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ABSTRACT

Starting with basic physical and beam-target-geometry concepts, a
generalized laser radar range equation is derived which holds for a
target at any range R in the far field. The equation takes the form
Pro: 57/R 2 , where Fr is the mean value of the received power and Y is
the mean value of the fraction of the laser beam hitting the target.

By examining the equations for Y, other equations are found for the
boundaries of the three radar regions- the 1/R 2 region, the transition
region, and the 1/R4 region. These boundaries, and y itself, are func-
tions of the spatial jitter of the beam and the degree to which the shape
of the beam and the shape of the target geometry are not the same. In
the transition region when the jitter is negligible, Y can be found by
inspection (as can be done in the /1R2 and 1/R 4 regions whether or not
the jitter is negligible); the resultant received power then varies as
1/R3. In the transition region when the jitter is not negligible, Y must
be calculated from equations before Pr can be calculated. For com-
pleteness, the reflective properties of a target, its cross section, and
the one-way atmospheric transmission loss are examined. The rela-
tionships derived in this report are general in that they are valid at
any (e.g., microwave) wavelengths.

PROBLEM STATUS

This is a final report on one phase of the problem; work on other
phases continues.

AUTHORIZATION

NRL Problems R02-24A, R05-29, and R06-38
Projects AO-535-208/652-1/F099-05-02

and RF-17-344-401-4509

Manuscript submitted August 6, 1969.
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SYMBOLS

AB area of beam (M 2 ), = QtR2 = LBxLBz

A i irradiated target area normal to the beam (M 2 )

Ar receiver area (M 2 )

AT area of the target (m 2)

F shape factor = (LTx/LTz)/(Ox/Oz)

hT target height (m)

Hi incident irradiance (W/m 2)

J intensity (W/sr); with subscripts r and t, refers to reflected and transmitted
intensity, respectively

k relative beam stability in the x direction, = ox /A,,

k' relative beam stability in the z direction, = Oz /Az

LTx target dimension parallel to x direction (m), = WT cos OJ

LTz target dimension parallel to z direction (m), = hT cos

LBx beam dimension parallel to x direction (m), = OR

LBz beam dimension parallel to z direction (m), = 0_R

Nr reflected radiance (W/sr-m 2)

Pr received power (W)

Pt transmitted power (W)

R range to target (m)

V horizontal visibility range (m)

WT target width (m)

x, z Cartesian coordinates subscripts

a azimuth angle (measured in the plane of the surface)

0 (h) atmospheric attenuation coefficient at a height h (m- 1 )

YX fraction of the beam on the target in the x direction

iii



Y fraction of the beam on the target in the z direction
z

y fraction of the total beam hitting the target, = Ai/AB = Yx Yz

A, angular beam jitter in the x direction (radians)

A' linear beam jitter in the x direction (m), = A5R

17 orientation of target relative to z direction

Ox beam divergence in the x direction (radians)

Oz beam divergence in the z direction (radians)

p' bidirectional reflectance -distribution function (sr-1)

Pd bidirectional reflectance, = fip' sinef r cos Vr do/rdar
h

U0  radar cross section/unit area

o radar cross section (M 2 )

7 one-way atmospheric transmission loss, = e-.R when 8 is constant

V, elevation angle (measured from the normal to the surface)

O' orientation of target relative to x direction

St transmitter solid angle (sr), = ox oz

iv



LASER RADAR RANGE EQUATION CONSIDERATIONS

INTRODUCTION

In the field of microwave radars, a target at any range R is almost always either
much larger or much smaller than the radar beam, and thus the mean value of the re-
ceiver power Tr either varies as 1/R2 or 1/R4, respectively. However, with narrow-
beamwidth laser radars the radar beam may also be about the same size as the target.
Thus, with laser radars there are three possible regions - a 1/1R2 region, a transition
region (TR), and a 1/R4 region. The purpose of this report is to'derive a generalized
laser radar range equation which is valid for all three regions, to find equations for cal-
culating the boundaries of the TR, and to determine how the TR varies with various pa-
rameters. The parameters of the generalized range equation will also be examined.

In this analysis the following is assumed: the radar system is monostatic; the beam
has a rectangular cross section with no side lobes) and a uniform irradiance Hi at the
target; and the target is flat and rectangular, with uniform reflective properties across
its surface.* In addition, the target can be tilted at any angle to the beam.

In Appendices A and B some comments are made about the 1/R2 and 1/iR4 laws.
Appendix C gives the derivation of various range equations for the special case of the
received beam being smaller than the receiver. The parameters describing the reflec-
tive properties of a surface are defined and discussed in Appendix D. There are deri-Va-
tions in Appendix E of equations for the one-way transmission loss due to the atmosphere.
Appendix F has a discussion of a special portion of the TR.

DERIVATION OF A GENERALIZED LASER RADAR
RANGE EQUATION

In Ref. 1 a new radar range equation paramet.-r, )7, was first introduced. Defined as
the mean value (over many pulses) of the fraction of the beam hitting the target, this pa-
rameter will allow the derivation of a generalized laser radar range equation. From
Fig. 1 it is seen that, for any given pulse, the fraction y of the beam hitting the target is
given by y = Ai/AB, where Ai is the portion of the beam hitting the target (on any given
pulse) and AB is the cross-sectional area of the laser beam. In the following it will be
assumed that the target is in the far field of the transmitter and that the receiver is in
the far field of the target.

The reflected intensity Jr (in W/sr) is related to the incident irradiance 'Hi (in
W/m 2) by just a constant C, so that

Jr =CH1 . (1)

*The results obtained, based on these assumptions, can be extended to nonrectangular target and
beam shapes as long as the shapes are approximated by rectangles.

1
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AREA OF LASER BEAM = AB = LBX L8Z;
FRACTION OF LASER BEAM HITTING
TARGET, y = Ai/A8

LBX

Fig. 1 - Laser radar beam-target geometry

Since

Hi = rJt/R2  (2)

and
S= 

r A ,-/R2  (3)

the received power is given by

Pr (watts)= r 2CJtAr/R 4  (4)

where

r = one-way atmospheric transmission loss,

Jt = transmitter intensity (W/sr),

R = target range (m), and

Ar = receiver area (M2 ).

