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EVALUATION OF THE RELATIVE IMPORTANCE
OF CIRCUMFERENTIAL OR CREEPING WAVES IN THE
ACOUSTIC SCATTERING FROM RIGID AND
ELASTIC SOLID CYLINDERS AND FROM CYLINDRICAL SHELLS

I. INTRODUCTION

A. Normal mode series solution and experimental verificatien

Theoretical solutions to the problem of the scattering of sound by rigid, immovable
cylinders, nonrigid cylinders in a fluid medium, and small cylindrical obstacles in a solid
medium were formulated by Rayleigh [1]. The solutions he presented described geometries in
which the diameters of the cylinders were small compared to the acoustic wavelength in the
surrounding medium, although he outlined a more general method for finding the solution for
larger diameter cylinders in terms of cylindrica! harmonics. This method, called the harmonic
series or the Rayleigh series meihod of solving acoustic scattering problems is in theory applica-
ble to targets whose shape conforms to any of the eleven separable coordinate systems. In
practice it has been extensively applied only to scattering from spherical and infinite cylindrical
geometries, since cylindrical and spherical harmonics are readily available. Solutions to the
problems of the scattering from rigid cylinders and rigid spheres which have radii up to the
order of a wavelength (ka = 6) were given by Morse, [2]; here ka = 2ma/\; ais the radius of
the scatterer, and A is the acoustic wavelength in water. Exact solutions to ‘the scattering of a
plane sound wave by homogeneous, isotropic, cylinders and spheres capable of supporting both
shear and compressional waves (elastic scatterers) were first given by Faran [3], who obtained
expressions in terms of a normal mode series. Faran presented comparisons of computed bis-
tatic patterns and experimental measurcments at k« = 5. Extensions of the normal mode cal-
culations to higher ka [4,5] and experimental measurements to determine the degree to which
the normal mode theory and experiment agreed, over a broad ka range, were first made on
solid elastic spheres and spherical shells [6-9]. Hickling [4] was the first to make extensive use
of a digital computer to evaluate the normal mode series expressions, although his computa-
tions were hampered by the slow convergence of the haromonic series solution, which led to
computation difficulties with the computers available at that time. Hickling gave computed
curves that describe the steady state backscattered pressure vs ka, which results when the target
is a solid elastic sphere in water. The computations in his work ranged generally from 0 < ka
< 30, and he extended the formulation to include the scattering of incident spherical as well as
incident plane waves. He also included both near field and far field formulations. The results
presented by Hickling are given in terms of a normalized, reflected pressure variable called the
form function, f.. This dimensionless quantity is obtained by normalizing the reflected pres-
sure with respect to the radius (a) of the target and the range (r) of the field point from the
center of the target. Hickling also computed acoustic reflections from elastic spherical shells
[5]. Empirical results on solid metal spheres in water were given by Hampton and McKinney
[6], who demonstrated that the reflection from metal spheres immersed in water could not be

Manuscript submitted June 12, 1978.



L. R. DRAGONETTE

described by purely geometric theory, and by Diercks [7], who demonstrated qualitative agree-
ment between the computations of Hickling and measurements made in a lake. Precise guanti-
tative comparisons between normal modé theory and experiment were first carried out by Neu-
bauer ¢t al. [8], who performesd a series of precise steady-state measurements on solid metal
spheres in a controlled acoustic tank facility. These mecasurements demonstrated quantitative
agreement between computations, based on the normal mode series, and experiment, to within
the known accuracy of the shear velocities of the materials used in the sphere fabrications.
This work (8] covered the ka range 0 < Aa < 30. Dragonette ¢t al. [9] demonstrated empiri-
cally that quantitative steady state results could be obtained from measurements made with
short broadband incident acoustic pulses. This transient technique [9) will be described further
in Chapter Il. Comparisons between normal mode theory and experiment for elastic cylinders
in water are more recent [10] but aguin demonstrated excellent agreement between the theory
based on the infinite elastic cylinder and near-real-time experiments performed with finite
lengtn cylinders in a laboratory tank. The preceding theoretical and empirical papess [1-10)
established that the normal mode series formulation of the acoustic reflection from elastic metal
targets quantitatively describes measured results up to at least Aa = 30, without the necessity of
malterial absorption being included in the theory.

B. Circumferentizi Wave Theory and Empirical Observation

Empirical observations by Barnard and McKinney [11] at the Defense Rescarch Labora-
tory (DRL) demonstrated periodic, multiple echo returns when solid and hollow brass cylinders
(ka == 40) werc illuminated by short acoustic pulses. Subsequent empirical wor’k and analysis
at DRL by Diercks [12], Horton [13], and others [14.15) proposed the existence of two types
of circumferential waves which were compared to flexural and longitudinal modes on infinite
plates. The researchers at DRL recognized a similarity between the circumferentisl behavior of
the waves they observed and the waves discussed by Franz [16) in his work on the diffraction
of electromagnetic waves by conducting cylinders gnd spheres. The name given by Franz to
these circumferential waves was translated "creeping waves". The original analogy between the
acoustic waves observed at DRL and the purely geometrically diffracted circumferential waves
considered by Franz broke down, because the speeds of the observed acoustic circumferential

targets, whereas analogy with the “creeping waves" of Franz would have predicted a speed
slower than that in the surrounding medium.

Uberall and collaborators at Catholic University also noted the similarity between the cir-
cumferential behavior of empirically observed acoustic waves and waves studied in electromag-
netic theory. They began an in-depth theoretical program which employed a Watson [17]
iransformation in the description of both rigid and elastic scatterers. This technique had been
used in the study of the propagation of radio waves around the earth [18) and. as mentioned
previously, in the studies of the diffraction of electromagnetic waves by cylinders [16]. The
Watscn transformaticn offered certain advantages, namely, the opportunity to isolate the indivi-
dual mechanisms responsible for the empirically observed circumferentint waves and rapid con-
vergence of the solution. This latter advantage was particularly significant, since the normal
mode series was considered to be practical only at low ka, because of its slow convergence and
the expense of computation. (Advances in computer technology make present high ka Ray-
leigh series computations both possible and economical [19].) The Catholic University group
applied the Watson transformation to cylinders with rigid and coft boundary conditions and
predicted the existence of true Franz type, or purely gecometricaily diffracted, circumferentiai

| 2%
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waves [20]. Appiication of the Watson method to solid elastic cylinders [21] revealed two
groups of poles corresponding to (wo lypes of circumferential waves. The Franz-type or
geometrically diffracted weves were again observed, and, in addition, poles related to elastic cir-
cumferential waves, called R or Rayleigh-type waves, whose speed and properties depend pri-
marily on the elastic constants of the target, were found. Grace and Goodman (22} also
presented theorctical evidence for the existence of R-type waves.

Experimental detection of the acoustic Franz-type or purcly geometrically diffracted wave
was accomplished by Neubauer (23] and by Harbold and Steinberg [~4]. The first experiments
designed to demonstrate clastic R-type circumferential waves, that is, those related to R-lype
poles, were performed by Bunney et al. [25] and by Neubauer {26]. Both of these researchers
[25.26) used short incident pulses and narrow beam sources to observe the scattering from solid
aluminum cylinders. Their results demonstrated the existence of a train of periodic echoes with
a circumferential speed close to the shear wave velocity in aluminum. Neubauer's [26] work
included schlieren visualization of wavefronts resulting from the circumferentially traveling
waves. These experiments gave mainlv high ka results (ka values between 50 and 500). Origi-
nally the mechanism responsible for the periodic pulse trzins observed [25,26) was, in fact,
considered to be multiple circumnavigations of the cylinder by the Rayleigh wave (the R, pole
of Ref. 21). Later work by Neubauer and Dragon. - {27] showed that multiple internal
reflections of shear waves could produce the observed effect, and this multiple reflection
analysis was supported by the theoretical work of Brill and Uberall [28], who demonstrated the
circumferential behavior of the radiatiocn from multiply internaily reflected waves. Theorctical
[29] and measured attenuation [30] of the Rayleigh wave on submerged flat subfaces also gave
attenuations too large to support the conclusion that Rayleigh waves were the source of the
multiple returns observed at high Aa in Refs. 25 and 26. In this present work, a prediction of
the ka range at which an R, circumferential wave can be significant and an empirical obs2rva-
tions of the wave are accomplished.

C. Comparison of the two approaches and scope of the present work

The normal mode solutions give a straightforward method of obtaining the scattered
acoustic pressure vs frequency, limited only by the expense involved in summing a slowly con-
vergent series. Experimental results have been obtained which agree with the computation to a
high degree of accuracy. The major disadvantage of this approach is that individual physicai
phencmena, such as surface waves, which make up the solution are not immediately obvious;
however, techniques for isolating individual mechanisms are described in Chapter 11 and used
throughout this work.

The Watson transformation of the nermal mode scries has the advantage that it isolates
individual circumferential waves and the disadvantage that the poles must be found and
interpreted and their significance judged.

The present work investigates the relationship between the normal mode solutions and
the various propagation modes in cylinders, especially circumferential waves, which contribute
to the steady state solution. A correspondence is demonstrated between the circumfzrential
waves predicted by the Catholic University researchers and resonances in the. normal mode
series solutions. Families of resonances will be identified with the “creeping wave poles” dis-
cussed in Ref. 21. Based on this identification the R, or Rayleigh circumferential wave is



L. R, DRAGONETTE

predicted to be of significance only in the region Aa < 20, and ihe first experimental observa-
tior of backscattered circumferential radiation from this wave is demonsirated. Individual
mechanisms are also isolated directly from the Rayleigh series formulation by the application of
Fourier transforin techniques which determine the response o. the targets to transient signals.
In this way hypotheses and conlusions concerning the amplitude, velocity, and attenuation of
predicted phenomena are invertigated. Calculations and comparisons of the total form function
and the amplitudes of individual normal modes are made. These comparisons demonstrate that
the reflection from solid metal cylinders is made up of a superposition of generally narrow
resonant responses superimposed o a background attributable to reflection from a cylinder
with rigid boundary conditions. This observation is formalized by applying the resonance for-

malism of nuciear reaction theory.

Circumferential waves on cylindrical shells are investigated by analysis of the calculated
form function for elastic shells, by Fourier analysis of the transient response of a shell, and by
comparison between the propzerties of the circumferential waves on cylindrical shells and the
chara-teristics of Lamb waves on flat plates. Much new information concerning the properties
and signifcance of these waves is outained, and some misieading or erroncous information
currently existing in the literature is corrected.



H. GENERAL THEORETICAL FOUNDATION

The Rayleigh series expression for the scattered acoustic pressure, p,(8), which results
when a plane wave, p,e™", illuminates an infinite elastic cylinder, in the geometry described by
Fig. 1, is given in many publications {3,10,21,31.32]). The fellowing form is found in Refs. 31

and 32:

= L@ L-2zi2)
p‘(g) - —pu 2 fn(l) lHn(Z) L" -— Z H"’(Z)

e Aad

The time dependence e™'*' is suppressed. In Eq. 1, ¢, is the Neumann factor (e, = 2, n = 0
e, = 1, n>0), J,is a Bessel function, H, is a Hankel function of the first kind, Z = ka, and

the L, are the quotients of two 2-by-2 matrices:

] H,(kr) cos né. (1)

a, apy

D(”[Z] an ay

I N . Sk
" Ps D(Z)[Z] p\ Ay ay
ay aj

i
In the far fleld where r > a, H,(kr) may

(1a)

where the matrix elements a,; are given in Ref 31.
be written in its asymptotic form :

H (kr) = [ ] e'M - nnf/l-iw/4 Q)
wkr
and, defining |
JI(Z) L, - Z J(2)
[H,,(Z) L,—Z H(2Z) ] G(2) ©)

the far field pressure scattered by an infinite cylinder illuminated by a plane incident wave may
be written

p(8) = —p, e"'l—-z—] e'"* Y €,G,(2) cus(ng). (4)
wkr w0
For backscattering, # = = and
- — Ar _.l_. /4 5 (1)
ps(m) Po,€ [nkr e 3’5 e {-1D"G,(2). (5)

A quantity called the far field form function, f., is defined to give a nondimensional represen-
tation of the scattered pressure. In keeping with the definition used extensively in the literature

(4.5,7-10,31,32]
1/2
{0
ACN (6)
Po

£a(8) = '3—'—
a
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Fig. 1 - The geometry usid in the description of the scatter-
ing of a planc wave ty an infinitely long cylinder,

This definition is chosen since it results in If.l = 1 for the case of a purely rigid cylinder in the
high frequency limit. From Eqs. 4 and 5 the expressions for /..(6) and f.(r) for an clastic
cylinder are given by
' i
_2 il
S(0) = "(‘;‘;r—z"i‘l-&" ‘z:{) ¢, G,(Z) cos (n0) (7a)

and

fulm) = 77;5%77’_ ioe,,(—w G,(2). )

Using £q. b, the individual normal modes or partial waves which make up the hackscattered
form function are defined as

