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EVALUATION OF THE RELATIVE IMPORTANCE
OF CIRCUMFERENTIAL OR CREEPING WAVES IN THE

ACOUSTIC SCATTERING FROM RIGID AND
ELASTIC SOLID CYLINDERS AND FROM CYLINDRICAL SHELLS

I. INTRODUCTION

A. Normal mode series solution and experimental verification

Theoretical solutions to the problem of the scattering of sound by rigid, immovable
cylinders, nonrigid cylinders in a fluid medium, and small cylindrical obstacles in a solid
medium were formulated by Rayleigh [1]. The solutions he presented described geometries in
which the diameters of the cylinders were small compared to the acoustic wavelength in the
surrounding medium, although he outlined a more general method for finding the solution for
larger diameter cylinders in terms of cylindrical harmonics. This method, called the harmonic
series or the Rayleigh series meihod of solving acoustic scattering problems is in theory applica-
ble to targets whose shape conforms to any of the eleven separable coordinate systems. In
practice it has been extensively applied only to scattering from spherical and infinite cylindrical
geometries, since cylindrical and spherical harmonics are readily available. Solutions to the
problems of the scattering from rigid cylinders and rigid spheres which have radii up to the
order of a wavelength (ka 6) were given by Morse, 2]; here ka = 2ra/XA a is the radius of
the scatterer, and X is te acoustic wavelength in water. Exact solutions to the scattering of a
plane sound wave by homogeneous, isotropic cylinders and spheres capable of supporting both
shear and compressional waves (elastic scatterers) were first given by Faran [31, who obtained

expressions in terms of a normal mode series. Faran presented comparisons of computed bis-
tatic patterns and experimental measurements at ki = 5. Extensions of the normal mode cal-
culations to higher ka [4,51 and experimental measurements to determine the degree to which
the normal mode theory and experiment agreed, over a broad ka range, were first made on
solid elastic spheres and spherical shells [6-9]. Hickling [41 was the first to make extensive use
of a digital computer to evaluate the normal mode series expressions, although his computa-
tions were hampered by the slow convergence of the haromonic series solution, which led to
computation difficulties with the computers available at that time. Hickling gave computed
curves that describe the steady state backscattered pressure vs ka, which results when the target
is a solid elastic sphere in water. The computations in his work ranged generally from 0 < ka
< 30, and he extended the formulation to include the scattering of incident spherical as well as
incident plane waves. He also included both near field and far field formulations. The results
presented by Hickling are given in terms of a normalized, reflected pressure variable called the
fort function, fl,. This dimensionless quantity is obtained by normalizing the reflected pres-
sure with respect to the radius (a) of the target and the range (r) of the field point from the
center of the target. Hickling also computed acoustic reflections from elastic spherical shells
[51. Empirical results on solid metal spheres in water were given by Hampton and McKinney
[6], who demonstrated that the reflection from metal spheres immersed in water could not be
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described by purely geometric theory, Lind by l)iercks 171, who deionsirated qualitltivc agree-
ment between the computations of Flickling nd measurcicnts made in n lake. Precisc uanti-
tativc comparisons between normal mode theory and experiment were first carried out by Neu-
baucr et al. (81, who pcrforied. a series of precise steady-state measurenients on solid metal
spheres in a controlled acoustic lank facility. These measurements demonstrated quantitative
agreement between computations, based on thc normal mode series, and experiment, to within
the known accuracy of the shear velocities of the materials used in the sphere fabrications.
This work 181 covcred the A range 0 < A0 < 30. Dragonette el al. 191 demonstracd enipiri-
cally that quantitative steady state results could be obtained from measurements made wilh
short broadband incident acoustic pulses. This transient technique (91 will be describcd further
in Chapter IL Comparisons between normal mode theory and experiment for elastic cylinders
in water tire nore recent 1101 buL again demonstrated excellent greem nt betwecen the theory
based or the infinite elastic cylinder andi near-real-timc experiments performed with finite
Icngth cylinders in a laboratory tank. The preceding theoretical and empirical paper (1-101
established that the normal mode series formulation of the acoustic reflection front clastic metal
targets quantitatively describes measured results up to at least A- 30, without the necessity of
material absorption being included in the theory.

B. Crcumferentli Wave Theory and Empirical Observation

Empirical observations by Barnard and McKinney (111 Int the [)efenkc Research Labora-
tory (DRL) demonstrated periodic, multiple echo returns when solid and hollow brass cylinders
(ka -- 40) were illuminated by short acoustic pulses. Subsequent empirical wortk and analysis
at DRL by Diercks 21, Horton 1131, and others 114,151 proposed the existence of two types
of circumferential waves which were compared o flexural and longitudinal modes on infinite
plates. The researchers at DRL recognized a sinifarity between the circumiferentiul behavior ot
the waves they observed and the waves discussed by Franz (161 in his work on the diffraction
of electromagnetic waves by conducting cylinders and spheres. The name given by Franz to
these circumferential waves was translated "creeping waves". The original analogy between the
acoustic waves observed at DRL and the purely geometrically diffracted circumferential waves
considered by Franz broke down, because the speeds of the observed acoustic circumferential
waves were fro.a 331% to 300% higher than the seed of sound in the medium surrounding ihe
targets, whereas analogy with the "creeping waves" of Franz would have predicted a speed
slower than that in the surrounding medium.

Uberall and collaborators at Catholic University also noted the similarity between the cir-
cumferential behavior of empirically observed acoustic waves and waves studied in electromag-
netic theory. They began an in-depth theoretical program which employed a Watson 1171
transformation in the description of both rigid and elastic scattcrers. This technique had been
used in the study of the propagation of radio waves around the earth [181 and, as mentioned
previously, in the studies of the diffraction of electromagnetic waves by cylinders [16). The
Watson trnsformation offered certain advantages, namely, the opportunity to isolate the indivi-
dual mechanisms responsible for the empirically observed circumferential waves and rapid con-
vergence of the solution. This latter advantage was particularly significant, since the normal
mode series was considered to be practical only t low kea, because of its slow convergence ad
the cxpense of computation. (Advances in computer technology make present high A~a Ray-
leigh series computations both possible and economical 191.) The Catholic University group
applied ihc Watson ltansformation to cylinders with rigid and oft boundary conditions and
predicted the existence of true Franz type, or purely geometrically diffracted, circumferential
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waves 201. Application of the Watson method to solid elastic cylinders 211 revealed two

groups of poles corresponding to two types of circumferential waves. The Franz-type or

geometrically diffracted waves were again observed, and, in addition, poles related to elastic cir-

cumfercntial waves, called R or Rayleigh-type waves, whose speed and properties depend pri-

marily on the elastic constants of the target, were found. Grace and Goodman 221 also

presented theoretical evidence for the existence of R-type waves.

Experimental detection of the acoustic Franz-type or purely geometrically diffracted wave

was accomplished by Neubauer [231 and by Harbold and Steinberg 1.41. The first experiments

designed to demonstrate elastic R-typc circumferential waves, that is, those elated to R-type

poles, were performed by Bunney et al. 251 and by Neubauer [261. Both of these researchers

[25,261 used short incident pulses and narrow beam sources to observe the scattering from solid

aluminum cylinders. Their results demonstrated the existence of a train of periodic echoes with

a circumferential speed close to the shear wave velocity in aluminum. Neubauer's (261 work

included schlieren visualization of wavefronts resulting from the circumferentially traveling

waves. These experiments gave mainly 'tigh Aa results (Aa values between 50 and 500). Origi-

nally the mechanism responsible fcor the periodic pulse trains observed (25,261 was, in fact,

considered to be multiple circumnavigations of the cylinder by the Rayleigh wave (the R 1 pole

of Ref. 21). Later work by Neubauer and Dragon. [271 showed that multiple internal

reflections of shear waves could produce the observed effect, and this multiple reflection

analysis was supported by the theoretical work of Brill and Uberall [281, who demonstrated the

circumferential behavior of the radiation From multiply internally reflected wva es. Therctical

[291 and measured attenuation 1301 of the Rayleigh wave on submerged flat suffaces also gave

attenuations too large to support the conclusion that Rayleigh waves were the source of the

multiple returns observed at high ka in Refs. 25 and 26. In this present work, a prediction of

the ka range at which an RI circumferential wave can be significant and an empirical obs!rva-

tions of the wave are accomplished.

C. Comparison of the two approaches and scope of the present work

The normal mode solutions give a straigitfotward method of obtaining the scattered

acoustic pressure vs frequency, limited only by the expense involved in summing a slowly con-

vergent series. Experimental results have been obtained which agree with the computation to a

high degree of accuracy. The major disadvantage of this approach is that individual physical

phenomena, such as surface waves, which make up the solution are not immediately obvious;

however, techniques for isolating individual mechanisms are described in Chapter 11 and used

throughout this work.

The Watson transformation of the normal mode series has the advantage that it isolates

individual circumferential waves and the disadvantage that the poles must be found and

interpreted and their significance judged.

The present work investigates the relationship between the normal mode solutions ani

the various propagation modes in cylinders, especially circumferential waves, which contribute

to the steady state solution. A correspondence is demonstrated between the circumferential

waves predicted by the Catholic University researchers and resonances in the normal mode

series solutions. Families of resonances will be identified with the "creeping wave polesw dis-

cussed in Ref. 21. Based on this identification the RI or Rayleigh circumferential wave is

3
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predicted to be of signiflcance only in the region a < 20, and ihe first experimental observa-
tiou of backscattered circumferential radiation from this wave is demonstrated. Individual
mechanisms are also isolated directly from the Rayleigh series formulation by the application of
Fourier transform tecniques which determine the response u, the targets to transient signals.
In this way hypotheses and conlusions concerning the amplitude, velocity, and attenuation of
predicted phenomena are invetigated. C!culations and comparisons of the total form function
and the amplitudes of Individual normal modes are made. These comparisons demonstrate that
the reflection from solid metal cylinders is made up of a superposition of generally narrow
resonant responses superimposed o a background attributable to reflection from a cylinder
wilt rigid boundary conditions. This observation is formalized by applying the resonance for-
malism of nuclear reaction theory.

Circumferential waves on cylindrical shells are investigated by analysis of the calculated
form function for elastic shells, by Fourier analysis of the transient response of a shell, and by
comparison between the properties of the circumferential waves on cylindrical shells and the
characteristics of lamb waves on flat plates. Much new information concerning the properties
and signif cance of these waves is obtained, and some misleading or erroneous information
currently existing in the literature is corrected.

4



II. GENERAL THEORETICAL FOUNDATION

The Rayleigh series expression for the scattered acoustic pressure, p,(o), which results
when a plane wave, p,e'", illuminates an infinite elastic cylinder, in the geometry described by
Fig. 1, is given in many publications (3,10,21,31.321. The following fm is found in Refs. 31
and 32:

P5(9) ' -Pt z (0fi IHr(Z) Ln -Z (1)

The time dependence e' is suppressed. In E. 1, e, is the Neumann
f- 1, n > 0), J, is a Bessel function, H is a Hankel function of the
the L are the quotients of two 2-by-2 matrices:

factor (, 2 it 0,;
first kind, Z - ka, and

a1 l a13

o D!II 2l 231

P S D 2) [ZJ P, alla

a3l a3 3

where the matrix elements a,i are given in Ref. 31. In the far field where r > a, H(kr)
be written in its asymptotic form

H,(kr) | 2 | elrmnW/2 r/4

and, defining

fJ (Z) Lt

H-(Z) L,

the far field pressure
be written

- Z J(Z)

- Z H,,(Z)
I- G- W

scattered by an infinite cylinder illuminated by a plane incident wave may

() -_-p IA 2 | /2f brkr J

For backscattering, 0 - ir and

1r 2 1/2
p,(7r) - -P 0. e r 2rk

e1/4 eG (Z) cs(n 0).
I,-o

(5)
co

e'w"4 --" C,,1) CnZ)

M-0

A quantity called the far field form function, f.,, is defined to give a nondimensional represen-
tation of the scattered pressure. In keeping with the definition used extensively in the literature
(4,5,7.10,31,321

f () -
P.(0)

PI,

5

(6)

(la)

may

(2)

(3)

(4)

in M 11, (kr) cos it 0.
H,'(Z)
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z
Y

Fig. I - The gontr used In the description of the scatter-

ing of a plane wave by an infinitely long cylinder.

This definition is chosen since it results in !fj - I for the case of a purely rigid cylinder in the

high frequency limit. From Eqs. 4 and S the expressions for f,,(O) and f,(vW) for an elastic

cylinder are given by
-2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

f.(0) -2 - , G,(Z) cos (no) (7a)
(i T Z)'L2.

and
.

f". (a) =(rZ| >z 1) " G,,(Z). (7b)

Using Eq. 7b, the individual normal modes or partial waves which make up the hac-kscattered

form function are defined as

. 0 ) _- -2 (-0)M G (Z) (7c)
(inZ)11 1/

where

f.(11-) A gw(r (7d)
Pt -0

Computed plots of fO. vs ka, obtained from Eq. 7b are called reflection function plots, and such

curves give a dimensionless representation of the scattered steady state pressure vs frequency.

This representation can describe the scattering at any combination of radius and frequency

within the ka limits of the calculation. Equations 7a and 7b give steady state valuei of f,, so

that a continuous wave or very long pulse experiment can be used to obtain a direct comparison

between experimental and calculated results (8J. Such an experimental method is tedious and

excessively time consuming, as each experiment at each single frequency gives one point on the

reflection function curve. To overcome This practical difficiency, methods to obtain the steady

state quantity ./.,, from short broadband incident pulses were developed 19, 101.