It should be noted that Eq. (3) holds only when the area of the reflected beam at the re-
ceiver is greater than the area of the receiver itself. This is generally the case. (See
Appendix C when this is not the case.)

The parameter C will now be examined by examining Jr. Nicodemus (2-4) defines
the bidirectional reflectance-distribution function p' at a point as

dNr (5)
dHi

2
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where

= elevation angle (measured from the normal to the surface),

a= azimuth angle (measured in the plane of the surface),

i and r = incident and reflected, respectively, and

Nr = reflected radiance kin W/m 2 -sr) in the direction of the radar.

(For notational convenience, p' (Vf, ai:qfr, ar) will be shortened to just p'.) Generally p'
is independent of Hi and, therefore,

p '(in sr-1) = Nr/Hi (6)

Assuming that p' and Hi are constant over the surface of the target yields

p'HA f NrdA (7)
"A1

where Ai is the irradiated area of the target normal to the beam (see Fig. 1); Ai can
also be defined as the portion of the beam hitting the target (on any given pulse). Since
the integral of Nr over A1 is by definition (2) equal to Jr, Eq. (7) becomes

ir p'Hj A1  (8)

Combining Eqs. (1) and (8) yields

P C Ai =, (9)

and substituting this into Eq. (4) yields

pr 2 p'AiJtAr/R4  (10)

Since

y =A/A (11)

and

AB = QtR2,

(12)
Ai = y~tR2

where £Žt is the solid angle of beam divergence. Using Eq. (12) and the fact that the
power of the transmitter is

Pt = Jtft

Eq. (10) becomes

-r = Pt r 2 p'yAr/R 2

3
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Since y is a function not only of the geometry shown in Fig. 1 but also of the spatial
jitter of the beam, it must be handled on a statistical basis by considering its mean value
y. If it is assumed that all of the other parameters in Eq. (13) are constant, then the
equation for the mean value of the received power (over many pulses) becomes

5r = Ptr 2 p'yAr/R2  (14)

This is the generalized laser radar range equation.

The relationship between C and the radar parameter of target cross section a will
now be determined. In the field of microwave radars the standard target is taken to be
an isotropically reflecting sphere. This standard results (5) in the following definition
of a:

a 41T JHi (15)

and thus, a = 47C. In the optical radar field the standard target is sometimes taken to
be a diffuse flat surface, and this standard results (6) in the following definition of a:

a = 77Jr/Hi (16)
and thus a = 7 c. From now on in this report, however, just the microwave concepts and
definitions, based on an isotropic standard, will be used.

Combining Eqs. (8) and (15) yields

a = 477p'A i .(17)

Another-parameter introduced (7) in the radar field is a0 . the radar cross section
per unit area, and it is equal to a divided by the irradiated target area normal to the
beam, i.e.,

a = O° Ai .(18)

Combining Eqs. (17) and (18) yields

a° = 417p' (19)

When Eq. (19) is substituted into Eq. (14), the range equation becomes

T - Ptr2 arOAr/(47R2) (20)

In Appendix A the familiar 1/R4 microwave radar range equation is derive . .trom Eq.
(20). It should be noted that Eqs. (14) and (20) hold for targets at any range.

THE TRANSITION REGION AND

Introduction

Two things cause the existence of a transition region (TR): spatial jitter of the laser
beam, and the geometrical relationship between the target and the beam. An example of
a system operating in the TR is seen in Fig. 2 where, even when there is no jitter, oper-
ation is in neither the /IR4 nor the 1/R2 region. This is true since in the x direction
the beam is larger than the target, while in the z direction the beam is smaller than the
target.

4



NRL REPORT 6971

Fig. 2 - Simplified laser radar beam-target geometry

LTX

Where the TR begins and ends will now be determined by examining the equations
from Ref. 1 for Y and • , the mean values of the fractions of the beam on target in the

and z directions, respectively. The product of - and T. is equal to y (if y and y
are, as has been assumed statistically independent).X The following equations are for the
x direction, but identical equations hold for the z direction.*

When the beam is greater than the target (i.e., when LBx Ž LTx),

exp (-y 2/2) dy + (LBx +LTx) exp (-y 2/2) dy A'x
+ -- exp (-y2/2)

When the beam is smaller than the target (i.e., when LBx <_ LTx),

_ 2 FL B IY3
x LBx x Jo

exp (-y 2/2) dy LBx + LTx)+ 2
Y2

YJ3

exp (-y 2/2) dy A' Y2
+ exp (-y 2 /2) .

r27 77-Y3]

(22)
In Eqs. (21) and (22)

LTx = wT cos OJ = target size in the x direction (m),

LBx = OxR = beam size in the x direction (m),

0= beam divergence in the x direction (radians),

,= AxR = linear beam jitter in the x direction (m),

AX= angular beam jitter in the x direction (radians),

LBx - LTx
= 2Ax

LBx + LTx
Y2 2AX

*The use of Cartesian coordinates leads quite naturally to the consideration of rectangular-shaped
beams and targets. For nonrectangular beams and/or targets, the shapes must be approximated by
rectangles in order to use this approach.

2 2 L

yx L0

Y2

Y(j

(21)
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and

LTx - LBx
Y3 2AX

It should be noted for future reference that

Yj + Y2 = LBx/A' = Ox/Ax k = Y2 -

Equations (21) and (22) can be simplified if the following notation is used:

0 (y) = e-Y 2/2/M-2 = normal or Gaussian distribution (with zero mean),

YI

03 = f 0 (y) dy

0

42 = f ¢(y) dy

Y3G 3 = fO 0(y) dy

Y2E =4 (y) .

y,

and

Y2

E 2 =q (y)

Y3

Therefore when LB L LTx

-Y i.L [L xG+ (Bx 2 Tx )G 2 + AXCE,] ,(23)

and when LBx <_ LTX

~=2 [BG+ (LBx;+LTx) 4 +IE]()Y× - BxG 3 +) G3 + A'xE2]•
LBx [L2 4(4

In examining Eq. (23) it is seen that if the bracketed factor approaches LTx/2, then
Sapproaches LTx/LBx. If the sam e behavior occurs in the z direction, i.e., if z ap-

proaches LTz/LBz, then Y7, which equals I- will approach LTxLTz/LBxLBZ. Since'
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Qt = oxz, 07 will thus be approximately equal to LTxLTz, /tR 2 . Substituting this value of
7 into Eq. (14) yields 5r Oc 1/1R4. Under these conditions the target is said to be in the
1/R4 region.

