defining function in 03 for the set of singu-
larities of f(¢,n,£)n-lg'1 » then H(z) 1is regular for all

points 2z which do not 1lie on the set
S = Uq,g {51 s=o} n {£| Sn=°} n {gl s€=o} . (VI-1.53)
If we consider the case where the equation
h(r,n,&) =0 (VI-1.6)
may be solved for r-, we may express S(z,M,£) in the form
S(z,M,&) = M&r(z,m,&) + o(n,8) , (VI-1.7)

where o(",£) 1is a holomorphic function of M and £ . A

possibility for the components of the isotropic vector N

ars
N, =1+ 21, -1,
1 * (VI-1.8)
1
N,=1(1-5), (VI-1.9)
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- % , (VI-1.10)

N, =1 (l + l) . (VI-1.11)

The sincularity set & will then be given by the parametric
equations

21(1+ﬂ€)u+(ﬂ+€)¢+(l-n2)on+(1-€2)@

£, YI-1,12
1 -2(n+&) ( )

21(l-ﬂ&)u-(“+€)w+(l+n2)¢n+(l+€2)¢€

z, = =21 (n+&) ’ (VI-1.13)
, = 1(N-E)u+"9n-Lop , (VI-1.1L)
3 -(n+£&)

ZLL S ¥ (n,M,8) € CB . (VI-1.15)

B. L. Tjong in her dissertation [T.2] has introduced
an operator which maps holomorphic functions in two variables
onto solutions to the following elliptic partial differential

equation,

2

3%;%2; +F(z)y =0 1 =1,2,3 (VI-1.16)

wnere F(z) is an entire function in 03 . When this equa-
tion reduces to Laplace's equation, Tjong's operator reduces
to tne Bergman-Whittaker operator. This suggests the possi-
bility of generalizing the theory of singularitiss from

harmonic functions to solutions of tne above elliptic partial
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differsantial equdtion.

A similar development may be rossible for tne four-
dimensional case since Colton and Giltert {C.G.l] ndve in-
troduced an operator wnhich is a four dimensional analogue

of Tjong's operator.
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APPuNDIX A

The Metric Tensor in 36

As sn alternative notation we shall denote the 3ix com=-
ponents of a position vector in Ré by x1A where 1=1,2433
and A or any other capitalized roman index takes on either
of the two values denoted by R and I . These components

are defined as

xiR =x. , (A=)

i1
x

Yi . (4=2)

Por their partial derivatives we shall use the notation

iA
A o
xih = = (4-3)
a wa
From the real and imaginary parts of Equation (I-3.11) we
have
iR _ w
X = Ruiw R (A=)
1T _ w )
x" = Tue . (A-5)

R and I are used to denote thne real and imaginary parts of
an expression. Applying the Cauchy-Riemann equations to

Zquatiors (A-l) and (A-5) gives

x;I = Ruim" , (2-6)
xR = J1ue” . (A=7)
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Zquations (A-L4) - (A-7) may be expressed as
X = u, o . (A‘S)

As one moves along a row in the above matrix the index a
takes on the values 1 and 2 , and as one moves down a'col-
um tne index A takes on the values R and I .

The metric tensor for the edge of regression in 96 is
given by

_ 1A 1A

g

Substituting Equation (A-8) into Equation (A-9) gives
= u,o ue” . (A-10)

After performing the indicated matrix multiplication we nave

Re(uicp" )+12(u1cn" ) 0
=Z . (A=11)
i 0 Rz(uicp . )+I¢(uio" )
ap

gap

This result simplifies to ZIquation (II-2.2)
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APPENDIX B
Tne Metric Tensor in R
The metric tensor for the edge of regression in R3 ‘is
given by
- iR_1R
gaﬁ x x‘5 . (3

Expressing those components of Equation (A-8) where A =H

we nave
iR we ;
x = [R =T : . B=2)
{ ]a u,e (

Using the notation indicated in Zouation (II-4.2) we have

xiﬂ =R -I] W, . (B=3)