6
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If the incident sound wave in the geometry described by Fig. I is not steady state but a

pulse, p,(r), with a Fourier transform g,(ka) given by
00

g,(ka) _ f p,(r) e'ah dr (8)
-00

then from Eqs. 6 and 8, the backscattered pressure has a Fourier transform g,(ka, r) given by
1/2

(ka r) _-| a| f (ka, r) g,(ka) (9)

and If,.(ka. r) | can be obtained from

I(ka, 7r) _2r Ig,(ka, )(10)

The quantity r is a dimensionless time parameter

t - r (I)

a

which is normalized to be zero when the incident pulse is coincident with the position of the

center of the cylinder. Fquation 10 is the basis by which a steady state quantity If,,(AA, 0f)I can

be obtained over a broad frequency range by a single short pulse experiment. The incident and

reflected pulses are digitized, their transforms computed, and the division indicated in Eq. 10

carried out [91. With present minicomputer technology this entire procedure can be accom-

plished in a near real time framework [101. The experimental system used i4 discussed in

Appendix B. The ka range over which f,, is obtained depends of course on the bandwidth of

the incident pulse. Theoretical computations of the scattered echoes which result when a short

incident pulse with a known spectrum, jg,(ka)I, is used to insonity a target with a known J;,(90

ka) can be obtained by using Eq. 9. This computation procedure allows the isolation of the

individual mechanisms which contribute to the steady state scattered pressure. These pulse cal-

culations are of significant value for many reasons, the most important of which is, that the

theoretically formulated incident pulses used, can be made shorter than any which can be rea-

sonably achieved ir. ,ne laboratory. This allows isolation of closely spaced echoes which cannot

be accomplished at a resonable cost in the laboratory. In addition theoretical computations can

simulate experimental measurements over a large number of frequencies, target materials, tar-

get sizes, and target shell thickness that would be impossible to duplicate economically in a

laboratory. I the theoretical procedure an incident pulse p,(r) with a known spectrum,

jg,(ka)I, is used to insonify a target whose form function can be computed. Computation of

the form function and the procedure indicated in Eq. 9 are accomplished by the computer, and

the scattered echo, pj(r), is described by

p() - 1/2ff f g.(ka) e&1tAr dka. (12)
-00

Solutions to Eq. 12 are obtained by using fast Fourier transform techniques in the computer.

7
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III. THE RELATIONSHIP BETWEEN CREEPING WAVES AND
THE NORMAL MODES OF VIBRATION OF A CYLINDER

A. The rigid cylinder

The acoustic reflection from a rigid cylinder has been well understood since the prediction
[201 and empirical observation [23,24J of the Franz wave, and only a few ideas relating to the
direct use of the form function curves to derive Franz wave properties can be added. In the
case of a rigid cylinder, G,(Z) as defined in Eq. 3 reduces to

(13)G,(R) () A (Z
H4, (Z)

and the form function for a rigid cylinder is given by

f (R) (Z) -2 
n-O

A plot of fS(Dr) vs ka computed from Eq. 14 is given in Fig. 2. Since by definitionhfthe boun-
dary conditions imposed to obtain Fig. 2 preclude penetration into the cylinder, the backscat-
tered reflection function curve can include contributions only from specular reflection and
diffraction.

1.

a

O.s

An
0 2 4 6 8 10

ka
Fig. 2 - The form function for a rigid cylinder.

(14)

In the creeping wave solution Eq. 14 is transformed from an infinite series of n terms into
a series of "creeping surface waves" by the Watson transformation [18,201. The creeping waves
arise as the residue of pu!es in the complex v plane determined from the equation

H; (Z) 0

9

(15)

-- A 1 U .

i * gm a PL AM

,2-
A

. ! ot .1

B Ii3

I d
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with soluitions
1/3 ~ 1 

- Z+(Z/6)/ 3e'/l) q, - e'I1 3 + + - | (16)
Z l~~q, 180 180j

where te q are the zeroes of the first derivates of the Airy function as defined by Franz [17].

The index I - 1, 2, 3..., and I increases in the direction of increasing real and imaginary r'arts

of v/. The attenuation, a f, of the 1ih Franz wave in nepers/radian is given by

aF(Np/rad) -Im I/I (1 7a)

and the phase velocity, c,, is given by20

CPF/ Z (17b)

where c is the velocity of sound in water. Calculations based on Eqs. 16 and 17a demn.ostrate

that only the I - 1 or first Franz wave is of significant magnitude, and Figs. 3 and 4 give orn-

putation!; of the attenuation and phase velocity of this first Franz wave as a function of ka as

computed from Eqs. 17b and 17a.

0.8 

0.6 

C

0.4

0.2

0.0
0 1 2 3 4 e 6 7 8

ka

Fig 3 - The Franz wave phase velocity vs ka for a rigid cylinder.

In the case of the rigid cyli-ider the connection between the steady state form function

f., given in Fig. 2 and the Franz wave N.ith properties described by Figs. 3 and 4 is not difficult

to determine. Sound does not jN;etrate a rigid cylinder, thus the form function must be made

up entirely of specular refie;-.i . plus a pure geometrically diffracted contribution. The back-

scattered return must then L -as described by Fig. 5. A specular reflection begins at point A of

Fig. 5, and two Franz waves begin at poin. B and C and take the paths shown. This well

understood result can, however, be taken further. The reflection function given in Fig. 2 is a

steady state function, and the knowledge that this reflection function results from sound waves

taking the circumferential paths shown in Fig. 5 leads to the following analysis. Because the

two diffracted waves BC and CB take the same path and travel at the same speed, they are

always in phase with each other in the backscattered direction. Computations based on Eqs. 16

and 17a demonstrate, that for ka > 1 only these first Franz returns need be considered; that is,

the contribution from succeeding circumnavigations of the cylinder are too small in amplitude

10
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ka

Fig. 4 - The Franz wave attenuation vs ka for a rigid cylinder.

t Y

x

J4

Fig. S - Source of backscattcred echoes from d rigid cylinder.

to be significant. The difference in the time of arrival, at the field point P, between the specu-
lar and diffracted waves is

* At 2a + 1r7

c Cabp
(18)

The difference in path lengths traveled by the backscattered specular and Franz wave contribu-
tions at the field point P is expressed as

,. ra c
Ad - .,7 +ac (19)

*.1

If it is assumed that the peaks in the reflection function curve (Fig. 2) occur when the specular
and Franz contributions add in phase at P then peaks occur when

Ad - a(2 + c/c, - n n r
k (20)

11

l
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which leads to

1. 2n 2 (21)

The notation (a),,A is used to indicate the (Au) values at which peak in RR I as seen in Fig.
2 occurs. A similar expression can be derived by assuming that the nulls in the reflection func-

tion curve of Fig. 2 occur when Ad - (2 - 1) A. This expression is
2

1 ( -l ) - (22)

A Franz wtve velocity can than be calculated directly from the reflection function curve by

determination of (ku),, and ( The normalized phase velocity ef/c (which is the

reciprocal of the left-hand side of Eqs. 21 and 22) is computed from these equations and com-

pared to the direct "creepi.g wave' theory computation, from Eq. 17b, in Fig. 6. Agreement

between the two methods is excellent, demonstrating the possibility of obtaining Franz wave
velocity directly from the normal mode form function curves. Thus Franz wave velocities can

be obtained for bodies for which no creeping wave analysis exists, Examples are given in Figs.
7 and 8, where computed form functions and derived Franz wave velocities for a rigid sphere

and an aluminum oxide cylinder are given. T rigid sphere shows t much more rapid rise in

Franz wave velocity with increasing frequency, than is observed for the rigid cylinder. The
velocity for the aluminumr oxide cylinder shows only minor deviations from the rigid cylinder
curve.

1.0 ,..f 

0.8'

0.8 1
U

0 4

0.2

0 1 2 3 4 5 8 7 8
ka

ig. 6'- A cuniparLisuon bwtween Ith, contputed Franz veltcity for rigid

cylinder (-) and values estimated from the form functkrn curve (x).

The attenuation of the Franz wave as a function of A' can also be investigated directly

from the normal mode calculation. here the reduction in amplitude of the successive oscilla-
tions is assumed due to the increase in attentuation of the Franz wave as a function of ka. The

reduction in magnitude of the oscillations in Fig., 2 with increasing a should then give a meas-

u. of the Franz wave attenuation vs Au. A comparison of attenuation values obtained front
creeping wave theory for a rigid cylinder and values obtained from the form function curve is

1 2
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ha

Fig. 7(a) - The form function vs ka for a rigid sphere.

0I _ _ _ _*_ _ _ _Xx

0 1 2 3 4 5 6 7
k

Fig. 7(b) - Franz wave velocity estimated from (7a) for a rigid spherc
(-) and Franz wave velocity for a rigid cylinder (- - ).
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1.5 1~~~ I I 

1., 

0.9.

0.3 
I

0.0 I I I 3

0 2 4 6 8 iC

ka

Fig. 8(a) - The fi:n function for an aluminum oxide cylinder.

1.0 I I I I .

0.8 .

0.6 /

0.4

0.2

0.0 . .
0 1 2 3 4 5 6 7 8

ka

Fig. 8(b) - Franz wave velocity estimated from the fornm function (-)
and Franz wave velocity for a rigid cylinder (-- -).

14
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1 2 3 4 5 a 7 8 9

ks

Fig. 9(a) - Franx wave sttenuation for i rigid cylindet obtained directly 4-)
and estimales obtained from the form function curv 4--.),

1,6

1.4-

1.2

0.8

0.8

0.4 I ., .I.
t 2 3 4 i e 7 6

Fig. 9(b) - Franz attenuation estimates Cot an aluminum oxide cylin-

der (o) compard to the rigid cylinder (-),
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given in Fig. 9a. In Fig. 9b the attenuation is given for an aluminum oxide cylinder for which
no direct creeping wave data are available. The rigid cylinder curve is included in Fig. 9b, for
comparison.

Empirical observations of Franz waves on a rigid cylinder were obtained in the acoustic air
facility described in Appendix B.' A solid 3.18 cm diameter cylinder was used as the target, and
the frequency of the incident pulse was 34.4 kHz. In air the impedance mismatch between the
aluminum and air medium is so great that rigid boundary condition assumptions are success-
fully achieved.

Experimental observations of Franz waves on a rigid cylinder are given in Fig. 10. The
measurements are made at aspect angles of 450 and 750 so that the changes, both in relative
amplitude and time separation, between the specular reflection and the Franz wave can be
clearly observed. The incident pulse is seen in Fig. 10(a) and the scattered echoes at 45° and
750 are een in Figs. 10(b) and 10(c). The time separations between the specular and Franz
waves are measured from the large positive going peak in each echo. The measured time
differences are 81 jAs at 45° and 125 us at 75°. The ratio of the Franz wave to specular ampli-
tude is PF/Pspcc - 0.56 at 450 and - 0.13 at 75. Theoretical computations, based on Eqs. 9
and 12, of the echoes from a rigid cylinder are given in Fig. 11. Figure 11(a) shows the
incident pulse, and the echo responses at 0 - 45° and - 750 are given in Figs. 11(b) and
11 (c) respectively. The center dimensionless frequency of the pulse is ka - 0. The compu-
tations were made using Eqs. 9 and 12 as discussed in Chapter II. The theoretical computations
agree closely with experiments in the relative magnitudes and positions of the Franz waves.
The values obtained from Fig. 11 are a time separation of 78 .usat 450 and 125 sat 75°, and a
ratio PF/PSec of 0.57 at 450 and 0.14 at 75°. The purpose of Figs. 10 and 11 is o demonstrate
that the echo computation does agree with experimental measurements, and can be used to iso-
late mechanisms or to supplement measurements When f. is known or can be computed.

-4116 Psl- -196 k 243 s --

(a) The incident pulse, (b) The specular and Franz (c) The specular and Franz
echoes at 0 = 45, echoes at = 750,

Fig. 10 - The experimental observation of the Franz wave
radiation from a rigid cylinder.

B. The elastic cylinder problem

In contrast to the essentially well understood rigid cylinder problem, the relationship
between the normal mode and creeping wave solutions to the elastic cylinder problem were
unknown before this work began. That rlntinnehip is established in this work, and as a result,

16
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.10 1 2 3 *10 23 10123

r

(a) To incident pulse. (b) The spcular and ranz (c) To specular anti Frenz
echoes at 0 4'. echoes at - 75'

F*g. - Computation of the scattering of a two cycle
incident pulse by a rigid cylinder.

resonances in the normal mode solution can be identified with specific R-type circumferential
waves predicted by creeping wave theory. The ka range over which one such wave, the R 1 or
Rayleigh wave makes a significant backscattering contribution has been the subject of much
conjecture 125-28,331 in the literature. Th; resuf!t obtained here indicate a limited, low ka,
region of importance of the R circun-ifvCrntial wave in contrast to previous hypotheses
[25,26,331, and the first experimental observation of backscattered circumferential radiation
from the true Rayleigh wave was accomplished in the low ka region where it is predicted.
Computation and analysis of the effects of the normal mode resonances on the backscattered
[f4 demonstrate further that the form function is made up of a rigid background on which nar-
row resonances are superimposed. A formalism reflecting the above result is developed based
on an approach suggested by Dr. L. Flax and Dr. H. Uberall which makes use of the methods
of nuclear reaction theory.