S () = -(-'-;—E)-m‘ e, (-1D"G,(2) (7¢)
where
fum = ¥ £l (7d)
n=0

Computed plots of f., vs ka, obtained frorn Eq. 7b are called reflection function plots, and such
curves give a dimensionless representation of the scattered steady state pressure vs frequency.
This representation can describe the scaltering at any combination of radius and frequency
within the ka limits of the calculation. Equations 7a and 7b give steady state values of [, so
that a continuous wave or very long pulse experiment can be used to obtain a direct comparison
between experimental and calculated resuits [8). Such an experimental method is tedious and
excessively time consuming, as each experiment at cach single frequency gives one point on the
reflection function curve. To overcome this practical difficiency, methods to obtain the steady

state quantity /., from short broadband incident pulses were developed (9, 10].
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If the incident sound wave in the geometry described by Fig. 1 is not steady state but a
pulse, p,(r), with a Fourier transform g, (ka) given by

g (ka) = T p(1) et dr (8)
then from Egs. 6 and 8, the backscattered pressure has a Fourier transform g,(ka, ) given by
!
g (ka, w) = l-;-;l § S(ka, w) g (ka) C))
and |f.(ka, m)| can be obtained from
12
\aq, T
|fo(ka, w)| = l%fl —I—g—l’—:;a—-;;—)-ll‘—. (10)
The quantity 7 is a dimensionless time parameter
g ST (i

a

which is normalized to be zero when the incident pulse is coincident with the position of the
center of the cylinder. Fquation 10 is the basis by which a steady state quantity |/.(ka, )| can
be obtained over a broad frequency range by a single short pulse experiment. The incident and
reflected pulses are digitized, their transforms computed, and the division indicated in Eq. 10
carried out [9). With present minicomputer technology this entire procedure can be accom-
plished in a near real time framework {10]). The experimental system used id discussed in
Appendix B. The ka range over which [ is obtained depends of course on the bandwidth of
the incident pulse. Theoretical computations of the scattered echoes which result when a short
incident pulse with a known spectrum, |&,(ka)|, is used to insonity a target with a known A CA
ka) can be obtained by using Eq. 9. This computation procedure allows the isolation of the
individual mechanisms which contribute to the steady state scattered pressure. These pulse cal-
culations are of significant value for many reasons, the mosl important of which is, that the
theoretically formulated incident pulses used, can be made shorter than any which can be rea-
sonably achieved in .ne laboratory. This allows isolation of closely spaced echoes which cannot
be accomplished at a resonable cost in the laboratory. In addition theoretical computations can
simulate experimental measurements over a large number ot frequencies, target materials, tar-
get sizes, and target shell thickness that would be impossible (0 duplicate economically in a
laboratory. la the theoretical procedure an incident pulsc p,(r) with a known spectrum,
{g,(ka)], is used to insonify a target whose form function can be computed. Computation of
the form function and the procedure indicated in Eq. 9 are accomplished by the computer, and

the scattered echo, p,(7), is described by
p(1) = 1/27 f g (ka) e~ dka. (12)

Solutions to Eq. 12 are obtained by using fast Fourier transform technigques in the compulter.
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III. THE RELATIONSHIP BETWEEN CREEPING WAVES AND
THE NORMAL MODES OF VIBRATION OF A CYLINDER

A. The rigid cylinder

The acoustic reflection from a rigid cylinder has been well understood since the prediction
[20] and empirical observation [23,24] of the Franz wave, and only a few ideas relating to the
direct use of the form function curves to derive Franz wave properties can be added. In the

case of a rigid cylinder, G,(Z) as defired in Eq. 3 reduces to

J. (Z

-~ (2) (13)
i, (Z)

G,,‘R’ (Z) =

and the form function for a rigid cylinder is given by

S0 (@) = = T eGP (@) (14)
n=0

" A plot of f.(m) vs ka computed from Eq. 14 is given in Fig. 2. Since by definitionithe boun-
dary conditions imposed to obtain Fig. 2 preclude penetration into the cylinder, the backscat-
tered reflection function curve can include contributions only from specular reflection and

diffraction.

1.5 ¥ T T T

1.2 -
£\
& /\\\/\/\/\/\/\/\—-

osf . Y/ -

K DV
0.8F’ -
'
oaff -
0.0 1 t 1 |
0 2 4 8 8 10

o
Fig. 2 — The form function for a rigid cylinder.

In the creeping wave solution Eq. 14 is transformed from an infinite series of # terms into
a series of "creeping surface waves" by the Watson transformation [18,20]. The creeping waves
arise as the residue of pules in the complex v plane determined from the equation

H, (Z) =0 . (i5)
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with soluitions

v1/3 2
6 1 1 q
- 1/3_1=/3 N P —-1mf3
vi(w) = Z+(Z/6)' e’ q [zl e [104, + T30 + 1830 (16)

where the g, are the zeroes of the first derivates of the Airy functinn as defined by Franz (17].
The index ! = 1, 2, 3..., and [ increases in the direction of increasing real and imaginary rarts
of v,. The attenuation, af, of the /" Franz wave in nepers/radian is given by

af(Np/rad) = Im v, (17a)
and the phase velocity, c?, is given by?°
cffc = (17b)

R, v,

where c is the velocity of sound in water. Calculations based on Egs. 16 and 17a demonstrate
that only the / = 1 or first Franz wave is of significant magnitude, and Figs. 3 and 4 give com-
putations of the attenuation and phase velocity of this first Franz wave as a funiction of ka as
computed from Eqs. 17b and 17a.

1 0 T T v ¥
|

08

o 086f
~
-—Q
[5]

0.4r

02r

=3

0.0 1 1
V] 1 2 3 4

ka

-

(8,3 4
[e2]
~
o]

Fig. 3 — The Franz wave phase velocity vs ka for a rigid cylinder.

In the case of the rigid cylinder the connection between the steady state form function
fR given in Fig. 2 and the Franz wave v.ith properties described by Figs. 3 and 4 is not difficult
to determine. Sound does ant penetrate a rigid cylinder, thus the form function must be made
up entirely of specular refieciii plus a pure geometrically diffracted contribution. The back-
scattered return must then bz 4s described by Fig. 5. A specular reflection begins at point A of
Fig. 5, and two Franz wavegz begin at point< B and C and take the paths shown. This well
understood result can, however, be taken further. The reflection function given in Fig. 2isa
steady state function, and the knowledge that this reflection function results from sound waves
taking the circut.ferential paths shown in Fig. 5 leads to the following analysis. Because the
two diffracted waves BC and CB take the same path and travel at the same speed, they are
always in phass with each other in the backscattered direction. Computations based on Egs. 16
and 17a demonstrate that for ka > 1 only these first Franz returns need be considered; that is,
the contribution from succeeding circumnavigations of the cylinder are too small in amplitude

10
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Fig. 4 — The Franz wave attcnuation vs ka for a rigid cylinder.
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Fig. § — Source of backscattered cchoes from u rigid cylinder.

to be significant. The difference in the time of arrival, at the field point P, between the specu-
lar and diffracted waves is

ar=28, ma (18)
c Cp

The difference in path lengths traveled by the backscattered specular and Franz wave contribu-
tions at the field point P is expressed as

Ad = ta + TLE, (19)
Cp

If it is assumed that the peaks in the reflection function curve (Fig. 2) occur when the specular
and Franz contributions add in phase at P, then peaks occur when
Ad-a(2+1rc/c,,’)-n)\--'-'—,%1 (20)

11
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which leads to

gFo _2n 2
cleg k) s — Qn

The notation (ka) . is used to indicate the (ka) values at which a peak in I | as seen in Fig.
2 occurs. A similar expression can be derived by assuming that the nulls in the reflection func-

tion curve of Fig. 2 occur when Ad = Q—'—'-zl—ll A. This expression is
geba 2n =1 2 22)
(/‘P (ka)null w . (

A Franz wave velogity can than be calculuted directly from the reflection function curve by
determination of (ka),. and (ka),,. The normalized phase velocity ¢!/c (which is the
reciprocal of the left-hand side of Egs. 21 and 22) is computed from these equations and com-
pared to the direct “creepicig wave" theory computation, from Eq. 17b, in Fig. 6. Agreement
betwecn the two methods is excellent, demonstrating the possibility of obtaining Franz wave
velocity directly from the normal mode form function curves. Thus Franz wave velocities can
be obtained for bodies for which no creeping wave analysis exists. Examples are given in Figs.
7 and 8, where computed form functions and derived Franz wave velocities for a rigid sphere
and an aluminum oxide cylinder are given. Tae rigid sphere shows a much more rapid rise in
Franz wave velocily with increasing frequency, than is observed for the rigid cylinder. The
velocity for the aluminurmi oxide cylinder shows only minor deviations from the rigid cylinder

curve.

1 Y Y T T Y \ \
 §
1
0-8‘ ' -
1
0.64

3] ' 1
~
-Q
(S

0 4t 1

. 0.2r -

00 L A 1 't 1 -t 1 J

0 1 2 K 4 5 6 7 8

Fig. 6' = A comparison between the computed Frane velocity for a rigid
cylinder (=) and values estimated from the form function curve (x).

The attenuaiion of the Franz wave as a function of A« can also be investigated directly
from the normal mode calculation. Here the reduction in 2mplitude of the successive oscilla-
tions is assurned due to the increase in attentuation of the Franz wave as a function of ka. The
reduction in magnitude of the oscillations in Fig. 2 with increasing ke should then give & meas-
1275 of the Franz wave attenuation vs ka. A comparison of attenuation values obtained from
creeping wave theory for a rigid cylinder and values obtained from the form function curve is

12

-



NRL REPORT 8216

1.5 T ] v T
1.21 -
’ 0 . ,I N ‘/'\ K
P .. [ ! ‘q ’ s “ *
OOL- S "’ \ Il “ “ . s o’ / e -
3 ot v
= Y
oe -
o.aﬁ- ; 4
ool’ 1 1 1 )
0 2 4 6 8 10
ka

Fig. 7(a) — The form function vs ka for a rigid sphere.
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Fig. 7(b) — Franz wave velocity estimated from (7a) for a rigid spherc
(— and Franz wave velocity for a rigid cylinder (- - -).
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Fig. 8(b) — Franz wave velocity estimated from the form function (—)
and Franz wave velocity for a rigid cylinder (- - -)
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given in Fig. 9a. In Fig. 9b the attenuation is given for an aluminum oxide cylinder for which
no direct creeping wave data are available. The rigid cylinder curve is included in Fig. 9b, for

comparison. .

Empirical cbservations of Franz waves on a rigid cylinder were obtained in the acoustic air
facility described in Appendix B." A solid 3.18 cm diameter cylinder was used as the target, and
the frequency of the incident pulse was 34.4 kHz. In air the impedance mismatch between the
aluminum and air medium is so great that rigid boundary condition assumptions are success-

fully achicved.

Experimental observations of Franz waves on a rigid cylinder are given in Fig. 10. The
measurements are made at aspect angles of 45° and 75° so that the changes, both in relative
amplitude and time separation, between the specular reflection and the Franz wave can be
clearly observed. The incident pulse is seen in Fig. 10(a) and the scattered echoes at 45° and
75° are seen in Figs. 10(b) and 10(c). The time separations between the specular and Franz

~waves are measured from the large posilive going peak in each echo. The measured time
differences are 81 us at 45° and 125 us at 75°. The ratio of the Franz wave to specular ampli-
tude is pg/pypec = 0.56 at 45° and = 0.13 at 75°. Theoretical computations, based on Egs. 9
and 12, of the echoes from a rigid cylinder are given in Fig. 11. Figure 11(a) shows the
incident pulse, and the eche responses at @ = 45° and @ = 75° are given in Figs. 11{b) and
11(c) respectively. The center dimensionless frequency of the pulse is k,a = 10. The compu-

tations were made using Egs. 9 and 12 as discussed in Chapter II. The theoretical computations
agree closely with experiments in the relative magnitudes and positions of the Franz waves.
The values obtained from Fig. 11 are a time separation of 78 us at 45° and 125 usat 75° and a
ratio pe/p,.. of 0.57 at 45° and 0.14 at 75°. The purpose of Figs. 10 and 11 is to demonstrate
that the echo computation does agree with experimental measurements, and can be used to iso-
late mechanisms or to supplement measurements }vhen S is known or can be computed.

—={116 psf— be— 196 us — fe— 243 ps —+f
(a) The incident pulsc, (b) The specular and Franz (c) The specular and Franz
cchoes at @ = 45°, cchoes at @ = 75°,

Fig. 10 — The experimental observation of the Franz wave
radiation from a rigid cylinder.

B. The elastic cylicder problem

In contrast to the essentially well understood rigid cylinder problem, the relationship
between the normal mode and creeping wave solutions to the elastic cylinder problem were
unknown before this work began. That relatinnchip is established in this work, and as a result,
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T
(a) The incident pulse. (b) The specular and Franz  (c) The specular and Franz
echoes at 9 = 45°, echoes at 8 = 75°

Fig. 11 - Computation of the scattering of a two cycle
incident pulse by a rigid cylinder.

resonances in the normal mode solution can be identified with specific R-type circumf{erential
waves predicted by creeping wave theory. The ka range over which one such wave, the R, or
Rayleigh wave makes a significant backscattering contribution has been the subject of much
conjecture [25-28,33] in the literature. The resulte chtained here indicate a limited, low Aaq,
region of importance of the R, circuiiiforential wave in contrast to previous hypotheses
[25,26,33], and the first experimenial observation of backscattered circumferential radiation
from the true Rayleigh wave was accomplished in the low ka region where it is predicted.
Computation and analysis of the effects of the normal mode resonances on the backscattered
|f] demonstrate further that the form function is made up of a rigid background on which nar-
row resonances are superimposed. A formalism reflecting the above result is developed based
on an approach suggested by Dr. L. Flax and Dr. H. Uberall which makes use of the methods

of nuclear reaction theory.