Substituting this equation irto Zquation (B-1) yields

R RNiRNi -RNiINi
=l |y Ro-1l, N (B=l)

af

gaﬁ

Using tquations (II-3.3), (II-3.5), and (II-3.6) we intro-
duce the assumption that uy is isotropic. Equation (II-j.6)

followd,
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APPENDIX C
3

The Metric Tensor in I

3

The metric tensor for the edge of regression in I is
given by

_ inin

gaﬁ = a B . (c‘l)

Expressing those components of =Equation (A-8) where A = I

we have

iT — L4 Oa
x "~ = [1 R]auiw . c=2)

Using the notation indicated in Equation (II-L.2) we have

iI - /‘-
xa = [I R]a Ni . v 3)

Substituting this equation into Equation (C-1) yields

I INiIN1 INiRN1

= Ni[I R]ﬁ Ni = . (C")-F)

R a RNiINj_ RNiRNi

Bap

ap
Using Equations (II-3,.3), (II-3.5), and (II-3.6) we intro-

duce the assumption that uy

follows.,

is isotropic. Zquation (II-S5.5).
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APPENDIX D

Tne Calculation of xiap in 3
9

In studying the geometry of a surface it is useful to

calculate the covariant derivatives of the quantities x;R .

In ?3 they are given by

iR iR 6v_iR_3JR_JR
= - N D-
X086 Xap X Xy %e6 (D-1)
Tne quantities xgg denote second partial derivatives
iR 32x IR
af avaav

Using the fact tnat we have isothermal parameters, Squation

(D-1) becomes

iR _ 1R _ -1 iR JR_JR )
xa,p = xaﬁ A X, Xy xap (D=3)

where \ 1is given by Equation (II-4.8). From fquation

(B=3) we have

xiR =R «I «I =R]

ap apNi * (D-4)

Proceeding to evaluate the right side of Equation (D=3) we

have

+« R

JRUJR _ - - -
x] ng = N, [R I -I -R]

.]:6

s
aﬁNi

RN(RN;  -AN;INj  -RNjIN§ RN RNj

-IN,RN IN,IN' IN,IN IN ,RN | - (D=5)
I 7 73 3

6,0.(3;
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Using the assumption that u is isotropic we substitute

i
using Zquations (II-3,12) and (II-3.13).

R I I -R
JR_JR _ pR
*s *ag 3NN (D=6)
-I R R I

iR

Multiplying on the left by x6 we have

iR_JR_JR _ 1y 7/
Xy Xp xap = [R -I]5 N1 = NJNJ
-1 R R I 5,ap
R -1
- %Ninjns . (D=7)
-I -R ap
Using Zquations (II-4.8), (D=4) end (D-7), Equation (D=3)
becomes
R -1 =
N,N,N
iR R N I -
Xa,p = (- =) - (0-8)
-1 R k' k

ap

Substituting Equatiorn (II-4.2) into the preceding result

gives
R -T !
xghg = (u - L0y o (D-9)
I 5 Y "
1R

Evaluating x in the particular cass where u is given

a,p b
by Equations (I-2.45), (I-2.46) and (I-2.47) we nave
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[~ -

¢+¢
R I
R 1(¢-C)
a,f -1 -R
ap
| 1-¢C |

We may also express this resuls in terms ov vl, v, P

N

1+¢T

2

Q Dby substituting Equation (II-1,1) .

2v1
iR 1.2, 221" 2 pY
X6 = [1+(v ) +(vS) ] -2v o
1-(v1) 22 (v2)2)

(D-10)

and

(D-11)
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APPENDIX E

i1 3

The Calculation of x in I
— a’ﬁ Pmiaiey

it
In the iraginary space 13 , tne formula for x is

a,f
11 1T -1_4T_3T_jI
= - P E-
L S x, xaﬁ (E=1)
From Equation (C=3) we have
1T _ : o
xa.t3 = [I R R -I]aﬁ Ni o (B=2)

Proceeding to evaluate the right side of 2quation (E-1) we

have

JI_3I
Xy xa‘3 3 -I]a‘3 Nj

]