C. Elastic cylinder results

The backscattered form function for an elastic aluminum cylinder in water is calculated
from Eq. 7b and given in Fig. 12 over the range from 0.2 < ka < 20. The curve is calculated
in ka steps of Aka - 0.01. A comparison between this theoretical computation and an experi-
ment using the short pulse experimental technique described in Chapter 11 is given in Fig. 13.
In Fig. 13 the theoretical curve is computed in intervals of &ka - 0.05 which is compatible
with the Aka isolation that can be achieved experimentally. Agreement between theory and
experiment is within 2%. The form function curve seen in Fig. 12, shows that over the range
0.2 < ka < 4.7 the aluminum reflection curve is very similar to that of the rigid cylinder (Fig.
2). This region of similarity is followed by marked irregular oscillations and these oscillations
continue as ka -A o, if no absorption is included in the theory. Damping of the oscillations as
ka increases will occur when absorption becomes significant [341, but for metals such as alumi-
num, experimental results indicate [8-101 that absorption need not be included over the ranges
of ka that will be considered here.

17
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ka

Fig. 12 - fle form function for &n aluminum cylinder In water.
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Fig. 13 - Comparison of theory (-) and experimntal observations (the points) for an aluminum
cylinder in water.

The irregular oscillations in the aluminum form function, which begin at ka 4.5, are

related to excitation of the individual normal modes, fn, as defined in Eq. '7c. Resonances

occur at (ka) values at which

D(2) Ikal D (2) In, kal - 0 (23)

with D(2) In, kal the matrix introduced in Eq. Ia. Solutions to Eq. 23 give the ka position of

the free modes of vibration (resonances) of the cylinder. The correspondence between the ka

values at which irregularities in the form function occur and the ka values at which resonances

occur is indicated in Fig. 12, where the resonances are identified by the subscript (n, 0. Here n

is the mode number and I is the eigenfrequency, for examp te (n, 1) means the fundamental

resonance of the nth normal mode, (n, 2) the first harmonic, etc. The "creeping wave" solution

to the problem of the scattering of an incident plane wave by a solid aluminum cylinder was

carried out by Doolittle et al. [211. who transformed Eq. 7b using the Watson technique. Doo-

little found poles in the complex v plane at the positions

D(2) Iv. kal - 0. (24)

He computed a series of R type, or elasticity related, poles and gave a table of the positions of

the first six R type poles in the complex v' plane as a function of ka. Each pole gives rise to a

18

U

11

7

. - I - - - I . . . . I . . . . L_ . . . 2 . . . . I . . . . I . . . . I . . . . I . . . . I

120too



NRL REPORT 8216

Circumferentialy traveling wave 1211. The relationship between Eqs. 23 and 24 form the basis
for the correspondence between normal mode resonances and the individual circumferential
waves predicted by the creeping wave theory. To obtain this relationship, it is necessary to con-
sider the properties of the normal modes individually. Equation 7c describes the nh normal
mode. The n - 0 term is the breathing mode1 n - I the dipole term n - 2 the quadropole,
etc. The individual motions can be represented by a pair of standing waves e'±t(l-) traveling
in the opposite directions with phase velocites

c,(Aa)- ae (25)

and group velocities

4(ka) - c d (ka (26)

At a resonance of the nth mode exactly n wavelengths fit over the circumference of the body,
and the th eigenfrequency of the nth mode, (ka) is the lIth solution to Eq. (23). A com-
parison of Eqs. (23) and (24) leads to the connection between the creeping wave solution and
tle

us - >jka) (27)

related to R type circumferential waves with phase velocities

I , I (8cjka) - Re vj(28)

and group velocities

cf(ka) (29)
dRe v/dka'

If now Re vlka a n, Eqs. 23 and 24 become identical in form and the modal velocities (Eqs.
25, 26) are identical to the creeping wave velocities (Eqs. 28, 29). Thus, when Re rj - , the
th Rayleigh type circumferential wave coincides with the wave speed, c,(ka), of the nth modal
vibration. This hypothesis is demonstrated below. Table I gives the modal eigenfrequencies
obtained from Eq. 23, and identified in Fig. 12, and the corresponding modal phase velocities
are computed from Eq. 25. The breathing modes (0, 1) arc not strongly excited, as evidenced
from Fig. 12, but are included in Table 1. The (1, 1) mode is generated in the region where
the Franz wave or rigid reflection predominates and is also not observed in Fig. 12. The a
values at which Re s, (ka) - i, are extrapolated from the work of Doolittle et at (Table I of
Ref. 21), and comparisons are made between these extrapolated values and the normal mode
resonances identified in Fig. 12. This cmparison is shown in Table 1, which also gives the
computed values of the creeping wave phase velocity 1211. Tables 1 and 11 demonstrate that the
ka values at which resonances occur correspond to ka values at which Re I (ka) n. They
demonstrate further the equality of the modal and circumferential wave velocities c () and
4l(ka). The relationship is thus established between the (, ) normal modes and the elastic or
R type poles found by the creeping wave' theory. The (, normal mode resonances
correspond to the R creeping wave. For t a 2 (e., the (2j)) mode), the circumference of
the cylinder is 2 wavelengths of the R type wave1 at the (3, 1) resonance the circumference
of the cylinder is exactly 3 wavelengths, etc. The RI circumferential wave is similarly related to
the (n, 2) normd mode resonances, and so on, with the (Ov, normal mode resonances related
to the Ith order Rayleigh or RI Rayleigh type circumferential wave.

1 9
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Table 
Modal eignvalucs (Aa),, and

mode speeds C,,/C for an
aluminum cylinder in water

(&A,) CH/c

1 2 3 1 2 3

0 - - 9.43 - -

I - 5.87 13.44 - 5.87 13.44

2 4.78 9.17 16.31 2.39 4.59 8.16

3 7.38 12.53 19.12 2.46 4.18 6.37

4 9.65 15.84 - 2.41 3.96 -

5 11.78 19.02 - 2.36 3.80 -

Table 11
The correspondence between the ro'rnal mode resonances and the

Aa values at which Rev, - n. The target is
and elastic aluminum cylinder in water.

(ka) values at which
Normal Rev, - n from the Phase velocities c,/c of the
mode Sommerfeld-Watson RL circumferential wave when

resonances formulation of Re - n
Ref. 21

N I (ka).1 L (ka), R R3 R 4 Rs
0 3 09.43 3 09.40 00 - -

4 10.46 4 10.40 _- 00 -

5 17.14 5 17.08 - _ _ _
1 2 05.87 2 05.80 5.85 - - - -

3 13.44 3 13.39 - 13.24 - - -

4 16.02 4 15.90 - - 16.04 - -

2 1 04.78 1 04.85 2.37 - - _
2 09.17 2 09.10 - 04.58 - - -

3 16.31 3 16.28 - - 08.16 - -

3 1 07.38 1 07.30 2.45 - - _ 
2 12.53 2 12.47 - 04.15 - _ _
3 19.12 3 19.05 - - 06.36 - -

4 1 09.65 1 09.70 2.40 - - - -

2 15.84 2 15.80 - 03.94 - - -

5 1 11.78 1 11.80 2.35 -

2 19.02 2 18.90 - 03.79 _ _

20

/



NRL REPORT 8216

The RI circumferential wave is related to the leaky Rayleigh wave [351 on a flat surtace.
This is the surface wave which, as ka increases, approaches the phase velocity of the Rayleigh
wave on a flat infinite half space. The higher order R type waves are called "whispering gallery"
waves and become lateral waves in the limit as a- oo [35J. Sin-e the RI or Rayleigh wave is
related to the (n, 1) resonances i the normal mode solution, the influence of the circumferen-
tially traveling Rayleigh wave on the backscattering from an aluminum cylinder can be inferred
from the relative influence of the (, 1) modes on the form function seen in Fig. 12. The (2,
1), (3, 1), and (4, 1) resonances are observed to have a marked effeci on the form function in
the ka range from 4 < ka < 10. For n > 4 the effects of the (n, 1) resonances Ol V/ are
small, and in fact for ka > 20 no (n, 1) modes were observed to influence [[4. The result of
the calculations plotted in Fig. 12 and calculations of fj carried out between 20 < ka 40
(not shown) strongly indicate that the Rayleigh wave will not contribute significantly to the
observed backscattering from an aluminim cylinder at ka values above ka - 20. This is a
significant point, since the possibility of Rayleigh wave generation at high (ka) has been a
matter of dispute in the literature [25-28,331. This point will be explored in more detail below.
Fig. 12 does show, however, that the (2,1), (3,1), and (4,1) resonances are major features of
the form function curve for ka < 10. Nulls in the form function at the ka positions of these
three resonances should be related to the interference between specular reflection and the
circumferentially traveling Rayleigh wave. Specular reflection and Rayleigh wave radiation are
known to be 1800 out of phase in the flat surface case [30,36,371. Verification of the above
explanation of the nulls at the (2,1), (3,1), and (4,1) resonance values should be possible both
by computing the low ka echo response of an aluminum cylinder to an incident hort acoustic
pulse and by experimentally determining the echo response of an aluminum cylinder at low ka.
Both measurement and computation were done, and this experimental observation of the back-
scattered reradiation from a circumferenti-ly traveling Rayleigh wave was the first observation
of this phenomenon.

The major difficulty in achieving an experimental observation cr' "e Rayleigh wave at low
ka is in obtaining a practical and possible combination of cylinder rus, frequency, and pul!'e
length that allows the Rayleigh wave to be separated from the specular reflection. The best
available combinations were an aluminum cylinder of radius a - 0.635 cm measured with a
short pulse centered at frequencies fV 386 kHz and .f, = 500 kHz. Commercially available
lead zirconate titinate transducers, with active elements 1.905 cm square were driven with a rec-
tangular pulse, and the achieved pulse length was 5 cycles.

Both the small acoustic pool facility in which the measurements were carried out and the
means by which the return echoes were digitized and displayed are discussed in Appendix B.
Figure 14 shows the backscattering from the 0.625 cm radius aluminum cylinder at f,, 500
kHz, or k,,a - 13.5. The backscattered echo consists of a specular return followed by a Ray-
leigh circumferential wave which is 1800 out of phase with the specular return. The digitized
display in Fig. 14 was plotted by the Versatek plotter. Even at this relatively low ka value the
second traversal of the cylinder by the Rayleigh wave is already almost entirely in the noise 25
dB below specular reflection. The experimental result at J], 386 kHz, (k,a) - 10.4 is given
in Fig. 15. Here there is a slight overlap of the final cycle of the specular reflection and the first
cycle of the Rayleigh wave, but the 1800 phase shift can still be observed. At this ka, direct
measurement can be obtained of the group velocity and attenuation, as the second transversal
of the Rayleigh wave is now visible. The path difference between the first and second manifes-
tations of the Rayleigh wave is Ad - 27ra. The measured group velocity is s/c 1.9, in com-
parison to the estimated value of fi/c - 2.0 obtained from Ref. 21. It is expected that the

2 1
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Fig. 14 - Experimental observation or the Rayigh circumferential wave on an aluminum cylinder at
koa 13.5.
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0 256

TiE (s)

Fig. 15 - Experimental observation of the Rayleigh circumferential
wave on an aluminum cylinder at ka 10.4.

group velocity would be higher [38,391 at these ka values than the infinite half space Rayieigh
wave velocity, which is chic - 1.830. Equality between the group velocities of the flat surface
and circumferential Rayleigh wave does not occur until the ka value of the cylinder reaches at
least ka 30, when the cylinder circumference is greater than 10 wavelengths of the Rayleigh
wave 1381.

The fact that the circumferential velocity of the RI wave is a function of frequency, or ka,
means that changes in the pulse shape should occur between the specular reflection and the R 1

circumferential wave. The velocity of sound in water is not a dispersive quantity, i.e. not a
function of frequency, and the specular reflection has the same pulse shape as the incident
wave. The Rayleigh velocity is a function of frequency over the range 0 6 ka : 30 and thus
is not constant over the range of frequencies represented by the incident pulse. Changes in

22
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pulse shape between the Ryleigh wave and the incident and specularly reflected waves are

expected. In addition, Figs. 14 and 15 are digital representations of the recovered signal taken

at intervals of 0.02 ,As, or at about 100 points per cycle of the received pulse. No two digital

representations are exactly alike, but with so many points having been taken, the only

differences that are noticeable occur in the flattening effects at some of the peaks and valleys.

In amplitude measurements these effects are negated by averaging many measurements. The

phase shift of 1800 was determined by comparing the pulse cycles labeled (1) and (P) in Fig.

14. Despite the slight change in pulse shape as discussed above, the beginning of the pulse

labeled (1) and the characteristically large amplitude at the center of the pulse labeled (P) are

present in both the specular and Rayleigh echoes and are 1800 out of phase for these two

echoes. The attenuation of the circumferential Rayleigh wave at ka 10.4 is measured from

Fig. 15 to be IR - 1.69 Np/revolution where one revolution equals a travel path of one cir-

cumference. Computations of the response of an aluminum cylinder to an incident pulse

should allow examination of the Rayleigh circumferential wave properties at even lowet ka

values than k~a - 10.4 (the experimental conditions for Fig. 15). A one-cycle pulse can be

programed as the incident pulse even though it is not readily attainable in a laboratory with nor-

mally available transducers. The computation of the reflection of a single-c-cle pulse centered

at k~a - 8.8 is given in Fig. 16. Again specular and Rayleigh wave echoes are 1800 out of

phase. The group velocity obtained from Fig. 16 is cf/c 2.4, which compares to ck/c 2.3

estimated from Ref. 21.

