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PREFACE

The Office of Naval Research and the Naval Research Laboratory recognized a num-
ber of advantages in cosponsoring and conducting a series of four one-day symposia on
superconducting materials and devices. These meetings, held at the Naval Research
Laboratory during the spring of 1969, had as their primary motives ...

a. To bring together scientists, engineers, and science administrators from some 18
government, university, and industrial laboratories in the Washington-Baltimore
area which are engaged in or sponsoring research programs involving super-
conductivity.

b. To provide an opportunity for these persons to meet each other, to hear formally
prepared papers by their colleagues, and to engage in informal and frank discus-
sions of their research programs.

c. To collect and disseminate comments and opinions of experts regarding the cur-
rent status and the future of research on superconducting materials and devices.

The morning session of each symposium was devoted to four invited forty-minute
papers. Each afternoon the four invited speakers formed a panel to discuss questions
posed by the audience.

Recordings, transcripts, and then lightly edited manuscripts of the papers were pre-
pared for publication in the Proceedings, this being the second of four to appear. In order
to provide an atmosphere of free uninhibited discussions in the afternoon, no recordings
were made.

Topics for presentation, speakers, and general planning of this series of symposia
were the responsibility of the Organizing Committee. The sixteen papers given repre-
sented authors from three government laboratories, eight universities, and four industrial
laboratories. Although this series was initially established for the Washington-Baltimore
community, early publicity and announcements generated sufficient distant interests so
that a number of attendees appeared from outside this geographic area.

It is a pleasure to acknowledge the efforts of the following individuals who signifi-
cantly contributed to the success of these four symposia:

Mr. John J. Lister, Mr. David N. Ginsburgh, and Mr. John M. Hoggatt; Public Affairs
Branch, NRL; arrangements and smooth operations of the symposia at NRL.

Mrs. Mary L. Taylor; Security Branch, NRL; internal security.

Mr. Warren H. Ramey and staff; Graphic Arts Branch, NRL; design and printing of
announcements, programs, and proceedings.

Mr. Kenneth A. Klausing; Graphic Arts Branch, NRL; photography of persons and
blackboard presentations.

Dr. Edward H. Takken and Mr. John E. Cox; Magnetism Branch, NRL; for their help
in editing the transcriptions.
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Mrs. E. R. Shapiro; Magnetism Branch, NRL; for her services as receptionist.

The programs for the four days follow.

SYMPOSIUM I, March 28, 1969, "SUPERCONDUCTIVITY AMONG METALLIC ELE-
MENTS AND ALLOYS"

Chairman and panel moderator -Dr. R. A. Hein

1. Dr. B. T. Matthias, "The Where and How to Obtain High Transition Temperatures."

2. Dr. W. L. McMillan, "Superconductivity and the Electron-Phonon Interaction."

3. Dr. T. H. Geballe, "Intermetallic Compounds -An Unlimited Source."

4. Dr. J. W. Garland, "Mechanisms for Superconductivity."

SYMPOSIUM II, April 25, 1969, "SUPERCONDUCTIVITY AMONG DEGENERATE SEMI-
CONDUCTORS AND SEMIMETALS"

Chairman and panel moderator - Dr. R. A. Hein

1. Dr. J. F. Schooley, "Superconductivity in Degenerate Semiconductors."

2. Dr. C. S. Koonce, "Low Carrier Density Superconductors."

3. Dr. J. K. Hulm, "Superconductivity in Low Carrier Density Rock Salt Compounds."

4. Dr. P. E. Seiden, Superconductivity in 'Free Electron Like' Superconductors."

SYMPOSIUM m, May 16, 1969, "EFFECTS WHICH ENHANCE THE SUPERCONDUCTING
TRANSITION TEMPERATURE"

Chairman - Dr. R. A. Hein; Panel Moderator - Dr. R. Glover

1. Prof. J. D. Leslie, "Electron Tunneling Investigations in Amorphous and Disordered
Superconductors."

2. Dr. A. Paskin, "Enhancement of T, in Thin Films."

3. Dr. F. R. Gamble, "Molecule's Enhancement Effects."

4. Prof. J. R. Schrieffer, "Theories of Enhancement Effects."
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SYMPOSIUM IV, June 6, 1969, "SUPERCONDUCTING DEVICES"

Chairman - E. A. Edelsack; Panel Moderator - Dr. W. Gregory

1. Prof. B. S. Deaver, Jr., "Superconducting Devices."

2. Prof. S. Shapiro, "Infrared Detectors."

3. Dr. W. Goree, "Superconducting Magnetometers."

4. Dr. Z. J. Stekly, "Superconducting Magnets."

Organizing Committee

R. A. Hein - NRL
E. A. Edelsack-ONR
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SUPERCONDUCTIVITY IN

DEGENERATE SEMICONDUCTORS

J. F. Schooley
National Bureau of Standards

Washington, D.C.

Well, it is very pleasant for me to be here at the Naval Research Laboratory which,
as Bob [Dr. Hein] points out, is the home of the superconducting semiconductor. It is
essentially the fifth anniversary of superconductivity in semiconductors and almost ex-
actly the fifth anniversary of the National Bureau of Standards activity in this field and I
think it is very fitting that the conference be held today.

Although my title is a fairly broad one, I will honor it principally by giving a few
definitions of superconductivity in degenerate semiconductors so that we all are speaking
the same language. I am sure that everyone here knows the definition of all of these
terms, but yet it's perhaps worthwhile to be sure that we all are speaking about the same
things. Then I want to take note of a certain number of similarities among the known
superconducting semiconductors. Then I want to concentrate almost exclusively on the
topic I know best - strontium titanate. I think Dr. Hulm will discuss germanium- and tin
telluride in his own talk.

To start with, I want to define what I mean by semiconductor. For my purposes, a
semiconductor shall have low carrier concentration, it shall have a variable carrier
concentration in which the experimenter can - by doping or whatever mechanism - pro-
duce carriers variable over a factor of say 10 with a very scant change in the structure
of the material, and finally a semiconductor shall possess a low Fermi energy. These
are not very stringent rules but I think that they will suffice for my purposes.

A degenerate semiconductor has the Fermi energy measured from the bottom of the
conduction band - much, much larger than kT - so that at low temperature the carriers
don't drop out of the conduction band and leave you holding an insulator. I think it would
be very nice some time to observe superconductivity in an intrinsic semiconductor such
that at a certain temperature there would be enough conduction electrons to induce the
superconducting state, and then at a lower temperature to see whether the electrons drop
down into the valence band and leave you without superconductivity. I think that would be
very cute -but I don't have a candidate right now.

Figure 1 depicts the differences among metals, semimetals and semiconductors for
my purposes. I can tell you without a great deal of pride that I made this slide myself.
On the left we have three pieces of the energy vs wave vector, and as an energy scale I
have taken 0 to 1 Rydberg - 13 electronvolts. The Fermi energy is drawn the same for
the metal, for the semimetal, and for the semiconductor. In the case of the metal, which
I have chosen to be aluminum, we are looking in a (100) direction in reciprocal space and
we see that it has electrons essentially partly filling a band which gives you the ductility
and the high conductivity characteristic of a metal. It may or may not have overlapping
bands. In the case of a semimetal, I have drawn a rough shot at bismuth. One finds that
the valence band is almost full and the conduction band is almost empty, but these over-
lap and the Fermi surface penetrates both of them giving hole and carrier conduction.
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2 J. F. SCHOOLEY

ELECTRONIC BAND STRUCTURE OF SOLIDS
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Figure 1

In a semiconductor, in this case silicon in the (100) direction, one sees that there is a
forbidden band in which there are no states at all at the Fermi energy for any value of k.
In that case electrons are, of course, excited from the filled valence band to the empty
conduction band, and being thermally excited they simply drop back into the valence band
(at low temperatures). All semiconductors become insulators at absolute zero.

In place of the intrinsic semiconductor, one can induce carriers that will stay in at
low temperatures by doping or alloying a semiconductor with either a donor or acceptor
atom. Roughly speaking, you can compute the energy of the impurity level as being
something like the hydrogen energy divided by the square of the dielectric constant of the
material and this means - for a polar material - one will find the impurity level fairly
close either to the top of the valence band or the bottom of the conduction band.

I want to go on to strontium titanate now and show a little bit about the band struc-
ture of this material since that's quite relevant to the occurrence of superconductivity.
Figure 2 shows the energy of the important atomic orbitals in strontium titanate on the
ordinate, and assumes perfect ionicity in the material. You can see that you have, a sep-
aration of about perhaps 16 electronvolts between what Arnold Kahn and Leyendecker
took as the valence band (the oxygen 2p band) and the conduction band (the titanium 3d
level). Kahn and Leyendecker chose the deviation from perfect ionicity -which you see
in the vertical dashed line - as something like 17% covalency in order simply to take
advantage of the change of the energy level and to produce a band gap of about 3 electron-
volts which is observed in the optical measurements of strontium titanate. Figure 3
shows the results of Kahn and Leyendecker's tight-binding calculation of the energy band
structure of strontium titanate. Tight binding of course is the physicists term for the
linear combination of atomic orbitals in which you take the energies of the atomic orbit-
als and simply push the atoms closer and closer together and discuss the resulting band
scheme in those terms. The important part of this figure is that here in the (100) direc-
tion you can see that the A2' is the lowest member of the conduction band, and Kahn and
Leyendecker predicted that there would be at the zone edge a high effective mass elec-
tron valley. The existence of a flat valley has actually been verified, as you will see in a
moment. If we use the rough rule that I mentioned, that impurity atoms will sit in the
forbidden region at energies roughly the hydrogen energy divided by the square of the

METAL SEMIMETAL SEMICONDUCTOR
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DEGENERATE SEMICONDUCTORS
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dielectric constant, one can see this in strontium titanate for donor impurities. It's
found that oxygen vacancies generate such impurities and that doping with niobium also
produces such impurities. These impurities are going to sit very closely to that conduc-
tion band. The dielectric constant of strontium titanate ranges roughly between 104 for
the static dielectric constant to something like 6 or 7 for the high-frequency constant.
So in either case the impurity sites will sit very close to the conduction band, and as you
add more of them, the usual semiconductor result is that the impurity levels coalesce
and form a band of their own or overlap the conduction band, so that there are always
carriers present and the material is a conductor at all temperatures.

Frederikse, Hosler, and Thurber of the National Bureau of Standards, working with
Babiskin and Siebenmann here at the Naval Research Laboratory using the high-field
magnet facility, made magnetoresistance measurements on hydrogen-reduced, that is
oxygen-deficient, strontium titanate which verified the band structure of Kahn and
Leyendecker, indicating the presence of the (100) electron valleys. Let me just remind
you that the behavior of semiconducting strontium titanate will be that of a degenerate
semiconductor: it will show a temperature-independent Hall coefficient [the number of
carriers is always the same at all temperatures so that the Hall coefficient will not vary;
you have the same number of electrons at any temperature less than the degeneracy
temperature]; the resistivity will decrease as you decrease the temperature; and the
resistivity will fall to the residual resistance level in a case similar to a metal. These
effects -the constant Hall coefficient and the decreasing resistivity with decreasing
temperature -are quite ordinary for doped semiconductors. This defines the degenerate
semiconductor for my purpose at least.
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J. F. SCHOOLEY

Shall I define superconductivity? Well, I don't think I need to do this for this group.
I think we should use the ordinary definitions as long as we can, and I'll simply state
without proof that superconducting semiconductors show a decrease in the electrical re-
sistance on the order of a factor of 100 over a short temperature region, characteristic
of superconductivity. They show the heat capacity anomalies of reasonable size over a
reasonable temperature span. They exclude magnetic flux in a reasonable way, as mag-
netization measurements which I will show indicate, and the energy gap appears to ap-
proximate that of BCS. There has not been enough work done on that particular facet to
suit me, but in the one case where the energy gap of germanium telluride was measured,
it appeared to be something like 4.1 for 2so AkT, rather than the BCS number of 3.5, but
this is not an unusual discrepancy.

Normal-State Parameters

Material | Valleys I Mass |e

GeTe 4 (111) 2 40 1.3

SrTiO 3  3 (100) 5 10,000 1.7

SnTe 4 (111) 1.7 1800 1.4
(12 (110))

(6 (100))

Figure 4

Now I would like to show you evidence that the occurrence of many shallow valleys
in a polar material is essential for a superconducting semiconductor. Figure 4 shows
some of the normal-state parameters of the known superconducting semiconductors. We
have germanium telluride with four valleys in the (111) directions in momentum space,
an effective mass of 2, which indicates shallow valleys, a static dielectric constant (in-
dicated by eo instead of go) of 40, and a density of states Y of 1.3 millijoules per mole
per degree square. Similarly, for strontium titanate we have three (100) valleys, as I
have just shown, the density of states effective mass is about 5, the static dielectric con-
stant is 104I, and the density of states is 1.7. These are numbers in the range of the
superconductivity. For tin telluride we have what seems to me a currently more inter-
esting case with four valleys in the (100) direction. Our host Dr. Hein and coworkers
here at NRL, and Dr. Burke and coworkers at NOL, find the existence of another set of
valleys which would apparently lie in the (110) direction, and if I do my arithmetic
properly - with the help of my theoretical friends -the number of valleys involved will
be 12. Dr. Hein in a recent publication-and when I say recent, I thank Dr. Hein for a
preprint of a publication on tin telluride -indicates the possibility of the influence of a
third set of valleys in the (100) direction. I am not sure whether this is just a desire to
go for the course record in the number of valleys, or whether there is actually experi-
mental evidence here, but we will wait and see what Dr. Hein says about that. Notice
that all of these materials have respectable densities of states. These numbers corre-
spond reasonably well with the density of states of aluminum or indium, which are rea-
sonably legitimate metals, and the reason of course is that the number of valleys is high
and the effective mass of the electrons is high.