=
—
(]
2]
o}

I ,IN IN RN/

1™y Ny IRy -INGINg

= (::'3)
RN,IN' RN RN ¢ RN RN’ RN IN'
I3 h I3 33
6,0.[‘3 *
Using the assumption that u, is isotropic we substitute
using Equations (II-3.12) and (II-3.13).
R I I =R
JILIT . 1y5w -
X5 Xap 5 NJNJ (E=L)
- R
I R I 5,ap
Multiplying this equation by Equation (C-3) we have
11 R
1T_31_ 31 _ ) R ) @
R I
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Using Equations (II-4.8), (£-2) and (3-5), Equation (2-1)

becomes
I R
in _
a,f ~ R I
- ap

N~/
. NN N
i- N, F

—
"

k

(E-6)

Substituting Zquation (II-i.2) into the preceding result

gives
I R
ir
= u
Tarf R -1 (
- ap
it

i u, u

——
| R
k7k

(E-7)

Evaluating xa"3 in the particular case where uy is given

by Equations (I-2.45),(I-2.46), and (I-2.47) we have

[ T ]
I R m
1T _ R o)
*a,p = 1{c-2) 1+6C
-I
ap
| 1-¢C | 1

(£-8)

Substituting Equation (II-1,1) we may express this result as

xifﬂ = (1+(v1)2+(v2)2)

—

oyl

-2v2

1-(v1)2-(v2)2)

QIII Pﬁl
. (E'g)

P'I -Q'I aﬂ
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APPENDIX F

The Second Fundamental Forms in R°> and I-

The second fundamental form baﬁ of a surface in RB
or 13 is defined by the equation
1A i
X =b v (F-1)
a,p ap

where vl is a unit vector normal to the surface. Observe

that the expression

-1
a1+ h?2 4e)?] -2v2 (P-2)

1,2 2,2
[1-(vD%-(v?)? |,

which appears in Equation (D-11), is a unit vsctor. It fol-

lows that the second fundamental form in R3 is given by

Pﬂl -Q',

baB - ") n (F-3)
B YR

Likewise, from Equation (£-9) it follows that the second
fundamental form in I3 is given by

IVQ’I PIII

baB ) l. ”r " (F-L)
Po-Q ap .
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APPENDIX G

The Gaussian Curvature in R3 and 13

In QB We may u-.. the rollowing formula for the Riemann

curvature tensor [G.l, p.l55]

- IR £IR _ xI1R ,iR

[} (G"l)
RGB’W- a,\ Brp ai £,A

%
Substituting Equation (D-9) into Equation (G-1) gives

[0 0 0 0]
0 =RR-II RR+II O u,uu; )
Rygay = uy - 2Ll o (g-2)
aBM " | 5 RR+II -RR-IT O u i,
_O 0 0 Q-aﬁ,ku

Wo are led to the following formula for the Riemann curvature

tensor in 23 :

0O 0 o0 0
1,1~ bd 4
0 =1 1 0 1—" “1ui“j“j o —wr
Raﬁku = uiui - = 9 Q . (0-3)
0O 1 -1 o u Y
[0 0 0 Ogp,au

In the imaginary space I3 the Riemann curvature tensor 1is
given by the formula

= xiI LiT | 41T LiT (G=L)

Rapan = Fa,a%g,n = Fa,u™e,A

Substituting Equation (E=7) into Equation (G-4) again leads
to Equation (G=3).

The Riemann curvature scalar is given by the formula
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ap BA (G-5)

R = Rogapn®

Since we have isothermal parameters, g?ﬁ is given by

ap _ ,-1.af

g A 6 L) (G-é)

Substituting Equation (G-6) into Equation (3-5) gives

aﬁﬁa . (G'"?)

We ottain a formula for the Riemann curvature scalaw by
substituting Squations (II-4.8) and (5-3) into Equation (G-=7).