C. Elasﬂc cylinder resuits

The backscattered form function for an elastic aluminum cylinder in water is calculated
from Eq. 7b and given in Fig. 12 over the range from 0.2 < ka < 20. The curve is calculated
in ka steps of Aka = 0.01. A comparison between this theoretical computation and an experi-
ment using the short pulse experimental technique described in Chapter Il is given in Fig. 13.
In Fig. 13 the theoretical curve is computed in intervals of Aka = 0.05 which is compatible
with the Aka isolation that can be achieved experimentally. Agreement between theory and
experiment is within 2%. The form function curve seen in Fig. 12, shows that over the range
0.2 € ka < 4.7 the aluminum reflection curve is very similar to that of the rigid cylinder (Fig.
2). This region of similarity is followed by marked irregular oscillations and these oscillations
continue as ka — oo, if no absorption is included in the theory. Damping of the oscillations as
ka increases will occur when absorption becomes significant [34], but for metals such as alumi-
num, experimental results indicate [8-10] that absorption need not be included over the ranges

of ka that will be considered here.
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Fig. 12 — The form function for &n aluminum cylinder in water.
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Fig. 13 - Comparhon of theory (—) and experimental obscrvations (the points) for an aluminum
cylinder in water.

~The irregular oscillations in the aluminum form function, which begin at ka = 4.5, are
reiated to excitation of the individual normal modes, f,, as defined in Eq. 7c. Resonunces

occur at (ka) values at which
D [ka]l = D® [n, kal =0 (23)

with D2 [n, ka] the matrix introduced in Eq. la. Solutions to Eq. 23 give the ka position of
the free modes of vibration (resonances) of the cylinder. The correspondence between the ka
values at which irregularities in the form function occur and the ka values at which rescnances
occur is indicated in Fig. 12, where the resonances are identified by the subscript (n, ). Here n
is the mode number and / is the eigenfrequency, for example (n, 1) means the fundamental
resonance of the nth normal mode, (n, 2) the first harmonic, etc. The "creeping wave" solution
to the problem of the scattering of an incident plane wave by a solid aluminum cylinder was
carried out by Doolittle et al. [21], who transformed Eq. 7b using the Watson technique. Doo-

little found poles in the complex v plane at the positions
D® [y, kal = 0. (24)

H=2 computed a series of R type, or elasticity related, poles and gave a table of the positions of
the first six R type poles in the complex v plane as a function of ka. Each pole gives rise to a
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circumferentialy traveling wave [21}. The relationship between Eqs. 23 and 24 form the basis
for the correspondence between normal mode resonances and the individual circumferential
waves predicted by the creeping wave theory. To obtain this relationship, it is necessary te con-
sider the properties of the normal modes individually., Equation 7¢ describes the nth normal
mode. The n =~ 0 term is the breatking mode, n = 1| the dipole term, # = 2 the guadropole,
etc. The individual motions can be represented by a pair of standing waves ' **#~~" traveling
in the opposite directions with phase velocites

¢ (ka) = -5-;:39 (25)
and group velocities
d (&
cfka) = ¢ -—-%’-:-’—-)-n (26)

At a resonance of the nth mode exactly » wavelengths fit over the circumference of the body,
and the /th eigenfrequency of the nth mode, (ke),; is the /th sclution to Eq. (23). A com-
parison of Eqs. (23) and (24) leads to the connection between the creeping wave solution and

the

v =y, (ka) (27)
related to R type circumferential waves with phase velocities
kac
c,(ka) {Rc v'] (28)
and group veiocities K
cMka) = —eefe (29)

dRe v, /dka’

If now Re v;ka = n, Eqs. 23 and 24 become identical in form and the modal velocities (Eqgs.
25, 26) are identical to the creeping wave velocities (Egs. 28, 29). Thus, when Re w, = n, the
fth Rayleigh type circumferential wave coincides with the wave speed, ¢,{ka), of the ath modal
vibration. This hypothesis is demonstrated below. Table I gives the modal eigenfrequencies
obtained from Eq. 23, and identified in Fig. 12, and the corresponding modal phase velocities -
are computed from Eq. 25. The breathing modes (0, ) are not strongly excited, as evidenced
from Fig. 12, but are included in Table I. The (1, I} mode is generated in the region where
the Franz wave or rigid reflection predominates and is also not observed in Fig. 12. The ka
velues at which Re v, (ka) = n, are extrapolated from the work of Doolittle et al (Table 11 of
Ref. 21), and comparisons are made between these extrapolated values and the normal ntode
resonances identified in Fig. 12. This ccmparison is shown in Table II, which also gives the
computed velues of the creeping wave phase velocity [21]. Tables I and Il demonstrate that the
ka values at which resonances occur correspond to ka values at which Re p, (ka) = n. They
demonstrate further the equality of the madal and circumferential wave velocities ¢, {(ka) and
¢;(ka). The relationship is thus established between the (n, § normal modes and the elastic or
"R type poles found by the “creeping wave" theory. The (n, # normal mode resonances
correspond to the R, creeping wave. For a = 2 {i.e., the (2,1) mode), the circumference of
the cylinder is 2 wavelengths of the R, type wave, at the (3, 1) resonance, the circumference
of the cylinder is exactly 3 wavelengths, etc. The R, circumf{erential wave is similarly relatgd to
the (a, 2) norma! mode resonances, and so on, with the (i, §# normal mode resonances related

" ta the /th order Rayleigh ot R, Rayleigh type circumferential wave.
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Table |
Modal cignvalues (ka),, and
mode speeds ¢,/c for an
aluminum cylinder in water

(ka,,) c/c
|
NENENERERERE
0] — — 1943 — | — oo
| —1 5.87(13.44| — [5.87]13.44

2] 4.78) 9.17]16.31(2.39(4.59( 8.16

3] 7.38{12.53|19.12{2.46(4.18| 6.37

4| 9.65(15.84 —12.4113.96 -
5111.7819.02 —12.3613.80 -
Table 11

The correspondence between the normal mode resonances and the
ka values at which Rew, = n, The target is
and elastic aluminum cylinder in watcr.

Kka) values at which
Normal Rev; = n from the Phase velocities ¢;/c¢ of the
mode Sommerfeld-Watson| R, circumferential wave when
resonances formulation of Rev, = n
Ref. 21
N ! (ka).( L (ka),,, R, R, R, R, R
0 3 0943 |3 09.40 - - oo - -
4 1046 | 4 10.40 - - - © -
S 1714 | 5§ 17.08 - - - - o
I 2 0587 |2 05.80 | 5.85 - - - -
3 1344 | 3 13.39 - 13.24 - - -
4 1602 | 4 15.90 - - 16.04 — -
2 1 0478 !'1 04.85 237 - - - -
2 09.17 | 2 09.10 - 04.58 - - -
3 1631 |3 16.28 - - 08.16 — -
3 1 0738 |1 07.30 2,45 - - - -
2 1253 |2 12.47 - 04.15 - - -
3 19.2 |3 19.05 - - 0636 — -
4 1| 0965 |1 09.70 2,40 - - - -
2 1584 |2 15.80 - 03.94 - - -
S 1 1178 |1 11.80 2,35 - - - -
2 1902 |2 18.90 - 03.79 - - -
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The R, circumferential wave is related to the leaky Rayleigh wave [35] on a flat surtace.
This is the surface wave which, as ka increases, approaches the phase velocity of the Rayleigh
wave on a flat infinite half space. The higher order R typ= waves are called "whispering gallery”
waves and become lateral waves in the limit as ka — o [35]. Since the R, or Rayleigh wave is
related to the (n, 1) resonances in the normal mode solutiosi, the influence of the circumferen-
tially traveling Rayleigh wave on the backscattering from an aluminum cylinder can be inferred
from the relative influence of the (s, 1) modes on the form function seen in Fig. 12. ‘The (2,
1), (3, 1), and (4, 1) resonances are observed to have a marked effect on the form function in
the ka range from 4 < ka < 10. For n > 4 the effects of the (n, 1) resonances on |f.] are
small, and in fact for ka > 20 no (n, 1) modes were observed to influence |[f.J The result of
the calculations plotted in Fig. 12 and calculations of |/.J carried out between 20 < ka < 40
(not shown) strongly indicate that the Rayleigh wave will not contribute significantly to the
observed backscattering from an aluminim cylinder at ka values above ka = 20. This is a
significant point, since the possibility of Rayleigh wave generation at high (ka) has been a
matter of dispute in the literature [(25-28,33]. This point wiil be explored in more detail below.
Fig. 12 does show, however, that the (2,1), (3,1), and (4,1) resonances are major features of
the form function curve for Aa < 10. Nulls in the form function at the ka positions of these
three resonances should be related to the interference between specular reflection and the
circumferentially traveling Rayleigh wave. Specular reflection and Rayleigh wave radiation are
known to be 180° out of phase in the flat surface case [30,36,37]). Verification of the above
explanation of the nulls at the (2,1), (3,1), and (4,1) resonance values should be possible both
by computing the low ka echo response of an aluminum cylinder to an incident short acoustic
pulse and by experimentally determining the echo response of an aluminum cylinger at low ka.
Both measurement and computation were done, and this experimental observation of the back-
scattered reradiation from a circumferenti~ly traveling Rayleigh wave was the first observation

of this phenomenon.

The major difficulty in achieving an experimental observation ¢ *i»¢ Rayleigh wave at low
ka is in obtaining a practical and possible combination of cylinder rfius, frequency, and pulse
length that allows the Rayleigh wave to be separated from the specular reflection. The best
available combinations were an aluminum cylinder of radius 2 = 0.635 cm measured with a
short pulse centered at frequencies f, = 386 kHz and /f, = 500 kHz. Commercially available
lead zirconate titinate transducers, with active elements 1.905 cm square were driven with a rec-
- tangular pulse, and the achieved pulse length was 5 cycles.

Both the small acoustic pool facility in which the measurements were carried out and the
means by which the return echoes were digitized and displayed are discussed in Appendix B.
Figure 14 shows the backscattering from the 0.625 cm radius aluminum cylinder at f, = 500
kHz, or k,a = 13.5. The backscattered echo consists of a specular return followed by a Ray-
leigh circumferential wave which is 180° out of phase with the specular return. The digitized
display in Fig. 14 was plotted by the Versatek plotter. Even at this relatively low Aa value the
second traversal of the cylinder by the Rayleigh wave is already almost entirely in the noise 25
dB below specular reflection. The experimental result at f, = 386 kHz, (k,a) = 10.4 is given
in Fig. 15. Here there is a slight overlap of the final cycle of the specular reflection and the first
cycle of the Rayleigh wave, but the 180° phase shift can still be observed. At this ka, direct
measurement can be obtained of the group velocity and attenuation, as the second transversal
of the Rayleigh wave is now visible. The path difference between the first and second manifes-
tations of the Rayleigh wave is Ad = 2mwa. The measured group velocity is ¢§/c = 1.9, in com-
parison to the estimated value of c§/c = 2.0 obtained from Ref. 21. It is expected that the

21



L. R. DRAGONETTE

(2]

N /\[\ AWAW D
I

Fa\
wv\fvv

({}] (r)

!

Fig. 14 — Experimental observation of the Rayleigh circumferential wave on an aluminum cylinder at
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Fig. 15 — Experimental observation of the Rayleigh circumferential
wave on an aluminum cylinder at k,a = 10.4.

group velocity would be higher [38,39] at these ka values than the infinite half space Rayieigh
wave velocity, which is c§/c = 1.8%0. Equality between the group velocities of the flat surface
and circumferential Rayleigh wave does not occur until the ka value of the cylinder reaches &t
least ka = 30, when the cylinder circumference is greater than 10 wavelengths of the Rayleigh

wave [38].

The fact that the circumferential velocity of the R, wave is a function of frequency, or ka,
means that changes in the pulse shape should occur between the specular reflection and the R,
circumferential wave. The velocity of sound in water is not a dispersive quantity, i.e. not a
function of frequency, and the specular reflection has the same pulse shape as the incident
wave. The Rayleigh velocity is a function of frequency over the range 0 < ka == 30 and thus
is not constant over the range of frequencies represented by the incident pulse. Changes in
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pulse shape between thz Reyleigh wave and the incident and specularly reflected waves are
expected. In addition, Figs. 14 and 15 are digital representations of the recovered signal taken
at intervals of 0.02 us, or at about 100 points per cycle of the received pulse. No two digital
representations are exactly alike, but with so many points having been taken, the only
differences that are noticeable occur in the flattening effects at some of the peaks and valleys.
In amplitude measurements these effects are negated by averaging many measurements. The
phuse shift of 180° was determined by comparing the pulse cycles labeled (1) and (P) in Fig.
14. Despite the slight change in pulse shape as discussed above, the beginning of the pulse
labeled (1) and the characteristically large amplitude at the center of the pulse labeled (P) are
present in both the specular and Rayleigh echoes and are 180° out of phase for these two
echoes. The attenuation of the circumferential Rayleigh wave at ka = 10.4 is measured from
Fig. 15 to be |z = 1.69 Np/revolution where one revolution equals a travel path of one cir-
cumference. Computations of the response of an aluminum cylinder to an incident pulse
should allow examination of the Rayleigh circumferential wave properties at even lowet ka
values than k,a = 10.4 (the experimental conditions for Fig. 15). A one-cycie pulse can be
programed as the incident pulse even though it is not readily attainable in a laboratory with nor-
mally available transducers. The computation of the reflecticn of a single-cycle pulse centered
at k,a = 8.8 is given in Fig. 16. Again specular and Rayleigh wave echoes are 180° out of
phase. The group velocity obtained from Fig. 16 is ¢§/c = 2.4, which compares o chlc = 2.3
estimated from Ref. 21.
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Fig. 16 — Computation of the echoes scattered by an aluminum cylinder
atk,a = 8.8.