Actually, each of the superconducting semiconductors which is indicated in Fig. 4 is
a set of superconductors. This is in the same sense that an alloy system forms a set of
superconductors. It has the added feature in the case of the superconducting semicon-
ductors that the change from one member of the set to the next often involves no
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DEGENERATE SEMICONDUCTORS

perceptible change in the electronic or mechanical structure of the system. If we will
look at the impurity level involved over the superconducting range, we will see that, for
all of these materials, most likely - and we feel almost certain for strontium titanate -
no severe change of the mechanical or electronic band structure takes place over the
entire superconducting range. This is a change from the usual metal alloy system and
should provide constant delight to the theoreticians.

Conduction Induction

M i DoaCarrier Range ResistivityMaterialDopant (c- 3 om-m(cm ) (a~ ohm-cm)

GeTe 2-6% Ge Def. 0.8-1.5 x 1021 p 30-300
7-10% Ge Def. + 2-7% Ag 2.7-6.4x 1021 p --

SrTiO3  0.006-0.3% 0 Def. 1018_1O20 n 200
0.06-0.6% Nb 1019_lO2o n 50-100

SnTe O.5-4% Sn Def. 0.3-2 x10 21 p 30 -50
3% Sn Def. + 0.5-2.5% As 0.4-1.3 x10 21 p -

3% Sn Def. + 0.5-1% Sb 0.3-1.OX1O2 p --

Figure 5

In the case of germanium telluride, Fig. 5, there are two mechanisms of producing
carriers. One is simply to use a germanium deficiency of 2 to 6 percent. This results
in 0.8 to 1.5 X1021 holes with a resistivity in the range listed. The other way is to use a
rather larger germanium deficiency and 2 to 7 percent silver. In strontium titanate the
loss of a wee little bit of oxygen is sufficient -up to 0.3 percent oxygen giving 1020 car-
riers (electrons in this case). The alternative way of producing carriers is to introduce
niobium, and about 1/2 percent of niobium also gives 1020 carriers.

In tin telluride, three separate mechanisms have been used: that of tin deficiency up
to 4 percent; that of a combination of tin deficiency and arsenic; and tin deficiency and
antimony. Again, the rather high carrier concentration is equivalent to that of germanium
telluride, and perhaps is an order of magnitude greater than that of strontium titanate.

Now I want to go on to work more or less exclusively on strontium titanate. I want
to discuss the Tc curves for the strontium titanate systems including those with partial
substitution of barium, calcium, or zirconium.

After looking at the T, curves for the barium-, calcium-, and zirconium-substituted
strontium titanates, then I would like to discuss some work which we have been doing on
uniaxial and hydrostatic stress effects on strontium titanate, which are relatively quite
large in this material. I think this offers a fertile field for a hustling theoretician.
Finally, I would like to describe experiments on magnetization which show the type II
character of strontium titanate and simply make the statement that it was expected that
superconducting semiconductors would be type II superconductors.

Figure 6 shows the Tc vs n curve of strontium titanate. It is composed of points
taken with single-crystal oxygen-deficient specimens, plus two or three polycrystalline
niobium-doped specimens. The data point at Tc = 0.4, n = 1.5 x 1020 is for a niobium-
doped specimen. It appears that the niobium doping produces an envelope somewhat

5



J. F. SCHOOLEY
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above the Tc vs n curve for the oxygen-deficient samples. The points were measured
by the .ac susceptibility method which Dr. Hein has shaken your faith in - I hope not too
severely.
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Primarily for the benefit of Dr. Hein, and again in gratitude for having his preprint,
I would like to show what this type of ac susceptibility measurement looks like on stron-
tium titanate in Fig. 7. This simply shows the transition in zero applied field and in a
measuring field of the order of a few milligauss of a sample of 1.3 X 1020 hydrogen-
reduced (or oxygen-deficient) strontium titanate. You see the real part or the inductive
part rather, of the susceptibility dropping off in a way indicative of a broad transition
and the "lossy" part or the x" shooting up in the region of the transition. Dr. Hein has
shown this type of curve in his paper and gives a very adequate explanation as being due
to magnetic hysteresis in the specimen, which becomes particularly pronounced in the
transition region due to local areas being driven into the intermediate state. I would only
add that in an ordinary superconductor one would have a very high loss in the normal
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DEGENERATE SEMICONDUCTORS

state. In other words, even at low frequency (this was taken at perhaps 270 cycles), you
would have skin depth problems, perhaps; but in any case you would have a very high
electromagnetic loss in an ac susceptibility measurement, so that this peak, even if
present, wouldn't show up very well, unless, say, you had a strained specimen, but in the
fairly high resistivity superconducting semiconductors, you then have very little loss in
the normal material because the resistivity is so high so that this peaked loss region
shows up fairly well.

Referring back to Fig. 6 - I want to comment that the dashed curve is the theoretical
curve which fits the theoretical points. I am not going to go into the way that a theoreti-
cian gets theoretical experimental points, because I am not really sure that I understand
it, and you wouldn't believe it anyway.

However, we do have the smooth curve and this is the work of Koonce and Cohen. I
want to comment on it because in this theoretical fit they used best values; that is, ex-
perimental values (or the best ones they could guess at from experiments if their param-
eter wasn't directly measured) for some 18 normal-state parameters on strontium tita-
nate. To this, they added a single number for the intervalley deformation potential (which
can't be gotten simply from experiments), and with the use of all this data they ground
out the curve that you see. Whereas the fit is very good, I think the real contribution of
the theoretical work of Koonce and Cohen is that they really tried to apply the BCS theory
to real strontium titanate specimens, warts and all! They considered every normal-
state property that they felt would influence the superconducting state and I think this is
the technique which will generate the quickest advance in the theory of superconductivity.

Figure 8 shows the effect of adding barium or calcium to strontium titanate. In this
case we have a curve composed of data taken on ceramic samples of pure strontium tita-
nate; of 7-1/2% barium substituted for strontium titanate; and of 7-1/2% calcium substi-
tuted for strontium titanate; and two points I see for 2-1/2% barium substitution. One
finds now that the extent of the superconductivity appears to be rather larger and the
transition temperature rather higher: a substantial change in the superconducting prop-
erties of the material. We believe that the influence of the calcium and barium is

I 1 I

.6

.2 XI
X/

.1

1017 8 n9 o 1021
n, (cm-3)

Figure 8
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J. F. SCJOOLEY

The Most Important Part of
the Periodic Table

IA |hA IIIB IVB | VB

K Ca Sc Ti V

Rb Sr Y Zr Nb

Cs Ba R.E. Hf Ta

Figure 9

primarily on the dielectric properties of the lattice and I will try to spend a little time to
convince you that this is true.

The first thing I would like you to note is that barium or calcium substitution is not
really doping at all. In Fig. 9 you can see that this is true because if you take strontium,
titanium, and oxygen over in the less important region of the periodic chart you can see
that calcium and barium are isoelectric with strontium. If you replace 7% of the stron-
tium - or 2% or any percent - with calcium or barium you are really not affecting the
carrier density. On the other hand, you can see that niobium -which goes in for the
titanium -will act as a dopant, and we so treated it. Now, although the calcium and bar-
ium are innocuous as far as the carrier density is concerned, or at least we think it is
ineffective on the electronic structure, various people have studied the effects of calcium
and barium addition on the dielectric properties of strontium titanate, and the next figure
shows some of this data.

Figure 10 shows the work of Granicker and Jakits.* I want you to note that stron-
tium titanate appears to be structurally tetragonal at low temperatures itself. Strontium
titanate occupies the center vertical line here. In fact there is evidence that this shift to
crystallographic tetragonality does not influence any sensible number of electrons, so
that the semiconducting strontium titanate can be treated as if it were cubic at all tem-
peratures. Again, here I refer to the magnetoresistance measurements done at NRL.
The addition of either barium or calcium to strontium titanate - substituting for part of
the strontium -you can see has drastic changes in the case of the structure on either
side, although for 7% in neither case does it leave the tetragonal phase.

Figure 11 shows, however, the influence of barium titanate on the dielectric constant
as a function of temperature. Strontium titanate is the bottommost curve, and as you
compare this to Fig. 12, you can see the zero temperature dielectric constant measured
here is 6000 -whereas it's listed as 10,000 on Fig. 12, which I think shows the difficulty
of making measurements at a very high dielectric constant. In any case, the addition of
a little barium gives the appearance of ferroelectricity, that is, you get the peak in the
dielectric constant. The material is made more ferroelectric - (the temperature of the
peak in & rises) -by the addition of 2, 4, 6, 8, and 10% barium.

Figure 12 shows a similar type of experiment for calcium strontium titanate; 4, 8,
12%, etc., calcium again produces a peak in the dielectric constant characteristic of
ferroelectricity. Now Dr. Koonce reminds me - almost continually in fact -that it is the
dielectric function &(q, w) that is the parameter that enters the superconducting gap
equation and not the static dielectric constant which we have seen in these two figures.
He also reminds me that the superconducting strontium titanate has carriers in it, and

*Nuovo Cimento, Suppl. 3, 11:480 (1954).
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10 J. F. SCHOOLEY

that these are insulating materials that have been examined. My only reply to that is
"Don't bother me with facts, my mind is made up. It is the dielectric properties that are
changing and that are causing the wide change in T, by barium or calcium substitution."

0.5

0Q4

043 --
2%Zr

0I3A, Zr /SrTiO 3

0.2 -

0.

0 10'9 1o20 loll

CARRIERS/CC

Figure 13

Hulm, Jones, Miller, and Tien have investigated the substitution of 1, 2, and 3% zir-
conium for titanium in oxygen-deficient strontium titanate (Fig. 13). This is again a set
of ceramic samples which were made at Westinghouse and have very nearly the same
envelope as the NBS standard variety, and one can see that the influence of a little bit of
zirconium is fairly drastic.

Referring to Fig. 9, I just want to show that zirconium is isoelectronic with titanium;
so again having made the substitution zirconium for titanium, one has done a similar
thing to the calcium or barium substitution. That means that one has to add, besides that,
carriers.

Now back to Fig. 13. The zirconium does not enhance the Tc particularly here, but
it certainly affects it. It drives the peak Tc to lower and lower and, by George, lower
carrier densities! Hulm, Jones, Miller, and Tien discuss their data in terms of a change
of electronic properties of the crystal, and Dr. Eagles has written a theoretical discus-
sion in the same vein.

This is polemics, so you can turn me off if you like. The presence of a sufficiently
radical change in the electronic character of the mixed crystal strikes me as being an
unlikely situation, and if I may be permitted,, I will simply say that I think it is unlikely
that there is a substantial change in the electronic character of these mixed crystals. It
is very likely that here again we have a change in the dielectric properties. I am tread-
ing on dangerous ground here because Dr. Hulm was writing on dielectric properties be-
fore I knew what they were, so he may be able to shut me off very fast. However, the
compound strontium zirconate is a well-known perovskite and, according to Roth at the
Bureau of Standards, it is very nearly cubic. I haven't been able to find, on short notice,
dielectric measurements either of strontium zirconate of of the mixed crystals with
strontium titanate, but my guess - based on our experience with calcium and barium - is
that this data will show a substantial change in the dielectric properties from strontium
titanate as you add a small amount of zirconium. The corresponding change in the
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electronic properties would require that the zirconium modify the entire band structure;
you have to add the carriers by oxygen deficiency here as before, and, after all, 97% of
the electrons generated go into the same old titanium 3d levels.

I would like to show you now some of the results we have obtained on stressing
superconducting strontium titanate. Figure 14 shows a pictorial of the Fermi surface of
strontium titanate. This is just to remind you that with compressional stress on a many-
valley material -depending on the sign of the deformation potential -you either shrink
or more heavily populate the valleys in the stress axis and either swell or shrink the
ones in the perpendicular direction in k space. What we were after in these experiments
was to shift the valley population enough by stress so as to depopulate one of the valleys,
and this would drop out one or two terms in the superconducting gap equation and should
plummet the transition temperature. This effect should make Tc go down very strongly
as a function of uniaxial stress.

qri intervalley

intravalley / \

-- ----compressionol
- - - - stress

(a) The types of scattering process. (b) Valleys shifted by compression stress.

Figure 14

We realized in these experiments, of course, that many of the gap parameters de-
pend on the molar volume. Among these are the dielectric function, the exchange phonon
frequencies -that is the frequencies of the phonons critical to the electron scattering -
and the q0, the maximum phonon number at the edge of the zone. All of these are de-
pendent on the molar volume so that a change in Tc need not necessarily indicate valley
repopulation.

Figure 15 shows the first of two apparatus that Earl Pfeiffer, my colleague at the
Bureau of Standards, built in order to examine these defects. This one simply shows an
adiabatic demagnetization salt -potassium chrome alum -with a screw driver, which is
detachable, and a germanium piezoresistor -which was our manometer. Also shown are
the strontium titanate stress sample which sits in the same stress axis as the germanium
piezoresistor, a reference specimen with its separate coil, and a thermometer sphere
(CMN).

Figure 16 shows a relatively routine ice bomb. The fact that we had to work below
0.3K in general did complicate the apparatus substantially, particularly the previous one.
In this case, what one has is simply a stainless steel bomb which one fills with water.
We included a stress specimen of strontium titanate and a specimen of indiurn or tin
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which would then show a shift in its transition temperature and act as a manometer.
Also shown is a reference specimen of strontium titanate of the same carrier density
and a reference specimen of unstressed indium in order to measure the shift of the tran-
sition temperature.

4 b -21

o 0 ba
z1 zE c 2

I K I X l l>

510200 c 0 m10 0

TEMPERATURE (K) TEMPERATURE (K}

Figure 17

Figure 17 shows the type of data one gets with uniaxial stress apparatus. (This is a
sample of niobium-doped SrTiO3 with 2.5 x1019 carriers.) The transition temperature
simply decreases as stress was applied in the (111) direction. The reference specimen
in all these runs then either has or does not have the same transition curve, and to the
extent that our thermometry is any good, it has the same transition curve. In any case
one can then measure the shift in transition temperature rather nicely by comparing the
two curves. It shows, I think, the value of including the reference specimen. What one
has here are points at 0 pressure (solid circles) and in the same run, 300 atmospheres
or so (which are the triangular points), then 900 atmospheres (the open circles), and fi-
nally 1800 atmospheres (the squares). One simply warms the sample up to 10, screws
down on the screwdriver to produce different pressures.