Similarly, in examining Eq. (24) it is seen that if the bracketed factor approaches
LBx/2, then y7x approaches one. If the same thing happens simultaneously in the z di-
rection, i.e., if 5 1, then 7 = 1, and when -7- 1, Eq. (14) yields PrCCl/R 2. Under
these conditions the target is said to be in the 1/R 2 region.

In general, however, )5,cc 57/R2, and when the target is in neither the 1/R4 nor the
1/R2 region, then it is said to be in the transition region. Thus, there are three radar
regions: the 1/R2 region, then a transition region, and then the 1/R4 region.

Entrance Into the 1/R4 Region

In order to enter the 1/R4 region the bracketed factor in Eq. (23) must approach
LTx/2 and simultaneously it must approach LTz/2 when examined in the z direction.
Equation (23) can be modified by introducing a parameter k called the relative beam
stability in the x direction, which is defined as the ratio in the x direction between the
beam size and the spatial jitter. Thus, k = 0•/A• = LB•X/A. Similarly k' = 0,/A,. Re-
writing Eq. (23) using k yields

2LTx [ ( ,kE-• 0 + k E ' (25)

Yx LBx 1 k 2Y, k - 2y,

The bracket in Eq. (25) must approach 1/2 if 5-7 is going to approach LTx/LBx. Since
Y2 = k - y, (see definition on p. 6), k and y, fully determine the value of the bracket.
As a first guess, y, = 2 is chosen, since for this value of y1 , G, = 1/2. The results of
the evaluation of the bracket when y, = 2 are shown in the E, curve in Fig. 3. Here the
error E1, which is the difference between the value 1/2 and the value of the bracket in
Eq. (25), is plotted as a percentage versus k. For values of k > 4 = 2Yl, the percentage
error is reasonably low (4% or less). Larger values of y, have been used in evaluating
the bracket, and as long as k > 2yl, the percentage error stays low. Therefore, when
YŽ > 2 and k > 2y1 , Yx = LTx/LBx.

The reason why k must be greater than 2y, can be seen from a manipulation of the
defining equation of yl, which yields

R - LTx (26)(k - 2y,) Ax

This equation also explains the asymptotic behavior of the E curve at k = 4, since for
this curve y, = 2.

The physical basis of why the y, inequality (i.e., y, > 2) holds will now be shown.
Defining the range Rx at which y, = 2 yields

LTX LTx (27)R--(k -4) Ax O x - 4 Ax

And so at Rx, 5X K- LTx!LBx. (It should be noted that at any valid Rx, Eq. (27) shows that
k is automatically greater than four.) At ranges beyond R,, where the target looks more
and more like a point to the laser radar, Y. approaches closer and closer to LTx/LBx.

7



P. W. WYMAN

W0
ir0

0:o

0

0

I-
Z

0

a.

4 6 8
RELATIVE BEAM STABILITY k

Fig. 3 - Percentage error e vs relative
beam stability k. c, pertains to LB.x2 L Tx
and e 2 pertains to LBx <- LT where LBx

and L TX are the beam and target sizes, re-
spectively, in the x direction.

This line of reasoning leads to the conclusion that when R > Rx, YX = LTx/LBX; it can also
be shown that R > Rx yields y1 Ž 2. In summary it is seen that when y1 _> 2 and k > 2y1 ,
then - = LTx/LBx.

Exactly the same analysis can be carried out in the z direction, with the result that
when

R RZ LTz
0z -4Az

(28)

then y LTz/LBz. Therefore, when R is greater than both RX and Rz, 1/R
4 operation

occurs since then 5X = LTx/LBx and 5 = LTz/LBz.

The physical significance of R being greater than Rx can be seen by manipulating
R > LTx/(Ox -4Ax) to give LBx >_ LTx + 4Ax.T This inequality in effect states that in the x

tjf R had been defined at some general value of y, greater than 2, say Y*, then R > R WoUld
have yielded L 2! LTx + 2y*A.

8
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direction if R > Rx, then the beam is larger than the target by at least four times the
jitter. If this is the case, then the target will be fully illuminated (in the x direction)
almost all of the time.

Entrance Into the 1/R2 Region

In order to enter into the 1/R2 region the bracketed factor in Eq. (24) must approach
LBx/2, and simultaneously it must approach LBz/2 when examined in the z direction.
Introducing k into Eq. (24) yields

5x= 2 LG3 + k ) 4 + E2/k] (29)

The bracket in Eq. (29) must approach 1/2 if 5, is going to approach one. Since Y2
k + y3, k and y 3 fully determine the value of this bracket. As a first guess, Y3 = 2 is
chosen since, for this value of Y3 , 0G3 = 1/2. The results of evaluating the bracket when
Y3 = 2 are shown in the E2 curve in Fig. 3. The error E2, which is the difference be-
tween the value 1/2 and the value of the bracket in Eq. (29), is also plotted as a percent-
age versus k. For values of k > 0, the percentage error is less than 4%. When larger
values of Y3 are used in evaluating the bracket, the percentage error still remains low.
Therefore, when y3 -> 2 and k > 0, then 5- -- 1.

If the defining equation of Y3 is manipulated, it yields

R = Lrx (30)
(k+ 2y 3 ) Ax

It is thus seen that k only has to be greater than zero. Since k = O/Ax, if k equaled
zero it would mean that the jitter Ax was infinite, since the beam size ox can't go to
zero. Therefore, the asymptotic behavior of E2 at k = 0 is to be expected.

The physical basis of why the Y 3 inequality (i.e., Y3 Ž 2) is used will now be shown.
Defining the range at which Y3 = 2 as R' yields

LTx L (31)
X (k+ 4)Ax 0,x + 4Ax1

Therefore, at R', 5 , 1 (since y3  2). At ranges shorter than Rx, as the beam con-
tinues to get smaller than the target, the beam misses the target less and less frequently
so that 5, gets closer and closer to one. Therefore, when R < R', 5X 1; it can also be
shown that R •< R' yields y >! 2. In summary it is seen that when y3 Ž 2 and k > 0,
then y- 1.