60 _

40-

20

-20 I 
SPECULAR RAYLEIGH WAVE REFLECTION

-40 REFLECTION

INCIDENT PULSE
-60 _ ! I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11

T mcI/O

Fig. 16 - Computation of the echoes scattered by an aluminum cylinder

at koa = 8.8.

Estimates of the expected Rayleigh wave attenuation due to radiation into the water can

be made from the flat surface formula given by Dransfeld [291:

R PC (30)
f5 Cr XR

The nonsubscripted variables refer to water, and the subscript R I hs the Rayleigh wave.

Just as the limiting velocity is not achieved until ka > 30 for alunlnMum, it is not expected that

computations made from Eq. 30 be exact for low ka. For aluminum the flat surface values for

the variables in Eq. 30 are.
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pip, - 0.37; c/c, - 0.55, and AR - .8A
yielding

0.113 0.113k -, I3a)

or

(2ira) aRR a (0.113) (a) (31b)

where oR is dimensionless.

Equation 31b gives aR - 1.0 at Aa - 8.8 in comparison with the value aVR .0
obtained rom Fig. 16. At Aa - 10.4, Eq. 3Cb gives CIR - 1.2 compared with CR - 1.7
obtained rom the measurement in Fig. 5. The results indicate that a reasonable estimate of
teR can be made using the flat surface attenuation formula, een at ow Aa. The empirical
observations given in Figs. 14 and 15 are the first observations of the true Rayleigh circum-
ferential wave. Previous observations of circumfereaidai wave' on solid elastic cylinders have
been made at ka values in the range 40 < a •C 400 [25,26]. This high A range was chosen
because of the ease of pulse separation of any circumferc.itial effects and, also, because
Rayleigh-like circumferential wave properties would have more closely approximated the flat
surface Rayleigh wave at high Aa. The circumferential wavei that were observed on aluminum
were identified as Rayleigh [25] or "Rayleigh type" 26] wav#!s. Further analysis of high a cir-
cumferential results lead to an explanation of the effects seen in Refs. 25 and 26 in terms of
multiple internal reflections of shear waves in the cylinder 271. This view was further sup-
ported by theoretical calculations of the circumferentially radiated wavefronts which result from
internal reflections [281. The subject has remained however a matter u." some onjecture [25-
28,331. but the results seen here show that the Rayleigh wave has large enough amplitude to
contribute significantly to the backscattering by the cylinder only at ka values below 20.

The excitation of the (2,1) resonance, which corresponds to the a value at which the
cylinder circumference is two wavelengths of the Rayleigh circumferential wa\ve, na'ks the
highest ka at which the Franz wave contribution can be isolated. A comparison of the form
function curves for the rigid cylinder (Fig. 2), the aluminum oxide cylinder (Fig. 8a), and the
aluminum cylinder (Fig. 12) shows that, in a these cases, there es's a region where the
behavior of the form function is purely rigid, i.e., ominated by the interfi ence of specular
reflection and the Franz wave as described in Chapter IIIA. For an aluminum cylinder this
behavior xists up to ka - 4.5, where the (2,1) resonance minima begins. For aluminum
oxide the specular plus Franz wave behavior persists up to Aa - 9.90, and the resonance null at
ka 9.90 in Fig. 8a is the (2,1) mode for aluminum oxide. Similar curves were computed for
copper, brass, and tungsten carbide, and in all cases the generation o the (2,1) mode marks
the end of the purely rigid behavior. The ka value at which the purely rigid behavior will end
fcr a cylinder of a given material can be inferred by using aluminum as a reference. The (2,1)
mode will be excited at

Z2.1(ateral) Z,.(.4 c .R(material) ( 
Z, 1(material Z2 .' c(aluminum) (31c)

The Rayleigh velocities used in Eq. 31c are fat surface numbers, and the equation assumes that
the effect of curvature is the same for all materitls, i.e.. that the flat surface limit is reached
when the circumference is greater than 10 Rayleigh wavelengths. Using the simple formula
given in Eq. 31c, the ka position of the (2,1) resonance was predicted to within 1% for the
materials discussed above.

24



NP.L REPORT 8216

IV. DEMONSTRATION THAT THE SCATTERING FROM SOLID

ELASTIC CYLINDERS CAN BE SEPARATED INTO

RIGID BACKGROUND AND RESONANCE PORTIONS

A. Preface

Junger and Feit [401 qualitatively considered the resonance features of the acoustic

scattering by elastic bodies. They showed that resonances should appear where the sum of the

mechanical and radiation impedance goes to zero. In part B of this chapter it is demonstrated

that she acoustic scattering from a submerged aluminum cylinder can be described in terms of a

rigid background term, with a resonance contribution superimposed on that background. The

observed phenomenon is formalized in part C using the methods of nuclear scattering theory,

so that mathematically explicit forms for the resonances and background, as well as expressions

for the resonance widths, are obtained. It is necessary to establish the nature of the back-

ground before the formalism is developed because a parallel formalism could have been

developed, using a soft or an internediate background, which would have had no physical

significance for the problem of the solid metal cylinder. The conclusions and formalism

developed for the scattering from an alunminum cylinder apply to the scattering from any sub-

merged solid cylinder whose density is greater then that of the surrounding fluid and Mhose

shear and compressional sound speeds are greater than the speed of sound in the fluid.

B. Results

The results described in Chapter III demonstrated that the irregular characteristics of the

form function for solid elastic cylinders are related to the normal modes of free vibration of the

body, and these resonances often occur over a narrow frequency range as war seen in Fig. 12.

It will be demonstrated in Figs. 17 through 20 that the resonances are superimposed on a back-

ground of reflection resulting from rigid boundary conditions, so that the elastic body can be

regarded as a rigid body except in the frequency interval over which the resonances occur. In

Fig. 17, the individual partial waves, 1fjI, from It 0 through it - 5 ore plotted vs ka for an

aluminum cylinder. The fn are described by Eq. 7c. The curves in Fig. 17 show that the

amplitude of the individual partial waves If,,l have distinctive behavior in regions where the

resonances occur. The eigenvalues 1, are labeled along the curve in Fig. 17. The individual

partial waves for both the infinitely rigid and the infinitely soft cylinder have no resonance irre-

gularities, as seen in Fig. 18(a) and 18(b) respectively. The demonstration that the individual

partial waves for a metal elastic cylinder consist of resonances superimposed on a rigid back-

ground is seen in Fig. 19. Here the [fj and fj individual partial waves for rigid, soft, and elastic

boundary conditions are plotted. It is clearly observed in Fig. 19 that the rigid and elastic

curves are the same except in the region where resonances occur. The resonances for 1 > 2 arc

narrow resonances; the I - I cigenvalue which corresponds to the Rl or Rayleigh surface wave

is a broader resonance. A more dramatic example of the relationship betwtcn the elastic and

the rigid solutions for a solid cylinder is seen in Fig. 20. Here the quantity f2()CI1slic

-. f2(1r)ri9( is plotted vs ka, and the (2,1), (2,2), and (2,3) resonances are clearly isolated. As

was noted, the (2,1) resonance and in fact the (n, 1) resonances in general are broader than the

narrow resonances which occur for higher order eigenfrequencies, i.e. I > I A method of
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wae wam vcaitpilelder n 2 ( ver tie range .2 ,5 ka .

computing resonaxlce widths will be described n part C. The results seen in Figs. 17 through

20 are, G( course, not restricted to the backscattered direct ion.

Fig. 2a shows a bistatic form function f ,(|curve for a rgid cylintder at A'a -12,53,

which s the ka value at which he (3,2) resonance occurs n the aluminunl case. In Fig. l1b

this bistatic rigid form function is compared to the bstatic form function for an aumiu

cylinder, Here he results are plt~ted on a linear rather than polar plot, and due to the syni

metry apparent n Fig. 2 la only thorange Q° < 0 K, 80' s pltted. The rigid and elfstic 501u-

tions plotted in Fig. 2b were obtained with 23 erms (n - throughz 22 fron Eq. 7). f the

single n - 3 term fr om the elastic solution s substituted for the it 3 erm in the rigid solu-

tion, the result seen n Fig. 21c is obtained. A similar procedure w as carried out by Vogt and

Netuuer 411 f R sphere n a monostatic geometry. In Fig. 21c the exact bistatic solution

for the aluminum cylinder at Aa -12.53 is compared to the hybrid solution formed by taking
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FIg. 21(a) - A polar plot of If..I vs for a rigid cylinder

at ka - 12.53.
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Fig. 21(b) - A comparison of If. (1 for rigid ( -.)

cylinders at ka 12.53.
and aluminum (-)

180
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Ftg. 21(c) - he same comparison as (b) except that the n 3 term in the

rigid series is replaced by the n 3 elastic term.
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22 terms from the rigid solution (n - 0, 1, 2, and n - 4 through 22) and adding the it 3

term from the elastic solution. The modified-rigid form function vs aspect curve and the elastic

form unction curve seen in Fig. 21c have become similar. The differences between Figs. 21b

and 21c are most noticeable in the backscattered half space, 900 < 0 < 2700 (recall that by

symmetry the results seen in Fig. 21c from 90° < < 1800 are exactly the same as the results

between 1800 < 0 < 2700). Figure 21 again indicates the probability that the scattering from

an aluminum cylinder can be treated as resulting from a rigid backgound term with resonances

superimposed. It indicates further that this behavior is not limited to the single monostatic an-

gle (0 - 1800) but can be utilized at any bistatic aspect angle.

C. Mathematical formalism describing elastic resonance excitation

The results obtained in part B, indicate that the solution to the scattering from solid elas-

tic bodies as expressed in Eqs. 4, 5, and 7 should be separable into two terms, the rigid back-

gound term and the resonance term. An analogy between the acoustic scattering problem and

the existing resonance formalism of nuclear scattering theory was suggested by L. Flax and H.
Uberall, leading to the following.

If the scattering function

S =exp(2i 8d) (32)

is introduced, the solution describing the scattering by an elastic cylinder may be written in the

form familiar to nuclear reaction theory [421 as
so

p5 - 1/2 I fI i4(S4 1) H,(kr) cos nO. (33)
"-0

The 8,, of Eq. (32) are called scattering phase shifts, and a comparison of Eqs. 1, 3, and 33

shows that

S, - I - -2G,(ka). (34)

For the case of a rigid cylinder, defining {. as the scattering phase shift for a rigid cylinder and
defining

S.(R) = exp(2i ,,) (35a)

as the scattering function for a rigid cylinder leads, using Eqs. 34 and 13, to

S(R)- I a 2GCJR)(ka) (35b)

and thus

5 (R) , HI 2 '(Z) (35c)

1t(Z)

If the rigid porition of the scattering function as given in Eq. 35c is factored out of the

expression for the elastic scattering function Eq. (34), we have using Eqs. 3 and 35c

S,_ s^>lR -_ l 2 (36)
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The L,'s were previously defined in Eq. (la), and the z's are defined by

ZI' (Z) HM(Z) (37a)

and

(Z) H 2)(Z) (37b)

the primes in Eqs. 37 and 35c represent derivatives with respect to the argument, and as

defined previously H and H(2) are Hankel function of the first and second kind respectively.

The quantities z-f of Eq. 37 can be separated into real ad imaginary parts:

zjj - A± is, (38)

with

I/M(Z) JM(Z) M() + Y(Z) Y(Z) (39)
(.4'(Z)]12 + I[y(Z') 12

and

St -wz
2 1 (IrZ [4v(Z) ]2 + [ y(Z)JI2

Equation 36 may be rewritten using Eq. 38 as

SI _ S(R) R L A + 1 (41)
L- - AM, - Is,

The linear approximation method of nuclear resonance theory is used in which the reso-

nance frequencies Z, are defined by the condition

L"-' (Z,)- AM. (42a)

The quantity (L -- AM) is assumed to be linearly varying with frequency so that it can bc

expanded in a Taylor series in Z in the vicinity of any one of the resonance frequencies:

L-l A,, + (Z-ZM). (42b)

A resonance width is defined by

r- 2s (43)
01 PM

and the scattering-funct.on S., may be rewritten ilk resonance form as

S, _ e 218 S (R) f Z - Z, - ir,/2 (

From Eq. 44 the S. are seen to have resonance poles at the complex frequencies Z - Zpoio

given by

zOZ - ir (45)
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and a resonance zero, Z - Z.gr, at

z. - z + i-r. (46)

The resonance width r defined in Eq. 43 is a positive quantity. Thus Zo, is located in the
lower half of the complex Z-plane a'distance (1i2)r. from the real axis, and Z., is located in
the upper half plane at the same distance above the axis.

The quantity SM - I which appears in Eq. 33 can be written, recalling the deflnition in Eq.
32, as

S - _ 2 e' 8 6 sin ,. (46a)

Using Eq. 36 and the expressions for z ,A given in Eq. 38 (SM - 1) can be rewritten in the form

S-I -21 e 
I I,;' A /SMS

L--A-s,

or, using Eqs. 44 and 46a, S. - I may be written in the resonance form

S - l 2/f,

21 e
I..-Z1/2 r + e-'t" sin FM|

Z,,- Z -1/2M sin

The individual partial waves, f(O), of Eq. 7c can thus be written, using Eq. 47, as

( 2) - 21M e 211 1/2 Mr
fM'' - I ZM -Z- 1/2/FM(Iw ka) ' Z-1/i2 * +e '0sin f, cos (n 0).