Figure 18 shows the similar result for the ice bomb in which tin was the manometer.
The 1.48 kilobars pressure was deduced from the shift of the tin transitions. One as-
sumes that the pressure is now temperature independent, and cools the sample to a tenth
of a Kelvin or so and measures the shift of the strontium titanate transition. You can
see here that the relative effect on strontium titanate is enormous as compared to metals.
If we compare roughly a tenth of a degree (the shift of Tc per kilobar pressure on In)
divided by 3.5K (the indium Tr )- or a 3%o effect here, and roughly a 40%0 reduction of the
strontium titanate T, -this means that the stress is extremely effective in depressing
superconductivity in this material.

Figure 19 shows a complete set of data taken on a specimen about 6xlO19 oxygen
deficient strontium titanate. One sees in the first place the very anisotropic defect of
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DEGENERATE SEMICONDUCTORS

uniaxial stress, and then the ice bomb results showing that the effect is primarily due to
molar volume change. The initial slopes of the uniaxial stress curves here are about a-
third of that for the hydrostatic case, which all adds together to indicate a change in
molar volume. If we were to find valley depopulation, we would expect to find it in (100)
stress and we would expect this curve simply to drop out of sight at some pressure when
a valley depopulated. This we have not seen.

AT, c0

0 1\
-01 - X F10

-03 - a <fill

N b 20-22 hydrost4tic 1'
-0.4- pressure-

o0w Cdj- 0 6 0 8 1 0 1k2 14. 16 I-e
Stress (KbQrs)

Figure 20

Figure 20 shows a set of results for a niobium-doped specimen of about 3 x 1019

carriers. Here the surprise is in the (100) case, where stress increases the transition
temperatures by about 10% for 1.8 kilobars. Actually, what we decided to do was to go
ahead and go for 25K by continuing to apply stress and taking advantage of the linearity
of this curve, but the specimen broke at something like 2000 atmospheres. We feel that
it realized the importance of the experiment to the national goals, and it just couldn't
stand the strain.

Well, we understand in a qualitative way the lack of valley dumping by the fact that
we did not see the depopulation of an electron valley. This is presumably due to just a
low acoustic deformation potential. We can understand in a qualitative way the effects of

the stress on the strontium titanate transition temperature because there are so many of
the superconducting parameters which are volume dependent. We don't understand that
increase on the niobium sample, and anyone who wants to have a crack at explaining is
highly welcome.

I think the next thing I will go into is the magnetization to show the type II character
of superconducting semiconductors. Figure 21 shows a magnetization curve, or at least

the front end of it, for a sample of niobium-doped material of 1020 carriers, and the first

critical field ranges between 3 and 1 gauss, or oersteds, or minitesla (actually 0.1 to 0.3

millitesla). Figure 22 shows the high end of the transition and you can see that the mate-

rial is extremely type 11, going from a field of first penetration of a gauss or so out to a

field for normality of a few hundred gauss. This made the measurement very difficult
and both the Labs that have done this type of experiment have been driven to desperate
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measures in order to measure it at all. In our own case, Dr. Ernest Ambler of NBS
designed a sensitive vibrating coil magnetometer made for the measurements that we
have, the heart of which is shown in Fig. 23. Here we simply have a vibrating coil sur-
rounding the specimen and the specimen is then enclosed in an adiabatic demagnetization
apparatus and held in a steady, constant, dc magnetic field. Thus, one simply measures
the spatial variation of the moment about the small specimen - the signal is then propor-
tional to the magnetization.

Dr. Hein in his forthcoming work on tin telluride describes his own solution, which
is the incremental susceptibility technique. Now, he is a purist as you can see - 99.4%
of all superconductors report their data with the magnetization curve minus M and it
looks right side up and well; my hat is off to Dr. Hein but his curve is upside down -
there is no getting around it. Again you can see for tin telluride -this is a specimen of
10 21 carriers at 12 millidegrees - God help us! and the first critical field is down
around 1/2 a gauss and the second is up around 5. As we do, Dr. Hein uses a thermal
purge after each run to drive out trapped flux. You can see that this is necessary from
the return curve where, as the field is reduced to zero, there is a certain amount of
trapped flux which gives in fact a paramagnetic moment. This can be seen as to disap-
pear when you apply thermal purge after the return trace, and we see the same thing.
One can simply drive the specimen normal, get rid of the trapped flux and have a virgin
sample for the next magnetization measurement.

2 II I I

I-

0 1.0 2.0 3.0 4.0 5.0 6.0
MAGNETIC FIELD (H j)-Oe.

Figure 24

Figure 25 shows the results of our own measurements on the niobium-doped speci-
men that I showed previously for a set of temperatures up toward the transition temper-
ature. The lower curve is the first critical field which goes to a value of perhaps 4 Oe,
and the second critical field goes up to about 500. One can compute the Ginzburgh-
Landau coefficient -the kappa value -following the theory of Marki, who has treated the
case of impurity-limited mean free path. The value that I obtained in this result is 8.4.
For tin telluride, Hein has found values ranging between 4 and 6 for specimens over the
superconducting range, and values from 2 to 10, I guess, are ordinary for these materials.
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Figure 25

I want to close by giving the theoreticians the last laugh, by saying that after all this
blood, sweat, and tears, they knew all along that the kappa was going to be very large.
One can write it simply as the ratio of the London penetration depth divided by the full
coherence distance:

K L = m*c2/ns4le 2  10-4 _ 10-5 CM 10 - 100.

(kTc/0.18fvF + 2-1[) 10- 6 cm

The theoreticians simply point out that you have a big effective mass, and you have a
very small number of super electrons. In the case of strontium titanate you are down by
a factor of 1000 here and the lower part is the BCS coherence distance and the electronic
mean free path. In these materials, electronic mean free path dominates this term be-
cause it is smaller and one obtains typically 10-4 to 10-5 cm divided by some 10-6
which then gives kappa values in the range of 10 to 100.

Thus, we did know ahead of time that it was going to be difficult to make the magnet-
ization measurements but we had to do it because it was there. Well this has been a very
fast trip through the field of superconducting semiconductors with its shallow valleys and
its shimmering Fermi lakes situated along the favored axes of reciprocal space and I
trust and hope that it has been somewhat illuminating. Thank you.
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LOW-CARRIER-DENSITY SUPERCONDUCTORS

C. S. Koonce
National Bureau of Standards

Washington, D.C.

I also feel honored to be here at NRL to discuss the BCS theory of superconductivity
as applied to low-carrier-density systems, and I hope this discussion will complement
the discussion to be given by Dr. Seiden later in the day on "Free-Electron-Like Super-
conductors." I recall that in the previous symposium, Prof. Matthias suggested that be-
fore theorists attempt to calculate transition temperatures for 200 superconductors, they
should first learn to calculate the transition temperatures for 20 superconductors. While
these words were spoken in the heat of debate, I'll address myself to the problem of cal-
culating the transition temperature of a real material, in this case a low-carrier-density
superconductor.

By a low-carrier-density system, I mean one in which the Fermi energy is of the
same order of magnitude, or less than, the phonon frequencies of the phonons to which
electrons are coupled. This more or less limits my field to the field of degenerate
semiconductors. As we will see, some of the theoretical problems here are similar to
the problems in the transition elements and in semimetals. In fact, at the present time
there are only three materials that I would classify as a low-carrier-density supercon-
ductor, and two of these materials, germanium telluride and tin telluride, have Fermi
energies which are 10 to 20 times larger than the phonon energies so that these materials
form a transition region between the regime of metals and the regime of low-carrier-
density superconductors. The other superconducting semiconductor, strontium titanate,
is a true low-carrier-density system. For the carrier densities at which it has been
found to be superconducting, the Fermi energy is always less than the highest phonon
frequency, and at its low-concentration end the Fermi energy is as much as 60 times
smaller than the phonon frequency.
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Figure 1
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This information is shown in the first figure. The figure shows transition tempera-
ture plotted as a function of phonon energy divided by the Fermi energy, which is the in-
verse of the ratio that you usually see. On the left we have metals. In fact, metals lie to
the left of the temperature axis shown. I have plotted tin telluride and germanium tellu-
ride on the basis of the data of Dr. Hein and coworkers, together with the data on stron-
tium titanate by Dr. Schooley and coworkers. As you can see there is a big gap between
the two. Tin telluride and germanium telluride have transition temperatures which are
measurable for Fermi energies 10 times to 20 times larger than phonon energies,
whereas strontium titanate has transition temperatures measurable only for phonon en-
ergies larger than Fermi energies.

Now I will discuss the methods for calculating the superconducting energy gap and
superconducting transitiwa temperature of low-carrier-density superconductors. I think
this is interesting mainly because, as you can see on this first figure, in place of having
one transition temperature for a given material, we actually have a whole series of
transition temperatures for pretty much the same material. Since we are adding less
than 1% of impurities to the strontium titanate, it is reasonable to assume that the band
structure and other relevant properties are more or less unchanged. The same is more
or less true for tin telluride and germanium telluride. Certainly, this is true near the
low-carrier-density end where the band structure is most important.

(1) Phonon Energy
(2) Fermi Energy
(3) Plasma Energy
(4) Width of Conduction Band

Figure 2

Well, before developing a superconducting energy-gap equation, we first have to de-
termine the relative order of magnitude of the normal state energies which are relevant
to superconductivity. The four energies which are relevant are shown in Fig. 2. They
are the phonon energy, that is, the energy of the phonons to which electrons are coupled;
the Fermi energy; the plasma energy, which is Planck's constant times the plasma fre-
quency; and the width of the conduction band. Now, this is a conduction band for an
n-type material. In general, I mean here the width of the band in which conduction takes
place. For a p-type material this would then be the valence band.

For ideal metals the phonon energy is small compared to all of the other energies
that we have shown in the figure and this leads to great simplifications in the theory. As
we have said, the phonon energy in low-carrier-density superconductors can be greater
than the Fermi energy, as in strontium titanate.

In addition, for strontium titanate the plasma energy is approximately equal to the
highest longitudinal optic phonon energy, which is a strong mode in this material, the
plasma energy being approximately equal to the phonon energy at the peak of the Tc vs
carrier concentration curve. The peak is at about 1020 carriers per cubic centimeter.
Thus the plasma energy can be smaller than the phonon energy, larger than the phonon
energy, or equal to the phonon energy depending on how many carriers you introduce into
the strontium titanate. Finally, for strontium titanate the width of the conduction band is
also of the same order of magnitude as the relevant phonon energies.
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The Fermi energy and the width of the conduction band are both of importance be-
cause they give the energy range over which the variation in density of electronic states
can be expected to occur. In a metal, for example, where the phonon energy is small
compared both to the Fermi energy and to the width of the conduction band, it is quite
proper to take the electronic density of states as a constant over the range of phonon in-
teraction. For a low-carrier-density system, of course, such as strontium titanate, this
would be a very poor approximation.

The band structure is important for reasons other than the relative magnitude of the
Fermi energies and phonon energies. For example, as Dr. Schooley pointed out, all of
the known low-carrier-density superconductors have a many-valley structure and this
means that electrons can scatter not only within a given valley, but they can also scatter
from one valley into another valley. Therefore the gross features ofI the band structure,
that is, where in momentum space the electrons are, determines what phonons are in-
volved in scattering the electrons. Even if one considered only intravalley processes,
the band structure would still be important because parameters which will always enter
the theory, such as the Fermi wave-vector, will depend on the number of valleys in the
conduction band. One must begin almost any calculation for a low-carrier-density super-
conducting system by considering the band structure.

The plasma energy or plasma frequency is important because it gives the range of
the repulsive Coulomb interaction in much the same way that the phonon energy gives the
range of attractive interaction through the phonon field. When the plasma energy and the
phonon energy are the same order of magnitude, it means that the phonon attraction and
the Coulomb repulsion have to be treated on an equal footing. This means, for example,
that the interaction through the phonons must be screened by the full frequency- and
wavevector-dependent electronic dielectric function. It also means that one cannot ap-
proximate the Coulomb repulsion with a pseudopotential. The approximations made in
the Coulomb repulsion must correspond to the approximations made in the phonon attrac-
tion.

The first gap equations, that of BCS using a Bardeen-Pines interaction and the gap
equation of Bogoluibov, used an instantaneous interaction through the phonon field. These
theories had the advantage of allowing variation in electronic density of states to be in-
cluded in a very natural manner into the equation. Unfortunately, the assumption of an
instantaneous interaction caused these theories to be valid only in the limit of very large
phonon frequencies. Of course, most superconductors are metals, and metals have
phonon energies which are small compared to Fermi energies, so that the retardation,
that is, the time lag between the time the phonon is emitted and the time it is reabsorbed,
is really more important for most superconductors than is the variation in the electronic
density of states.

This difficulty was removed by Eliashberg who developed a gap equation valid in the
opposite limit, namely, when the phonon frequency is small compared to the Fermi en-
ergy. The Eliashberg theory was later generalized by Schrieffer and others to include
renormalization or self-energy effects. A gap equation was then obtained which held for
both strong and weak coupling, only requiring that the phonon frequency be much smaller
than the Fermi energy.

