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ABSTRACT

Research into the strength and failure of composite materials is benefited
substantially by the development of tensor manipulation techniques in complex
coordinates which insure a problem representation that is compact, simple, and
invariant. Such techniques are developed through the introduction of several
new notations and integer functions. The techniques are then applied to prob-
lems connected with analytic formulations in composite materials research, such
as basic formulation of anisotropic plane-linear elasticity theory, the elastic con-
stants of laminated composites, graphic representation of tensor transformations,
and tensor-polynomial approximation functions to yield surfaces. The techniques
are general and can be used whenever two-dimensional tensor formulations are
desired.
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NOTATIONS
(in order of occurrence)

contravariant Cartesian components of the position vector

contravariant complex components of the position vector

Fl, always

partial derivative operator wrt (with respect to) the contravariant
components of the position vector, which transforms as a set of
covariant components

SUV components of the metric tensor in complex coordinates

determinant of the contravariant metric tensor guv

w Z(xn) Cartesian components of the general tensor, contravariant wrt the
indices u... v and covariant wrt the indices w...z

Vw z(zn) complex components of the general tensor, contravariant wrt the
indices u... v and covariant wrt the indices w...z

use of the complement notation, where u is the set (1,2) and iT is
the set (2,1)

complex conjugate of the complex components Tu

= ¢(xn) real-valued Airy's stress function

Cartesian components of the alternating tensor (e1l = e22 = 0,
e12 = 1, e 2 1 = -1)

complex components of the alternating tensor

covariant components of the strain tensor

p integer function, p(1) = 1, p(2) = -1

covariant components of the covariant differentiation operator which is
equivalent to /axn in Cartesian coordinates, or a/azn in complex coordinates

angle of counterclockwise rotation of the Cartesian reference frame

s integer function: s(u ... ) = p(u) + ... + p(v)

normal notation, used to denote the transformation ip(u)Tu(zn) =
Tu(wm) = Tu'(zn), where wm are the complex components of the
position vector when the reference frame is rotated clockwise 900
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set of components which transform as a vector wrt both k and Q

Section 3

TuP(zn)

Sst
up

Ds(zn)
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Stsutp

Cst

CkVu(zn)

(zn )

Tu(zn)

'Yp

Up

Section 4

kia

cup
st

u

k xu

contravariant complex components of the stress tensor

complex components of the material compliance tensor

complex components of the displacement vector

node of a directed graph, which stands for the components TuP(zn)

directed edge of a graph, which connects two nodes and stands for
the components of transformations Sst to the right and CuP to the
left UP St

nodes with edges connected internally stands for a node whose value
is the sum of the values obtained by the several paths

double circle denotes that the value of the node is to be taken as
the zero element of Vu(zn)

a zero-order tensor which provides the zero element for the com-
patibility condition

complex components of the stress vector

complex components of the tangent vector to the arc across which
the stress vector acts

normal vector to the arc across which the stress vector acts

differential operator, ip(k)alazk

complex components of the material stiffness tensor, the inverse of
the material compliance tensor Su.

the characteristic vector of the polynomial differential field equations
for the theory of plane linear anisotropic elasticity

a set of characteristic vectors which transform as a vector wrt k
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Section 6

zU, Wu

T

peis(u)O

P Q

Section 7

f(TUP)

F, Fup, Fupst

af

thickness of a laminate

thickness of the ae lamina which is a lamina of the laminate whose
thickness is Ot

angular displacement between the reference frames ayi and xi

alternating angle of layup of a laminate

20

complex components of vectors not necessarily transformable into
Cartesian coordinates

general tensor whose complex components are TU . vw x(Zn)

polar representation of the complex numbers, zu, with magnitude
p and argument s(u)O

complex values of two tensor polynomials in T

a second-order polynomial in TUP used to approximate a yield
surface

coefficients of the polynomial

volume fraction of fibers in a fiber-reinforced-resin composite
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TENSOR MANIPULATIONS IN COMPLEX COORDINATES
WITH APPLICATIONS TO THE MECHANICS OF MATERIALS

1. INTRODUCTION

In the formulation of solutions to mechanics problems there are two accepted steps:
(1) attempt to formulate the problem using the tensor calculus to obtain the compactness
of the representation and the invariance with respect to allowable coordinate transformations
of any resulting equations, and (2) once having the tensor formulation of the problem, seek
a coordinate transformation which will render the important transformations of the problem
diagonal (a coordinate system such that the tensor components under the tensor transfor-
mation are carried into new components that are scalar multiples of the old components
as opposed to sums of scalar multiples of all the old components). Hence, when successful,
the problem representation is compact, simple, and invariant.