The first term of Eq. 48 represents the resonance contribution, and the second term represents
the rigid boundary contributicns; thus the results established in part B are expressed in a mean-
ingful formalistic way. The representation of fM(0) given in Eq. 48 shows that the complex
elgenfrequencies of the scatterers are the locations of the resonance poles in the complex fre-
quency plane, whose real parts determine the resonance frequencies in the scattering ampli-
tudes.

A consideration of the field within the elastic cylinder can also be made in
above results. The displacement u within the cylinder is represented by a scalar
and a vector potential A, and is written

u--A'P+A&xA

with solutions 1201

t- , i" CM J. (kL r)cos n
M-O

and
eo

Az- I M ill B JM(kT r)sin nO.
MR0

The subscripts L and Tare longitudinal and shear respectively.
given by

light of the
potential '

(49)

(50a)

(50b)

The coefficients C, and B are

cm 2t 1 a 33

p @ 2 ZH.(Z) Itl -

33

+ l' sin I (46b)

(47)

(48)

(51a)



L. R. DRAGONETTE

and

2. / -1 a3, (
VP W2 ZH(Z) DLl), - (-Ib)

The expansion of L.-' in Eq. 42 leads in to the resonance expressions for T and A, which are
2_ fe1 i"9 a3 3 Jfl(kLr) cos n (52a)

jm pW 2 ZH,(Z) D') Z- Z + 1/2 ir52
and

AZ- _2 e, i9 a32 JI(kTr) sin no
ir oo n - , ZH,(Z) D(' Z Zn + 1/2 ir(2

Equations 52a and 52b show that the internal solutions are of a pure resonance form only.This is as expected, since by definition a rigid body is impenetrable; thus no rigid backgroundterm is expected for the internal solution.
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V. CIRCUMFERENTIAL WAVES ON CYLINDRICAL SHELLS

A. Preface

Numerous 1 I- 1525-271 empirical observations of circumferential radiation from cylindri-
cal shells exist in the literature, but these have left many serious voids in the understanding of
circumferential wsves as well as erroneous information concerning the properties of the waves.
This chapter will establish the connection between circumferential waves and the exact Rayleigh
series solution. It will demonstrate that the Lamb wave dispersion curves on plates predict the
range of possible excitation of circumferential waves and that the velocity of circumferential
waves may be obtained directly from the form function vs ka curves. It is shown that these
Lamb curves also give immediate knowledge of the ka region over which a particular circum-
ferential mode is significant. Calculations of the backscattered echoes from shells will be used
to obtain curves relating the amplitude of the specular and circumferential contributions as a
function of ka, and, contrary to the prevalent belief expressed in the literature, the circum-
ferential waves will be shown to be of most importance in the low ka region generally avoided
in past work. A target classification scheme was proposed in the literature which relied on the
assumption that a hollow shell acts as a soft body, in that its specular reflectlon is 1800 out of
phase with an incident wave 431. By consideration of the interference between specular and
circumferential radiation, the actual ka range over which such a hypothesis is valid is deter-
mined.

Most of the pertinent refernices on the subject of circumferential waves on cylindrical
shells have been mentioned in Chapter 1. They and others are discussed in more detail below,
where they are considered, generally, in chronological order. Barnard and McKinney 1 were
the first to observe backscattered acoustic echoes with circumferential properties. This observa-
tion we a significant contribution. They attempted to link the observed acoustic phenomenon
to the geometric diffraction phenomenon observed by Franz 181 in the electromagnetic
domain; however, the analogy broke down, since the acoustic phenomenon was a predonm-
Inately elastic effect, the geometry serving in the capacity of a waveguide. Horton, King, and
Diercks 131 made the initial attempt to relate circumferential waves on cylindrical shells to the
elastic properties of flat plates. They compared their observation of a circumferential wave on
an aluminum shell to a theoretically computed fexural plate mode and found a 10% difference
between measured and predicted velocities. A similar comparison was attempted with a brass
shell (131, but the circumferential wave could not be excited. The ka range considered was 21
< ka < 38, with b/a - 0.96, where b and a are the inner and outer shell radius respectively.
The ircumferential wave observed by Horton et al. will be related in this work to the first
antiymmetric Lamb mode, whose properties and ka region of possible excitation a discussed
later. Diercks, Goldsberry, and Horton 121 made empirical observations of circumferential
waves on both brass and aluminum shells near ka -: 50, with b/a - 0.96. They established the
existence of circumferential waves with two different group velocities. The faster velocity wave
was called a longitudinal mode, and the lower velocity wave was called the flexural mode. This
paper by Diercks et a. 1121 was significant in that it was the first to clearly state that more than
one circumferential mode existed. Their conclusions, concerning which mode is dominant and
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whether both modes can be simultaneously excited, were thought to be general but are limited
strictly to the conditions of the observations. It will be demonstrated in part C of this chapter
that the so-called longitudinal mode is actually many different modes, and herein lies much of
the confusion about the frequency range of excitation and/or dominance of a particular mode.
Goldsberry 1141 demonstrated that the circumferental waves observed previously at DRL [11-
131 would reflect from slits cut in the shell. He called the wave with lower group velocity a low
frequency wave, and the faster wave a high frequency wave. Again these generalizations do not
survive beyond the experimental conditions. The ranges he considered were 32 < ka < 38
(flexural, slow, low frequency wave) and 70 < k < 76 (compressional, fast, high frequency
wave). The b/a was 0.96. Uberall and collaborators at Catholic University predicted circum-
ferential waves of different types on rigid 201 and elastic cylinders [211 and shells [441. These
predicted wave types were Franz-type waves [20] with properties similar to the electromagnetic
case of Franz [161, and R-type or Rayleigh-type [21.441 waves, which depend on the elastic
properties of the target. Neubauer [23] empirically isolated the Franz-type wave on a solid elas-
tic cylinder in water, and Harbold and Steinberg [241 isolated the wave on a rigid cylinder in air.

Bunney, Goodman, and Marshall [251 used narrow beam sources to illuminate cylindrical
shells over narrow ranges of incidence angles and directional receivers to observe
circumferential-wave radiation. The ka range they considered was between 50 < ka < 320
with b/a - 0.95. Many observations of a low velocity circumferential wave were compared to
the antisymmetric Lamb mode, and the single observation of a higher velocity mode was
related to the symmetric plate mode.

Neub: and Dragonette [271 and Dragone'te [45] empirically demonstrated that the
velocity of the observed circumferential wavds: on cylindrical shells [27] and the velocity of
Lamb waves on plates 451 could be predicted by considering guided wave propagation within
cylindrical shells arnd plates. Drar-nette [451 also established that Lamb modes were most
easily excited in the frequency thicKness regions where the phase velocity reached a constant
plateau. This result is significant in a consideration of the so-called fast circumferential wave
on cylindrical shells, as will be seen in part C, and is the basis for correcting some erroneous
conclusions in the literature.

Shirley and Diercks [461 compared measured and predicted values of the steady state
response of spherical shells over the range 25 < ka < 65 with b/a .95. Differences of the
order of 10 dB, or a factor of 300% in pressure amplitude, were found between theory and
prediction, but similarities in shape between the theoretical and empirical curves were observed.

Horton and Mechler [151 attempted to measure phase velocity of circumferential waves
on aluminum cylindrical shells by setting up a long pulse or steady state interference pattern
between the successive circumferential pulses. The significance of their paper was that ii
offered a possible approach to hase velocity determination which, as will be discussed later, is
a difficult parameter to obtain when waves are excited on a curved surface.

B. Experimental observation and analysis of the properties of crcumferential waves on
shells

Figure 22 shows the geometry of the cylindrical shell problem. t is similar to Fig. 1
except that the target now has a finite thickness Ih given by i - a - b, where b is the inner
radius and a is the outer radius. The shell is air filled. An experimental observation of circum-
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y

fig. 22 - Th geometry used in the solution to the r-
tkcdon from a cylindrical shell.

ferential waves is seen in Fig. 23. Here the target is a stainless steel cylindrical shell with b/
- U.96. The radius of the shell is 1.27 cm, and the center frequency of the pulses seen in Fig.
23 is 1.5 MHz, leading to A a - 80. The specular reflection is not shown, as it is 40 dB
gre."r than the largest echo seen in Fig. 23, and was gated out of the return so that the echoes
seen in the figure could be amplified to the maximum extent before display. The backscattered
echo s-n in Fig. 23 was obtained using the experimental system described in Appendix B. The
sourc iver is located 15 diameters from the -i The backscattered echo seen in Fig. 23
was cis'!zed at the rate of 13 points per cycle . d on magnetic tape. The representation
seen in Fig. 23 was obtained with a Versatec plctuer. The first, third, and all successive cchoes
in Fig. 23 result from a circumferential wave- which circumnavigates the cylinder, with little
attenuation, continually radiating into the water a!. it travels. The second echo in Fig. 23 is the
result of a second type of circumferential wave o highly attenuated at the k and/or Ah value
of this experiment that only its first traversal around the cylinder is observed before it attenu-
ates into the noise. (Observation or Fig. 23 aone would not allow identification of the second
echo as a cir.umferential wave. This identification was based on many experimental measure-
ments, some of which will be seen below.) Measurements of the circumferential velocity of
the persistent series of equally spaced echoes (1-7) in Fig. 23 are straightforward. The circum-
ferential group velocity c.' is obtained from Fig. 23 by

2wa

where At is the time between echoes and 2ra is the circumference of the shell. The measured
value from Fig. 23 is c; - S48 x 1O5'cm/s or ,c 3.7. This value for c. identifies this wave
as that previously called the fasit, high frequency", or "compressional" wave by previous
observers 3-15]. As will be discussed, these names can be misleading or in error. Attenua-
tion measurements from Fig; 23 are also straightforward. The successive amplitudes from Fig.
23 are plotted on semilog paper in Fig. 24, yielding an attenuation of

-as 0.14 Np/revolution.

The use of the digitizing procedure and display mkes possible observation of the individual
cycles of the successive echoes in ig. 23. The empirical observations which follow in Figs. 25
through 28 are simply photographs of scope traces, and the time scale needed o show many
successive echoes does not allow observation of the individual cycles within the echo.
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(2) (3) (4) (6) (7)
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Fi. 23 - Experimental observation of circumferential waves on a stainless steel at 4 = 80.
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REVOLUTIONS

Fig. 24 -. Te amplitude of he circumferential
waves seen in Fig. 23 plotted onjslmilog paper.

Fig. 25 - Experimental observation of a "fast" circumferential wve
at koa 1, on a stainless steel shell. The time scale is 20Cs/division;
the amplitude scale is S mv/division.
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Fig. 26 - Experimentl l obse rvation of a "fast" circumferential wave

-it k a = 69, on a stainless steel shell. Te time scale i 2ps/divi-

sion; the amplitude scale i 2 mv/division.

Fig. 27 - Experimental observation of a "slow" circumfterential wave

at k = 1 7, on a stbinless stell shell. The tiel scale is 20ps/divisiis;

the amplitude scale is 200 imv/division.

F:ig. 28 - Exicri-n;-Cital observlation o' 1 "slow" circumfecrential vave

ait a = 43, on a stainless stel shell. 'Ilie time scale is 20jps/division;

the amipli tle scale is 2 mv!livision.

3(



L. R. DRA;'ON1Tri:,

Figures 25, 26, 27, and 28 show further results of reflection measurements on steel shells,
and the experimental conditions and results arc summarized in Table 111, which also includes
the results described for Fig. 23.

Table III
Summary or cylindrical shell observations

Figure Radius k b /a' c,/ Np/revolution

23 1.27 80.8 .96 3.7 0.142
25 1.S9 113.0 .97 3.5 0.209
26 0.9525 69.0 .95 3.6 0.126
27 0.9525 17.0 .95 1.35 1.000
28 1.905 43.0 .97 1.35 0.600

The hydrophonc measurements seen in Figs. 23 and 25 through 28 show thc acoustic reflection
in thc backscattercd direction, 1800. Observation of the entire scattered field, 0 < 0 < 27r
can b obtined simultancously by schlieren visualization. Figure 29 shows a schllieren visualiza-
tion of the scattered field of a stainless s.ccl cylindrical shell of radius 0.9525 cm with h/ -
0.95. Thc k,,.z of the experiment is 202. The incident pulse is sc-.- 'n Fig. 2a. and the time
sequence of photographs shows tle scattered field at late times. The seculart reflection and
the beginning of te radiation from a circumferential wave are seen in Fig. 2b. and Fig. 29c
Ehows the rcradintion from the frst conpletetraversal of the circumferential wave into te
backsctttercd direction. At the bottom of Fig. 29c tle diffraction around the shell can also be
observed. Tle group velocity of the wave seen in Fig. 29 is c/c 3.6. In Fig. 29 the incident
pulse insonificd the entire cylinder, so that the sme cffect ws generated o both the upper left
and upper right quadrants of the cylinder.