Our next figure (Fig. 3) is a map which shows the regions of validity of the various
gap equations we talked about. The region of metals is on the left while low-density sys-
tems are on the right. We see that for simple metals the Eliashberg theory and the
Eliashberg theory with renormalization will always be good approximations. At the top
we have weak coupling and at the bottom strong coupling. The dotted lines are, of course,
only qualitative divisions, and the scale is totally arbitrary.
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As we mentioned, the BCS and Bogoliubov equations assume an instantaneous inter-
action and, therefore, are valid only in the limit of very large phonon energies. I want to
emphasize that I am distinguishing between the BCS gap equation with the Bardeen-Pines
interaction and the BCS theory of superconductivity with the paired electrons interacting
through a phonon field. Of course, all of the equations mentioned use the BCS theory of
superconductivity. In addition, both the BCS and the Bogoliubov equations do not include
renormalization and so are valid only here in the weak coupling limit. One can include
renormalization effects into these equations, but the procedure is really not straightfor-
ward because of the fact that the equations are valid only in the limit of very large phonon
energies.

This leaves the remainder of the figure pretty much vacant -the dotted lines again
are rough, depending on the error that you want to accept. For example, you can take
the Eliashberg theory to the low Fermi energy side of this map as far as you like, but
your error will increase the farther you go.

Before superconducting semiconductors were known, the Eliashberg theory with re-
normalization was an excellent theory for all materials, with the possible exception of
transition metals with very narrow bands, and there was no problem. If one really
wanted to calculate a transition temperature one just used the Eliashberg theory with re-
normalization and that was it. In tin telluride and germanium telluride, as we said, the
highest phonon energy is between 5 and 10% of the Fermi energy. At higher carrier con-
centrations, the superconducting properties of these materials can certainly be calcu-
lated with the Eliashberg theory including renormalization. At the low-carrier-density
end we may be getting into Region 1. In any case this is a borderline situation and the
whole T. vs carrier concentration curve can be calculated with the Eliashberg equation
including renormalization, or the McMillan empirical equation which is obtained from
the Eliashberg equation. At the low-carrier-concentration end I would expect deviations
from the Eliashberg gap equation of the order of 5 to 10% in T,, if one assumes that all
of the valleys in the conduction band are at L in the Brillouin zone. These changes are
probably less than the scatter in experimental results. It is probably less than the dif-
ferences, for example, between the single crystal data of Dr. Hein and the sintered sam-
ple data of Dr. Hulm and coworkers on tin telluride, so essentially we are in the left-hand
region with tin telluride and germanium telluride.

Strontium titanate on the other hand has been found to be superconducting for Fermi
energy between 2-1/2 and 60 times smaller than the highest longitudinal optic phonon
frequency, depending on the number of carriers involved as you saw in the first figure.
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In addition, the electron-phonon coupling is relatively strong. There is a strong Coulomb
repulsion as well as a strong phonon attraction, these tending to cancel. I would then put
strontium titanate in Region 2, and possibly getting into Region 3 at low carrier densities.
It is interesting to note that various equations -the Eliashberg equation without renor-
malization, the Bogoliubov equation, and the BCS model equation, with just a constant in-
teraction up to the phonon energy -and also the BCS equation adjusted to include renor-
malization have all been used by various authors at various times to calculate the
transition temperature of this one material, strontium titanate. It is interesting to see
this scatter in the validity of the various approximations that have been used.

Professor Marvin Cohen and I attempted to find the approximate gap equations in
Region 1 and Region 2. We looked for equations which would be more valid in these re-
gions than the Eliashberg equation or the Bogoliubov or BCS equations, but equations
which would reduce to these equations in the limit of large Fermi energies or weak cou-
pling. When the Fermi energy is large, then our equations reduce to the Eliashberg
theory -a gap equation with renormalization. When the coupling is weak and the Fermi
energy is small and screening is neglected, our equations reduce to the equations derived
by Liu using the Bogoliubov method. We obtained no equation in Region 3 because we ne-
glected vertex corrections, a good procedure only if Fermi energy is very large or if the
coupling is weak. We still have no equation that we have any confidence in at all in Re-
gion 3, the strong-coupling, low-Fermi-energy region.

RNh(()Pdpo' Re( Z(p0o)PoI+I(p? )
T-ph (PO)= -Vel i: (i;;ep+X+[(ZPo )2_,2]1/2}V2+{ep+X- (Zpol)2- 2]V2JI;2)

XZpo'I±}p[)lE (po+po')-aD,\'(o-po')],

Mph(PO)= QA'(0) dpo' Re Zp0I)2 Jn -JJ |(gX3) )D),(Po+po')zD),I(po-po')]

v: (P) = [1 -Z(P)]PoI+ X{ps3+ flpI()11+ <spP)12,

f (pi=Z(AAp)^) P= (puto)

Figure 4

The equation that we obtained in Region 1 is on Fig. 4, above the Eliashberg equation.
Don't let the subscripts trick you. I'm just going to talk about part of the equations. We
used the same matrix notation used in the derivation of the Eliashberg equation. The
Eliashberg equation with renormalization which was obtained previously is the equation
used to calculate transition temperatures in metals. It is a matrix equation, the off-
diagonal elements of the matrix giving the superconducting energy gap equation. The
only difference between our equation and the Eliashberg equation with renormalization is
contained inside the bracket of the real part. We get a different form in the denominator,
simply because we have taken the Fermi energy to be finite. If one does an expansion of
our term in brackets for phonon energies small compared to Fermi energies, the first
term in the expansion is the term shown in the Eliashberg equation and the next terms
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are of the order of phonon energy divided by the Fermi energy squared. Therefore, tin
telluride and germanium telluride have about 1% corrections to the kernel of the gap
equation. A 1% change in the kernel of the gap equation has a larger effect, of course, on
Tc,, but the end result is expected to be only 5 to 10% for these materials.

Unfortunately, as we saw in the first figure, there are no superconducting semicon-
ductors between germanium telluride and tin telluride and the strontium titanate system.
Most of the Region 1 that we have talked about is actually vacant at the present time.
While this equation leads to very small effects in tin telluride and germanium telluride,
the supposed materials that it would apply best to haven't been found yet. I want to em-
phasize again that we have tailored this equation to Region 1; it just contains the first ef-
fects of a finite Fermi energy and does not include, for example, the frequency depend-
ence of the dielectric screening which is important for lower carrier concentrations.

Now, if we move into the second region where the phonon energy is as large or
larger than the Fermi energy, the frequency dependence of the Coulomb interaction,
screening, and the variation in the density of states becomes more important than the
retardation or the time delay between emission and the absorption of the phonon. I think
I will digress for awhile and talk about the importance of the frequency dependence of the
electronic screening in low-carrier-density polar materials such as strontium titanate.
We will first consider a material with just one polar mode, for simplicity (although
strontium titanate has two strong polar modes, both of which should certainly be taken
into account if you are interested in calculating a transition temperature). I will talk
about one polar mode for simplicity. We then add electrons to the system. The electrons
have their own collective mode, which is a plasma mode. This collective mode then
couples to the longitudinal optic of phonon mode. Then we have two coupled modes at
zero wavevector. When these modes couple we get the result shown on Fig. 5, which
shows the frequency of the coupled modes plotted as a function of carrier concentration.
Note that this is not a plot against wavevector. The whole figure is at zero wavevector
and is plotted against the number of carriers in the sample. w2 is the upper mode and
w2 is the lower mode. wp is the plasma frequency, and you will recall that the plasma
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frequency is (4irne2/m*)1/2. So the lower mode then starts out as the plasma energy
screened by the static dielectric constant. At low carriers the upper mode is essentially
the longitudinal optic phonon frequency. Thus for low n we start out with a longitudinal
phonon frequency and the plasma mode screened by the static dielectric constant.

Now as we add carriers we see that these modes change character. The mode which
began as a longitudinal optic phonon frequency moves up and, at large carriers, looks
more and more like a plasma energy. cp is the plasma frequency screened by the high
frequency dielectric function a.. At very high carrier densities, the upper mode looks
more and more like a plasma mode and the lower mode approaches the transverse optic
phonon mode. That means that at very high carriers, we again have a threefold degen-
erate phonon mode, that is, the polar nature of material which split the longitudinal and
transverse mode in the undoped material is now shorted out and we have a threefold de-
generate mode again. So the lower mode is then the phonon mode and the high mode be-
comes the plasma mode.

We should note that for strontium titanate the plasma frequency up screened by the
high-frequency dielectric constant, which I believe is about 5.2, is approximately equal
to the highest longitudinal phonon frequency. We are interested in the intermediate re-
gion of Fig. 5 for strontium titanate.

V (q, Po- PO') = 47e2 /&2qKT (q, Po-Po'),
where

7CT(q, Po- PO') =Kph (q, Po P')+Ke(q, P - ) K ()

_ _ _ _ _ _ _ _ ) fo Fr qsz )

KT(q, Po-Po') KT(q,O) Po PO -+@

2\- +-Jdw
Pr-Po'+wOi 8 c'V

Figure 6

We will next talk about what happens at finite wavevector. Figure 5 is all at zero
wavevector with the number of carriers changing. We first note that the total interaction
between electrons can be given, as on Fig. 6, by 4vre2/Pq 2KT, which is just a bare Cou-
lomb interaction divided by the total dielectric function. The total dielectric function is
the sum of polarizabilities from the lattice or the phonon contribution and from the elec-
tron gas. We can express the inverse of the total dielectric function by expanding it in
the manner shown. The first term is the screening at zero frequency. The second term
is an integral which we will talk about later. I want to point out now that the Coulomb in-
teraction screened by the total dielectric function will be large when one approaches the
zero of this total dielectric function. As one knows, the zeros of the dielectric function
correspond to the longitudinal modes of the system, so when one approaches the longitu-
dinal mode of the system the total interaction becomes large.
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As shown on Fig. 7, the spectral weight function F(q, w) can be obtained by taking
the imaginary part of the inverse dielectric function. As we discussed before, the lon-
gitudinal modes of the system occur when the total dielectric function is zero, so that
F(q, w) will be large when the total interaction is large, and the longitudinal modes of the
system can be obtained from the peaks of F(q, w).

w

Figure 8

Figure 8 shows a plot of the spectral weight function plotted up from the frequency-
wavevector plane. As you remember, we talked before about what happened at q = 0.
Figure 5, which gave the longitudinal coupled modes as a function of carrier density, was
all at zero momentum, which corresponds to the w axis of Fig. 8. You see that we do
have two modes. The upper mode is the big peak that occurs above the longitudinal optic
phonon frequency. The lower longitudinal mode is the low hump in this material at q = 0.
The uncoupled longitudinal optic mode is a tenth of a volt. I've taken the plasma energy
approximately equal to the longitudinal phonon optic frequency, as is the case in stron-
tium titanate, but again I have only taken one phonon mode.

One can see that as momentum increases the energy of the upper mode increases.
This is due to the partial plasma character of the coupled mode, since, as one knows, the
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plasma frequency increases with increasing wavevector. We also notice the lower mode
at q = 0 that is just below the transverse optic phonon frequency. (I assume you can see
the small hump. It looks like someone has a foot under the rug. It is a very weak mode
here below the transverse optic phonon frequency.) This mode, as well as the stronger
upper mode, damps out very strongly when one gets into the region of Landau damping,
where real electron-hole pairs can be created. We can see that as the upper mode
damps out a new mode is forming at large wavevectors.

I should put a scale on this wavevector plot. The maximum wavevector shown here
is 5.13 qF. There is also a weighting factor which is essentially the momentum times
this F(q, c) which will enter into our superconducting gap equation. If we are interested
in a region of the intermediate q shown, it is clear that we can't talk about just one
phonon frequency, because we have the large wavevector mode together with the small
wavevector upper mode which is still prominent. So quite a large error would be made
in this case if one simply replaced the three modes shown by one simple mode given as a
function of wavevector.

Now that we have convinced ourselves that the frequency dependence of the dielectric
function is very important, in fact that it determines the modes which couple the electrons,
we will return to trying to obtain a gap equation in Region 2 of Fig. 3. We know now that
we will have to include the frequency dependence of the dielectric function and also the
variation in the electronic density of states. We obtained the equation shown on Fig. 9.

1 Ac-eF defAd
\(,E~po)=- | -- -K~~'P

Z (epo) .Iic Z (E') E (e')
Figure 9

You see that it is of the BCS or Eliashberg form, that is, we have the gap times the ker-
nel divided by the quasi-particle energy. We note here that the gap is a function of two
variables. For most purposes we can evaluate po at the quasi-particle energy, namely
E(E) so we essentially have a gap equation which has the Eliashberg form, except that
we notice that we have a renormalization factor Z(E, p0 ). If one evaluates this renormal-
ization factor, one finds that it is quite important and that we are considering 50 or 60%o
changes in the kernel. This means we are talking about order of magnitude changes in
the transition temperature or the energy gap. We see that the density-of-states variation
will appear quite naturally in our equation. We are integrating now from -EF to the
width of the conduction band minus CF.

The kernel that we have used is shown in Fig. 10. Again, don't let the complications
fool you. This whole integrand is essentially the interaction after you have separated it
into the Eliashberg terms. Here I have used the Coulomb interaction screened by the
total dielectric function. If one separates out the Coulomb repulsion from the phonon
attraction, that is, if in place of just screening by the total dielectric function one sepa-
rates the kernel into two terms - one term rising from Coulomb repulsion and another
term arising from phonon attraction -and in doing so one still keeps the frequency de-
pendence of the dielectric screening as represented in the last term, one obtains the re-
sulfs shown on Fig. 11 for the phonon contribution to the kernel.
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The function 3,B (q, w ) is essentially the phonon density of states. If one has a sharp
phonon mode this will be a d-function, so that co' will be equal to the phonon energy. Wenotice that the terms here are of the Eliashberg form. We also notice that the first terms
in the numerators arise from the zero frequency dielectric screening, while the second
terms are due entirely to the frequency dependence of the screening. The F' (q, co) is a
little different from the F(q, co) that we defined previously, being different only in that
the total dielectric function is replaced by the square of the electronic contribution to the
dielectric function, so that F' (q, w) will be large at the plasma energy. By looking at
this equation, you can see when the frequency dependence of the dielectric screening will
be important. You see the co'/(w + c') terms. As I have said, coI' is essentially a pho-
non frequency. F(q, c) peaks near the plasma frequency so that we can replace co ap-
proximately by a plasma frequency. So if our phonon frequency is small compared toour plasma frequency, as it is in metals, these frequency-dependent terms will be small,
containing a factor of phonon frequency divided by plasma frequency. Then, to a high de-gree of accuracy for simple metals, we can neglect these terms and simply screen our
interaction by the square of the zero frequency dielectric function.