Estimates of the expected Rayleigh wave attenuation due to radiation into the water can
be made from the flat surface formula given by Dransfeld [29]:

—PC (30

ap ™ .
Ps G AR

The nonsubscripted variables refer to water, and the subscript R - {ers to the Rayleigh wave.
Just as the limiting velocity is not achieved until ka > 30 for aluminum, it is not expected that
computations made from Eq. 30 be exact for low ka. For aluminum the flat surface velues for

the variables in Eq. 30 are.
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p/p, = 0.37, ¢/c, = 0.55, and Az = 1.8A

yielding
0.113 0113k .
ag X e (3ia)
or
(2ma) ag = aiz = (0.113) (ka) (31b)

where oz is dimensionless.

Equstion 31b gives agx = 1.0 at ka = 8.8 in comparison with the value ag = 1.0
obtained 1'tom Fig. 16. Al ke = 10.4, Eq. 3.b gives ay = 1.2 compared with agz = 1.7
obtained trom the measurement in Fig. 15. The results indicate that a reasonable estimate of
ag can be made using the flat surfece attenuation formula, even at low ka. The empirical
observations given in Figs. 14 and 15 are the first observations of the true Rayleigh circum-
ferential wave. Previous observations of circumferentiai waves on solid elastic cylinders have
been made at ka values in the range 40 < ka € 200 [25,26]. This high ke range was chosen
because of the ease of pulse separation of any circumfercitial effects and, also, because
Rayleigh-like circumferential wave properties would have more closely approximated the flat
surface Rayleigh wave at high Aa. The circumierential wavcs that were observed on aluminum
were identified as Rayleigh [25] or "Rayleigh type” [26] waves. Further analysis of high ka cir-
cumferential results lead to an explanation of the effects seen in Refs. 25 amd 26 in terms of
multiple internal reflections of shear waves in the cylinder [27]. This view was further sup-
ported by theoretical calculations of the circumferentially radiated wavefronts which result from
internal reflections [28]. The subject has remained however a matter v some conjecture [25-
28,33], but the results seen here show that the Rayleigh wave has large enough amplitude to
contribute significantly to the backscattering by the cylinder only at ka values below 20.

The excitation of the (2,1) resonance, which corresponds to the Aa value at which the
cylinder circumference is two wavelengths of the Rayleigh circumferential wave, marks the
highest ka at which the Franz wave contribution can be isolated. A comparison of the form
- function curves for the rigid cylinder (Fig. 2), the aiuminum oxide cylinder (Fig. 8a), and the
aluminum cylinder (Fig. 12) shows that, in all these cases, there exis.s a region where the
behavior of the form function is purely rigid, i.e., dominated by the interfe ence of specular
reflection and the Franz wave as described in Chapter II1A. For an aluminum cylinder this
behavior 2xists up to ka == 4.5, where the (2,1) resonance minima begins. For aluminum
oxide the specular {lus Franz wave behavior persists up to Aa = 9.90, and the resonance nuli at
ka = 9.90 in Fig. 8a is the (2,1) mode for aluminum oxide. Similar curves were computed for
copper, brass, and tungsten carbide, and in all cases the generation of the {(2,1) mode marks
the end of the purely rigid behavior. The ka value at which the purely rigid behavior will end
fer a cylinder of a given material can be inferred by using aluminum as a reference. The (2,1)
mode will be excited at

cg (material)

; . (31¢)
cg (aluminum)

Zz‘l(material) = Zz.l(.‘il) *

The Rayleigh velocities used in Eq. 31c are flat surface numbers, and the equation assumes that
the effect of curvature is the same for all materials, i.e., that the flat surface limit is reached
when the circumference is greater than 10 Rayleigh wavelengths. Using the -simple formula
given in Eq. 3lc, the ka position of the (2,1) resonance was predicted to within 1% for the

.materials discussed above.
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1V. DEMONSTRATION THAT THE SCATTERING FROM SOLID

ELASTIC CYLINDERS CAN BE SEPARATED INTO
RIGID BACKGROUND AND RESONANCE PORTIONS

A. Preface

Junger and Feit [40] qualitatively considered the resonance features of the acoustic
scattering by elastic bodies. They showed that resonances should appear where the sum of the
mechanical and radiaiion impedance goes to zero. In part B of this chapter it is demonstrated
that the acoustic scattering from a submerged aluminum cylinder can be described in terms of a
rigid background term, with a resonance contribution superimposed on that background. The
observed phenomeneon is formalized in part C using the methods of nuclear scattering theory,
so that mathematically explicit forms for the resonances and background, as well as expressions
for the resonance widths, are obtained. It is necessary to establish the nature of the back-
ground before the formalism is developed because a parallel formalism could have been
developed, using a soft or an intermediate background, which would have had no physical
significance for the problem of the solid metal cylinder. The conclusions and formalism
developed for the scattering from an aluminum cylinder apply to the scatterihg from any sto-
merged solid cylinder whose densitly is greater then that of the surrounding fluid and whose
shear and compressional sound speeds are greater than the speed of sound in the fluid.

B. Results

, The results described in Chapter 11l demonstrated that the irregular characteristics of the

form function for solid elastic cylinders are related to the normal modes of free vibration of the
body, and these resonances often occur over a narrow frequency range as war seen in Fig. 12.
It will be demonstrated in Figs. 17 through 20 that the resonances are superimposed on a back-
ground of reflection resulting from rigid boundary conditions, so that the eiasiic body can be
regarded as a rigid body except in the frequency interval over which the resonances occur. In
Fig. 17, the individual partial waves, |7}, from n = O through n = 5 are plotted vs ka for an
aluminum cylinder. The f, are described by Eq. 7c. The curves in Fig. 17 show that the
amplitude of the individual partial waves |£;,] have distinctive behavior in regions where the
resonances occur. The eigenvalues /, are labeled along the curve in Fig. 17. The individual
partial waves for both the infinitely rigid and the infinitely soft cylinder have no resonance irre-
gularities, as seen in Fig. 18(a) and 18(b) respectively. The demonstration that the individual
partial waves for a metal elastic cylinder consist of resonances superimposed on a rigid back-
ground is seen in Fig. 19. Here the |£] and |£]individual partial waves for rigid, soft, and elastic
toundary conditions are plotted. It is clearly observed in Fig. 19 that the rigid and elastic
curves are the same except in the region where resonances occur. The resonances for / 2> 2 are
narrow resonances; the { = 1 eigenvalue which corresponds to the Ry or Rayleigh surface wave
is a broader resonance. A more dramatic example of the relationship between the elastic and
the rigid solutions for a solid cylinder is scen in Fig. 20. Here the quantity {/,(sr)etstic
—/,(m)™4 is plotted vs ka, end the (2,1), (2,2), and (2,3) resonances are cleeriy isolated. As
was noted, the (2,1) resonance and in fact the (n, 1) résonances in general are broader than the
nariow resonances which occur for higher order eigenfrequencies, i.c. { > 1 A method of
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Fig. 17 - The individual partial wave amplitudes fromn = 0 to

n =35 for the aluminum cylinder.
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Fig. 20 — A plot of the difference between the clastic and rigid partisl
wave smplitudes for n = 2, over the range 0.2 < ka < 20,

computing resonance widihs will be described in part C. The results seen in Figs. 17 through
20 are, of course, not restricted to the backscaitered direction.

Fig. 2la shows & bistatic form function I (8] curve for & rigid cylinder at kg = 12.53,
which is the ka value at which the (3,2) resonance occurs in the aluminum case. in Fig. 21b
this bistatic rigid form function is compared (o the bistatic formt function for an aluminum
cylinder. Here the resulis are plotted on a linear rather than polar plot, and due to the sym-
metry apparent in Fig. 21a only the range 0° < ¢ < 180° is plotted. The rigid and elgstic solu-
tions plotted in Fig. 21b were obtained with 23 lerms {n = O through 22 from Eq. 7a). [f the
sinigle # = 3 term from the elastic solution is substituted for the n = 3 term in the rigid solu-
tion, the result seen in Fig. 21c is obtained. A similar procedure was carried out by Vogt and
Neubauer [41) for a sphere in a monostatic gcometry. In Fig. 2lc the exact bistatic solution
for the atuminum cylinder &t ka = 12.53 is compared to the hybrid solution formed by taking
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Fig. 21(c) — The same comparison as (b) except that the n = 3 term in the
- rigid series is replaced by the n = 3 elastic term.
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22 terms from the rigid solution (n = 0, 1, 2, and n = 4 through 22} and adding the n = 3
term from the elastic solution. The modified-rigid form function vs aspect curve angd the elastic
form (unction curve seen in Fig. 21c have becume similar. The differences between Figs. 21b
and 21c are most noticeeble in the backscattered half space, 90° < & < 270° (recall that by
symmelry the results seen in Fig. 21c from 90° < 8 < 180° are exactly the sante as the results
between 180° < 8 < 270°). Figure 21 again indicates the probability that the scattering from
an aluminum cylinder can be treated as resulting from a rigid backgound term with resonances
superimposed. It indicates further that this behavier is not limited to the single monostatic an-
gle (8 = 180°) but can be utilized at any bistatic aspect angle.

C. Mathematical formalism describing elastic resonance excitation

The results obtained in part B, indicate that the solution to the scaitering from solid elas-
tic bodies as expressed in Egs. 4, 5, and 7 should be separabie into two terms, the rigid back-
gound term and the resonance term. An analogy between the acoustic scattering problem and
the existing resonance formalism of nuclear scattering theory was suggested by L. Flax and H.

Uberall, leading to the following.

If the scattering function
S, = exp(2i 8,) (32)

is introduced, the solution describing the scattering by an elastic cylinder may be written in the
form familiar to nuclear reaction theory {42} as " :

p,=~1/2 ¥ €, i"(S, — 1) H,(kr) cos né. (33)
n=~0
The 5, of Eq. (32) are called scattering phase shifts, and a comparison of Egs. 1, 3, and 33
shows that
S, — 1 = —2G,(ka). (34)

For the case of a rigid cylinder, defining £, as the scattering phase shift for a rigid cylinder and
defining

SR = exp(2i £,) {35a)
as the scattering function for a rigid cylinder leads, using Eqgs. 34 aad 13, to
SR —~ 1 = ~2G} R (ka) (35b)
and thus
R - HAZ) (35¢)
H,(Z)

If the rigid porition of the scattering function as given in Eq. 35c is factored out of the
expression for the elastic scattering function Eq. (34), we have using Eqs. 3 and 35¢

L' - z{‘
- QRY I 5 .
Sy = S, ( L2 } (36)
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The L,’s were previously defined in Eq. (1a), and the 2's are defined by

H,(2)
-1 o "
and
; H(2)
2y = (2) 7{;(;)-("2—)- (37b)

the primes in Egs. 37 and 35c represent derivatives with respect to the argument, and as
defined previously H and H® are Hankel function of the first and second kind respectively.
The quantities z,! of Eq. 37 can be separated into real and imaginary parts:

) = A, £ s, (38)
with :
1,(2) J(2) + Y,(2) Y,(2)
An = V@) D+ (r@F 69
and
-2 1
LAYZ llJ,;(Z)P + [Y,(2))? , “o
Equation 36 may be rewritten using Eq. 38 as -,
L' —A +is
- (R) n n n

The linear approximation method of nuclear resonance theory is used in which the reso-
nance frequencies Z, are defined by the condition '

L' (Z,) = A, (422)

The quantity (L, — A,) is assumed to be linearly varying with frequency so that it can be
expended in a Taylor series in Z in the vicinity of any one of the resonance frequencies:

L7'=A,+8,(Z - 2,). (42b)
A resonance width is defined by
—-2s,
r,= (43)
Ba

and the scattering-function S,, may be rewritten in resonance form as

Z -2, 1.2 (44)

From Eq. 44 the S, are seen to have resonance poles at the complex frequencies Z = Z .,
given by

Zpge= Zy — —;- ir, (45)
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and a resonance zero, Z = Z,,., &i
1

Zigo = Z, + 2 iTy. (46)

The resonance width I, defined in Eq. 43 is a positive quantity. Thus Z,, is located in the
lower half of the complex Z-plane a distance (1/2)T", from the real axis, and Z,,, is located in
the upper half plane at the same distance above the axis.