The properties of thc circumferential waves seen in Figs. 23 and1t 25 through 29 are similar
to circumferential wave properties previously reported in the literature ll 1-15.25-271.
Speciilcally, circumferential waves with group velocities ,/c 3.6 (Figs. 23, 25, and 26) atd

1.3 (Figs. 27 and 28) arc observced, with he faster group vclocity observed at thc higher
frequency (or higher WA) and the slower group velocity wave at te lower frequency. his sin,-
ple interpretation of the results is, however, misleading and demonstrates sole ot' the practical
diffhculties in a predominantly empirca' approach to this problem, where broad gencraliiations
tire made, based on limited measurements. The experimental measurements here, and rerorted
previous!y, are generally made at high ka values. At very low frequencies, or A values below
ka -' 20, it is at practical impossibility to achieve short crough pulse lengths to scparatc circum-
ferentitil waves with transducers generally availablec, hence, high Ai measurements are made as
t mntter of necessity. This iow-ka limitation ol te isolation of separate coes is especially
true of high speed circumferential waves. In addition, most empirical measurements are made
on sells with b/a < 0.96, since thinner shells are norc difficult to fabricate and anilain.
Finaliy, ats practical matter it is not possible to measure enough combinations of' shells and
freqencies to do a complete empirical study. This latter statement is true not only because of'
the low ka separation difficulty mentioned above but also because in the case of' a curved shell
there aire two frequency variables. For a flat plate, frequency times thickness, /h ;iita :e con-
sidered a single variable. Tle radiation from a given plate may be examined as. a1 functi,,:.t of'
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Fig. 29 - Slieren vistilitfioll ci' ;1 "'ast" cirouniterentia
wave at k .a = 202 on a stainless steel shell.

4'



L. R. DRAGONETTE

fAi simply by varying the frequency of the incident pulse or continuous wave. A similar experi-
ment on a curved shell is not as unambiguous. As the frequency of the incoming wave is
varied, the Af7 or k of the shell changes accordingly, but in addition the ka value changes. As
will be seen, there are certain effects which are strong functions of ka, and others which depend
almost entirely on k. These had not previously been differentiated successfully in the litcra-
ture, and this could not have been reasonably accomplished empirically. Because previous work
has been limited to the high ka region, where the flat surface limit is approached, the k vari-
able has generally been considered most significant in all empirical observations of isolated cir-
cumferential waves. In fact the low ka region which has been avoided is the only k region
where a high velocity circumferential wave plays a significant role in the acoustic scattering by a
cylindrical shell, as will be demonstrated.

C. Theoretical normal mode formulation of the shell problem

Analysis of circumferential waves on cylindrical shells can best be accomplished by deter-
mining the relationship between the circumferential waves and exact steady state theory. in
addition, as will be seen in part D, Lamb theory for plates can be used to predict the possible
ranges of excitation of circumferential waves on shells.

The geometry of the cylindrical shell tProblem was given in Fig. 22. The formulation of
the exact normal mode solution to the scattering of sound by an elastic cylindrical shell exists in
the literature and can be presented in a form similar to that of Eq. 1, whiqh described the
scattering from solid elastic cylinders [321:

Jf J(Z) , - Z" J(Z)
P(6) -- P" E () " H (Z) Q- Z H(Z) H(kr) cos no. (53)

This expression differs from Eq. (1) only in the replacement of Ln, which involved the division
of two 2-by-2 matrices, by Qd, which involves the division of two 4by-4 matrices. The larger
matrix results from the extra boundary condition on the surface r - b, and the expression for

Q is

a21 a2 2 a2 3 a2 4

a3: a32 a3 3 a3 4

a41 a42 a43 a44

Q P a6 1 a6 2 a 63 a64

P3 all a12 a13 a14

V1 A a32 a.33 a3 4

I a4 l a42 a43 a4 4 )

a61 a6 2 a6 3 a6 4

with the matrix elements a, given in Ref. 32. Computations arc given in Fig. 30 of the form
function vs ka for stainless steel shells with b/a - 0.99 (Fig. 30a) and b/a - 0.98 (Fig. 30b).
The curves cover the ka range 0.2 ( ka < 50. A similar set of curves for aluminum arc given
in Fig, 31, and the two figures demonstrate the similarity of results obtained on metals quite
different in density, but with shear and longitudinal speeds approximately twice and four times
the water speed, respectively. The elastic constants used in obtaining the curves seen in Figs.
30 and 31 are given in Appendix C.
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The form function curves seen in Figs. 30 and 31 are made up of the steady state interfer-

ence of specular reflection and a single circumferential mode which makes many circumnaviga-

tions of the cylinder before attenuating into !ii The above explanation of Figs. 30 and

31 can be demonstrated analytically by compuil;- zhe reponse of the shell to an incident pulse.

The computation is made using Eqs. 9 and i2 w;,iCl rprocedures described in Chapter I. Fig-

ure 32 shows the response of an aluminum 2-n!, wiih b/a - 0.99, to an incident acoustic

pulse. The pulse is centered at a dimensionless f¢juency k,,a - 10. The backscattered echoes

are seen in Fig. 32(a), and the incident wave is seen in Fig. 32b. The backscattered return is

made up of the specular reflection followed by a series of equally spaced echoes which result

from multiple circumnavigations of a circumferential wave. The ratio of the circumferential-

wave group velocity c to the water velocity c is given by

'/ C - 2f (55)
A

where AT is the dimensionless time between successive circumferential echoes. The result

obtained from Eqs. 32 and 55 is c,;I - 3.7. The deviations from VI - 1 in Figs. 30 and 31

occur when the circumference, 2fra, is an integral number of circumferential wavelengths. For

ka values at which 2ira - nX , where X is the wavelength of the circumferential wave and n is

an integer, the long pulse or steady state interference of the circumferential waves gives a max-

imum contribution, since all add in phase with one another. At these ka values peaks will

occur in the form function if the specular reflection and circumferential waves are in phase and

nulls will occur if they are out of phase. The ka difference, Aka, between the successive

fluctuations in the VJ vs ka function are- directly related to the circumferential wave phase

velocity c by

CPc- Aka (56)

which foe Figs. 30 and 31 gives cp/c - 3.7. The nearly constant spacing of the fluctuations Aka

3.7 indicates a constant or slowly varying phase velocity, so that the approximation c.' - cP

is valid over the ka range 0 < ka < 50 seen in Figs. 30 and 31. The phase velocity of the cir-

cumferential wave on an aluminum cylindrical shell with b/a - 0.99, is obtained from Fig. 31a

and Eq. 56 as cp/c - 3.7, which is identical to the group velocity obtained from Fig. 32 and Eq.

55.

The previous paragraphs demonstrated the significance of the Aia spacing between the

deviations in the form function for cylindrical shells. The direction of the deviations from V

8 1 in the form function curves, as seen in Figs. 30 and 31, is also significant. The hypothesis

of Tucker and Barnickle [431 mentioned in the first paragraph of this chapter was based on the

assumption that a hollow air-filled shell will act as a soft body in that its specular reflection will

be 1800 out of phase with an incident wave. This would then distinguish hollow body echoes

from echoes scattered by solid bodies, which would act rigidly, that is, give a specular return in

phase with the incident wave. The results of Chapter IV demonstrate that, in fact, the return

from solid bodies whose density is greater than the density of water and whose shear and

compressional speeds are greater than the speed of sound in water can be described in terms of

a rigid background term plus a resonance term over dll ka > 0. Thus, for solid bodies with

these elastic properties, the rigid background portion of the hypothesis of Tucker and Barnickle

would be correct. With regard to the "soft" scattering by a hollow shell, however, the

hypothesis breaks down, as can be determined form the work described in the previous para-

graph. Figures 30 and 31 demonstrate that the ka range over which cylindrical shells will act as

a soft body is a function of frequency. As frequency is increased, the thickness 11 of a given
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Fig. 32 - Computations c4 the echoes (seen in (a)) scattered when a short incidet
pulse (seen in (b)) impinges on aluminum shell with b/a = 0.99. The pulse is centered
at ka = 10.

shell becomes greater with respect to a wavelength, and whether a shell acts as a "soft" body
(specular reflection 1800 out of phase with the incident wave) or a "rigid" body (specular
reflection in phase with the incident wave) depends both on the frequency and shell thickness.
For example, as was discussed, the fluctuations in Jf0J for the shell described in Fig. 31b occur
at intervals Aka 3.7. The deviations from Ifjol 1 are, however, not uniform in direction
either in Fig. 31b or in any of the other form function curves shown in Figs. 30 and 31. Three
separate background regions exist.

The shell acts as a soft body over the ka range where the fluctuations in Vj, at Aka -

3.7, are in the negative direction. Here t1iz specular and incident wave are 1800 out of phase.
Recall that the incident wave and the. circumferential wave are in phase (as seen in Fig. 32),
and further pulse calculations such as tat in Fig. 32 show that they remain in phase over the
ka range from 0.2 ka 50. For an aluminum shell with b/a 0.98 the ka region over
which the shell acts as a "soft" body (specular reflection and the incident wave 1800 out of
phase) is seen from Fig. 31b to be 0 < ka 23.

As ka increases, the shell passes through a transition region during which a single fluctua-
tion has both positive and negative aspects. This occurs over the range 23 ka 3 for the
0.98 aluminum shell. Finally for ka > 40 the deviations from If-2 1 are positive and the
shell is a rigid reflector with respect to its specular reflection. The extent in ka of the three
background regions will vary with thickness and with material. Later in this section the advent
of higher order modes will be discussed, but it can generally be said that if the product of fre-
quency and thickness is large enough to allow more than one circumferential mode to be
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excited, the shell has already reached the rigid background region. Development of the formal-
ism for the resonance scattering from hollow shells with intermediate background is the subject
of an ongoing program at the Catholic University 471.

The generation of a single circumferential wave under the conditions present in the com-
putation of the results seen in Figs. 30 through 32 are consistent with the dispersion curves for
Lamb waves on plates. Figure 33 shows dispersion curves for the first four symmetric and
antisymmetric Lamb [481 waves for aluminum plates. The symmetric Lamb modes satisfy the
frequency equation 45,48,491

tanh((7rfh/V ) [(c 2 - V2)/c/ l]/2)

tanh((Lrfh/V) ((c - V2 )/CL]P 2

4[(c 2 V2%,IC2J12 . [c2 - V2)/c21/2 )

[(2c/- V2)/C2 2

and the antisymmetric mode satisfies the equation

tan h((vfli I V) (C - 2)IC| 212

tanh((rfh/V) [( - V2 )/c 21I 21

[(2C - V2 )/C 2 2
4 [ ( 2- V2 )IC 1/2 [(C 2- V2 )/Cy] 1/2 )

qs. 57 and 58, V is the Lamb phase velocity. The group velocity of the Lamb wave, V, is
-d to the phase velocity by

I' - 1- (fh) dV/d(fl/)

s been demonstrated that Eqs. 57 through 59 describing Lamb waves on plates in vacuo
are not strongly modified when the plate is immersed in water [45,49,501 and that Lamb waves
can be generated by illuminating a plate in water by an incident pulse [45,491. Radiation of the
Lamb wave into the water can be observed either with a hydrophone [491 or by schlieren visu-
alization [451.

Ien

0

x

M2 54p -
2.54 S 08 7.62 10.16 12 7

FREQUENCY X PLATE THICKNESS X IO5 CM CYCLES/SEC

Fig. 33 - The Lamb dispersion urves r'or the first four symnietric (-) and antisyninletric
(--- ) Lamb waves on aluminum plates.
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Grigsby and Tajchmin [513 gave dimensionless curves for the phase and group velocities
of Lamb waves on a plate whose ratio of longitudinal to shear speeds is 1.8. Their curves are
:een in Fig. 34. Special attention is directed to the group velocity curves in Fig. 34b, where all
the modes show a flat peak in the group velocity at V, - 1.8. In Fig. 34 the ordimi' V, ;

Lamb phase velocity divided by shear velocity i.e. V,, - V/CT. and the abscissa (h),, is '-'

In Fig. 34b the ordinate V, - Vr.

(f On

(a)

2

0 82 3 4
(fh)n

(b)

Fig. 34 - Dimensionless curves of (a) Lamb phase velocity and (b) Lamb c-
locity curves for matcrials with CL/CT = 1.8.