On the other hand, if we have a low-carrier-density superconductor, for example
strontium titanate, for which the phonon frequency and plasma frequency are of the same
order of magnitude, it means that the integral over co will be the same order of magni-
tude as the first term.
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Again we are talking about a 50% correction to our kernel, and as I said before, a 50%
correction to a kernel means orders of magnitude change in the transition temperature.
So if we are interested in calculating the transition temperature of a low-carrier-density
superconductor, we must include terms arising from the frequency dependence of the di-
electric function.

I think we can conclude from this last equation that any attempt to calculate the
superconducting properties of strontium titanate must include the frequency dependence
of the dielectric function as well as the renormalization. Thank you.
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One of the pleasant things about working in this field has been the pleasant collabo-
rations that we have had with several other groups, located at most points of the compass
except to the north. To the East, we have worked with Bob Hein, John Gibson and Ray
Falge, here at the Naval Research Laboratory. To the South, there is Dan Deis, Henry
Fairbank, and Phil Lawless of Duke University, and in the West, Normal Phillips, Len
Finegold, and Bailer Triplett at the University of California, Berkeley. I think I should
commend the last group for getting results on the very difficult conditions in recent
times! Finally there is our own group -Dan Deis, who came up to join us recently, Cliff
Jones, Martin Ashkin, Bob Mazelsky, and Bob Miller. I probably left some out too, but
those are most of the people involved.

The main reason for studying superconducting semiconductors, as far as I am con-
cerned, is to try to get a better grip on the material parameters that enter into the su-
perconducting interaction. There are quite a few theoretical expressions that exist for
the superconducting transition temperature, mostly qualitative, some quantitative. We
need work to quantify these in order to get exact numerical results, and of course our
ultimate goal - at least one I have - is to be able to predict what upper critical tempera-
ture is possible in superconductors and to be able to predict new directions that we might
go in materials to get higher critical temperatures. It seems rather peculiar that to try
to do this we are working with quite low critical temperature materials down in the
millidegree range, but I think it would be obvious from what I say as to why we are doing
this.

The things that we think that T, is a function of are shown in Fig. 1. Certainly we
know that electron parameters such as the carrier density n, the electronic density of
states which is related to the heat capacity coefficient Y, the effective mass m* -which
may be, of course, a multiple thing -and the Fermi energy r f play a role in the deter-
mination of the transition temperature. We know that there are probably detailed band

Tc= function of [Electron parameters, n, y, m, iF,

band structure factors,

s, p, d, f, character,

Phonon parameters, M, a, a,

lattice mode spectrum

Electron-phonon interaction strength ]
Figure 1
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structure effects where several bands may be involved in the conduction band of the mate-
rial. There is indication that we have to take into account the nature of the bonding.
Certainly the behavior of the transition metals and the rare earth metals and alloys is
different from that of the simple s-p material. There are phonon parameters such as
the atomic mass, lattice parameter, and the frequencies; and in fact we would like to take
into account the lattice mode spectrum in some detail. Then, of course, there is the
electron-phonon interaction strength which is a cause of superconductivity. Now all of
this, by the way, is for bulk material in the absence of other influences such as geometric
effects which are present in thin films, or things like localized magnetic moments, which
themselves can cause depairing in superconductivity.

Although we don't have a precise general theoretical expression for the function,
special forms have been derived for application to particular materials or for idealized
models of solids. You have already heard about intervalley scattering in strontium tita-
nate. There is a useful free-electron calculation due to Morrel and Anderson which has
recently been extended by Phil Seiden, who will speak after me. If one has more detailed
information on the phonon spectrum -for example inelastic neutron scattering measure-
ments -it is possible to calculate T, in simple metals and this has already been done
just quite recently by Carbotte and Dynes for aluminum, sodium, and potassium. For the
last two cases you get very low values -way below any temperature that one can obtain
at the present time.

Now, what is the experimental situation? In complex materials, much has been
learned by varying the solid-state parameters delineated in Fig. 1. The classic case, of
course, is the dependence of T, upon M (isotope effect) which essentially stimulated the
creation of the original BCS theory. One of the limitations with this effect is that M can
be varied only over a quite narrow range. By alloying, that is, making solid-solution al-
loys as has been done extensively for the transition metals, one can vary r, which is
proportional to the density of states, but unfortunately this simultaneously varies n, a,
and w and the band character as well. Consequently it is pretty hard to distinguish be-
tween these various parameters. Another possibility was given to us by the discovery of
the superconducting semiconductor materials, for in this class of materials we can make
orders of magnitude changes in n and corresponding great changes in T.. The other
factors may change somewhat while we are doing this, but to a lesser extent than they do
in the case of alloy. Thus, we have here a fairly clear-cut case of single variable
change, and the rest of my talk will be concerned with what we have learned from this
so far.

First of all, I would like to summarize the experimental data on five materials in
this class, shown in Fig. 2. Here we see T, as a function of the carrier density n.
Strontium titanate is on the left [followed by] tin telluride, germanium telluride, indium
telluride, and lanthanum selenide. I am not going to discuss strontium titanate -it has
already been covered - and I think Dr. Seiden will talk about lanthanum selenide. I am
focusing my attention on the three compounds on the right which all belong to the sodium
chloride lattice, which is one of a fairly simple structure to handle from a theoretical
viewpoint. You notice that in all these materials, with the exception of strontium tita-
nate, T, increases monotonically with increasing carrier density. I should say that
germanium telluride isn tt exactly sodium chloride structure. It shows a small deviation
from the sodium structure to a rhombhedral phase around 3000C, and this creates some
difficulties experimentally. Also, indium telluride, which was found by Geller and co-
workers at North American Rockwell, is in the sodium chloride phase only at high pres-
sures. It can be stabilized to some degree at atmospheric pressure, but it is a difficult
material to work with.
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We have focused most of our attention, in fact, to tin telluride, and that explains the
range of T, and n; tin telluride is the greatest among these materials. You notice T,
changes by two orders of magnitude in this material and in fact we were limited at the
lower end, certainly, by the temperatures that we can reach in our cryostats at Westing-
house. We intend to extend the range down to a few millidegrees, hopefully in the very
near future.

It is important to understand how the carriers are produced in these materials and
this is shown in Fig. 3.

Sn' Te2 - x . Sn = Sn1  xTe - 2x holes/molecule

3+ 2- 3+ 2-
In2 Tei + x . In = In Te + 3xelectrons/molecule2 i2+x e3

Figure 3

These materials are commonly referred to in the semiconductor business as polar
semiconductors. This simply means that they presume some degree of ionicity in the
lattice, and if you are treating them as ionic crystals we think that tin is divalent, which
is a common valence state of tin, and if you abstract a fraction X of tin from this mate-
rial, you go off stoichiometry as shown. In order to maintain the charge balance, you
have to have two holes per molecule of tin telluride. Consequently the compound on the
right, which is the one we normally work with, is deficient in tin -there are tin vacancies
in the material. In germanium telluride, the doping mechanism is exactly the same as
for tin telluride. In the case of indium telluride, it is somewhat different because of the
trivalent state of indium. The balance case for the charge is off stoichiometry already.
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The thing on the left doesn't look like sodium chloride, but you've got two indiums and
three telluriums so you have already one sixth of the indium sites vacant, but you also
have charge neutrality and you should have an insulator. If you add indium to this mate-
rial to bring it toward stoichiometry, you get 3X electrons per molecule, so it is n-type,
whereas tin telluride is p-type. Of course, in both of these cases, certainly in the case
of tin telluride, X is fairly small and in most of our work it is less than one percent.
There is a small change of lattice parameter associated with this shift, which violates
what I said about all the other things being constant, but it is a small change. The actual
carrier density in these materials is measured directly by the Hall effect and roughly
agrees with the chemical composition shown in these equations but not exactly. This is
what we refer to as self-doping.

You can also dope these materials by substitutional doping, which is a more common
type of doping. This is necessary for the elemental semiconductors such as germanium
and silicon, and we have substituted antimony, arsenic, copper, gold, and silver in the tin
telluride lattice. You will notice that these are all valences different from two - which is
what you need for substitutional doping. Careful work on the solid solubility and the
phase diagrams is necessary for this kind of doping and I am not going to go into any de-
tail on it, but quite a bit of work has been done.

The critical temperature vs n relationship in tin telluride seems to be
unaffected by the nature of the dopant, at least for low doping concentration.
lustrated in Figs. 4 and 5.
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In Fig. 4, you see that you have quite a few self-doped points, including some single
crystals which were investigated here at the Naval Research Laboratory in collaboration
with the Naval Ordnance Laboratory. Also shown are our own polycrystalline self-
doped - and arsenic antimony doped - samples, and as far as we can tell there is no
significant trend to the impurity doped samples. They scatter around the self-doped
points - and there is considerable scatter! There doesn't seem to be any systematic
deviation from the T. vs n curve.

Recently we have extended this up to higher
per, silver, and gold doping and that is shown in
smooth curve taken from Fig. 4. It doesn't look

carrier concentrations by means of cop-
Fig. 5. The smooth curve here is the
quite the same because we are plotting
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on the log-log scale. The black points are for silver. We really don't understand why -
you can put a lot more silver in substitutionally than we can copper or gold -but by using
silver we have been able to get the transition temperature up to slightly over 1 OK.

Certain nonbelievers in semiconducting superconductors believe that this entire
business is mythological in the sense that they believe superconducting transitions are
due to impurity phases, such as free tin in tin telluride or free titanium in strontium
titanate. It is hard to see why free tin would have a critical temperature down in the
millidegree range, but people say these things, at least they use to say them. I think that
Dr. Schooley would agree with me that there has been sort of a double standard operating
here in the sense that the critics who are imposing this kind of demanding existence cri-
teria on these low-carrier-density materials don't normally impose these criteria on the
other superconducting alloys and compounds at higher temperatures. Be that as it may,
I believe that most of the doubt is now being dispelled. The careful characterization of
the semiconductors by x-rays, metallurgical studies, phase diagram studies, etc., has
largely ruled out pseudosuperconductivity due to impurity phase. Of course one of the
clinchers is one can determine the bulk effects by some direct means, such as heat ca-
pacity studies, and heat capacity data exist for most of these materials. I would like to
show a typical heat capacity curve in the case of the germanium telluride measured by
Len Finegold on our samples in Fig. 6. For a pure type I superconductor, one would ex-
pect the heat capacity to rise rather steeply at the transition temperature and drop down
at lower temperatures. This doesn't look quite like that and we've never achieved a

oUU I I I I I I I I I

SnTe
* Ag Doped

.00- o Cu Doped

.80- A Au Doped *

.60 - Smoothed Data For .
As, Sb and Self-Doped

.40 -
3

2.0 --

300

710 X

208

106 -/-

.04

003

102

34

an



LOW-CARRIER-DENSITY ROCK SALT COMPOUNDS

2.0 I I

1. 9

1.8

T 1.7

K. 1.6
0
E

-~1.5

1.400*.

0

0 0. 02 0.04 O. 06 O. 08 2. 10 O. 12 0. 14 0. 16 0. 18 O. 20

T2 °K 2

Figure 6

behavior close to the very sharp anomaly of a metal. I think this is mainly due to the
fact that one has to work (in heat capacity) with very large samples and it is difficult to
get a uniform distribution of carrier densities in these materials. Similar anomalies
have been found for tin telluride and strontium titanate and I think these are undoubtedly
bulk superconductors.

The further clincher is the work of Schooley and Esaki and Stiles on tunneling.
Tunneling in germanium telluride shows that this material does develop a superconduct-
ing energy gap below 0.3 0K.

Now there are some semiconductors that have been reported superconducting in
which real doubt exists regarding the bulk effects. For example, about a year ago
Lalevic reported lead telluride to be superconducting around 50K. We've made a very
careful examination of lead telluride samples with the compositions that he used, and
other compositions in the same vicinity, and we feel that he had free lead - sort of a lead
herring! One of the reasons for our conclusion is that it is impossible to achieve carrier
densities much above 1019 by self-doping in lead telluride. You can, however, increase
the carrier density to 5x10 20 by adding sodium or lithium. We tested such a sample
down to 0.0090 K and it does not show superconductivity, but I think it might become
superconducting at lower temperatures simply by analogy with tin telluride, a very simi-
lar material.

Obviously since there are several rock-salt-structure superconducting semiconduc-
tors and an even larger group of normal semiconductors which belong to the rock salt
lattice, such as lead telluride, lead selenide, lead sulfide, tin arsenide, tin antimonide,
and so on, some interesting alloys can be made. Quite a bit of work has been done on
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such alloys. Here you have sort of a problem with the number of variables. First of all,
in the basic material itself you can vary n over a large range, and in addition to that,
you can mix these things. Thus there is a second degree of variation so there is a lot of
work that should be done, but I have only got time to mention one system which is rather
interesting and unique. This is the alloy system between tin telluride and indium tellu-
ride.

2n. 30 40
Atom Percent In 97Te in Sn 9 Te

Figure 7

The results for this are shown in Fig. 7. On the top you see the variation of carrier
density. You may recall that I said that indium telluride is n-type, and that you have to
apply high pressures to stabilize the rock salt phase. If you add tin telluride to indium
telluride then you don't need the pressure. The alloying also acts to stabilize the phase.
From about 50% tin telluride to 100% tin telluride we have the phase at atmospheric
pressure, and this is the range with which we are concerned here. The carrier concen-
tration starts out in the p-type tin telluride phase. As we add n-type indium telluride,
the carrier concentration falls off towards compensation - goes down to 1020 - and then
suddenly jumps up again into the n-type region of indium telluride. The critical temper-
ature does the same thing. It follows the carrier concentration pretty close, dropping off
as you would expect, and then it rises again quite steeply for the indium telluride phase.
We thought at first that there might have been some kind of lattice transformation, a
phase anomaly in the system. At times, the behavior of critical temperatures in super-
conductors like this occurs in the case of phase transformations. We looked at this very
carefully and there is no evidence of such a transformation. It appears to be a solid so-
lution over the entire range. So what we've got here is essentially a pure electronic
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anomaly and I think it is unique. It is the only one I know of anyway - going from p-type
to n-type.