The quantity S, — 1 which appears in Eq. 33 can be written, recalling the definition in Eq.
32, a8

S,—1 =2i e sins,. (46a)
Using Eq. 36 and the expressions for z;7} given in Eq. 38 (S, — 1) can be rewritten in the form
1€, Sa €y
S,—1 =2 e an_l e + e " sin 6,} (46b)
or, using Eqs. 44 and 46a, S, — 1 may be written in the resonance form
S. -1 2i¢, 1/2 rn i I
— e lZ,-—Z—l/ZI‘,,+e sin £,}. 47
The individual partial waves, f,(0), of Eq. 7c can thus be written, using Eq. 47, as
2i &, 2e, 1/2r, —lfy o
FAC)) U ka)i72 e [2,4-42—1/21[‘,, +e "sing,]|cos(nd). (48)

The first term of Eq. 48 represents the resonance contribution, and the second term represents
the rigid boundary contributicas; thus the results established in part B are expressed in a mean-
ingful formalistic way. The representation of f,(8) given in Eq. 48 shows that the complex
eigenfrequencies of the scatterers are the locations of the resonance poles in the complex fre-
quency plane, whose real parts determine the resonance frequencies in the scattering ampli-

tudes.

A consideration of the field within the elastic cylinder can also be made in light of the
above results. The displacement u within the cylinder is represented by a scalar potential ¥
and a vector potential A, and is written

u=—-AV+AXA (49)
with solutions {20}
2 i €, i"C, J,(k, r)cos no (50a)
n=0
and
Az - 2 €, i B,, Jn(kr ")Sin neé. (SOb)
‘ne=

The subscripts L and T are longitudinal and shear respectively. The coefficients C, and B, are
given by

2i 1 as;
C, = , 51a)
wp 0! ZH,(Z) DV 7' - L (
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and
2i 1 aj;
B, = ; . S1b
w#p w? ZH,(Z) DV 71— - (51b)
The expansion of L, in Eq. 42 leads in to the resonance expressions for ¥ and A4,, which are
2 €, i" as J,,(kl_i’) Ccos ndo
Y = : 52
iTp w? z B, ZH,(Z)D!M Z-2Z,+1)2iT, (522)
and
® €, i" J.(kyr) sin n
AZ - . 2 2 < ' an [t} . rr ¢ . (52b)
iTpw' /5 B, ZH,(Z)DY Z -2Z,+1)2 ir,

Equations 52a and 52b show that the internal solutions are of a pure resonance form only.

This is as expected, since by definition a rigid body is impenetrable; thus no rigid background
term is expected for the internal solution.
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V. CIRCUMFERENTIAL WAVES ON CYLINDRICAL SHELLS

A. Preface

Numerous (11-15,25-27] empirical observations of circutaferential radiation {rom cylindri-
cal shells exist in the literature, but these have left many serious voids in the understanding of
circumferential waves as well as erroneous information concerning the properties of the ‘aves.
This chapter will establish the connzction between circumferential waves and the exact Rayloigh
series solution. It will demonstrate that the Lamb wave dispersion curves on plates predict the
range of possible excitation of circumferential waves and that the velocity of circumferential
waves may be obtained directly from the form function vs ka curves. It is shown that these
Lamb cucves also give immediate knowledge of the ka region over which a particular circum-
ferential mode is significant, Calculations of the backscattered echoes from shells will be used
to obtain curves relating the amplitude of the specular and circumferential contributions as a
function of ka, and, contrary to the prevalent belief expressed in the literature, the circum-
ferential waves will be shown to be of most importance in the low ka region generally avoided
in past work. A target classification scheme was proposed in the literature which relied on the
assumption that a hollow shell acts as a soft body, in that its specular reflection is 180° out of
phase with an incident wave [43]. By consideration of the interference between specular and
circumferential radiation, the actual ka range over which such a hypothesis is valid is deter-

mined.

Most of the pestinent refernces on the subject of circumferential waves on cylindrical
shells have been mentioned in Chapter I. They and others are discussed in more detail below,
where they are considered, generally, in chranological order. Barnard and McKinney {11} were
the first to observe backscattered acoustic echoes with circumferential properties. This observa-
tion was a significant contribution, They attempted to link the observed acoustic phenomenon
to the geometric diffraction phenomenon observed by Franz (18] in the electromagnetic
domain; however, the analogy broke down, since the acoustic phenomenon was a predom-
inately elastic effect, the geometry serving in the capacity of a waveguide. Horton, King, and
Diercks [13) made the initial attempt to relate circumferential waves on cylindrical shells to the
elastic properties of flat piates. They compared their observation of a circumferential wave on
an aluminum shell to a theoretically computed fiexural plate mode and found a 10% difference
between measured and predicted velocities. A similar comparison was attempted with a brass
shell {13], but the circumferential wave could not be excited. The ka range considered was 21
< ka < 38, with b/a = 0.96, where b and a are the inner and outer shell radius respectively.
The circumferential wave observed by Horton et al. will be related in this work to the first
antisymmetric Lamb mode, whose properties and ka region of possible excitation ar~ discussed
later. Diercks, Goldsberry, and Horton [12] made empirical observations of circumfcrential
waves on both brass and aluminum shells near ka = 50, with 8/ = 0.96. - They established the
existence of circumferential waves with two different group velocities. The faster velocity wave
was called a lorgitudinal mode, and the lower velocity wave was called the flexural mode. This
paper by Diercks et al. [12] was significant in that it was the first to clearly state that more than
one circumferential mode existed. Their conclusions, concerning which mode is dominant and
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whether both modes can be simultaneously excited, were thought to be general but are limited
strictly to the conditions of the observations. It will be demonstrated in part C of this chapter
that the so-called longitudinal mode is actually many different modes, and herein lies much of
the confusion about the frequency range of excitation and/or dominance of a particular mode.
Goldsberry [14] demonstiated that the circumferential waves observed previously at DRL (11-
13] would reflect from slits cut in the shell. He called the wave with lower group velocity a low
frequency wave, and the faster wave a high frequency wave. Again these generalizations do not
survive beyond the experimental conditions. The ranges he considered were 32 < ka < 38
(flexural, slow, low frequency wave) and 70 < k2 < 76 (compressional, fast, high frequency
wave). The b/a was 0.96. Uberall and collaborators at Catholic University predicted circum-
ferential waves of different types on rigid [20] and elastic cylinders [21] and shells [44]. These
predicted wave types were Franz-type waves [20] with properties similar to the electromagnetic
case of Franz [16], and R-type or Rayleigh-type [21,44] waves, which depend on the elastic
properties of the target. Neubauer [23] empirically isolated the Franz-type wave on a solid elas-
tic cylinder in water, and Harbold and Steinbarg [24] isolated the wave on a rigid cylinder in air.

Bunney, Goodman, and Marshall [25] used narrow beam sources to illuminate cylindrical
shells over narrow ranges of incidence angles and directional receivers to wobserve
circumferential-wave radiation. The ka range they considered was between 50 < ka < 320
with b/a = 0.95. Many observations of a low velocity circumferential wave were compared to
the antisymmetric Lamb mode, and the single observation of a higher velocity mode was

related to the symmetric plate mode.

Neub: - and Dragonette [27] and Dragonette [45] empirically demonstrated that the
velocity of the observed circumferential wavés: on cylindrical shells [27] and the velocity of
Lamb waves on plates [45] could be predicted by considering guided wave propagation within
cylindrical shells ard plates. Draronette [45] also established that Lamb modes were most
easily excited in the frequency thickness regions where the phase velocity reached a constant
plateau. This result is significant in a consideration of the so-called fast circumferential wave
on cylindrical shells, as will be seen in part C, and is the basis for correcting some erroneous

conclusions in the literature.

Shirley and Diercks [46] compared measured and predicted values of the steady state
response of spherical shells over the range 25 < ka < 65 with b/a = .95. Differences of the
order of 10 dB, or a factor of 300% in pressure amplitude, were found between theory and
prediction, but similarities in shape between the theoretical and empirical curves were observed.

Horton and Mechler [15] attempted to measure phase velocity of circumferential waves
on aluminum cylindrical shells by setting up a long pulse or steady state interference pattern
between the successive circumferential pulses. The significance of their paper was that it
offered a possible approach to phase velocity determination which, as will be discussed later, is
a difficult parameter to obtain when waves are excited on a curved surface.

B. Experimental observation and analysis of the preperties of circumferential waves on
- shells

Figure 22 shows the geometry of the cylindrical shell problem. It is similar to Fig. 1
except that the target now has a finite thickness / given by # = a — b, where b is the inner
radius and a is the outer radius. The shell is air filled. An experimental observation of circum-
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Fig. 22 — The geometry used in the solution to the re
flection from a cylindrical shell.

ferential waves is seen in Fig. 23. Here the target is a stainless steel cylindrical shell with 4/a
= U.96. The radius of the shell is 1.27 cm, and the center frequency of the pulses seen in Fig.
23 is 1.5 MHz, leading to k, a = 80. The specular reflection is not shown, as it is 40 dB
grestar than the largest echo seen in Fig. 23, and was gated out of the return so that the echoes
seen in the figure could be amplified to the maximum extent before display. The backscattered
echo se=<n in Fig. 23 was obtained using the experimental system described in Appendix B. The
sourc iver is located 15 diameters from the * The backscattered echo seen in Fig. 23
was Gig*'ced at the rate of 13 points per cycle . :d on magnetic tape. The representation
seen in Fig. 23 was obtained with a Versatec plctier, The first, third, and all successive cchoes
in Fig. 23 result from a circumferential wave - which circumnavigates the cylinder, with little
attenuation, continually radiating into the water av, it travels. The second echo in Fig. 23 is the
result of a second type of circumferential wave 50 highly attenuated at the ke and/or kh value
of this experiment that only its first traversal around the cylinder is observed before it attenu-
ates into the noise. (Nbservation of Fig. 23 alone would not allow identification of the second
echo as a cir;umferential wave. This identification was based on many experimental measure-
ments, some of which will be seen below.) Measurements of the circumferential velocity of
the persistent series of equally spaced echoes (1-7) in Fig. 23 are straightforward. The circum-
ferential group velocity ¢, is obtained from Fig. 23 by )

o - 2Ta
A
where At is the time between echoes and 2ma is the circumference of the shell. The measured
value from Fig. 23 is ¢, = 5.48 x 10% cm/s or co/c = 3.7. This value for c, identifies this wave
as that previously called the “fast", “high frequency”, or “compressional” wave by previous
observers {13-15). As will be discussed, these names can be misleeding or in error. Attenua-
tion measurenients from Fig. 23 are also straightforward. The successive amplitudes from Fig.
23 are plotted on semilog paper in Fig. 24, yielding an attenuation of

“a, = 0.14 Np/revolution. .

The use of the digitizing procedure and display makes possible observation of the individual
cycles of the successive echoes in Fig. 23. The empirical observations which follow in Figs. 25
through 28 are simply photographs of scope traces, and the time scale needed io show many
successive echoes does not allow observation of the individual cycles within the echo.
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Fig. 23 — Experimental observation of circumferential waves on a stainless steel at kg = 80.
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Fig. 24 — The amplitude of the circumferential
waves seen in Fig. 23 plotted on|ssmilog paper.

Fig. 25 — Experimental observation of a “‘fast™ circumferential wva
atkoa= 11, on a stainless steel shell. The time scale is 20us/division;

the amplitude scale is 5 mv/division.
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Fig. 26 — Experimeatal obscrvation ofa*
at k,a = 69, on a stainless steel shell, The time scale is 20us/divi-
sion; the amplitude scale is 2 mv/division.

ast” circumferential wave

0 AN A <

Fig. 27 — Experimental obscrvation of a “slow™ circumterential wave
atk,a= 17, on a stainless stell shell. The time scale is 20us/division:
the amplitude scale is 200 mv/division.

Fig. 28 — Experimicital observation of a “slow' circumferential wave
atk,a =43, ona stainless steel shell, The time scale is 20ps/division:
the amplitude scale is 2 mv/division.
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Figures 25, 26, 27, and 28 show further results of reflection measurements on steel shells,
and the experimental conditions and results are summarized in Table 111, which also includes

the results descridbed for Fig. 23.

Table 111
Summary of cylindrical shell observations
Figure Radius a
(cm) kya | b/a | ¢,/c | Np/revolution
23 1.27 80.8 | 96 | 3.7 0.142
25 1.59 113.0 | 97 | 3.5 0.209
26 0.9525 690 | 95 | 3.6 0.126
27 0.9525 170 | 95 | 1.35 1.000
28 1.905 430 | 97 | 135 0.600

The hydrophone measurements seen in Figs. 23 and 25 through 28 show the acoustic reflection
in the backscattered direction, @ = 180°. Obscrvation of the entire scattered ficld, 0 £ 0 < 2
can be obtined simultancously by schlieren visualization. Figure 29 shows a schlieren visualiza-
tion of the scattered ficld of a stainless s.eel cylindrical shell of radius 0.9525 cm with b/a =
0.95. The A,a of the experiment is 202. The incident pulse is sec ‘n Fig. 29a. and the time
sequence of photographs shows the scattered field at later times. The speculay reflection and
the beginning of the radiation from a circumferential wave are scen in Fig., 29b. and Fig. 29¢
shows the reradiation (rom the first complete Araversal of the circumferential wave into the
buackscattered direction. At the bottom of Fig. 2Y¢ the diffraction around the shell can also be
observed. The group velocity of the wave scen in Fig. 29 is ¢ o= 3.6. In Fig. 29 the incident
pulse insonified the entire cylinder, so that the same cflect was generated on both the upper left
and upper right quadrants of the cylinder.