Dragonette 451 demonstrated that strong generation of a Lamb mode takes place in th..
region where the phase velocity curves reach a flat plateau (at approximately V, - 1.8 in Fig.
34a). This plateau region corresponds to the frequency thickness region where the group velo-
city curve for a particular mode reaches a flat maximum (at approximately I - 1.8 in Fig.
34b). Dragonette [451 demonstrated further that this stong generation of a Lamb mode, in the
fh region where phase velocity is approximately equal to the group velocity, persisted as the

plate was curved.
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In Fig. 35 the Lamb phase velocity curves describing the first symmetric and first anti-

symmetric curves for an aluminum plate are isolated. Te ordinate is given in terms of the

Lamb phase velocity V, and also in terms of the angle of incidence 0, at which a Lamb wave,

with that phase velocity, can be generated by a plane wave incident from water on to the plate

surface. This angle j satisfies the equation

sin 0, - c/ V, (60)

and a Lamb mode cannot be generated by an acoustic wave ncident from water to the plate

unless V > c. The frequency thickness variable, fh, which is the abscissa of the Lamb curves

seen in Fig. 35 may be written in terms of ka for a specific cylindrical shell by a simple alge-

braic manipulation:

kh - 2,Tfh - kal - (b/a)] (61a)
C

Ah- (ka) c(I - b/a) (61b)
2ff

Using Eq. 61b the abscissa, fh, for the flat plate case may be transformed from fh into ka for

shells with various b/a values. Figure 35 shows the abscissa written in equivalent ka values for

an aluminum shell with b/a - 0.98 (see Fig. 31b). The results seen in Fig. 35 predict that the

first symmetric mode can be generated at any ka value, and in fact since the flat plateau in

group velocity occurs at the low end of the frequency thickness or ka scale, this waye should be

strongly generated at low ka. The arrow in Fig. 35 points to the place where V - for the first

antisymmetric mode. For the shell with b/a - .098, this curve predicts that the antisymmetric

mode cannot be excited at ka values below ka - 50. The phase and group velocity of the sym-

metric mode is predicted to be V/c - 3.7 by the curves in Fig. 35, in excellent agreement with

the circumferential wave observed for the cylindrical shell (Fig. 32). The circumferential wave

related to the first symmetric Lamb mode has died out by ka - SO, as seen in Fig. 3lb, and, as

seen above, the results in Fig. 35 predict that the onset of a circumferential wave related to the

first antisymmetric mode cannot occur at a value lower than ka - 50. Such a wave would have

a lower group velocity; i.e., oscillations in fj vs ka would occur at closer intervals than those

observed in Fig. 31b. Recall that cjc - Aka.

A plot of VfoJ vs ka for an aluminum shell with b/a - 0.98 is given over the range 50 (

ka < 90 in Fig. 36. This is then a continuation of the curve given in Fig. 31b, and it shows the

onset of a circumferential wave with the properties related to the first antisymmetric mode.

The oscillation in the-form function curve predict a circumferential wave with c,/C Aka -

1.3.

In general, then, a circumferential wave related to the first symmetric mode should always

be generated for a shell of any thickness. Its influence is restricted to the low Ace region over

which the phase velocity has a flat plateau. This region is a function of thickness, as will be

described below. A circumferential wave related to the first antisymmetric mode can only be

generated at ka values higher than the coincidence frequency Au - (ka),, where 1! c. Thus

the thicker the shell, the lower the Au value at which this mode can be generated.

These conclusions should be reflected in the form function curves for aluminum cylindri-

cal shells of various thicknesses. Differences from Vj - I should occur at intervals Aka 3.7

for all thin shells, and these differences should die out more quickly with ka as thickness

increases, since the plateau region in Fig. 35 corresponds to a smaller ka range for thicker

48



NRL REPORT 8216

C.,

220' -Va4 X10 5

2M.4

3r 4; 

0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 .8 2.0 2 2 2.4 2.6 2.8 3O 3.2 3.4 3.6 3.8 4.0

FREQUENCi x THICKNESS x 105 cm Hz

Fig. 35 - 1 ge an qir lnciticiic at h1 t1.' e irs1 sy % llillctri i atl tid yIlilletrit: tj;l1m)
lilotdc s tIl t generated.

2.C -

je

0.51 .- 

50 55 60 65 T0 75 80 85 90
ka

1g. 36 - ne orn unctian v k over the rang 5 < k < 90 f r n
rOr an auminum s.hell ith b/la .98.

--tells. Differences at Aka 1.3 should begin to occur at lower At values as thickness is
increased. Fig. 37 sho-vs the form function cur;es for aluminum cylindrical shells with ba -

0.99, 0.98, 0.96, 0.94, 0.92, 0.90, and 0.85. The above conclusions are verified in Fig. 37.

As thickness increases, the antisymmetric mode is seen to occur at. lower a values. The
low velocity circumferential wave observed herc in Figs. 27 and 28, and by the many others
referenced earlier 12-15,25-271, is related to the first antisymnetric LUmb mode for plate.
The Aa range over which it is generated depends on the thickness of the shell. The first sym-
metric mode is strongly generated on aluminum plates in the thickness region where it has a
phase and group velocity ratio of V/c - 3.7. This is carried over to the shell case, where a cir-
cumferential wave having the properties of the first symmetric mode arc observed at low ka on
all thicknesses of shells from 0.85 < b/a < 0.99. Closer :spaced oscillations in v.s.J Is Aa Lre
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also seen to occur at relatively lower ka values as shell thickness is increased. These oscilla-
tions are related to a circumferential wave with cc 1.3. If one rturns now to the Grigsby-
Tajchman group velocity curves seen in Fig. 34b, the reason foi the association of low fre-
quency with low velocity and high frequency with high velocity in the literature become
apprent. All t higher order Lamb modes in Fig. 34b are most strongly generated when their
group velocity is V,, 1.8. This is also the group velocity of the first symmetric mode at its

region of strong eAcitation. Moreover, the sanm is true of all higher order antisymmetric
modes (see Fig. 33). Thus the first -vmmetric mode ad all higher order symmetric and
antisymmetric rmodes cannot be distinguished from one another by measurement of group velo-
city alone, and these waves collectively have been identified as the fast circumferential wove.
The particular mode generated depends on the shell thickness and frequency, but, as discussed
earlier, practical considerations generally preclude isolation of the first symmetric mode. All of
the measurements of a low velocity wave are related to the first antisymmetric mode, which for
thin shells is generated at a higher frequency thar. the firs, symmetric mode but at a lower fre-
quency than any of the higher order iodes. In the empirical observations of circumerential
waves, the wave related to the first antisymmetric mode is obtained at a frequency which
depends on the thickness as described in Fig. 37.

Because of the slow speed of this wave, there is a greater time difference between succes-
sive traversals of thn circumferential wave (a factor of 3 as compared to the faster waves);
hence, this mode when present can be isolated at lower a values than a mode traveling with a
velocity 3 times higher. Thus in past pulse hydrophone measurements [1245,271 low v--:tv
corresponded to low frequency in the experimental observations. As frequency was incre. it
became possible to isolate higher velocity modes, all of which were strongly generated with the
same group velocity; hence, high velocity corresponded experimentally to high frequency.

The circumferential wave related to the first symmetric mode is the only one of the fast'
circumferential waves whose amplitude approaches the amplitt.de of the speculac reflection,
and, while it is not practical to isolate it experimentally, its contribution to he steady state pres-
sure or form function at low a is apparent. As demonstrated in Fig. 33, it is possible to isolate
the first symmetric mode by computation of the response of a shell to a short incident pulse.
Computations similar to that seen in Fig. 33 are given in. Figs. 38 and 39 for various shel!
thicknesses at various center frequencies. The purpose of these calculations is to demonstrate
that the relative amplitude of the circumferential and specular contributions is a function of 1l.
In Figs. 38 the responses of three aluminum shells with thickness b/a 0.99, 0.96, and 0.9 are
presented. The center dimensionless frequency of the calculation is ,,(- 10. A circuniferen-
tial wave related to the first symmetric mode is seen in Fig. 38a (b/a 0.99) and Fig. 38b
(b/a 0.96). The measured attenuation in these two cases is 0.50 Np/revolution (Fig. 38b)
and 0.43 Np/revolution (Fig. 38a). In Fig. 38c the first antisymmetric mode is generated
simultaneously with the symmetric mode. This figure demonstrates that the antisymnmetric
mode is in fact generated at lower frequency as thickness is increased, us pred3..!ed in the dis-
cussion of Fig. 37. It also shows that at the same ,,a the attenuation of the symmetric mode
increases with increasing thickness, and finally it demonstrates that the large oscillations in
ifs(ff)j which appear with increasing thickness in Fig. 37 are due to the larger magnitude with
which the .antisymmetric mode is generated. The attenuation of tie antisymnetric mode in
Fig. 38c is 1.0 Np/revolution, which is much larger then that of the symmnietric mode, but the
magnitude of the first antisynmetric echo is more than dB larger than that of the first
symmetric echo.
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Fig. 38(a) - Computation of the echoes scadsred by an aluminum shell
at koa 10; tic shell hicknvs is b/a a9.
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FiR 38(b) - Computation of the echoes scattered by an aluminum shell
at k~a = 10; the shell thickness is b/a = 0.96.
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a kov Value of 11.

*1

-r - I I I I I I

- I 

*2 .1 0 1 2 3 4 5
r

1Fig. 39%b) - Conputation of thle echoes
scattere-l by an irotn shell b/a 0.99 at
a koa v4thie of 20.

The responses of an iron shell with h/a - 0.99 at ,,a valucs of I I and 20 are seen in
Figs. 39(a) nd 39(b) respectivcly. Here the attenuation is 0.46 Np/revolution at k,, -1 and
0.23 Np/revo!ution at k,,ai - 20. Thus the attenuation decreases witn higher frequency,
an observation similar to that of Horton and Mechler [151, who observed this phenomenon at
ka 3(e for the wave identifled here as the antisyrnnitric wave.

As may be observed in Fig. 38c, te attenuatiort of a circumferential wave is not tieces-
sarily a measure of its relative importance. If the ratio of the amplitude of the first circum-
ferential echo, p, to the specular echo, pr,,,. is takern from Figs. 39(a) and 39(b), the result
obtained is pt/pr~c 0.2 at k,,a I Id p I / 0.1 at A,,1 20. These rtios show that
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a particular circumferential wave is more strongly generated and gives a larger contribution to
the steady state scattering at low ka, as was observed in Figs. 30, 31, arid 37. The ratio Pl/Pp,
is directly related to the relative contribution or importance of the wave to the steady state solu-
tion. Figure 40 shows a plot of pl/p'r,, for various thicknesses o'6 stainless steel shells as a
function of ka. The points were obtained from pulse computations such as those in Figs. 38-
39. In general for shells with b/a < 0.99 the circurriferential wave related to the flrst sym-
metric mode has a backscaltered amplitude more than 20 dB down from specular for ka > 20.

.5 .5 .5 , - .5

o 10 203 0 10 20W 0S 10 203 0 10 2030

(a) (b) (C) (d)

Fig. 40 -Te ratio (P1/p, c) vs ka for stainless steci shells Of thickncssess
(a) 0.99. ( 0.98, (c) 0.95, and (d) 0.90.

For higher order modes ger.erated above ka 20, the ratio p/p 3 C is more than 20 dB
down from specular. This is consistent with the observations made here of a "fast" circum-
ferential wave (Figs. 23, 25, 26), where Pi is greater than 30 dB below specular, and with all

reported observations in the 0Itetature [12-15,26].

The circumferential w-ave reated to the fundamental antisymmetric mode also has its larg-

est influence on rJ at low a. It can, however, be generated only at low ka for thick shells.
The general observation in the literature that the slow" circumferential wave is more strongly
generated in thicker shells, is simply because of the results discussed in connection with Fig.
37, namely that as shells become thicker, it is possible to excite the first antisymmetric mode at
lower ka.

The results considered here were for thin shells. Figures 33 and 34 show that as fh
becomes larger, all the Lamb modes tend toward a final velocity V - 2.0c. Since the phase
velocity curves again level off for large fh, the Lamb modes are again strongly excited. Each
higher order mode is first strongly excited at V/c - 3.7 and then in the limit of a thick shell at
V/e - 2.0. Therefore it should be possible to find an intermediate frequency range at which a
Lamb type mode is generated with V/c - 3.7 simultaneously with a lower order mode which
has reached its high frequ.ncy limit V/e -2.0. Such a situation is seen in Fig. 41. Here a
schlerien visualization is made at an fh value of 11.2. The target is a 3.4 cm diameter alumi-
num cylin, r with b/a - 0.9. This corresponds to ka - 46 and k - 47.6. Simultaneous
observation of circumferentials waves with c/c - 3.7 and c/c - 2.0 are seen. Figures 37. and
41 explain what has been referred to in the literature 12] as rare occurrances when slow and
fast circuraferentinal waves are observed simultaneously.
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VI. SUMMARY

The steady state acoustic response of infinitely long solid elastic cylinders and cylindrical
shells can be exactly computed in terms of a normal mode series. For rigid cylinders the back-
scattered forn function can be described in terms of the interference of a specularly reflected
wave and a Franz type circumferential wave whose velocity and attenuation are related to the
peaks and nulls in the form function. Solid metal cylinders in water exhibit this purely rigid
behavior in the low ka region, after which region the form function is dominated by mininia
related to resonances in the individual normal modes. For cylinders made of' metals whose
shear and compressional wave speeds are greater than the wave speed of sound o-r, the
first resonance minimum observed is the (2,) resonance. This occurs at ka - 4 alumi-
num, and the ka value at which it occurs for other metals can be computed using aluminum as
a reference.

. The normal mode resonances are related to circumferential waves predicted by creeping
wave theory. A mode resonates when its modal velocity is matched by the velocity of a cir-
cumferential wave. A single circumferential wave generates a given eigenfrequency in succes-
sive modes. The (, 1) resonances are related to the Rayleigh wave, and the (2,1), (3X), and
(4,1) modes are generated at ka values at which the cylinder circumference is 2, 3, or 4 Ray-
leigh wavelengths. Similarly the (n, 2) resonances are related to the R 2-type whispering gallery
mode and so on. The predominant circumferential wakes in a given ka region can be predicted
from the dominant resonance minima in .f_(r)i. The "Rayleigh" wave was experimentally
observed on aluminum in the predicted ;egion.

The region of oscillations in Vf(ir)I which begins at the position of the (2,1) resonance
persists as ka - -; however, in reality a frequency will be reached after which absorption must
be included in the theory. In the resonance region (ka > 4.78 for aluminum) the scattering
from the cylinder is made up of a rigid background part, on which the numerous resonances are
superimposed. The resonance formalism of nuclear reaction theory is used to separate the
exact normal mode series solution into rigid background and resonance terms, and resonance
widths can be calculated.