I would like to say a word about the other superconducting properties of these mate-
rials. Because of the low critical temperatures, you might be surprised that they're
type It, as Dr. Schooley mentioned, but this is well illustrated in the magnetization curve
which Bob Hein obtained in germanium telluride on our samples, as shown in Fig. 8. The
envelope of the magnetization curve here is clearly of the type IH variety. The spikes
you see on it are typical of flux jumping, which is more commonly found in a heavily de-
formed alloy and things like niobium zirconium that are used in superconducting magnets,
and it is surprising to find flux jumping in material like this. Bob Hein suggested, and I
think that I agree with it, that it is possibly due to the fact that we have in germanium
telluride a lattice transformation which produces a very finely 'divided germanium struc-
ture. We don't really have a single crystal, and this finely divided domain structure is
apparently on a scale, or produces enough local strain in lattice, that you have pinning of
fluxoids. When you have a high critical current density, you get flux jumping on the mag-
netization curve. One thing that supports this conclusion is the similar curve for tin
telluride which doesn't have the domain structure, as far as we know, and does not show
flux jumping although it shows a similar envelope in the magnetization curve. Hein's
data on H0 I and H02 on this typical sample of germanium telluride is shown in Fig. 9.
The lower curve is 10 H01 . Again the type II behavior is pretty obvious with the separa-
tion of H,1 and H c2 The variation of Hc2 with composition is shown in Fig. 10. Here
is shown H, 2 and you will see that the magnitude of H c2 changes quite rapidly with com-
position, essentially as you go toward stoichiometry. In other words, as you lower the
carrier density, H, 2 is dropping very fast. Now we can check up on this quite simply
using the GLAG theory of superconductivity.

In Fig. 11, the three columns on the right are essentially free-electron-theory values
calculated from the measured carrier density n, the effective mass m*, as determined
from specific heat data and the measured normal state resistivity. Note that the pene-
tration depth Xp and the coherence length t 0 are on the order of a few microns (104 A),
whereas the mean free path k is the order of a few hundred angstroms. This is really
the reason that these materials are type II. They are quite short electron-mean-free-
path materials.
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Using the mean free path and the density of states, which you measure from heat
capacity and Tc, one can calculate the H, 2(0) -the extrapolated value of H C2 to absolute
zero - as a function of carrier density. In comparison to the measured values you see
that the agreement isn't really very good, although the higher field values are not too
bad. The highest fields both for tin telluride and for germanium telluride are in the
right ball park, but as you go to lower fields in tin telluride a big discrepancy occurs -
a factor of 4, and about a factor of 3 in germanium telluride. I don't have any explanation
for this at the present time; however we are talking about the low n part of the data and
this discrepancy may be connected with -a some kind of kink in the density of states in
this region.

Quite a lot of work on the electronic properties has been done, particularly by Esaki
and Stiles at IBM, and Allgaier, Burke, Houston, and Savage of the Naval Ordnance Lab,
and also Babiskin and Seibenman at NRL - so I guess to talk about the subject at all in
Washington is like bringing coals to Newcastle. However, I have to make some comment
on the electronic structure. In tin telluride, the Fermi surface is thought to consist of
four dumbbell-shaped surfaces along the (111) directions. There is a possibility there
are two valence bands, the second one being occupied above about 2 x10 20 carriers per
cc. In that case, if that is true, then we are always operating in the two-band region for
the superconducting studies that I have reported here. Esaki and Stiles' tunneling meas-
urements indicate that tin telluride has a semiconductor energy gap of about 0.3 eV.
We've done quite extensive heat capacity measurements on the material in the two-band
region, and we find that the density of states on the basis of about four points looks as
though it's proportional to n 1/3, which is what you would expect on a quasi-free-electron
picture. However, I should hasten to add that on the basis of four points - which cover
the range -we can't say there isn't some kink in the density of states somewhere along
the line. From the slope of the density of states vs carrier density curve, we can esti-
mate the effective mass, and it comes out about 2.

The properties of germanium telluride are rather similar, except that the filling of
the second valence band seems to occur. It is thought to occur somewhat higher at about
4 x 10 20 carriers, but again it is below the range of the superconducting measurements.
Since we have a pretty well defined TC vs n curve, extending over two orders of magni-
tude of n for tin telluride, what can we learn about superconductivity from this curve ?

Rather than trying to take into account the obviously complicated electronic struc-
ture of the material, we prefer to use a free-electron approach. I think the only justifi-
cation for this is that it seems to work moderately well. The departure point for this
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Figure 12

analysis is shown in Fig. 12, and I'll try to limit the number of equations I throw at you.
The first one I am sure is well known to all of you -the good old primitive BCS expres-
sion of 1957 for the critical temperature. In this expression wS is some kind of critical
phonon frequency, N(O) is the density of states of the Fermi surface, and V is the pair-
ing potential which was not calculated in the BCS theory but was simply introduced as an
arbitrary parameter. We know physically that N(O)V must consist of two parts. Using
the notation used by Morrel and Anderson in 1961 there is a component X which is a
positive part of the interaction representing the phonon-induced electron attraction, and
a term ,I* which represents the Coulomb repulsion -the normal Coulomb repulsion be-
tween electrons. Actually, this starts out as p. but is modified by the expression in the
denominator due to the fact that the attractive term is derived from electron energies
within a thin shell of thickness kBOD in the vicinity of the Fermi surface, whereas the
repulsive term is calculated for all electron energies. This introduces both the Fermi
energy and the Debye temperature in the denominator. The chief knowledge of this Mj*
comes about from isotope experiments. In the primitive BCS theory, this term was ig-
nored. Thus N(O)V was essentially independent of mass, and on this basis you get an
isotope effect of T, proportional to M-'1 2 . Later on, it was discovered that lots of ma-
terials have different isotope effects - for example, some elements such as Ru and Zr
have no isotope effect while other transition metals have a mass dependence for T, quite
different than the BCS prediction. Consequently, a correction had to be put in, and this
of course also contains the mass (see Morrel and Anderson expression in Fig. 12).
From isotope experiments on different metals, values of p.* have been derived. Morrel
and Anderson calculated X and M from a quasi-free-electron picture using a jellium
model of a solid, which is one in which you ignore the periodicity of the ionic lattice and
derive the lattice modes on the basis of positive ion plasma. I think Phil Seiden is going
to discuss this theory in more detail so I won't go into it, but I have to use the results.
It is sufficient to say that on this model X and )u come out to be essentially functions of
only electronic parameters, that is to say, the carrier density and the effective mass.
Actually, for the computation we used a slightly modified BCS expression recently intro-
duced by McMillan for strong coupling, see Fig. 12. McMillan's expression is only
slightly different numerically from the BCS expression if X - p*, in the form given in
Fig. 12, is substituted for N(O)V. An important point in my considerations is that the X
has two contributions within it which arise from the different scattering processes for
the electrons.

Figure 13 illustrates this kind of an elementary experimentalist view of what goes
on. With a simple Fermi surface and a simple Brillouin zone, you have scattering elec-
trons involved in the phonon-induced attraction and repulsion, k to k' scattering. When
you have a normal phonon exchange involving qN, this gives rise to the term XN. When
you can have an umklapp exchange involving qu, which introduces a reciprocal lattice
vector A, this gives rise to the term Xu. The crucial point is all I want to point out,
and though it is very obvious I think it needs saying anyway. If the Fermi sphere is very
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small compared with a Brillouin zone -in other words if it were a very tiny sphere in
the center -the normal processes are the ones that dominate the situation. The qN is
small in that case and qu is very large. As the Fermi sphere grows in size and becomes
very large, then qu can actually be smaller than qN, and the umklapp processes begin to
be quite probable.

IT I

a a
SnTe

Figure 14

Just to illustrate this for tin telluride I have drawn a couple of Fermi spheres for
the free-electron picture corresponding to different carrier densities. This is shown in
Fig. 14 relative to the reciprocal lattice. The reciprocal lattice isn't square -its cross
section would be a polyhedron, but this is all qualitative anyway. The onset of umklapp
processes occurs roughly when the Fermi sphere diameter equals half the zone edge.
For SnTe this occurs at a carrier density corresponding to the dotted circle in Fig. 14.
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Thus the experimental data involve carrier densities which cover the range from that
where normal processes should dominate to that where umklapp processes should domi-
nate. Qualitative considerations of this kind seem to be borne out by our results.

Figure 15 shows the theoretical value of XN and the pi* repulsive term as a function
of carrier density calculated strictly on the Morrel and Anderson picture. I'll say more
about Au in a moment. What we have simply done is this. We have taken the calculated
,u on this model, and the experimental TC 's, plugged them into McMillan's expression
for Tc, Fig. 12, and derived the attractive component A. In other words, A is derived
here, but it is sort of a quasi-experiment thing. It requires an assumption on M1* but it
is essentially an experimental X and this is plotted as A(exp) over the range that we are
dealing with in tin telluride. Note that A(exp) lies remarkably close to the theoretical
XN of the low carrier densities.

Let me say just physically what these two terms XN and M* do as a function of car-
rier density. As you go down to a dilute electron gas - as you approach very low carrier
densities - both of these functions approach 1/2, and the difference X - g* is what deter-
mines the critical temperature. As you would expect, when you go to zero density, Tc
goes to zero. Now as n increases, this difference also increases, but eventually it will
pass to a gradual maximum for only normal scattering. That is somewhere around 1022
electrons per cc, corresponding to a critical temperature of just a few degrees. If you
have only normal scattering you have quite a low transition temperature superconductor.
What we find experimentally is that A(exp) is tending towards XN at low carrier densi-
ties and deviates from it as the carrier density increases.
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Morrel and Anderson also calculated Xu, but they did a very crude averaging sort of
thing which isn't very useful. Dr. Seiden computed the Xu more accurately for the case
of lanthanum selenide, and we have adapted his values to tin telluride but shifted the
curve slightly to correspond to where we think the umklapp processes should start. We
expected Xu - and this is fairly qualitative -to rise in some fashion like this, and it
would explain why we see an experimental rise of the total attractive component of the
interaction. I think this physically makes some sense if you ignore all the other approxi-
mations that we've made in talking about spherical Fermi surfaces - and clearly, we
know the Fermi surfaces aren't that type in this material.

One other thing we can do is to compare the results on tin telluride with some re-
sults on some other rock-salt-structure materials in which we have made heat capacity
measurements, giving us a density of states. These are materials like niobium nitride,
niobium carbide, etc. Although these are transition-element-containing materials -the
materials in which the Fermi surface is away from the d-band - and the density of states
is low, essentially derived from s and p electrons, I think they are roughly comparable
to tin telluride in the free-electron sense that we are talking here. We don't know the
effective mass so we can't make a comparison on the carrier density curve, but we can
convert the tin telluride data into density-of-states data because we do know the effective
mass here -so I have done that in Fig. 16. The tin telluride curve is replotted against
the band-density-of-states cubed, which is essentially proportional to n, and then I have
put onto this plot the X values derived for hafnium nitride, niobium carbide, zirconium
nitride, and niobium nitride. You see that they fall roughly in line with the tin telluride
data as if A is simply going on increasing by the umklapp scattering. In fact, in the case
of niobrium nitride it would be a major contribution to the total superconducting inter-
action. If any of this makes sense, I think what we have learned is that we have in tin

I I I I II I I I ,

NbN

.8

/J

.7 - /
/

a .6 -HfHN, NbC

'ZrN

.5

.4

.3 I I I I
107 10 10 11-4 1-3 -o2 10-

3 3 eV.3 ...3Nb. states eV atom

Figure 16



J. K. HULM

telluride a material in which, on one extreme, we have normal scattering dominating, and
on the other extreme, umklapp scattering is dominant.

I would like to say just a few words about other possible materials. We have tested
a lot of the materials of this class for superconductivity and some of them shown in Fig.
17. Some of these points are data from other people. I won't pick out all of them but you
see lead telluride as previously mentioned, bismuth telluride -these other tellurides -
many of which are thought to be semiconducting. Some of them have pretty high carrier
densities. In fact, this is sort of a selected list of materials that have carrier densities
exceeding 1020 in most cases. Gallium nitride was reported superconducting by the Rus-
sians, but nobody believes that -its probably free gallium. None of these are super-
conductors.

NON-SUPERCONDUCTING COMPOUNDS

Carrier Density Lowest Tn
Compound Doping Method cm- 3  OK

20
PbTe Li, Na 5 x 1020 0.009

Bi2Te3  Iodine 1 x 10 21 0.019

AuTe2  As Made 2.5x 10 0.051

SbTe As Made 5 x 1020 0.051

CoGe2  As Made 0.051

PtSb2  Tin 3.7x 1020 0.037

GaP Silicon I x 1019 0.051

GaN As Made 2.00

SrNbO3  Sr vacancies 2.7x 1021 0.044

CaTiO3  0 vacancies 3.7 x 1019 0.10

BaTiO3  0 vacancies 1. 3x 1020 0.059

Sr 99 La 01TiO3  0 vacancies 3. Ix1020 0.078

SrTiO3 + 10o KTaO3  0 vacancies 4.8x 1019 0.051

Figure 17

Quite a few materials are being tested but of course there are an awful lot that
haven't been tested down below 10K, and this may explain why we only really have five
materials to talk about in any detail here. There are some other candidates that I might
mention. One which the Bell people worked on a little bit, but on which I think more ex-
tensive work could be done is silver fluoride, which is a dilute metal, and another one is
their silver clathrate compounds, which are also dilute metals. In these compounds, n
can be varied over quite a wide range. There are some substituted metal bronzes which
probably fall in the same category. I think these are interesting things that should be
investigated in the future.
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I would like to discuss a theory of superconductivity which is useful from an experi-
mentalist point of view. That is, I want an experimental theory in the sense that you can
use it as a model. You can say "Well, if it works for one material and then I change the
material, the theory can make some predictions of what is going to happen." That is
basically what Morel and Anderson tried to do, and as we just saw from a slide that John
Hulm had, it is quite a simple theory. It has few parameters so that you can actually
take a desk calculator and calculate values for T, in a short period of time, say 1/2
hour. That is the kind of theory I would like to have. Unfortunately, I have not quite been
able to find it.