8 (uiﬁ_{u jﬁj-ﬁiu{u 363 )
R = (ukﬁk)B" 1".611 (G'B)

The Gaussian curvature of a surface is eciven by the formula
K=-3R. (3=9)

Substituting Zquation (G-8) into Equation (5-9) gives Equa-

tion (IV-1.12) as a formula for the Gaussian curvature.
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APPENDIX H

iA
The Calculation of X, B in Q6
’

In Qé the covariant derivatives of the quantities

xiA are given by the formula

ia _ 1A _ 6y, 1A _JB_JB _
xa,ﬁ xaﬁ g xéAxv xaB . (3-1)
Tne quantities xig denote ssecond partial derivatives.
2_1iA
A 2x (H-2)
af  ay@ayf

Using the fact that ws have isothermal parameters in which
case the metric tensor is given by Equation (II-2.3), Equa-
tion (H-1) becomes
1A _ 1A -1 iA JjB_JR

xa’ﬁ - xap - A X5 x6 xaﬁ L] (H-B)
Taking the partial derivative with respect to v‘3 of each
side of Egquation (A-8), we obtain

$A R -1 -1 ~-R

x = N = 11,12,21,22 .
aB I R R -1 1 af sley,cl,

#9 proceed in evaluating the right side of Zquation (H-3)

B3 _ | R I R -I -I -R ,
x6 xa‘3 = NJ N
-1 R 6B I R R -1 B,ap
R -I -I -R _
= N N, . (H-S)

(H-)
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iA
“fultiplying on the left by X we have

\

R -I R -I -I -R
<1A )3 1B

5 78 Tap

]
1
=)
Cde
=
~

I R 11t R R -1

NN.N. . (H=6)
- 1755
ROR -If, o

(R -1 -1 -3
I

Using Zquations (II-2.4), (H-i) and (H-6); Zquation (H=3)

ktecomes

R -I -I -R N,N.N?
xgho = {_ ] (n; . -%rﬁ—l) : (H-7)
I R R -I A,ap Nk

Substituting Equation (II-}4.2) irto the preceding equation

gives the result

A R -I -I -R u,uul
Xgrg = | P e . § VLG )
I R R -Ij, ¢ e

Tnis result depends onily upon the assumption that the edge
of regression-is .an analytic curve. We proceed to evaluate

ia
X, P in the particular case where u
’

(I-2.45), (I-2.46) and (I-2.47).

i is given by Equations

-, c+Q
! uiujuj = _1 - .
(ug T ) = 2 | 16T (H=9)
-(C+1

i

Substituting this expression irto Egquation (H-3) gives

69
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ta _ R I

X =

a,g I R
Using the notation

w:

R. M. BROWN
I R C+E L2
- - s —L_: H=10
o _;J 1e-0) T4 7 - (H-10)
Ayaf |1-7C
i

along with Zquation (II-1l.1) we may express Zquation (H=10)

as

2vl
-1 .PIII -Qﬂl -QIII -P'l (H-l
2
xiA = [1+(vl) +(v2)2J -2v2 vt o
B Q" p" P -9
Ayaf .
1-(v)2-(v?)?
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APPENDIX I

Tne Second Fundamental Form in 96

In a space of greater than three dimensions- the second
fundamental form of a surface is defined differently from
the way it is defined in a three dimensional space. Rather
than being given by Equation (#-1), it is given by [&.2,

pP. 166]

iA _iaA

Q = -
apys xa.ﬁxv,é (I-1)

By substituting Equation (H-8) into Equation (I-1) we obtain

the following expression for the second fundamental form in
6

R 2
1 o0 o -1]
0 = O 1 1 O E III';III (I-Z)
afip O 1 1 o0 ?
L_.-l 0 0 1
Tag,
where
U U U 2 Usuiu,ug
g=|u/ - 2224 (g o AL (I-3)
i uu i7i u u
mm k k

we shall proceed to evaluate in the special case

naﬁby
where u, is given by Equations (I-2.45) = (I-2.47). We

first evaluate E .

o
]

1l = .2
T = 3 (€8+) (1-4)

Tuy = T(CT+1) (1-5)



72

-

ujuj

1

£ = 2¢0+1 -

Substituting this value of

Q =
apAp

1
0
0
-1

¢(z7+1)

2¢T+1

R. M. BROWN

T(CT+1)g(cT+1)

3 (¢Ta)?