Exactly the same analysis can be carried out in the z direction, with the result that
when

' LTz (32)

Z 0 + 4A

then -Z = 1. Therefore, when R is less than both R' and R', 1/1R 2 operation occurs
since then Y- 1 and j7 1, and thus Y7 1.

9
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The physical significance of R being less than or equal to Rx can be seen by manip-
ulating R < LTx/(o, + 4Ax) to give LTx >_ LBx + 4Ax.t This inequality in effect states that
in the x direction if R < RX,, then the target is larger than the beam by at least four times
the jitter. If this is the case, then the beam is almost always entirely on the target in
the x direction.

Summarizing then, when R = Rx or Rz, depending on which is greater, the 1/R4 re-
gion starts, and when R = Rx, or RZ, depending on which is smaller, then the 1/R2 region
starts.

Parametric Behavior and Examples

The Effect of the Shape Factor on the TR - In order to study the effect of the sitlia-
tion geometry, by itself, on the TR, the beam jitter will be assumed negligible (i.e.,
Ax = Az = 0) in this section. Equations (27) and (31) thus yield

= '= LTx/Ox , (33)

and Eqs. (28) and (32) yield

z= Z= LTz/OR . (34)

Thus, the TR extends from RX to RZ, or vice-versa.

A parameter which describes the geometrical relationship between the target and the
beam is now introduced: the shape factor F is defined as

L Tx/L Tz L Tx/O x LTx/LBxF =- (35
0 x/Oz LTz/Oz LTz/LBz

Thus, F reflects the degree of mismatching between the shape of the target and the shape
of the beam. From Eqs. (33) - (35), the shape factor F becomes

F = Rx/RZ, (36)
and this yields

L Tx
R = =_- (37)

Thus, the TR extends from R = Rx = LTx/Ox to R= RZ = LTx/FOx, or vice-versa. When
F < 1, RZ > Rx and the TR extends from Rx to R,. As F approaches one, Rx ap-
proaches Rz and the TR shrinks to just a line. As F now increases beyond one, Rx be-
comes greater than Rz, and the TR then extends from Rz to R,,. The following general
figures (Figs. 4(a) - (c)) can now be drawn. Since the non-TR conditions of Fig. 4(b)
(F = 1 and Ax = Az z 0 mrad) don't usually exist, there is thus usually no abrupt change
between the 1/R2 region and the 1/R4 region. Figure 5 shows a typical case when
F = 1/6. Here LTx/LTz = 1/6 and xl/oz = 1/1, and therefore F = (1/6)/(1/1) = 1/6.

tIf Rx, had been defined at some general value of y3 greater than 2, say y*, then R < R" would
have yielded Lx 2_ L x,, + 2Y*AA•.

Shape' here will also connote the orientations of both the beam and the target.
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(b)

TRANSITION
(m = ex)

hI/R
4 

REGION

RANGE R (KM)

Fig. 4-Radar regions when AX = A, = o, and(a) F < 1, (b) F = 1, and (C) F > 1.

Fig. 5 - Geometry when F = 1/6 LBZ'

LTX

TARGET

-BEAM

The Effect of Jitter on the TR -- In order to study the effect of jitter by itself, the
effect of shape has to be negated by making F = 1, and this has been done in this section
by making

LTx/LTz = Ox,/O = Ax/Az (38)

It can also be shown that when Eq. (38) holds, Rx = R, and R/ = R', and therefore all the
calculations can be carried out in just the x direction.

Figure 6 shows the case of negligible jitter for various values of ox, and naturally it
is similar to Fig. 4(b) since once again F = 1 and Ax = A, 2  0 mrad. As the jitter be-
comes significant, the TR comes into being, and Fig. 7 shows how the extent of the TR
increases as the jitter increases for any given value of LTx. If two laser radar systems
have the same value of k (= Ox /A,,), then that system which has the smaller beam diver-
gence and jitter will be the one whose TR occurs further out in range for any given value
of LT,,; this is shown in Fig. 8.

General Example - The effect of shape on the TR has been studied (Fig. 4) by making
the shape factor F variable and the jitter constant (A, = A, = o). Then the reverse was
done, i.e., the effect of the jitter on the TR was studied (Fig. 7) by making the jitter
variable and the shape factor constant (F = 1). And now the combined effects of both
shape and jitter will be shown in a typical example. Let the following values be assumed:

-J

11

J

RANGE R (KM)
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6
RANGE R (KM)

Fig. 6 - Relationship between radar regions and
beam divergence Ox when F = 1 and the jitter
Ax is negligible

2 4 6 8 10 12 14

RANGE R (KM)

Fig. 7 - Relationship between radar regions and the
amount of jitter Ax when F = 1 and the beam diver-
gence Ox is constant (0, = 1 mrad)

12

x

10

x
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4 6
RANGE R (KM)

Fig. 8 - Radar regions when F = 1 and
the relative beam stability k remains
constant (k = 60)

LTx = 0.5 m LTz = 3 m

0x = 0.5 mrad

Ax = 0.05 mrad

0z = 0.5 mrad

Az = 0.1 mrad

L Tx
0x - 4Ax 0.5 m 1.67 km

0.3 mrad
3miand R 0.1mrad - 30 km,

and therefore the 1/R4 region starts at 30 km. Also,

LTRx 0.5 m 0.7kmx 0ex + 4Ax 0.7 mrad
and R- 3m -= 3.3kmz 0.9 mrad

Therefore, the 1/R2 region starts at 0.7 km. This example is shown in Fig. 9

EXAMINATION OF Pr VS R

Having examined the effects of the shape factor F and jitter A,, on the TR, the ques-
tion now arises as to how they effect 7 and Pr. Since Eq. (20) states that Pr = M 7/R 2

(where A! = Pt r 2 u 0 Ar/47r), y- and P, can be easily related if M is a constant. In this sec-
tion it will be assumed that 8 = 0, and therefore r = 1, and that M is constant.