The right way to do things has recently been done by Carbotte and Dynes. They have
done a really complete calculation, complete in the sense that it is up to date in modern
many-body theory. The approximations they make are ones they are forced into because
we just don't know how to do any better. However, their calculations are very compli-
cated, which means long programs and running times and, what is even more serious,
extensive experimental information - for example, complete neutron diffraction data on
the phonon spectra. These data are not generally available for many materials. Even
if I can't do calculations on a desk calculator and have to go to a computer it would be
nice to have something which is short and takes a minimum of experimental data. Well,
that is the kind of calculation I have been able to do in certain cases.

I now want to state the necessary approximations. First, it is a free-electron-like
theory. Let's pursue exactly what "free-electron-like" means and how far we can stretch
the idea. Well, the first approximation was discussed in detail by Cal Koonce, and let's
write it down. The phonon frequency cp must be small compared to everything else.
That was essentially what Koonce called the renormalized Eliashberg region. I will stick
to that region, and as you will remember from Koonce's talk, that means the only thing I
can't talk about is strontium titanate, and I won't.

Now, what is the problem. We know that BCS gave their result for the transition
temperature as

TC: = 1. 1+9De- I N( O)V

where N(O)V is the ad hoc parameter which gives the coupling. Well, McMillan has ex-
tended the renormalized Eliashberg theory and obtained the following more complete
analytic result

1.04( I+? )

4D 5 - 0.62X*
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The parameters A and a* have the same meaning as they had on Dr. Hulm's figures.
Now, what is the problem? The problem is not really to calculate ,LI*. This is fairly
easy, and furthermore g* doesn't vary very much. In fact, it has been suggested that if
you are in doubt about *, for transition metals take a value 0.13, and for nontransition
metals take a value of 0.1, and you will be doing all right. The u* 's do turn out to be
pretty much these values, and the reason for the lack of sensitivity is that the relation-
ship for so* has a logarithmic dependence on practically every parameter in sight. Un-
less you really get drastic, things just don't change very much.

The problem comes down to calculating the electron-phonon interaction X, and that
is indeed really a problem if you are going to do it properly. Now the question is just
what materials are you going to test against if you carry out the calculation. The origi-
nal Morel and Anderson calculation, which has an explicit expression for X, tested
against the elements. This test really doesn't tell you much. After all you are doing a
many-body calculation. You can have, depending on the generality you use, one or more
adjustable parameters and you are trying to calculate a single number - so you don't
have to have too good a theory to come out with the right number. Whether you can jus-
tify it or not is another question. Even for metals like aluminum or sodium and potas-
sium it is still, in general, a very complicated problem.

What you would much rather do and what has been the brunt of discussion today is to
look at the functional dependence, and experimentally the functional dependence that has
been looked at mostly has been that of electron concentration. I'll have one other exam-
ple which I have looked at and which I will discuss today, but the electron concentration
dependence provides the best results. If you can do this sort of calculation you are still
well off even if you are left with an adjustable parameter. You just normalize the curve
some place, and although you can't predict the transition temperature per se you can at
least examine the functional dependence. From the experimental point of view, this is
what you really want to do. You start off from some base. You have tested one group of
materials and you want to know what is going to happen if you make a certain change.
Well, you have already got some of the answer, so you are interested in extrapolating
this from what you already know. Therefore, what you are interested in, of course, is
just the functional dependence. The goal, then, is to determine this functional depend-
ence, a problem that is much, much easier than actually calculating a transition temper-
ature. As a matter of fact, as you'll see when I show you a slide [see Fig. 11] of the
absolute transition temperatures I calculate from the simplest model with no adjustable
parameters, these results look pretty ludicrous, although they do tell you something. I'll
get to that later.

Now what's wrong with Morel and Anderson? Well, there are two basic things that
are wrong. One, they use the Coulomb potential for the interaction. It is well known
from the theory of metals that this potential is too strong and that a pseudopotential is
much better. I have used the first approximation to this pseudopotential, just taking the
core repulsion into account. You know that an electron can't get into an ion because of a
strong repulsion there. The electron is not really free to move throughout the lattice.
The equation V = -ze 2 /r applies everywhere except inside the ion. You can take care of
the problem very easily by putting on a delta function potential as

V = - r + 88(°).

This actually reproduces practically all of the aspects of the more accurately calculated
pseudopotential that you need for superconductivity. The reason is that the effects of a
better pseudopotential theory are felt at very large momentum transfers which never oc-
cur in superconductivity. You don't get momentum transfers greater than 2kf.
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Secondly, Morel and Anderson considered only one Brillouin zone for normal metals
and an average over one higher-order zone for polyvalent metals. We have lots of zones
contributing, and for most materials this gives you a much larger contribution. Thus,
the reason they got answers that look at all reasonable was the fact that they had these
two more or less compensating errors. They used an interaction that was too big, but
then they didn't take the whole interaction, which reduced the error. I'll show you some
of the results later, and you will see what kind of numbers they get.

Well, what goes into the calculation of the transition temperature? I am using the
Eliashberg equation. This gap equation is isotropic. Therefore, since the anisotropy has
been thrown out of the problem, why put it back now? The next assumption is that we
have spherical Fermi surfaces and spherical Brillouin zones, i.e., I will take the spheri-
cal approximation for the Brillouin zone.

Now, we also have to take into account in some realistic manner the reciprocal lat-
tice and the high-order Brillouin zones. After all, what are we doing when we change
electron concentrations, especially if the lattice parameter remains constant as it
strictly does with lanthanum selenide and as it more or less does with tin telluride? We
are shrinking the Fermi sphere with respect to the Brillouin zones and, therefore, con-
tinuously changing the ratio of normal to umklapp processes. You therefore can't expect
to get any kind of a realistic answer if you assume just one or the other. Let me draw a
picture:

k

-

I will represent the Brillouin zone as a solid circle, and one reciprocal lattice vector
away I draw another zone. In the spherical approximation these zones overlap. I can
draw several other zones as shown here. Now, let us draw in the Fermi surface as a
dotted circle. If the electron is in a state represented by the wave vector k it can then
be scattered to a new state k '. If V lies in the normal zone, there exists a phonon of
wave vector q of the required size to have k = k' + q. But if the scattered state k'
lies outside the normal zone as shown for kV, I must make use of a reciprocal lattice
vector and hence k = k" + q' + K. Now it is just a geometry problem to figure out the
various phonon processes. You know how far you can vary the angle between k and k'
and still stay in a certain zone -it's just determined by the reciprocal lattice geometry.
That's no big deal to solve. It amounts to knowing the size of the Fermi wave vector, the
Debye wave vector, and the reciprocal lattice structure. So, this is done and is the sec-
ond thing I have included in the calculation. Although it is a jellium model, I have put the
reciprocal lattice back in. That is, the matrix elements for the transitions are jellium
matrix elements. They depend just on the magnitude of the momentum transfer- I k-k V1

This is in accord with deformation potential theories and is not really a very serious
approximation. Now when you do this calculation, things are very simple. You have only
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one integral over angle involving the phonon transfer. As a matter of fact, if you want,
you can do this integral analytically although the result comes out to be terribly large
and not very informative, so it is just as easy to do it by numerical integration.

The one other basic assumption I have used is that of a jellium phonon spectrum.
This is the weakest part of the theory and we'll talk about the problem a little bit more
later. However, the jellium phonon spectrum is renormalized by the Coulomb pseudo-
potential. It is not then strictly jellium. The point is that the spectrum looks something
like this (solid line):

t -

qe qD

We can normalize this spectrum so that either the slope at q = o or the point q =qD
that is, the velocity of sound or the Debye frequency, comes out to be right. We are,
however, still using a spectrum of the jellium type, which is certainly not valid for all
materials, and you will see some of the consequences later. Just a hint, I predict that
the transition temperature for lead is 10-34, but the jellium spectrum is clearly not good
for lead. By the way, that's with no corrections and no adjustable parameter - listen,
anybody will believe that lead has at least a transition temperature of 10-34.

Now, we want to test the theory, so what kind of tests do we have? The first one I
used was lanthanum selenide which was actually the impetus for my calculations to begin
with. From all the measurements we have so far this material appears to have elec-
tronic properties that are really understood. Lanthanum selenide exists all the way from
La3Se4 to La2Se3. Now if you take the normal valences of these materials, triple plus
for lanthanum and double minus for selenium, you find for La3Se4 that you have nine
electrons for La, minus 8 for Se, or one electron/formula unit left over to go into a con-
duction band -a very simple-minded model -while for La2 Se3 you have 6 minus 6 or 0,
and it is an insulator. In fact, you can write this material La3-x[ ]xSe4 where [ ] are
vacancies in the lattice and 0 < x < 1/3. On this simple model, then, you'd say that the
carrier concentration varies as n = n,(1 - 3x), where all you need to calculate now is noI
which from the lattice parameter is found to be no = 5.4 x10 21. Now the reason you only
need the lattice parameter is that it is constant for the whole range of x. As accurately
as we have measured x-ray diffraction, the lattice parameter is constant. This is very
nice because starting out with the electron concentration which, although not large com-
pared to metals, is still reasonably significant, you can go all the way down to zero,
and without a lattice parameter change. This indicates that metallic binding must be
negligible in this material since the structure and lattice parameter don't change. These
electrons are probably really free because there is no great interaction with the lattice.
Well, we have done Hall effect measurements in these materials and find exactly this no
for La3 Se4 and just the (1 - 3x) behavior of n.

That's nice. Now, the next thing we looked at was the temperature independent sus-
ceptibility x as a function of measured carrier concentration, and there you get some-
thing that looks like this:

48



"FREE-ELECTRON-LIKE" SUPERCONDUCTORS

i 4  n1i3

x //

We haven't gone all the way, but it is a fairly nice straight line. If you fit a straight line
to this data, and extrapolate back toward n = 0, you find that this diamagnetic suscepti-
bility is within 4% of the diamagnetic susceptibility calculated for the insulating lattice
just using the Landolt-Bornstein values for La++ and Se--. From the slope of this
curve you get an effective band mass equal to 1.3, a very nice value for something you
would call free electrons.

Then you can measure the specific heat and get m*, the specific heat effective mass
which is equal to the band mass mB, times 1 + K. So you measure X to get mB and
measure specific heat to get m* and OD. Then you plug that in McMillan's formula with
a calculated ,2*,, and get just the Tc observed for this material. So the whole thing hangs
together very nicely. This is really a free-electron-like material.

One problem in this thing is that lanthanum selenide is crystallographically very
complicated. It is a thorium phosphide structure, which is basically body-centered cubic
but contains, unfortunately, 28 atoms per unit cell. The assumption there is that we take
one phonon band. There are three times 28 bands around, but if you assume all the rest
to be way above the lowest band then, since the interaction K is proportional to q 2 /wq2 ,

the correction of all these higher bands is on the order of 10 to 15% provided one of the
higher bands doesn't come way down (dotted curve on dispersion curve figure). If this
were to happen, I'm in trouble, so I make a very nice assumption -it doesn't happen!

The parameters involved are the following:

Z, aC B O, 6D, A, and a

The valence Z is defined essentially as the number of electrons per primitive unit cell.
This is consistent with how you usually define valences for elements. a,, mB, OD, MB,
and a- are the lattice parameter, the band mass, Debye temperature, the pseudopotential
core repulsion parameter, and a correction to the phonon frequencies. I mentioned that
we can correct the phonon frequencies to give the right slope at q = o or the right inter-
cept at the band edge. We do this by multiplying the integral by the square of ar, which
is equal to the jellium sound velocity over the measured sound velocity or the maximum
jellium frequency over the Debye frequency. Now, do we know these parameters. Well,
we know Z because we know the carrier concentration and a,, which gives us Z. We
know the band mass, we have measured that. We measured the Debye temperature. We
calculate a by correcting by the Debye temperature, so the only thing that is unknown is
8. Well, as I mentioned before, we'll fit P3. That is, I am going to determine /3 by fitting
the theory to the T, curve at La3 Se4.

Now, we can see that this is on Fig. 1. Here are the experimental points. The point
that I fitted is not on the curve for some anomalous reason, but here are the rest of the
experimental points and the theoretical curve for T, vs n. It is really quite a good fit
for something this complicated. There are some very interesting things. Unfortunately,
we have an experimental sad story. We haven't gotten our dilution refrigerator working,
but there are some interesting things that might happen out at the low T0 end. It turns
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out the theory predicts a little bump. This may be an artifact of the calculation, due to
the fact that I am assuming spherical Fermi surfaces and spherical Brillouin zones, or
it may be real. In any event, one would like to look for it, and although I was hoping to
look for it sometime in the last three years we haven't been able to do it because of
technical difficulties.