0
1l
1
0

0
1
1
0

B

-1

(I-6)

(1-7)

(1-8)

into Equation (I-2) gives

afB,Ap

©

Ol;'l (1-9)
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APPENDIX J

The Gaussian Curvature in ®

The Riemann curvature tensor in ﬁé is given by the

formula

Ragau = %arpe = Qaupa (3-1)

Substituting Equation (I-2) into this formula gives:

[0 o o o
0 =2 2 0 Qulua’
R = wiu! - 2L} e 5™, (3-2)
@M 1o 2 .2 o i u B
0o 0o o o

aB,Ap

We obtain a formula for the Riemann curvature scalar by sub-
stituting ikquations (II-2.4) and (J-2) into Equation (G-7).

Llu U u,u=u;usu,uy)
_ Mo T o T .
®

R
(u,)° @

Substituting Equation (J-3) into Zquation (G-9) gives Zgua-

tion (IV-2.1) as a formula for the Gaussian curvature.
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APPENDIX K

Geodesic Curvature on the Surface in R

The curvature » of a geodasic passing through a point
on the edge of regressior in Ré in the direction of a unit

surface vactor na is given by the formula [=x.2, p.165]

2

" = |a 6'

%nfavad) (K-1)

afys

we express the assumption that na is a unit vector as

gaﬁﬂans =1. (K-2)

Since we have isothermal parameters, we may substitute for

gaﬁ using Zquation (I7-2.3). This gives

non® = =1, (K-3)
Substituting Equation (I-2) into Equation (K-1) we have
- =
> _ u,u,u.u 2
W = (0192 (Fpuy - LD o )7 (K=ly)

Y

Substituting Zquatior (X-3) into this equation gives lqua-

tion (IV-2,3).
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APPENDIX L
The Catenoid

We may represent the partial derivatives of Equations

(V-2.1) = (V-2.3) with respect to w%® as

2 1 2 1

sin Ww° sinh w cos W cosh w
xiR = 1 0 (L-1)
a
cos wo sinh w' -sin w® cosh w{
) ia .

Using Equation (D-3) we may calculate the covariant deriva-

tives of the quantities given by Equation (L-1).

— 5 5
sin w o o _ _8in w
cosn WI cosh wl
xi?ﬁ = |- tanh w* 0 0 tanh w'
cos w2 0 5 _ _cos w2
cosh wi cosn wl
L —af,1
-1 o0 - 2
sin w 1 COS W
= - ——— tanh w - ———— (L"'a)
0 1 [ cosh wl ’ ’ cosh w;}
af i

Comparing this result witn Zquation (F-1) we see that the
unit vector normal to the surface is given by

2 2
vj':[-'s—ié—w'i',t&nhwl,-—@i'_wi] (L=3)

cosh w cosh w
i

and the second fundamental form is given by
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b, = (L=l )

5 -T -R
dw’ jl 2 (L-5)

Substituting iquatiors (L-4) and (L-5) into Equation (V-1.3)

yields
-1 R] |1 o] [-1 -Rr 5
b =
af - 1] [0 1 R -I| 1+¢°
al 8y vg
-1 R] I R 5
" |-R -1 R -I| 1+¢2
- ad 8@
_ [ mer -2m >
-2IR  -RR4II| 1+¢°
ap
R -T
= ——_.L--Lz-—- . (L-é)
-I -R (1+¢%)2
af

From this result we have nquations (V-2.28) and (V-2.29).
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APPENDIX M
The Right HelicgMd

Differentiating kquations (V-3,1) - (V-3.3) with respect
a

to w cives
cos w2 -wlsin w2
xiR = | sin w2 wlcos we (M=1)

— ia .