When the jitter of the beam is negligible, 5- can be found for any F just by inspec-
tion. Since y-,, is defined as the mean value of the beam hitting the target in the x direc-
tion, if the beam is smaller than the target in the x direction, , = 1. If the beam is
larger than the target in the x direction, 7, = LTx/LBx = (LTx/O,,)/R. Therefore, with no
jitter, when the beam is smaller than the target in both directions, 5 = 5- Yz = . and

S= A/R 2 ; when the beam is larger than the target in both directions, 5 = LTxLTz/LBxLBz =
(LTxLTz/lt)/R 2 and Pr = (MLTxLTz/1t)/R 4 . These are the basic range relationships in the

8

_.J

Then
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xýi
4

20

RANGE R (KM)

Fig. 9 - General example
of radar regions

1/R2 and 1/R4 regions when there is no jitter. When F = 1 these are the only two possi-
ble geometrical situations and the only two range relationships. However, when F • 1,
there is, in addition to the 1/R2 and 1/R4 regions, a TR in which in one direction the
beam can be larger than the target, while in the other direction the beam can be smaller
than the target (e.g., see Fig. 2). When this occurs 5 = (LT;,/Ox)/R or (LTz/Oz)/R, de-
pending on in which direction the beam is greater than the target. Therefore when there
is no jitter and the TR is only due to F 6 1, j5 cc 1/R 3 (see Figs. 4(a) and (c)). When and
where this unique 1/R3 region exists has now been determined.

Two other basic cases arise when jitter cannot be neglected, and thus there are four
cases altogether. With the introduction of jitter, if the target is not in the TR, then 57 can
still be found simply by inspection; again it will either be equal to one or vary as 1/R 2,
and P. will thus vary with either 1/12 or 1/R4 behavior. But if the target is in the TR and
there is jitter, then 5 will have to be, in general, calculated from Eqs. (23) and (24).*
The table below summarizes the four cases and their concomitant radar regions.

Case Conditions . Radar Regions

I F ý- land jitter I/R2, TR (sometimes I/R 3 ), and I/R 4

1: F 9 1 and negligible jitter I/R2, TR (always I/R 3), and I/R4

III F = land jitter I/R 2, TR and 1/R4

IV F = land negligible jitter 1/R 2 and 1/R 4

For an arbitrary set of parameters yielding the four cases, the mean received
power P. has been plotted vs R for Cases I and II (Fig. 10a) and Cases III and IV (Fig. 10b)
The parameters for all four cases are

'8 = OtPt = 8 MW

O° = 1 m2/m 2 0x = Oz = 0.5 mrad

Ar = 10- 2m 2 (4.4-in.-diamoptics) Ax = A= 0.1 mrad (Cases I and III only)

"•However, two unique situations may occur in which, even in the presence of jitter, 5- can still be
found by inspection, and again varies as 1/R (see App. F).
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Thus, M = 6.37 x10- 3 and Pr = 6.37X10 3 5/R 2 . In Fig. 10(a), LTx = 2m, LT, = 10m, and
F = (LTx/LTz)/0x/Oz = 1/5. In Fig. 10(b), LTx = LTz = 2m, and F = 1.

The transition regions for the four cases are

Case I, F 9 1 and Jitter (k = k = 5):

LT,, 2 m
Rx L 0x - 4A 0.5 mrad -0.4 mrad = 20 km

and

LTz - 10 m - 100km
0z - 4Az 0.1 mrad

therefore the 1/R4 region starts at 100 km. Also,

LTx 2 m
Rx= - =2.2kim

0x + 4AX 0.9 mrad

and
LTz 10 M

Rz'= - - = 11.1 km;
0z + 4Az 0.9 mrad

therefore, the 1/R2 region starts at 2.2 km. Thus the TR extends from 2.2 km to 100 km.

Case II, F • 1 and AX = Az = 0 mrad:

LTx

Ox

LTz
Rz =Rz - =

Oz

2 m
1/2 mrad

4 km

10 M = 20 km;
1/2 mrad

therefore, the TR extends from 4 kin to 20 km.

Case III, F = 1 and Jitter (k = k' = 5):

LTx
Rx = -= - =

0x - 4Ax

2m
Rx0 = Rzm

0. 9 mr ad

2m= 20 km

0.5 mrad - 0.4 mrad

2.2 km ;

therefore, the TR extends from 2.2 km to 20 km.

CaseIV, F = 1 and AX = Az = 0mrad:

LTx LTz 2 m
R = ' ' R* - =- 4 km0,x 0z 1/2 mrad

and

and

16
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Thus, for Case IV there is no TR, just a break point at R* (4 km here) between the 1/R2

and the 1/R 4 regions.

Even though Cases I and II appear to touch in Fig. 10(a) at about 10 km, they don't -

the actual values of fr at this range are

Case I , Pr = 2.47x 10-- watts

and

Case II , = 2.55x 10-s watts

In Cases I and III, if the jitter is neglected, then the error at any range can be found
by examining the nonjitter cases, i.e., Cases II and IV, and then comparing either II to I

,or IV to MI, depending on whether or not F equals one. The maximum differences (or
errors) for the cases chosen will now be found. In Figs. 10(a) and 10(b) it is seen that
the maximum errors occur where the straight lines cross.

In Fig. 10(a), where F • 1, at R = 4 km, Case II gives Pr = 4.0 10-4 watts, Case I
gives 3.4x 10-4 watts, the ratio Il/I = 1.18, and Case II is 18% too high. At R = 20 km,
Case II gives 3.2x 10-6 watts, Case I gives 2.7x 10-6 watts, the ratio II/I = 1.19, and
Case II is 19% too high. In Fig. 10(b), where F = 1, at R = 4 km, Case IV gives vr =
4.Ox 10-4 watts, Case 1.1 gives 2.8X10-4 watts, the ratio IV/IH = 1.43, and Case IV is
43% too high.

When F = 1 (in Fig. 10(b)), it is seen that maximum difference or error between
Cases IV and MI occurs at the Case IV breakpoint range, R*, where the 1/R2 and 1/R4

lines cross. An equation for determining this percentage difference'at R*, without having
to calculate T1 for Cases MI and IV, will now be derived.*

In regard to Case IV, 5Y = = 1 at R*, and thus at R*, 27isl.