Now let's look at what the theory predicts for the behavior of T, as a function of the
other various parameters. Figure 2 shows the behavior as a function of the valence.
You can expect this variation to happen because the valence essentially determines the
ratio of the Fermi wave vector to the Brillouin zone vectors. In fact, that is exactly what
itis, 2kf/qD= (4Z) "', so Z determines the overlap with the high-orderBrillouinzones,
and therefore determines how much umklapp contribution you get. But you notice it is
flattening out. It is not increasing continuously. That's because as you start to overlap
higher-order Brillouin zones you do get an increased contribution. As you keep going,
however, you do keep picking up higher zones, but some of the zones in the middle start
dropping out because the Fermi surface completely encloses them and you don't get any
contribution from them. So eventually it is going to tail off, as the figure shows.
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Figure 3 is a plot of what happens when the lattice parameter varies, with the va-
lence being fixed. Again, you see a behavior that is tending toward a maximum. Figures
4 and 5 show Tc as a function of band mass and as a function of the pseudopotential pa-
rameter a, and again the same thing is happening. You see, by the way, in Fig. 5, the
error that Morel and Anderson make for lanthanum selenide. This a is a dimensionless
parameter proportional to A. The a for lanthanum selenide is 0.08, and they, of course,
used an a of zero, so you can get an idea of the error.

Figure 6 is essentially the dependence of Tc on phonon frequency. I put it as a
function of cr which basically is the phonon frequency. The solid curve includes just the
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dependence on X, while the dotted curve includes the fact that the Debye temperature, of
course, depends on the phonon frequency. The dotted curve shows a maximum, which is
exactly what McMillan has talked about. He has shown that there should be a maximum
Tc as a function of phonon frequencies. This is because you'd like a very soft lattice for
the electron-phonon coupling so that when an electron comes along it can really move the
ions -then they can transmit this to another electron. However, if you do this the Debye
energy is very small so that the number of states available, since you can only scatter to
states at the Fermi surface ± the Debye energy, starts getting very small. Then although
each interaction is very, very large, there are too few of them.

Now, in addition to this maximum, you notice that there was an asymptotic tendency
to a maximum for all the other parameters. You can understand this tendency for a
maximum in two ways. One, if you examine the kernel of the integral it is always of the
form a/(a + 1); so you tend to a maximum by just letting a get very large. So, in addi-
tion to the fact that McMillan has shown that making X very large due to the phonon
properties doesn't get you very much, making it very large period doesn't get you very
much, simply because of the fact that it seems you can't do it.

There is another argument for that. If you make the electron-phonon-electron inter-
action very large, then you are also making the phonon-electron-phonon interaction very
large. Eventually it is going to get so large that it is going to distort the lattice, and you
are going to have some other lattice structure with a smaller electron-phonon interac-
tion. In tact, this has been noticed in the P3-tungsten structures. People have tried to get
high transition temperatures where, by extrapolating, they are indicated at certain com-
positions. As that composition is approached, all of a sudden a phase transformation
appears, a certain concentration will give a high Tc but you can never get there because
of the phase transformation.

Well, formally you can take the theory and do this. Make the approximation imposing
the maximum condition on X, and the remaining problem is just geometry. You have to
evaluate an integral of the form f x dx, which even an experimentalist like me can do.
That is, it turns out to be this integral over limits that you determine by the geometry of
the reciprocal lattice. You can see the results of that on Fig. 7 where I do show them as
a function of the valence. Now you can see that the valence is the only thing that is im-
portant because the valence determines the geometrical factor. It tells how much of the
high-order Brillouin zones or how much of any Brillouin zone overlaps the Fermi sur-
face. The figure shows X going out to some maximum on the order of 1.7. I think this
is for an fcc structure. It changes a bit depending on what the structure is, but not
really very much.

You can see what this predicts. Let's take the best case. The parameter a I was
telling you about is just the screening constant over the Fermi wave vector a = k 2 /4kf2

We let that get very much greater than one.
_ _ _ _ _Let's assume that to* is equal to zero. Then

ac ,the transition temperatures one gets are on
1.6 - Fig. 8. You see that there is some dependence

on crystal structure, although not too much.
1.2 /A* = o is an ideal case, which, of course, is

not realizable. Let's take cases which are
.8 /realizable. I mentioned to you that ,I* is the

order of 0.1. Sometimes you can get a little
bit lower. In the best materials, like the high-

o, temperature superconductors, k S2/4kf is of
3 4 5 6 the order of 1 -not very much greater than 1.

Figure 8 shows what you get, which is re-
Figure 7 markably close to values that are found from
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Maximum transition temperature for

four crystal structurcs

Figure 8

maximum T,'S. So I don't really think that the metallurgical approach is going to get us
very much unless there is a new interaction involved. This is predicated just on the
electron-phonon interaction. If you say that you can mediate it with some magnetic in-
teractions or that you have the sort of interaction Bill Little has in mind for organic
superconductors, then all bets are off; but, so far, we have no case of superconductivity
that can't be explained on the electron-phonon interaction, and we have no indication of
any other interaction giving superconductivity. So until this comes along I think this is
the best we can do.

Now, what's the next test? I'd like to extend this approach to something else and, in
fact, try to go from lanthanum selenide for which the electronic properties look very
simple to something a bit more complicated. Well, the natural thing would be to go to
the elements. I have mentioned part of the. difficulties there. However, again, I will
point out that I am looking for functional dependencies. Is there a functional dependency
that can be used for the elements? Yes, there is -the pressure dependence. I want to
look at the pressure dependence of Tc. If you look at the pressure dependence in simple
metals, not transition metals, T, is a function of pressure, something like the figure:

P

The question is, can you account for that? Well, again, looking at the parameters that
enter the theory we have the valence, which is well known, and the lattice parameter,
which is directly measurable (with tables given in many books). The band mass is as-
sumed independent of pressure. This is probably not a bad assumption as long as you
don't have a Fermi surface near a Brillouin zone boundary. That is, if you find that the
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Fermi surface is moving through a zone boundary then mB is going tb be a strong func-
tion of pressure which, in fact, is probably the case in thallium. For most metals that is
not a problem. We will assume /8 to be independent of pressure because, after all, 8
only tells you how much of an ion core is forbidden. Unless you compress the sample to
nuclear densities you dontt expect /3 to really change. And the other two parameters are
SD and cr which, of course, do depend on pressure and, in fact, in similar ways since
they are both phonon frequencies. Well, to take care of this pressure dependence we go
to the simplest approximation -the Grineisen approximation where

a(In c&)/a(In V) = -y

Essentially what that says is that c varies as V-7. These parameters have been meas-
ured, so the data exist. Unfortunately, the accuracy on these measurements is not very
great. There is a reasonable amount of scatter, and it turns out when you apply the
superconductivity theory that the error on this measurement of y is greater than the
scatter in the data of the pressure dependence, so we will turn it around and use the
theory to fit y and see if y is reasonable.
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Figure 9

Figure 9 shows the pressure dependence of aluminum. y = 1.92 comes out to be
right in the range of the other measured values, which I think for aluminum go between
1.8 and 2.2. So it is a reasonable value. So if you believe in the theory this perhaps is
the best measurement of y available. So, this is a very nice fit and I am reasonably
happy with it. I have done it for lead, cadmium, zinc, tin, and indium and the results are
all pretty much similar. There are a few little anomalies here and there, but I think I
understand them. In general, things work out very well.

You can go further on this, and you can say "When is T, going to zero?" We have a
theory now which supposedly goes over the whole range of pressure. The only real ap-
proximation here is the fact that the Grfineisen constant is assumed to be independent of
pressure. That is certainly not true, but it's not bad for many different metals. Figure
10 shows a table of values for the pressure at which the predicted T0 goes down to 5
millidegrees, which is about zero for experimentalists, and when it really goes to zero
you can see that there are two interesting cases here -those of zinc and cadmium.
Their pressures are perhaps within the measurable range. I am hoping somebody will
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Critical Values and Pressures

Tc = 5 x 10-3 0 K | T 0 0 cK

- AV/V P(kAtm) - AV/V I P (kAtm)

Al 1.92 0.143 200 0.329 860

Pb 2.11 0.425 1200 0.587 5000*
2.27 0.387 900 0.543 3400

Zn 2.65 0.1Z2 120 0.290 660

Cd 2.35 0.125 92 0.317 700

In 1.92 0.429 1600* 0.758 50,000*

Sn 1.65 0.297 410 0.540 3800
1.79 0.269 320 0.484 2400

*Extrapolated values from existing v = f(P) data at lower pressures.

Figure 10

pick this up and try it. In fact, it may be measurable for aluminum at 200 kiloatmos-
pheres.

Now what about the transition temperatures of the elements per se ? In the pressure
case, I just chose the zero pressure value of cr to be that value which gave me the right
temperature. You can actually calculate T, here if you assume the jellium spectrum. If
I get values like 10-34 K for Pb you might wonder what value this has. It does have one
certain value. It predicts a lower limit for T,. The jellium spectrum almost always
overestimates the phonon frequencies for nontransition metals. As a matter of fact, if
you calculate the correction factors using the Debye temperature and the velocities of
sound, these u's are always greater than one. If you now calculate for a number of ele-
ments that are not superconducting you will at least get a lower bound for the possible Tc.
Now, this lower bound is only good if it shows you something. I'll show you it does.

First, I promised to show you what the Morel and Anderson results look like. Fig-
ure 11 shows the A and T, from Morel and Anderson, and the significant thing is, I
think, that you can see by comparing with the experimental TC that their results are
sometimes too big and sometimes too small. Here are the Tc calculated in the present
work with no further approximations besides using jellium spectrum (directly -not nor-
malized) as I promised you. Ohl excuse me, I lied to you. It's 10-35 OK for Pb, but the
interesting things are these numbers 0.3 and 0.5 millidegree for Li and Rb. The 60
microdegrees for Cs is a little tougher. (The barium result is not reliable since we do
not have a pseudopotential in this case.) So, if these calculated T, are really minimum
temperatures, those are the materials to look at for superconductivity at very low tem-
peratures.

It is very interesting that Carbotte and Dynes looked at Na and K which, unfortu-
nately, are the bad ones to look at. They have very low transition temperatures, but
since Carbotte and Dynes did such a good calculation and needed so much information,
they were stuck. They needed details on the phonon spectrum that have not been obtained
for these other elements. I'm hoping in the future that one can do somewhat better than
the present calculation and bring these numbers up slightly, but for three cases here it
gives you some useful information.
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M-A Exp. Present Work
Element 1 *

Li 0.3 x 10-3 .26 .14
Na .25 .083 lo-18 .16 .12
K .25 .052 1o-lo .18 .12
Rb 0.5 x 10-3  .24 .11
Cs 60x10- 6  .22 .11

Be lo-26 .10 .08
Ma .32 2.6 1 0' 34 .12 .11
Zn .25 .52 .93 10-34 .088 .087
Cd .23 .15 .54 10-34 .091 .085

Ca .27 .48 10-20 .16 .13
Ba 3 2 x 10-6 .23 .12

Al .33 5.5 1.17 o- 34 .115 .102
In .34 1.9 3.40 10-16 .125 .090
Ti .32 1.5 2.39 10-35 .095 .084

Sn .34 3.4 3.73 101 .137 .089
Pb .40 3.9 7.22 10-35 .102 .093

Figure 11

Now, just to keep in the swing of things, how far can we push this, and can we extend
it to semiconducting superconductors? I already promised you that I am not going to talk
about strontium titanate but I will talk about tin telluride. Now, John Hulm talked to you
about what is basically the application of this theory to tin telluride, but I'd like to ex-
pand on this a little bit. One, tin telluride is really not a free-electron metal. If you
look at the work of people who have measured the band properties (Tsu, Howard, and
Esaki, for example), they have curves of the Fermi wave vector and the Fermi energy as
a function of apparent electron concentration, (l/e)R 77 , where R77 is the Hall coefficient
at 770K. They have results over a reasonably large range of electron concentrations,
but not the whole range that has been measured for superconductivity. So I take their
curves and perform what you might call a "French curve" analytical continuation. I just
continue them out to cover the necessary region to get all the parameters I need. This
gives kf and Ef. The density of states is just the slope of the Ef curve, so you have all
the parameters necessary. The theory doesn't need the parameters I listed previously,
Z, a MB, OD, A, and o-. Really what enters here is kf, Ef, N(O), SD, A, and a. It is
only when you take an effective mass approximation that you reduce them to the first set.

In the case of tin telluride you clearly can't do that because one of the bands that
John Hulm discussed is linear! You clearly can't use an effective mass approximation
in the normal sense for a linear band. But you don't have to. You can use these numbers
for k f, E f , and N (0) directly and calculate Tc. I've done this, and this doesn't give
much of a better agreement than the simple theory. What it does, I think, is straighten
out the curvature. The simple theory has the curvatures even going in the wrong direc-
tion at the lower end -this I think straightens out the curvature a little bit but it still
doesn't do much for the Tc.

Now you look at umklapp processes. Do these really contribute? The answer is no,
because the real kf is actually smaller than the free-electron kf and the Fermi sphere
for tin telluride is very small. There is no overlapping with the higher zones so there
are no umklapp processes.
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Now, what's left? Well, I think we all know what's left. It's the intervalley scatter-
ing. I can also take that into account in the McMillan formula in a rather ad hoc manner.
I have the density of states, and I will assume an interaction parameter of the BCS type.
Now I'll let X become A for the normal processes, plus some N (O)V for intervalley
scattering, and I can again do what I did for lanthanum selenide -fit T, at some point to
get V. This is in the spirit of the Allen-Cohen calculation where they have done tin tel-
luride and germanium telluride.

I I I I I I I
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+HEIN et al.
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0.4
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Figure 12

The results for this calculation are given on Fig. 12. Notice that the curve fits well
for the dark dots for the silver-doped samples way up at 1.20K. The light dots for the
data of Hulm, et al., and the Hein values all fit rather nicely.

Well, so what can we say that I have shown, if anything? The free-electron-like
theories seem to work pretty well to give you something which you can use for extrapo-
lations, and it is an easy theory to do calculations. Now, what does free-electron mean?
Well, it means these things: (1) that we are in the renormalized Eliashberg region, (2)
that we've taken a spherical Fermi surface and spherical Brillouin zones, and (3) that we
have a renormalized jellium phonon spectrum. Any of these things can be improved.
They add some complications depending on what you want. The theory as it stands now
seems to be pretty good.
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