The properties of the circumferential waves scen in Figs. 23 and 25 through 29 are similar
to circumflerential wave properties previously reported in the literature [11-15.25-27].
Spcuﬂcally, circumferential waves with group velocities ¢/¢ = 3.6 (Figs. 23, 25, and 26) and
¢ e = 1.3 (Figs. 27 and 28) are observed, with the faster group velocity observed at the higher
frcquemy (or higher ka) and the stower group velocity wave at the lower frequency. This sim-
ple interpretation of the results is, however, misleading and demonstrates some of the practical
difficultics in a predominantly empirica! approach to this problem, where broad geacralizations
are made, based on limited measurements. The experimental measurements here, and reported
previously, are generally made at high ka values. At very low frequencics, or ke values below
ka == 20, it is a practical impossibility to achieve short enough pulse lengths to separate circums-
ferential waves with transducers generally available; hence, high k¢ measurements are made as
a matter of necessity. This iow-ka limitation on the isolation of separate cchees is especially
true of high speed circumferential waves. In addition, most empirical measurements are made
on shells with 4/a < 0.96, since thinner shells are more difficult to fabricate and maintain.
Finalty, as a practical matter it is not possible to measure enough combinations of shells and
freqencies to do a complete empirical study. This latter statement is true not only because of
the low ka separation difficulty mentioned sbove but also because in the case of a curved shell
there are two frequency variables. For a flat plate, frequency times thickness, /i may Je con-
sidered a single variable. The radiation from a given plate may be examined as. a functic. of
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Fig. 29 ~ Schlieren visulization of a “fast™ circamferential
wave at ka = 202 on a stainless steel shell.
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I simply by varying the frequency of the incident pulse or continuous wave. A similar experi-
ment on a curved shell is not as unambiguous. As the frequancy of the incoming wave is
varied, the fh or kh of the shell changes accordingly, but in addition the ka value changes. As
will be seen, there are certain effects which are strong functions of ka, and others which depend
almost entirely on kh. These had not previously been differentiated successfully in the litera-
ture, and this could not have been reasonably accomplished empirically. Because previous work
has been limited to the high ka region, where the flat surface limit is approached, the &/ vari-
able has generally been considered most significant in all empirical observations of isolated cir-
cumferential waves. In fact the low ka region which has been avoided is the only ka region
where a high velocity circumferential wave plays a significant role in the acoustic scattering by a
cylindricat shell, as will be demonstrated.

C. Theoretical normal mode formulation of the shell problem

Analysis of circumferential waves on cylindrical skells can best be accomplished by deter-
mining the relationship between the circumferential waves and exact steady state theory. in
addition, as will be seen in part D, Lamb theory for plates can be used to predict the possible
ranges of excitation of circumferential waves on shells.

The geometry of the cylindrical shell problem was given in Fig. 22. The formulation of
the exact normal mode solution to the scattering of sound by an elastic cylindrical shell exists in
the literature and can be presented in a form similar to that of Eq. 1, whigh described the
scattering from solid elastic cylinders [32]: :

JA(2)'Q,—Z J,(2)
H(2Z) Q, - Z H,(Z)
This expression differs from Eq. (1) only in the replacement of L,, which involved the division

of two 2-by-2 matrices, by Q,, which involves the division of two 4-by-4 matrices. The larger
matrix results from the extra boundary condition on the surface r = b, and the expression for

Q,is

p:(8) = —p, ¥ €,(i)" H,(kr) cos né. (53)

dj) Ay Az Ay

a3 dyy @33 Ayg
aq) Q42 943 944

Qg1 62 A6y 64

0, = P
Ps ay a a3 an
@ Q3 33 ay
a,

G41 Q43 Au4 (54)
Qg) g2 Q63 Ao

with the matrix elements @, given in Ref. 32, Computations are given in Fig. 30 of the form
function vs ka for steinless steel shells with 6/a = 0.99 (Fig. 30a) and &6/a = 0.98 (Fig. 30b).
The curves cover the ka range 0.2 < ka < 50. A similar set of curves for aluminum are given
in Fig. 31, and the two figures demonstrate the simiiarity of results obtained on metals quite
different in density, but with shear and longitudinal speeds approximately twice and four times
the water speed, respectively. The elastic constants used in obtaining the curves seen in Figs.
30 and 31 are given in Appendix C.
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Fig. 30 — The form function for stainless steel shells over the range (.2 < ka 5 50 for

shell thickness of (a) 0.99 and (b) 0.98.
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Fig. 31 — The form function for aluminum shells over tho range 0.2 < ka < 50 for shell

thicknosses of (a) 0.99 and (b) 0.98.
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The form function curves seen in Figs. 30 and 31 are made up of the steady state interfer-
ence of specular reflection and a single circumferential mode which makes many circumnaviga-
tions of the cylinder before attenuating into th wiisa. The above explanation of Figs. 30 and
31 can be demorstrated analytically by computi:ig the reponse of the shell to an incident pulse.
The computation is made using Eqs. 9 and i2 wiih ti= grocedures described in Chapter I1. Fig-
ure 32 shows the response of an aluminum szl with b/a = 0.99, to an incident acoustic
pulse. The pulse is centered at a dimensiorless fresuency k,a = 10. The backscattered echoes
are seen in Fig. 32(a), and the incident wave is seen in Fig. 32b. The backscattered return is
made up of the specular reflection followed by a series of equally spaced echoes which result
from multiple circumnavigations of a circumferential wave. The ratio of the circumferential-

wave group velocity c,: to the water velocity cis given by

. 2

c./¢ e (55)
where At is the dimensionless time between successive circumferential echoes. The result
obtained from Eqs. 32 and 55 is ¢,/c = 3.7. The deviations from Ifd = 1 in Figs. 30 and 31
occur when the circumference, 2ma, is an integral number of circumferential wavelengths. For
ka values at which 2wa = n\°, where A 'is the wavelength of the circumferential wave and nis
an integer, the long pulse or steady state interference of the circumferential waves gives a max-
imum contribution, since all add in phase with one another. At these ka values peaks will
occur in the form function if the specular reflection and circumferential waves are in phase and
nulls will occur if they are out of phase. The ka difference, Aka, between the successive
fluctuations in the |f.d vs ka function are ‘directly related to the circumferential wave phase

“velocity ¢, by
c,/c = Aka (56)

which for Figs. 30 and 31 gives ¢,/c = 3.7. The nearly conatant spacing of the fluctuations Aka
~ 3.7 indicates a constant or slowly verying phase velocity, so that the approximation c,; = c,,'
is valid over the ka range 0 < ka < 50 seen in Figs. 30 and 31. The phase velocity of the cir-
cumferential wave on an aluminum cylindrical shell with b/a = 0.99, is obtained from Fig. 31a
and Eq. 56 as ¢,/c = 3.7, which is identical to the group velocity obtained from Fig. 32 and Eq.

55.

The previous paragraphs demonstrated the significence of the Aika spacing between the
deviations in the form function for cylindrical shells. The direction of the deviations from If ol
= 1 in the form function curves, as seen in Figs. 20 and 31, is also significant. The hypothesis
of Tucker and Barnickle [43] mentioned in the first paragraph of this chapter was based on the
assumption that a hollow air-filled shell will act as a soft body in that its specular reflection will
be 180° out of phase with an incident wave. This would then distinguish hollow body echoes
from echoes scattered by solid bodies, which would act rigidly, that is, give a specular return in
phase with the incident wave. The results of Chapter 1V demonstrate that, in fact, the return
from solid bodies whose density is greater than the density of water and whose shear and
compressional speeds are greater than the speed of sound in water can be described in terms of
a rigid background term plus a resonance term over all ka > 0. Thus, for solid bodies with
these elastic properties, the rigid background portion of the hypothesis of Tucker and Barnickle
would be correct. With regard to the "soft” scattering by a hollow shell, however, the
hypothesis breaks down, as can be determined form the work described in the previous para-
graph. Figures 30 and 31 demonstrate that the ka range over which cylindrical shells will act as
a soft body is a function of frequency. As frequency is increased, the thickness h of a given
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Fig. 32 — Computations ¢f the echoes (seen in (a)) scattered when a short incident
pulse (seen in (b)) impinges on aluminum shell with b/a = 0.99. The pulse is centered

at kga = 10.
shell becomes greater with respect to a wavelength, and whether a shell acts as a "soft" body
(specular reflection 180° out of phase with the incident wave) or a "rigid" body (specular
reflection in phase with the incident wave) depends voth on the frequency and shell thickness.
For example, as was discussed, the fluctuations in |f..| for the shell described in Fig. 31b occur
at intervals Aka = 3.7. The deviations from |f,| = 1 are, however, not uniform in direction
either in Fig. 31b or in any of the other form function curves shown in Figs. 30 and 31. Three
separate background regions exist.

The shell acts as a soft body over the ka range where the fluctuations in |f.), at Aka =
3.7, are in the negative direction. Here th2 specular and incident wave are 180° out of phase.
Recall that the incident wave and the circumferential wave are in phase (as seen in Fig. 32),
and further pulse calculations such as that in Fig. 32 show that they remain in phase over the
ka range from 0.2 < ka < 50. For an aluminum shell with b/a 0.98 the ka region over
which the shell acts as a "soft” body (specular reflection and the incident wave 180° cut of

phase) is seen from Fig. 31b to be 0 < %a < 23.

As ka increases, the shell passes through a transition region during which a single fluctua-
tion has both positive and negative aspects. This occurs over the range 23 < ka < 37 for the
10.98 aluminum shell. Finally for ka > 40 the deviations from |fw| = 1 are positive and the
shell is a rigid reflector with respect to its specular reflection. The extent in ka of the three
background regions will vary with thickness and with material. Later in this section the advent
of higher order modes will be discussad, but it can generally be said that if the product of fre-
quency and thickness is large enough to allow more than one circumferential mode to be
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excited, the shell has already reached the rigid background region. Development of the formal-
ism for the resonance scattering from hollow shells with intermediate background is the subject
of an ongoing program at the Catholic University [47].

The generation of a single circumferential wave under the conditions present in the com-
putation of the results seen in Figs. 30 through 32 are consistent with the dispersion curves for
Lamb waves on plates. Figure 33 shows dispersion curves for the first four symmetric and
antisymmetric Lamb [48] waves for aluminum plates. The symmetric Lamb modes satisfy the
frequency equation [45,48,49]

tanh({(wfh/ V) [(c} — V) /AN
tanh{(w/n/V) [(c2 = VI /A2
4{l(c2 = VBIAV? - (e} — VD[ (57)
(27 = v/l

~ and the antisymmetric mode satisfies the equation
tanh((wfn/V) ((c} = VI /cAYY
tanh{(wfh/V) (V- V)V

(Qc# = VY /cf)?
4{[(c} = VD[V (e} = YD/ "’};

gs. 57 and 58, Vis the Lamb phase velocity. The group velocity of the Lamb wave, V. is
¢d to the phase velocity by

(53)

e
&

1
Ve = VI = T=Gmy aviagm | 59)

s been demonstrated that Egs. 37 through 59 describing Lamb waves on plates in vacuo
are not strongly modified when the plate is immersed in water (45,49,50] and that Lamb waves
can bc generated by illuminating a plate in water by an incident pulse [45,49]. Radiation of the
Lamb wave into the water can be observed either with a hydrophone [49] or by schlieren visu-
alization [45).
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Fig. 33 — The Lamb dispersion curves for the first four symmetric (—) and antisymmetric
(- ~-) Lamb waves on aluminum plates.
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Grigsby and Tajchman {51} gave dimensionless curves for the phase and group velocities
of Lamb waves on a plate whose ratio of longitudinal to shear speeds is 1.8. Their curves are
=2en in Fig. 34. Special attention is directed to the group velocity curves in Fig. 34b, where all
the modes show a flat peak in the group velocity at V,, = 1.8. In Fig. 34 the ordiue” V., i<
Lamb phase velocity divided by shear velocity i.e. ¥, = V/cr, and the abscissa (/h), is "

In Fig. 34b the ordinate V,, = V,/cy. '

(2) N8N

(o} i 2 3 4 8 6 7 8
(th),
(@)

2.—

>g N (2) (3) (4)

l_.

o 1 ) ] 1 | 1 |

o} ! 2 3 4 5 6 7 8
(th)y,
(b)

Fig. 34 — Dimensionless curves of (a) Lamb phase velocity and (b) Lamb ve-
locity curves for materials with ¢ fep = 1.8.