In regard to Case III, equations must now be found for 57X and Y , at the range R* in
order to find 5 at this range. At R = R*, the equality LB, = LTx holds since LBx = 0,R
and R* = L,,/ox. Therefore y, = 0 and Y2 = LB,/Ax = k, and thus Eq. (23) becomes

2
LBx + A' El)

LBx

where

k

S2 Jf 0(Y) dy

and

k k1 k

E 0= k(y) = e-Y 2 /2 V' = 0.4 e-Y 2 /2 0

If k > 4, then G2  1/2 and E1 = -0.4. Therefore, 5,, = 1 - (0.8/k) = atif k > 4; simi-
larly in the z direction if k' > 4, then 7 = 1 - (0.8/k') = b; and thus at R = R*, 5 = ab
if k > 4 and k' > 4.

*When F A 1, a similar derivation of a simple equation doesn't appear feasible.
tEquation (24) will give the same result.

17
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Thus, at R*, where the maximum difference occurs between the mean received
power F- for Cases IV and III, the maximum difference in y also occurs, and this dif-
ference on a percentage basis is equal to [(1 - ab)/ab] x 100. Thus, the percentage dif-
ference (PD) is

PD = 1- (1 - 0. 8/k)( 1- 0. 8/k') (39)(P -0. 8/k.)( I - 0. 8/k')

If k = k', then Eq. (39) reduces to

PD = 1.6(k- 0.4) (40)
(k- 0.8)2

As a check to the previous error calculation of 43% comparing Case IV to Case III, k = 5
is inserted into Eq. (40). The result, 42%, is reasonably close.

CONCLUSION

Via the introduction of a new parameter, 5-, a generalized laser radar range equa-
tion has been derived which is valid at any range for a flat target of any size and shape
and with any type of reflective properties; in addition, this equation is valid no matter
what shape the laser beam has, nor its degree of divergence and jitter.

When, with regard to the range equation, the received power F. varies with neither
a /IR2 nor a 1/1R4 dependency, then the target is said to be in a transition region (TR)
between the 1/1R2 region and the /1R4 region. From an inspection of the equations for 57,
the boundary equations of the TR have been found. In addition, the parametric behavior
of the TR has been analyzed with regard to its causative agents - spatial jitter and the
degree of shape mismatching between the beam and the target.

Two basic types of situations occur: one when the jitter is negligible, the other when
the jitter isn't negligible.

When jitter is negligible, 7 can be found by inspection in all three regions. In the
TR, Pr • l/1?3, and thus, Pr 0co11R 2 , 1/1R3 , and 1/R4 in the three regions. As the degree of
shape mismatching between the beam and target is reduced, the TR shrinks until, when
there is no mismatch, there is no TR; then just the 1/R 2 and 1/14 regions remain.

If the jitter is~not negligible, 5- can still be found by inspection in the 1/1R2 and 1/R4

regions, but it must', in general, be calculated when the target is in the TR. Because of
jitter, a TR will always exist whether or not there is any shape mismatching.

Errors in T- caused by neglecting jitter can be found by comparing the Fr vs R
curves with and without jitter. The maximum errors occur at the zero-jitter breakpoints
and these can easily be found. Typical errors can be as much as 40% or more.

In regard to errors, the neglecting of significant jitter shouldn't cause the basic re-
sults of the system designer to be invalid, and the "three (or two) straight lines" approx-
imation should be adequate; however for the experimentalist trying to measure a, the
neglecting of significant jitter may lead to unacceptably large errors.
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Appendix A

COMMENTS ON THE 1/R4 RANGE EQUATION

When R Ž Rx or Rz, depending on which is larger,

LTxLTz LTxLTz LTxLTz

= - - AR - = AiIA=LBxLBez AB p1.2 S

(See section regarding 1/R4 region, beginning on p. 7.) Substituting into Eq. (20) yields

(Al)Tr = (Pt/1ft)r2a°LTxLTzA/41R4.

Since now Ai = LTXLTz and a = aOA 1 (Eq. (18)), a = aOLTxLTZ, Using this
and the gain definitions of the transmitter (Gt = 4n/flt) and the receiver
yields

= Pt GtGrr
2 A 2 a/(477)

3 R 4

which is one of the more familiar (5) forms of the radar range equation.

As a point of interest, if the target is normal to the beam

wThT = AT = LTxLTz = Ai ,

relationship
(G, = 4nAr/A 2 )

(A2)

and therefore

a = a°AT • (A3)

Thus, it is seen that this commonly stated relationship only holds for a target normal to
the beam and in the 1/R4 region, and is otherwise not valid.
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Appendix B

COMMENTS ON THE 1/R2 RANGE EQUATION

When R < R, or R', depending on which is smaller, 5 = 1. (See section regarding
1/R2 region, beginning on p. 9.) Substituting into Eq. (20) yields

(BI)Pr = Ptr2U°Ar/(41 TR2)•

In Eq. (Bi), we see that neither the area nor the aspect of the target influences the re-
ceived power P,. The solid angle of the transmitter also does not effect Pr-

Jelalian* has recently used a pulsed Nd laser radar to indirectly measure the o° of
the ocean (in various sea states) and of sand. The laser was airborne and pointed straight
down over the target of interest and Pr was measured. Pt, A,, and R were known and
Swas estimated, and thus o° was calculated using Eq. (Bi).

*A.V. Jelalian, "Sea Echo at Laser Wavelengths," Proc. IEEE 56:828 (May 1968).
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Appendix C

RANGE EQUATIONS WHEN THE RECEIVED BEAM
IS SMALLER THAN THE RECEIVER

When a target is highly specular (or if it is retroreflective), there is the likelihood
that the reflected beam, at the receiver, will be smaller than the receiver. This is
shown in Fig. C1. When this situation occurs, the mean received power is

Pr (

and the mean reflected power is

5ef = rPt57Pd (C2)

where Pd is the bidirectional reflectance (it will be discussed more in Appendix D).
Therefore,

7= T2 pJP " (C3)

This is the general range equation for this situation. Now let us look at two special
cases:

(a) When R _> R, or Rz, depending on which is greater, 5 = LTLTz/f1tR2 = AhiAB,

and when this occurs

Pr r2 PdJt LTxLTz /R2 (C4)

This could be referred to as the "small target" case. If the system is almost lossless,
i.e., if 1 and Pd = 1, then since LTxLTz = A,, the mean received power is

Tr = Jt (A1 /R
2 ) (C5)

Since A/1R2 equals the target solid angle (at the transmitter), the received power is ap-
proximately equal to the power hitting the target.