Substituting Equation (M-1) into Equation (B-1) gives the

following result for the metric tensor

cos w2 -wlsin w2
cos wa sin w2 0
gaﬁ = 1 5 1 sin w2 wlcos w2
=W~ sin w w cos we k
il o k]
1 0
= (M-2)
0 (whH2K?

ag .

We will also need the contravariant form of the metric tensor
which is gilven by

1 o)
af _
g = -1 (M-3)
0 [(wl)2+k2J
aff .

iR

We obtain the quamtities’® x by differentiating Equation

(M=1) with respect to wF .

ig

77
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B 0] 0 0
-sin w2 cos wz 0
x1R - (M=)
af 2 2
-sin w cos W 0
L_-wlcos wz -wlsin w2 QJ
af,1

The Christoffel symbols may be calculated using the equations

3. og ¥, .
rd, =2 gtv(=EY . —8v . —gB), (1-5)
2 awa awP 3vY

Sutstituting Equations (M-2) and (M=-3) (into Equation (M=5)

gives _
1 0 o o0 0  -2wt
6 =1
af -1
o [h2a?] o awt a0
8v vyap
0 0 0 —wl
= 1 1 (M=6)
0 W w 0
(wh)24ke  (wl)2ak?
s§,0R &
The quantitiss xiRﬁ are given by the formula
F ]
iR _ _iR _ .8 _iR ;
xa,B = Xp rapxb . (M=7)

Evaluating the term Pgﬁx%R we have
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0 0
0] wl/T(w1)2+k2J cos wa
0 w%/[(w1)2+k2J -wlsin w2
-wl 0
. ~af,s
0 0 0
-(w1)2sin w2 (wl)ecos w2 kwl
(wl)2+k2 (w1)2+k2 (w1)2+k2
-(wl)zsin we (wl)zcos w2 kwl
(w1)2+k2 (w1)2+k2 (wl)2+k2
L-wlcos w2 -wlsin w2 0

79

sin w2 0

(M=8)

-aﬁ,i .

Substituting this result and Equation (M-l4) into Equation

(M-7) gives

xiR
a,p

0 0 0
-kzsin wZ k2cos w2 -kwl
wh2ad  whZad  (whHZad
-kzsin w kecos w2 -kwl
(wl)2+k2 (wl)2+k2 (w1)2+k2
0 0 0 .
aB,i .

This equation can be expressed as

(M-9)
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0 1 :
xR o —_T:%-_§ [k sin w2, -k cos w2, WIJ . (M=10)
©F whEk® |1 o i
af

Comparing this result with Zquation (F-1) we see that tane
unit normal vector is given by
L2 > 1
vi(wl,wz) = [(w1)2+k2J [k sin w2, -k cos W , W J (M=11)
i

s

and tne second fundamental form is given by

1
=210 1
# 1.2 .2
by = -k |_(w )%+k” | L O:I (M-12)

] a .

Equations (¥-3.22) - (V-3.25) may be written

p— -

--kv1 h+(vl)2+(v2)q v2
5 B (LTI S S 3y
W - (%-13)
dv -kv2[i+(v1)2+(v2)% -v1

2 [+ hEA)?) 6
- a

The following expression whicn appears in Equation (%-12)

is expressed in terms of the v%-coordinates.

2
w22 - e l-0H% 6337 | plleh2A)d
4[24 (w9 7] ]

b [(vH)%+(v5)8

14 (oH 2 33 °
s[vhZe 2] (-2

When this expression is substituted into Equation (M-12) it

becomes
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5 1,2,,.2:21Y/2 [ 1
® -2[(\7 )S+(v )] [ ] (M-15)

b =
8v 1+(vh2+(v3)2 |1 o
by .

We obtain the second fundamentzl form in the va-coordinate
system by substituting nquations (4-13) and (¥-15) into

Equation (V-1.3).
2v1v2 -[(vl)z-(vz)ZJ

(41-16)
fehZe®?] et
af .

bag = k[(vl)2+(v2)2J-2

From- this result we have Equations (V=3.26) and (V-=3.27).
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