Dragonette [45] demonstrated that strong generation of a Lamb mode takes place in th.,
region where the phase velocity curves reach a flat plateau (at approximately ¥V, == 1.8 in Fig.
34a). This plateau region corresponds to the frequency thickness region where the group velo-
city curve for a particular mode reaches a flat maximum (at approximately V,, = 1.8 in Fig.
34b). Dragonette [45] demonstrated further that this stong generation of a Lamb mode, in the
fh region where phase velocity is approximately equal to the group velocily, persisted as the

plate was curved.
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In Fig. 35 the Lamb phase velocity curves describing the first symmetric and first anti-
symmetric curves for an aluminum plate are isolated. The ordinate is given in terms of the
Lamb phase velocity V, and also in terms of the angle of incidence 8, at which a Lamb wave,
with that phase velocity, can be generated by a plane wave incident from water on to the plate
surface. This angle 6, satisfies the equation

sin @, = c/V, (60)

and a Lamb mode cannot be generated by an acoustic wave incident from water to the plate
unless ¥ > ¢. The frequency thickness variable, fh, which is the abscissa of the Lamb curves
seen in Fig. 35 may be written in terms of ka for a specific cylindrical shell by a simple alge-

braic manipulation:

kh = k’—cfﬁ - kall = (6/a)] (61a)
fh = (ka) c(1 = b/a) _ (61b)
2r

Using Eq. 61b the abscissa, fh, for the flat plate case may be transformed from fh into ka for
shells with various b/a values. Figure 35 shows the abscissa written in equivalent ka values for
an aluminum shell with 4/a = 0.98 (see Fig. 31b). The results seen in Fig. 35S predict that the
first symmetric mode can be generated at any ka value, and in fact since the flat plateau in
group velocity occurs at the low end of the frequency thickness or ka scale, this waye should be
strongly generated at low ka. The arrow in Fig. 35 points to the place where V = ¢ for the first
antisymmetric mode. For the shell with bla = .0_198, this curve predicts that the antisymmetric
mode cannot be excited at ka values below ka = 50. The phase and group velocity of the sym-
metric mode is predicted to be V/c = 3.7 by the curves in Fig. 35, in excellent agreement with
‘the circumferential wave observed for the cylindrical shell (Fig. 32). The circumflerential wave
related to the first sysmetric Lamb mode has died out by ka = 50, as seen in Fig. 31b, and, as
szen above, the results in Fig. 35 predict that the onset of a circumferential wave related to the
first antisymmetric mode cannot occur at a value lower than ka = 50. Such a wave would have
a lower group velocity; i.e., oscillations in 'f vs ka would occur at closer intervals than those

observed in Fig. 31b. Recall that ¢,/c = Aka.

A plot of |f.] vs ka for an aluminum shell with b/a = 0.98 is given over the range 50 <
ka < 90 in Fig. 36. This is then a continuation of the curve given in Fig. 31b, and it shows the
onset of a circumferential wave with the properties related to the first antisymmetric mode.
The oscillation in the form function curve predict a circumferential wave with ¢/c = Aka =

1.3.

~ In genersl, then, a circumferential wave related to the first symmetric mode should always
be generated for a shell of any thickness. Its influence is restricted to the low ka region over
which the phase velocity has a flat plateau. This region is a function of thickness, as will be
described below. A circumferential wave related to the first antisymmetric mode can only be
generated at ka values higher than the coincidence frequency ka = (ka),, where ¥ = ¢ Thus
the thicker the shell, the lower the ka value at which this mode can be generated.

These conclusions should be reflected in the form function curves for aluminum cylindri-
cal shelis of various thicknesses. Diffcrences from I/ = 1 should occur at intervals Aka = 3.7
for all thin shells, and these differences should die out more quickly with ka as thickness
increases, since the plateau region in Fig. 35 corresponds to a smaller ka range for thicker
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Fig. 36 - The form function vs ka over the ram.c S0 < ka < 90 for an
for an aluminum shell with b/a = 0.98.

aells. Differences at Aka = 1.3 should begin to occur at lower Aa values as thickness is
increased. Fig. 37 shos the form function curves for aluminur cylindrical shells with bla =
0.99, 0.98, 0.96, 0.94, 0.92, 0.90, and 0.85. The above conclusions are verified in Fig. 37.

As thickness increases, the aatisymmetric mode is seen to oceur at lower ka values. The
low velocity circumferential wave observed here in Figs. 27 and 28, and by the muany others
referenced carlier {12-15,25-27], is related to the first antisymmetric Lamb maode for a plate.
The ka range over which it is generated depends on the thickness of the shell. The first sym-
metric mode is strongly generated on aluminum plates in the thickness region where it has a
phase and group velocity ratio of ¥/¢ = 3.7. This is carried over to the shell case, where a cir-
cumferentinl wave having the properties of the first symmetric mode are observed at low ka on

=l thicknesses of shells from 0.85 < #/¢ < 0.99. Closer spaced oscillations in | /.. vs Aa are
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also seen to occur at relatively lower ka values as shell thickness is increased. These oscilla-
tions are related to a circumferential wave with ¢,/c = 1.). If one rzturns now to the Grigsby-
Tejchman group velocity curves seen in Fig. 34b, the reason foi the association of low fre-
quency with low velocity and high frequency with high velocity in the literature becomes
apperent. All tlic higher order Lamb modes in Fig. 34b are most strongly generated when their
group velocity is ¥,, = 1.8. This is also the group velocity of the first symmetric mode at its
region of strong ex«citation. Moreover, the san.¢c is true of all higher order antisymmetric
modes (see Fig. 33). Thus the first ~vmmetric modz and all higher order symmetric and
antisymmetric modes carninot be distinguished from one another by measurement of group velo-
city alone, and these waves collectively have been identified as the fast circumferential wrve.
The particular mode generated depends on the shell thickness and frequency, but, as discussed
earlier, practical considerations generally preclude isolation of the first symmetric mode. All of
the measurements of a low velocity wave are related to the tirst antisymmetric mode, which for
thin shells is generated at a higher frequency than the firsi symmetric mode but at a lower fre-
qQuency than any of the higher order ruodes. In the empirical observations of circumferential
waves, the wave related to the first antisymmetric mode is obtained at a frequency which

depends on the thickness as described in Fig. 37.

Because of the slow speed of this wave, there is a greater time difference between succes-
sive traversals of the circumferential wave (a factor of 3 as compared to the faster waves):
hence, this mode when present can be isolated at lower ka values than a mode traveling with a
velocity 3 times higher. Thus in past pulse hydrophone measurements [12-§5,27) low ve'~~‘tv
corresponded to low frequency in the experimental observations. As frequency was incre. i
became possible to isolate higher velocity modes, all of which were strongly generated with the
same group velocity; hence, high velocity corresponded experimentally to high frequency.

The circumferential wave related to the first symmetric mode is the only one of the "fust”
circumferential waves whose amplitude approaches the amplitude of the speculas reflection,
and, while it is not practical to isolate it experimentally, its contribution to the steady state pres-
sure or form function at low ke is apparent. As demonstrated in Fig. 33, it is possible to isolate
the first symmetric mode by computation of the response of a shell to a short incid.i! pulse.
Computations similar to that seen in Fig. 33 are given in Figs. 38 and 39 for various shell
thicknesses at various center frequencies. The purpose of these calculations is to demonstrate
that the relative amplitude of the circumferential and specular contributions is a function of 4a.
In Figs. 38 the responses of three aluminum shells with thickness 6/a = 0.99, 0.96, and 0.9 are
presented. The center dimensionless frequency of the calculation is A,a = 10. A circumferen-
tial wave related to the first symmetric mode is seen in Fig. 38a (6/a = 0.99) and Fig. 38b
(b/z = 0.96). The measured attenuation in these two cases is 0.50 Np/revolation (Fig. 38b)
and 0.43 Np/revelution (Fig. 38a). In Fig. 38c¢ the first antisymmetric mode is generated
simultaneously with the symmetric mode. This figure demonstrates that the antisymmetric
mode is in fact generated at lower frequency as thickness is increased, as pred..ted in the dis-
cussion of Fig. 37. It also shows that at the same A,u the attenuation of the symmetric mode
increases with increasing thickness, and finally it demonstrates that the large oscillations in
|f<{m)| which appear with increasing thickness in Fig. 37 are due to the larger magnitude with
which the antisymmetric mode is generated. The attenuation of the antisymmetric mode in
Fig. 38¢ is 1.0 Np/revolution, which is much larger then that of the symmetric mode, but the
magnitude of the first antisynimetric echo is more than 6 dB larger than that of the first

symmetri¢ echo.
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at k,a = 10; the shell thickness is b/a = 0.96.
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a ka value of 1L a ka value or 20,

The responses of an iron shell with 6/a = 0.99 at «,a values of 11 and 20 are seen in
Figs. 39(a) and 39(b) respectively. Here the attenuetion is 0.46 Np/revolution at &, = 11 and
0.23 Np/revolution at k,a = 20. Thus the attenuation decreases witn higher frequency,
an obscrvation similar to that of Horton and Mechler [15], who observed this phenomenon at
ka = 3C for the wave identified here as the antisymmetric wave.

, As may be observed in Fig. 38¢, the atienuation of a circumferential wave is not neces-
sarily n measure of its relative importance. If the ratio of the amplitude of the first circum-
ferential echo, py, to the specular echo, pg.., is taken from Figs. 39(u) and 39(b), the resalt
obtained is py/pypec = 0.2 at Ka = 11 and p\/p e = 0.1 8t k,a = 20. These ratios show that

N
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a particular circumferential wave is more strongly genecrated and gives a larger contribution to
the steady state sccttering at low ka, as was observed in Figs. 30, 31, and 37. The ratio p,/p,,..
is directly related to the relative contribution or importance of the wave to the steady state solu-
tion. Figure 40 shows a plot of p\/p,.. for various thicknesses of stainless sicel shells as a
function of ka. The points were obtained from pulse computations such as those in Figs. 38-
39. In general for shells with b/a < 0.99 the circumferential wave related to the first sym-
metric mode has a backscattered amplitude more than 20 dB down from specular for ka > 20.

6 v ‘b' T .6 T v 1 T .6 v v T .6 ML AR
/a=0.29 b/a=098 b/ R b/ .
4 { 4} | 4] $P/r008 ) | b/a=08 |
§ 3r 1 3 i 3f 1 3t 1
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Ap \ { { 1 9t 1
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Fig. 40 ~ The ratio (p/p,e,.) ¥$ ka for stainless steel shells of thicknesses
(2) 0.99, (§§ 0.98, (c) 0.95, and (d) 9.90.

f
For higher order modes generated above ka = 20, the ratio p,/p,pcc is more than 20 dB
down from specular. This is consistent with the observations made here of a "fast” circum-
ferential wave (Figs. 23, 25, 26), where p, is gréater than 30 ¢B telow specular, and with all
reported observations in the litcrature [12-15,26].

The circumferential wave relaced to the fundamental antisymmetric mode also has its larg-
est influence on |f.] at low ka. It can, however, be generated only at low ka for thick shells.
‘The general observation in the literature that the "slow" circuinferential wave is more strongly
generated in thicker shells, is simply because of the results discussed in connection with Fig.
37, namely that as sheils become thicker, it is possible to excite the first antisymmetric n:ode at

lower ka. :

The results considered here were for thin shells, Figures 33 and 34 show that as fh
becomes larger, all the Lamb modes tend towerd a final velocity ¥V = 2.0c. Since the phase
velocity curves again level off for large fh, the Lamb modes are again strongly excited. Each
higher order mode is first strongly excited at ¥/c = 3.7 and then in the limit of a thick shell at
¥/c = 2.0. Therefore it should be possible to find an intermediate frequency range at which a
Lamb type mode is generated with V/c = 3.7 simuitaneously with a lower order mode which
has reached its high frequency limit ¥/c == 2.0. Such a situation is seen in Fig. 41. Here a
schlerien visuvalization is made at an fh value of 11.2. The target is a 3.4 cm diameter alumi-
num cyline sr with b/a = 0.9. This corresponds to ka = 476 and ki = 47.6. Simultaneous
observation of circumferentials waves with c,/c = 3.7 and c,/c = 2.0 are seen. Figures 37 and
41 explain vhat has been referred to in the literature {12] as rare occurrances when slow and
fast circumferential waves are observed simultaneously.
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VI. SUMMARY

The steady state acoustic response of infinitely long solid elastic cylinders and cylindrical
shells can be exactly computed in terms of a normal mode series. For rigid cylinders the back-
scattered form function can be described in terms of the interference of a specularly reflected
wave and a Franz type circumferential wave whose velocily and attenustion are related to the
oeaks and nulls in the form function. Solid metal cylinders in water exhibit this purely rigid
behavior in the low ka region, after which region the form function is dominated by minima
related to resonances in the individual normal modes. For cylinders made of metals whose
shear and compressional wave speeds are greater than the wave speed of sound ‘2r, the
first resonance minimum observed is the (2,1) resonance. This occurs at ka = 4 alumi-
num, and the ka value at which it occurs for other metals can be computed using aluminum as

a reference.

. The normal mode resonances are related to circumferential waves predicted by creeping
wave theory. A mode resonates when its modal velocity is matched by the velocity of a cir-
cumferential wave. A single circumferential wave generates a given eigenfrequency in succes-
sive modes. The (n, 1) resonances are related to the Rayleigh wave, and the (2,1), (341), and
(4,1) modes are generated at ka values at which the cylinder circumference is 2, 3, or 4 Ray-
leigh wavelengths. Similarly the (n, 2) resonances are related to the R ,-type whispering gallery
mode and so on. The predominant circumferential waves in a given ka region can be predicted
from the dominant resonance minima in |f.(w) The "Rayleigh” wave was experimentally

observed on aluminum in the predicted rcgion.

The region of oscillations in |f. ()] which begins at the position of the (2,1) resonance
persists as ka — oo; however, in reality a frequency will be reached after which absorption must
be included in the theory. In the resonance region (ka > 4.78 for aluminum) the scattering
from the cylinder is made up of a rigid background part, on which the numerous resonances are
superimposed. The resonance formalism of nuclear reaction theory is used to separate the
exact normal mode series solution into rigid background and resonance terms, and resonance

widths can be calculated.