(b) When R < RX or Rz, depending on which is less, 5 1 and when this occurs

pr = T2 PdPt. (C6)

This could be referred to as the "extended target" case. If 7 1 and Pd 1, the re-
ceived power is approximately equal to the transmitted power.

R

Fig. C1 - Geometry for the special case where the
received beam is smaller than the receiverREC. zz==• TARGET

22



Appendix D

REFLECTIVE PROPERTIES OF A SURFACE

In the derivation of the laser radar range equation the following parameters describ-
ing a surface were introduced- the bidirectional reflectance-distribution function p',
and the target cross section per unit area a0 . It was shown that they are related to each
other by a0 = 4,p' when p' and the incident irradiance Hi are constant over the target*
and p' is independent of Hi. In Appendix C the bidirectional reflectance Pd was intro-
duced, and now the questions arise as to how P d and p' are related to each other and
how these two parameters are related to p, the overall reflectance of a surface.

In Refs. 2 and 3, Pd is defined as

(DI)Pd (dimensionless) = f dQ.
hemisphere

where df4 = sin ir cos 'Ar df, daCr. and Ar and a,t are the elevation and azimuth angles of
reflection, respectively. Therefore,

Pd f p' sin' r cos Vir dAr dar,•
h

For most surfaces p' is not dependent on ar, and therefore

Pd= 277 f

0f

p' sin'r,. cos or d'At

da r = 27 .

For a perfectly diffuse surface, p' is dependent on neither a,. nor 0r, and therefore

sinr ,cos V1, dA,. = 77p '

P' = Pd/77 (sr-') (D4)

P and a 0 are both measured along the radar line of sight.

23
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For a perfectly specular surface at the proper viewing angle (2), Nr = PAd , and this
yields Pr = PdPi which was the basis of Eq. (C2).

The other parameter of interest here is the reflectance p of a surface. It is defined

in Refs. 2 and 3 as

P= aP./aPi (D5)

According to the terminology of the National Bureau of Standards* this parameter more
completely should be called the bihemispherical reflectance p (2U: 227), since p is the
ratio between the power reflected in all directions and the power incident from all direc-
tions. Judd's reference also discusses in great detail the many other types of reflectance
and the interrelationships between them. From either this reference or from Ref. 3, the
following relationship is found:

SPd ' (D6)
h

If Pd is not a function of ar, then

7712

p = 2 f Pd sin¢0,, cos 0r dCr (D7)
0

For a. diffuse surface, Pd = 7rp' and p' is independent of both ar and 0r. Therefore,

ff/2

p = 27rp' f sin,#,r cos f'r do,
0

and therefore,

P = 7'P Pd (D8)

Finally, for a diffuse surface a0 = 477p' = 
4 Pd = 4 p. The reason for the appearance of

the 4 is because o is defined here relative to an isotropic target, not to a diffuse flat
plate as is sometimes done.

Occasionally (see footnote reference to Jelalian in Appendix B) a parameter is in-
troduced which in a way describes the reflective properties of a surface. It is called the
effective solid angle of return n. It is defined as

Pd/P' (D9)

Therefore,

f P'd~
(D1O)

P

For a diffuse surface p' is independent of both '0, and a,,~ and therefore

*D.B. Judd, "Terms, Definitions, and Symbols in Reflectometry," J. Opt. Soc. Am. 57:445 (April 1967).
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77/2

fl = f d Qr. = 2 77 f sin C/- cos C/- dCr

or 2 = 7 for a diffuse surface. Combining Eqs. (D4) and (D9) will give the same result.

Substituting Eq. (D9) into Eq. (19) yields

a0 = 4 " Pdd1 • (Dll)

This is Eq. 4 in Jelalian's paper. It is seen that a0 increases as either Pd increases or
as Q decreases. Specular and retroreflective surfaces can sometimes have very small
Q's, and consequently large a'0 s and a's.

The degree of diffuseness is the degree to which p' is constant versus C/r, and this
depends on the relative surface roughness or granularity at the wavelength of interest.
In the optical region a heavy layer of dust can change a highly specular surface to one
that is highly diffuse. However, when a standard diffuse surface is needed, special ma-
terials must be used. Saiedy and Jones* present measurements on p' vs kr for the
following materials: vitrolite, ceramic felt (Fiberfrax from the Carborundum Co.), ar-
tificial quartz, smoked MAO, pressed MgO, and 3M white paint (Type 401-A-10). Tytten
and Flowerst present earlier measurements, but for fewer materials. Grum and Luckey$
present measurements on barium sulfate coatings which appear to be very good in the
0.20-2.0 jim region.

*F. Saiedy and G.D. Jones, "Bidirection Reflectance Measurements for Satellite Calibration Target
in the Visible and Near Infrared," Appl. Opt. 7:429 (March 1968).
G. Trytten and W. Flowers, "Optical Characteristics of a Proposed Reflectance Standard," Appl.
Opt. 5:1895 (Dec. 1966).

$F. Grum and G.W. Luckey, "Optical Sphere Paint and a Working Standard of Reflectance," Appl.
Opt. 7:2289 (Nov. 1968).
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Appendix E

ONE-WAY ATMOSPHERIC TRANSMISSION LOSS T

INTRODUCTION

Atmospheric attenuation is due to three effects: Mie or particle scattering, Rayleigh
or molecular scattering, and absorption.* Associated with each effect is an attenuation
coefficient, tp, i,,, and f0a, respectively, which may depend on the propagation path dis-
tance R (see Fig. El). These coefficients are additivet so that the overall attenuation
coefficient 83 is

/3 = )SP + 83m + )3a (El)

The basic relationship between the intensity J and 8 ist

dJ/J = -/8(R) dR . (E2)

h

Fig. El - Propagation path geometry

8L

In the visible region P3a is negligible, and therefore

In J = - f(op +Om) dR . (E3)

Table El (from Campen) gives the values of a3p and q.. at various altitudes at a wave-
length of 0.55 jim. An examination of this table shows that both parameters decrease
approximately exponentially with the altitude h, i.e.,

and

-k h -kh
/p(h) = 13(O) e 2  = k 1 e 2

-k h -kh
/3m(h) = 0m(O) e = k3 e

(E4)

(E5)

*C.F. Campen, et al., eds., "Air Force Handbook of Geophysics," p. 14-13, New York:Macmillan, 1960.
tF.A. Jenkins and H.E. White, "Fundamentals of Optics," pp. 200, 447, and 461, 3rd ed., New York:
McGraw-Hill, 1957.
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Table El
Molecular and Particle Scattering
vs Height in Uniform Atmosphere
Visibility of 10 Nautical Miles

Coefficients
with Ground

The constants are as follows:

ki = pp(o) = particle scattering coefficient at ground level (h = 0),

k2 = inverse of the particle scattering scale height = 0.83 km-',*

k3 = 3m(o) = molecular scattering coefficient at ground level, and

k4 = inverse of the molecular scattering scale height = 0.13 km-1 .