For a thin cylindrical shell, the Franz wave does not measurably affect V,(7r)I even at low
ka. This is consistent with soft rather than rigid scattering behavior, and it is demonstrated that
as ka increases thin shells pass through three background regions. In the soft-background
region at low ka the specular reflection is 1800 out of phase with an incident pulse. This is fol-
lowed by a region of intermediate background, and then a rigid-background region at which the
specular and incident pulses are in phase and remain in phase as ka is further increased. Cir-
cumferential waves are isolated theoretically by applying fast Fourier transform techniques to
the Fourier integral representing the echoes scattered, when a short acoustic pulse is incident

on a shell. The relationship between the observed circumferential waves and the steady state
form function shows that, for thin shells, the number of circumferential waves present, their
velocity, and their relative significance can be obtained directly from the form function.
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Lamb theory for plates is utilized to predict the ka range of possible excitation of specific
circumferential waves. A circumferential wave related to the first symmetric mode is generated
for ka > 0, for all thin shells. A circumferential wave related to the frst antisymmetric mode
is generated at ka values which vary with thickness in a predictable way. As shell thickness is
increased, circumferential waves related to all high order Lamb modes are strongly generated
with the same group velocity. This accounts for observations reported previously in the litera-
ture and thought to be the observation of a single circumferential wave.
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Appendix A

LIST OF SYMBOLS

- the radius of the target
- matrix elements defined in Ref. 32
- the vector potential
- the inner radius of a cylindrical sheil
- a coefficient in Eq. 50b
- the velocity of sound in water
- the phase velocity of the Franz wave
- the group velocity of the Franz wave
- the modal phase velocity for the n h normal mode
- the modal group velocity for the nit normal mode
- the phase velocity of the I" R-type circumferential wave
- the group velocity of the I"' R-type circumferential wave
- the phase velocity of the Rayleigh or RI circumferential
- the group velocity of the Rayleigh or R circumferential wave
- the longitudinal wave velocity in a material
- the shear wave velocity in a material
- the phase velocity of a circumferential ,wave in a cylindrical shell
- the group velocity of a circumferential wave in a cylindrical shell
- a coefficient in Eq. 50a
- distance
- A 2-by-2 matrix defined in Eq. Ia
- A 2-by-2 matrix defined in Eq. la
- the far field form function
- the far field form function for a rigid cylinder
- the n partial wave or n modal contribution to the form function
- frequency
- the center frequency of an incident pulse
- the frequency thickness product
- the dimensionless frequency thickness parameter, (r),, f/er
- the spectrum of an incident pulse
- the spectrum of a scattered echo
- defined in Eq. 3
- the expression to which G(Z) reduces when the target is a rigid cylinder
- the thickness of a cylindrical shell
- the Hankel function of the first kind (order it, argument Z)
- the Hankel function of the second kin, girder n, argument Z)
- the derivative of the Hankel function of the first kind

with respect to its argument
- the derivative of the Hankel function of the second kind

with respect to its argument
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Jq(Z) - the Bessel function (order , argument Z)
JR(Z) - the derivative of the Bessel function with respect to its argument
k - the wavenumber in water given by k - 27r/X
kL - the longitudinal wavenumber in a material
kT - the shear wavenumber in a material
ka - the dimensionless frequency variable, ka - 2ra/x
(ka)0 -the center dimensionless frequency of a pulse in water
(ka)pk - the ka value at which a peak in f4 occurs
I - an integer, I - 1, 2, . used to number the eigenfrequencies of a given mode
Ln - defined in Eq. (la)

n - an integer, n - 1, 2,..., used to number the normal modes
p,(T) - an incident acoustic pulse
pO - the incident plane-wave amplitude
Pi - the pressure amplitude of the first backscattered

circumferential echo
p.(0) - the steady state scattered acoustic pressure

at the bistatic angle 
p3 C - the pressure amplitude of the specular reflection

qa - the zeroes of the first derivatives of the Airy
function

Qn - defined in Eq. 54
r - the range or distance between the scatterer and the field point
R, - the I'" order Rayleigh-type circumferential wave
SRt ' - defined in Eq. 40

SI' - the elastic scattering function defined by S ,-exp (2i 8t)
S,(R) - the rigid body scattering function defined as SIR) exp (2 i n)
I -time
U - the particle displacement
V - the phase velocity of a Lamb wave
Vr - the group velocity of a Lamb wave
Vn - dimensionless Lamb phase velocity given by Vn/ V/cT
KNn - dimensionless Lamb group velocity givey by V - cr

Y,(Z) - the Neumann function (argument Z, order n)
Y (Z) - the derivative of the Neumann function with respect to its argument
Z - short-hand form for the dimensionless frequency variable Z ka
Z., - the dimensionless frequency at a resonance, Z (ka),
ZpoIC - the Z value at which a resonance pole in the scattering.function S, occurs
Zzero - the Z value at which a resonance zero in the scattering function ,, occurs
zI - defined in Eq. 37a

Z2 - defined in Eq. 37b
IF the attenuation coefficient for the Franz wave

OR - the attenuation coefficient for the Rayleigh or R1 circumferential wave
aR - the dimensionless attenuation coefficient for the RI circumferential wave
et - the attenuation coefficient for a circumferential wave in a shell
I,, - coefficient in the Taylor series expansion (Eq. 42b)

r,, - the width o' a resonance, given by rn - -2sIPM
8,, - scattering phase shift for the elastic scattering function
Ad - change in distance
Aka - change in ka
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- change in time
* change in the dimensionless
- deflned in Eq. 39
- the Neumann factor , - 2,

time parameter

n -0; - 1, n > 0
- the polar angle
- the incidence of angle of a plane wave
- the wavelength of sound in water
- the wavelength of he Rayleigh wave on a fiat

surface
- the wavelength of a circumferential wave
- a complex variable
- the phase shifts for the rigid scattering function
- the density of water
- the density of the target material

- the dimensionless time parameter r ct- a
r

- the azimuthal angle
- a scalar potential
- the angular frequency, o - 27rf
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Appendix B

THE MEASUREMENT SYSTEMS

1. Pool facility measurement 3ystem

Pulse hydrophone measurements were obtained with the system described in Fig. B1.
The source/receiver transducers are lead-zirconate-titanate immersion search units, with active
elements 3,175 cm square and resonant frequencies of from 400 kHz to 1.5 Mhz. The water
tank is an aquarium 76 cm by 183 cm by 76 cm dep. The targets were 30-cm-long solid
cylinders and cylindrical shells made of aluminum and stainless steel. A Panametrics model
5055 PR pulse/receiver allowed a single transducer to act as both source and receiver, so that a
monostatic geometry was exactly maintained. External triggering was generated by a Hewlett
Packard model 214A pulse generator. A pulse repetition rate of 10 ms was chosen, so that all
reverberation from the tank boundaries would decay beneath the system sensitivity before the
pulser generated the next acoustic pulse. The driving pulse produced by the Model 5055 PR
pulser/receiver is a rectangular pulse, which causes the transducers to ring at their fundamental
and overtone frequencies. The pulser/receiver unit internally separates the driving pulse and
received acoustic echoes (acts as a transmit/receive switch) so that a monostatic geometry can
be exactly maintatined by having a single transducer perform both tasks. The redeived signal is
filtered by a Kroln-Hite model 3202 electronic filter so that either the fundamental or the har-
monic frequencies may be isolated. The fl'tered signal is then displayed on a model 545A
Tektronix oscilloscope, from which a photographic representation can be obtained. The filtered
signal may also be digitized using a Biomation model 8100 analog-to-digital converter, and
analyized and stored using a Digital Equipment PDP-1 I computer. Digital signals are stored on

PANAMETRICS

KROHN-HITE . MODEL

MODEL 5055PR

AECEIVER SUPPORT

SOURCE!
,RECEIVER 

BIOMATION CYLINDEF
TEKTONIX EL 8100 POOL
MODEL 545A ANALOG TO POOL

OSCILLOSCOPE DIGITAL

Fig. BI - The acoustic pool measurement facility.
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magnetic tape for future analysis or may be analized in near real time. The digitized signal is
displayed on a Tektronix 4010 graphic terminal, and a hard copy (such as that seen in Fig. 15)
can be obtained from the copy unit or the digitized signal can be plotted on a Versatic plotting
unit (such as seen in Fig. 14).

Amplitude measurements are made directly with the oscilloscope by using a Tektronix
type-W plug-in unit; they may also be made by using the computer software in which the com-
puter seeks out peaks in the digital representation of the: pulse. Amplitude measurements by
either means were demonstrated accurate to within 2 percent of exact calculation where such
computations were possible 18-10,321.

2. Schlleren visualization system

Schlieren visualization gives an immediate look in one plane at the entire scattered field
around the acoustic target. It is especially useful in the case of beam aspect illumination of
long cylindrical targets, which is a two dimensional problem. The schlieren system used here is
described schematically in Fig. B2. The light source, lenses, and tank are mounted on a 183-
cm-long Gaertner optical bench. Special carriages allow continuously variable motion in three
dimensions for the light source and the stop. A General Radio Stroboslave model 1539A is the
light source. A condensing lens focuses the 1i,.;t from the source, to a small aperture at A in
Fig. B2. This aperture is an effective point source. The lens at B is one focal length from A
and forms a parallel beam which travels through the water tank to the lens at C. The tank has
specially constructed plate-glass sides to avoid any distortion of the parallel beam. Thq critical
parameter in the placing of the lens at point C is the focal length of this lens. The lens is
placte ole focal length from the plane of the acoustic experiment to be visualized. In the case
described here the focal length of the lens is 25 cm! The final steps in the creation of the
schlieren system described in Fig. B2 are the mounting of a 0.05-cm-diameter stop at a distance
of 25 cm (one focal length) beyond the lens at C. The position of the stop is labeled D in the
figure. A Fairchild model TC-177 television camera is mounted directly beyond the stop.

PULSE
SOURCE

TM _ + jkSTR ACOUSTIC SOURCE
OLAY SCOPE

REFLECTOR

An d: ~~~~~A
LIGHT
SOURCELES_____

Fig. B - The schlieren visualization system.

65



L. R. DRAGONETTl

In the system described in Fig. B2 all the light passing through the aperture is intercepted

by the stop, at position D, in the absence of an acoustic experiment. When, however, an

acoustic field exists, the parallel light rays passing through the acoustic field are diffracted, miss

the stop, and are detected by the television camera. The camera i connected to a Panasonic

videotape unit on which observations may be stored and to a televison monitor from which the

schlieren images (Figs. 41 and 29) were obtained with a Polaroid camera. The acoustic trans-

ducers are as described above for the pulse hydrophone measurements, with resonant frequen-

cies of from I MHz to 8 MHz suitable for schlieren studies in this system. The driving signal

is a gated sine wave produced by a model PG650-C Arenberg pulsed oscillator. The external

trigger and time delay are provided by a Hewlett Packard model 214A pulse generator. This

unit triggers the light source and the pulsed oscillator, allowing delays of from 0 to 100 ms

between the triggering of the light and sound sources. This delay makes possible the time

sequence pictures seen in Fig. 29.

3. Air system

The air acoustics system is seen schematically in Fig. B3. The experimental technique in

a:r is similar to that in water, but the sources, receivers, and frequencies are different. The air

acoustics system allows the simulation of rigid boundary conditions. The acoustic system

employs LTV electrostatic sources 5.08 cm and 15.24 cm in diameter to produce the incident

acoustic pulses. The receivers are Bruel and Kjaer 0.635-cm-diameter microphones. The tar-

gets are hung in a large room 9 m by 30 m by 15 m high. Variable length gated sine wave

pulses are produced by using a Hewlett Packard model 214A pulse generator and Sanders switch

to gate the continuous sine wave output of a' Hewlett Packard model 5110 frequency syn-

thesiser. The gated sine wave output is amplified by a Kirohn-Hite model DCA 50 amplifier

whose output drives the electrostatic speaker. The signal received by the 0.635-cm-diameter

microphone is filtered by a Krohn-Hite model 312bandbass filter and amplified with a Bruel

and Kjaer type 2107 frequency analyzer. The microphone is mounted on a stand and placed by

hand at the desired aspect angle. A positioning of ± 2° is possible in. the air measurements.

The received signal is amplified and analyzed by the same equipment as described for the pool

facility in section 1.

SPEAKER MICROPHONE

lip HP MODEL N
1ODEL SII0 214A
FREQUENCY PULSE

SYNTHESIZER GENERATOR c

SWITC ~ u KROHN-HITEB&MOE TKRNI
SAND DCA 0 IE

SWI C GTED AMPLIFIES3 2606 MDL55
-~~~~~ MEASURtNG MODEL 5 45A

SINE WAVE AMPLIFIER OSCILLOSCOPE

Fig. B3 - Ttic air acoustic fcasurcmcnt raciity.
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Appendix C

TABLE OF CONSTANTS

Material CL CT P

(105 cM/s) (105 cm/s) (g/cc)

Air 00.343 0.000 0.00
&.uminum 06.370 3.120 2.17
aluminum oxide 10.700 6.300 3.92
iron 05.950 3.240 7.70
stainless steel 05.5940 3.106 7.90
water 01.493 0.000 1.00
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