For a thin cylindrical shell, the Franz wave does not measurably affect |f,(w)| even at low
ka. This is consistent with soft rather than rigid scattering behavior, and it is demonstrated that
as ka increases thin shells pass through three background regions. In the soft-background
region at low ka the specular reflection is 180° out of phase with an incident pulse. This is fol-
lowed by a region of intermediate background, and then a rigid-background region at which the
specular and incident pulses are in phase and remain in phase as ka is further increased. Cir-
cumferential waves are isolated theoretically by applying fast Fourier transform techniques to
the Fourier integral representing the echoes scattered, when a short acoustic pulse is incident
on a shell. The relationship between the observed circumferential waves and the steady state
form function shows that, for thin shells, the number of circumferential waves present, their
velocity, and their relative significance can be obtained directly from the form function.

57



L. R, DRAGONETTE

Lamb theory for plates is utilized to predict the ka range of possible +xcitation of specific
circumferential waves. A circumferential wave related to the first symmetric mode is generated
for ka > 0, for all thin shells. A circumferential wave related {o the first antisymmetric mode
is generated at ka values which vary with thickness in a predictable way. As shell thickness is
increased, circumferential waves related to all high order Lamb modes are strongly generated
with the same group velocity, This accounts for observations reported previously in the litera-
ture and thought to be the observation of a single circumferential wave.
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Appendix A

LIST OF SYMBOLS

the radius of the target

matrix elements defined in Ref. 32

the vector potential

the inner radius of a cylindrical sheil

a coefficient in Eq. 50b

the velocity of sound in water

the phase velocity of the Franz wave

the group velocity of the Franz wave

the modal phase velocity for the n' normal mode

the modal group velocity for the n' normal mode

the phase velocity of the /" R-type circumfarential wave

the group velocity of the 1" R-type circumferential wave

the phase velocity of the Rayleigh or R, circumferential

the group velocity of the Rayleigh or R, circumferential wave
the longitudinal wave velocity in a material

the shear wave velocity in a material

the phase velocity of a circumferential wave in a cylindrical shell
the group velocity of a circumferential wave in a cylindrical shell
a coefficient in Eq. 50a

distance

- A 2-by-2 matrix defined in Eq. la
- A 2-by-2 matrix defined in Eq. 1a

the far field form function

the far field form function for a rigid cylinder

the n partial wave or n' modal contribution to the form function
frequency

the center frequency of an incident pulse

the frequency thickness product

the dimensionless frequency thickness parameter, (/h), = fh/c;
the spectrum of an incident pulse

the spectrum of a scattered echo

defined in Eq. 3

the expression to which G,(Z) reduces when the target is a rigid cylinder
the thickness of a cylindrical shell

the Hankel function of the first kind (order n, argument 2)

the Hankel function of the second kin. Jrder n, argument 2)

~the derivative of the Hankel function of the first kind

with respect to its argument
the derivative of the Hankel function of the second kind
with respect to its argument
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J,,(Z) - the Bessel function (order n, argument 2) ‘

J.(Z) - the derivative of the Bessel function with respect to its argument
k - the wavenumber in water given by k = 27/

k, - the longitudinal wavenumber in a material

kr - the shear wavenumber in a material

ka - the dimensionless frequency variable, ka = 2wa/\

(ka), - the center dimensionless frequency of a pulse in water

(ka)pesx - the ka value at which a peak in | /. occurs
- aninteger, /= 1, 2, ..., used to number the eigenfrequencies of a given mode

L, - defined in Eq. (1a)

n - an integer, n = 1, 2, ..., used to number the normal modes

p,(7) - an incident acoustic pulse

Do - the incident plane-wave amplitude

P - the pressure amplitude of the first backscattered
circumferential echo

ps(0) - the steady state scattered acoustic pressure

at the bistatic angle 0
- the pressure amplitude of the specular reflection

Pspec
q,pe - the zeroes of the first derivatives of the Airy
function
Q. - defined in Eq. 54
r - the range or distance betw=en the scatterer and the field point
R, - the " order Rayleigh-type circumferential wave
5, - defined in Eq. 40
S, - the elastic scattering function defined by S, = exp (2i §,)
3R - the rigid body scattering function defined as S{%) = exp (2 £,)
t - time
u - the particle displacement
vV - the phase velocity of a Lamb wave
Ve - the group velocity of a Lamb wave
Vv, - dimensionless Lamb phase velocity given by ¥, = V/cT
Ven - dimensionless Lamb group velocity givey by V,, = V,/cr
Y,(2) - the Neumann function (argument Z, order n)
Y.(2) - the derivative of the Neumann function with respect to its argument
Z - short-hand form for the dimensionless frequency variable Z = ka
zZ, - the dimensionless frequency at a resonance, Z = (ka),
Zooe - the Z value at which a resonance pole in the scattering.function S, occurs
Z,ero - the Z value at which a resonance zero in the scattering function S, occurs
b2 - defined in Eq. 37a
z; - defined in Eq. 37b
af - the attenuation coefficient for the Franz wave
apg - the attenuation ceefficient for the Rayleigh or R, circumferential wave
ag - the dimensionless attenuation coefficient for the R, circumferential wave
at - the attenuation coefficient for a circumferential wave in a sheil
B, - coefficient in the Taylor series expansion (Eq. 42b)
r, - the widih of & resonance, given by I', = —2s5,/8,
S, - scattering phase shift for the elastic scattering function
Ad - change in distance
Aka - change in ka
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change in time

change in the dimensionless time parameter

defined in Eq. 39

the Neumann factor e, =2, n =0;¢, =1, n >0

the polar angle

the incidence of angle of a plane wave

the wavelength of sound in water

the wavelength of :he Rayleigh wave on a flat
surface

the wavelength of a circumferential wave

a complex variable

the phase shifts for the rigid scattering function

the density of water

the density of the target material

the dimensionless time parameter v =

the azimuthal angle
a scalar potential
the angular frequency, o = 2w f

¢ —a
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Appendix B

THE MEASUREMENT SYSTEMS

1. Pool facllity measurement 3ystem

Pulse hydrophone measurements were obtained with the system described in Fig. BI.
The source/receiver transducers are lead-zirconate-titanate immersion search units, with active
elements 3,175 cm square and resonant frequencies of from 400 kHz to 1.5 Mhz. The water
tank is an aquarium 76 cm by 183 cm by 76 cm dcep. The targets were 30-cm-long solid
cylinders and cylindrical shells made of aluminum and stainless steel. A Panametrics model
5055 PR pulse/receiver allowed a single transducer to act as both source and receiver, so that a
monostatic geomeltry was exaclly maintained. External triggering was generated by a Hewlett
Packard model 214A pulse generator. A pulse repetition rate of 10 ms was chosen, so that all
reverberation from the tank boundaries would decay beneath the system sensitivity before the
pulser generated the next acoustic pulse. The driving pulse produced by the Model 5055 PR
pulser/receiver is a rectangular pulse, which causes the transducers to ring ai their fundamental
and overtone frequencies. The pulser/receiver unit internally separates the driving pulse and
received acoustic echoes (acts as a transmit/receive switch) so that a monostatic geometry can
be exactly maintained by having a single transducer perform both tasks. The redeived signal is
filtered by a Krohn-Hite model 3202 electronic filter so that either the fundamental or the har-
monic frequencics may be isolated. The filtered signal is then displayed on a model 545A
Tektronix oscilloscope, from which a photogrephic representation can be obtained. The filtered
signal may also be digitized using a Biomation model 8100 analog-to-digital converter, and
analyized and stored using a Digital Equipment PDP-11 computer. Digital signals are stored on

PANAMETRIC
KROHN-HITE MODEL
MODEL 5055PR
LT PULSER/
3202 FILTER SR y SUPPORT
] 2
s ’
% =
” %
] SOURCE/ 2
1 RECEIVER %=
BIOMATION L] CYLINDEF ]
TEKTRONIX MODEL 8100 2 POOL ]
MODEL 545A ANALOG TO ’
OSCILLOSCOPE Cl))IGITAL TP
CONVERTER

DIGITAL EQUIPMENT

PDP-Il
COMPUTER

Fig. Bl — The acoustic pool mcasurement facility.
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magnetic tape for future analysis or may be analized in near real time. The digitized signal is
displayed on a Tektronix 4010 graphic terminal, and a hard copy (such as that seen in Fig. 15)
can be obtained from the copy unit or the digitized signal can be plotted on a Versatic plotting

unit (such as seen in Fig. 14),

Amplitude measurements are made directly with the oscilloscopc by using a Tektronix
type-W plug-in unit; they may also be made by using the computer software in which the com-
puter secks out peaks in the digital representation of the pulse. Amplitude measurements by
cither means were demonstrated accurate to within 2 percent of exact calculation where such

computations were possible [8-10,32).

2. Schlieren visualization system

Schlieren visualization gives an immediate look in one plane at the entire scattered field
around the acoustic target. It is especially useful in the case of beam aspect illumination of
long cylindrical targets, which is a two dimensional problem. The schlieren system used here is
described schematically in Fig. B2. The light source, lenses, and tank are mounted on a 183-
cm-long Gaertner optical bench. Special carriages allow continuously variable motion in three
dimensions for the light source and the stop. /. General Radio Stroboslave model 1539A is the
ligh: source. A condensing lens focuses the ‘iy.:t from the source, to a small aperture at A in
Fig. B2. This aperture is an effective point source. The lens at B is one focal length from A
and forms a parallel beam which travels through the water tank to the lens at C. The tank has
specially constructed plate-glass sides to avoid any distortion of the parallel beam. They critical
parameter in the placing of the lens at point C is the focal length of this lens. The lens is
placed oae focal length from the plane of the acoustic experiment to be visualized. In the case
described here the focal length of the lens is 25 cm! The final steps in the creation of the
schlieren system described in Fig. B2 are the mounting of a 0.05-cm-diameter stop at a distance
of 25 cm (one focal length) beyond the lens at C. The position of the stop is labeled D in the
figure. A Fairchild model TC-177 television camera is mounted directly beyond the stop.

PULSE
SOURCE
TIME STROBO- ACOUSTIC &
DELAY SCOPE / COUSTIC SOURCE
) | REFLECTOR
AY yAR) 71
\ A A ]
—A /-~ {
LIGHT 7 +—F F—F \
SOURCE’ LENS , 7 — j TELEVISION
APERTURE LENS LENS! sTOP CAMARA
A A c 0

WATER TANK/

Fig. B2 — The schlieren visualization system.
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In the system described in Fig. B2 ali the light passing through the aperture is intercepted
by the stop, at position D, in the absence of an acoustic experiment. When, however, an
acoustic field exists, the parallel light rays passing through the acoustic field are diffracted, miss
the stop, and are detected by the television camera. The camera is connected to a Panasonic
videotape unit on which observations may be stored and 1o a televison monitor from which the
schlieren images (Figs. 41 and 29) were obiained with a Polaroid camera. Thne acovustic trans-
ducers are as described above for the pulse hydrophone measurements, with resonant frequen-
cies of from 1 MHz to 8 MHz suitable for schlieren studies in this system. The driving signal
is a gated sine wave produced by a model PG650-C Arenterg pulsed oscillator. The external
trigger and lime delay are provided by a Hewlelt Packard model 214A pulse generator. This
unit triggers the light source and the pulsed oscillator, ailowing delays of from 0 to 100 ms
between the triggering of the light and sound sources. This delay makes possible the time

sequence pictures seen in Fig. 29.

3. Alr system

The air acoustics system is seen schematically in Fig. B3. The experimental technique in
a't is similar to that in water, but the sources, receivers, and frequencies are different. The air
acoustics system allows the simulation of rigid boundary conditions. The acoustic system
employs LTV electrostatic sources 5.08 cm and 15.24 cm in diameter to produce the incident
- acoustic pulses. The receivers are Bruel and Kjaer 0.635-cm-diameter microphones. The tar-
gets are hung in a large room 9 m by 30 m by 15 m high. Variable length gai(ed sine wave
pulses are produced by using a Hewlett Packard model 214 A pulse generator and Sanders switch
to gate the continuous sine wave output of a! Hewlett Packard model 5110 frequency syn-
thesiser. The gated sine wave output is amplified by a Krohn-Hite model DCA 50 amplifier
whose output drives the elcctrostatic speaker. The signal received by the 0.635-cm-diameter
microphone is filtered by a Krohn-Hite model 312.bandbass filter and amplified with a Bruel
and Kjaer type 2107 frequency analyzer. The microphone is mounted on a stand and placed by
hand at the desired aspect angle. A positioning of + 2° is possible in the air measurements.
The received signal is amplified and analyzed by the same eauipment as described for the pool

facility in section 1.
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Fig. B3 — The air acoustic measurement facility.
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Appendix C

TABLE OF CONSTANTS

Cy Cr P
Material
N (10% cra/s) | (10° cm/s) | (g/cc)
air 00.343 0.000 0.0C
siuminum 06.370 3.120 2.17
aluminum oxide 10.700 6.300 3.92
iron 05.950 3.240 7.70
stainless steel 05.5940 3.1G66 7.90
water 01.493 0.000 1.00
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