For the values listed in Table El (where the visibility = 10 naut mi),

k1 =0.368 (naut mi)-1 = 0.199 km- 1,

k3 = 0.023 (naut mi)-' = 0.0124 km-1, and

P(0))= k + k3 = 0.391 (naut mi)-' = 0.211 km- 1 .

OVER A HORIZONTAL PATH

Along a horizontal path (R = x) 3 is fairly constant with distance, and therefore

In J = -8 f dx = -fix + C

which yields

r = J/Jo = e-/x (E6)

where J0 is the intensity at x = o and the ratio J/Jo is defined as r, the one-way at-
mospheric transmission loss. The horizontal visibility or meteorological range V (see
footnote to Campen reference) is that range at which - at 0.55 jm equals 0.02. There-
fore,

*1.852 km = 1 naut mi.

Height h am(h) 3pp(h)

(kilofeet) (naut mi)- 1 (naut mi) - 1

0 0.0234 0.3678
10 0.0160 0.0290
20 0.0109 0.0023
30 0.0075 0.0001
40 0.0051 0.00005
50 0.0035 < 0.00005
60 0.0023 < 0.00005
70 0.0016 < 0.00005
80 0.0011 < 0.00005
90 0.0008 < 0.00005

100 0.0005 < 0.00005
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r = 0.02 = e-8V = e-
3 "9 1

from which

V 3.91/00. 5 •

As a check, the /3(0) from Table El can be inserted into Eq. (E8), which yields

V = 3.91/0.391 = 10 naut mi.

OVER A VERTICAL PATH

For a vertical propagation path, the distance R is equal to h.
ignored, then Eq. (E3) can be written as

In J = -5 (/p+/3m) dh

Substituting Eqs. (E4) and (E5) yields

In j = - f(k 1 e 2 + k3 ek 4 h) dh .

If absorption can be

(E9)

Equation (E9) yields

r = exp[ (k1/k 2)(- e

-_k It
Ath= 0, r = I, andat h= 0, r = e

-k 2 h )
( k3 k4)(1 e k4h)]

rhere k" = (kl/k 2 ) + (k 3 /k 4 ).

Figure E2 is a plot of Eq. (El0) when k" = 0.34. The value k" = 0. 34 comes from
the previously used values of k,, k 2, k3 , and k 4 when V = 10 naut mi. Using this value
for k" yields

e-k e = 0.71

0.9

0.8

i-
0.7

U)

90.6
z

0.5

n 0.4
z
• 0.3
I-

0.2
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0 5 I0
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Fig. E2 - One-way transmission loss r vs height
h for a vertical propagation path when k " = 0.34
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Therefore, the minimum vertical transmission (rh )min equals 0.71. If this minimum rh
is equated with a rx over some given distance along the ground, then 7rx = (rh )min, and
therefore e-/3(0)x = e-k", which yields

x- k"/1,(0) = 0.34/0.211 km- = 1.6 km (0.87 naut mi)

Thus, at 0.55 Am when the ground visibility is 10 naut mi, the attenuation over about a
1-naut-mile horizontal path is equal to the attenuation along a vertical path through all of
the atmosphere.

OVER A SLANT PATH

For slant path propagation, h = R sin o, and therefore Eqs. (E4) and (E5) become

-k R sinO}

t6p(R) = k e 2

and

)3m(R) = k3 ek 4 R sinG

Letting k' = k2 sin 0 and k' = k 4 sin 0 and using In J =

In J = - f(k 1 e 2+ k 3

- f p (R) dR, results in

-kR)
e 4)dR

since /3(R) = f3p(R) + 0im(R). Therefore,

T = J/Jo = exp [ (k 1/~)(- jk'R)- (k3/' (1 - e 4)

rIk I- exp - (3k e4 h)] 12

or

(Ell)

r' = exp I-
Ik 1 1 - e- 2k 1 2)-(

(E 12)



Appendix F

SPECIAL SECTION OF THE TRANSITION REGION WHEN F ; 1

When F doesn't equal one, a transition region (TR) always exists. In this TR, when
the jitter is negligible, it has been shown that Y can be found by inspection and that it
varies as 1/R, with the result that Cr C 1/R3 (see section beginning on p. 13). However,
it was also stated there that when F 1, "if the target is in the TR and there is jitter,
then Y will have to be, in general, calculated from Eqs. (23) and (24)."

The reason for adding the phrase "in general" is because under certain circum-
stances - can still be found by inspection under these conditions. The following two situ-
ations prove this statement.

a. If R' > R k RX, then & _• R' yields -z = 1 and R 2> Rx yields 9 = (LTx/Ox)/R.
Therefore, under this situation (the target between R, and Rx when R; 2! Rx),

_- (LTx/ox)
Y R and Prc 1/R

3

b. If R• > R > Rz, then R < R' yields - = 1, and R 2> R. yields _z = (LTz/Oz)/R.
Therefore, under this situation (the target between R' and Rz when R' Rz),

_ (LTz/Oz)
R and P0 Cl/Ra

In the general example shown in Fig. 9 the first situation existed because R' = 3.33
km and RX = 1.67 km; but in Fig. 10(a), even though the "with jitter" line appears to
touch the 1/R3 line, it was shown that it doesn't. This latter result is confirmed by
noting that neither of the above two situations is met, and thus the 1/R3 approximation is
still slightly in error even at a range of about 10 km.
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