This report is restricted to two-dimensional problems, for which it is shown that tensor
manipulations in complex coordinates when enriched by several new notations and integer
functions affords a powerful means of accomplishing simple tensor formulations of mechanics
problems. Section 2 discusses tensor manipulations in complex coordinates that is different
from the usual approach. Particularly emphasized is that not all tensor quantities in com-
plex coordinates are transformable to Cartesian coordinates. Sections 3 and 6 are appli-
cations of the formulations of Section 2 to important problems of mechanics. Section 3
discusses the differential constraints of plane linear anisotropic elasticity in which the
structure of the relationships is enhanced through the graphic presentations of exact se-
quences. Section 4 discusses two-dimensional homogeneous partial-differential equations
and introduces the use of the characteristic vectors in place of the usual characteristic
roots to obtain a hitherto unobtainable tensor formulation of the problem. Section 4
further reveals that such formulations are not generally obtainable in Cartesian reference
systems. Section 5 introduces an exceptionally compact and simple expression for the
elastic constants of a laminate of anisotropic sheets in terms of the constants of the indi-
vidual laminas using the diagonal rotation tensors of Section 2. Section 6 develops a
graphic representation of the effect of tensor transformations on input vectors that allows
for the first time complete control over visualization of such operators. In connection
with the graphic representation, two types of characteristic vectors are considered: vectors
which come out parallel and vectors which come out perpendicular with respect to the
input vectors. The first are the characteristic vectors of homogeneous polynomials, and
the second are the classic eigenvectors. Section 7 presents the use of truncated high-order
multivariant complex tensor polynomials as desirable candidates for functions approximating
yield surfaces in a popular approach to modeling the strength of composite materials.
Section 8 summarizes Sections 2 through 7 and outlines some of the progress toward ex-
tending the tools developed in this report to finite-dimensional spaces in general.

This report assumes a fair amount of familiarity on the part of the reader with all of
the subjects presented here insofar as the usual approach to these problems goes.
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As shown in Section 1.9 of Green and Zerna, the metric tensors and their determinants
then follow as

{guv} =[1 °] (2.3a)

V= [ 2 (2.3b)

det {guv} = (-i)2 -1 = 1g, (2.4a)

det {guv} = (i) 2 = -1 = g. (2.4b)

The metric derived from the Cartesian system by Eq. 2.2a is extended to those tensors
in the complex system not transformable by Eq. 2.2b into the Cartesian system. An ap-
parent disadvantage of this is that vectors of nonreal length can occur, but such occurrence
is actually an advantage in that tensors not transformable to Cartesian coordinates can be
distinguished.

Associated Tensors and the Complement Notation

The associated tensors (Section 1.10 of Green and Zerna) defined by the relationship*

Tuwz = guvTv.z (2.5a)

when using Eq. 2.3a become

(i TW .. Z (T2w... z
1 T2W .. zS iT1 w...zX ~~(2.5b)

By defining a complement notation such that if u is the set (1,2), then _u is the set (2,1),
Eq. 2.5b can be written as

Tu . z = Tw ...Z. z(2.6)

Similarly for lowering an index the relationship is

TUW- ... = Tuw...z (2.7)

Tensors Not Transformable to Cartesian Coordinates

The associated tensors and the complement notation provide a ready means for de-
tecting which tensors are transformable to Cartesian coordinates (that is, for finding the
conditions on the complex components of a tensor such that under the transformation
2.1b the components become real). When the xu are real, the relations

*If an index appears one or more times on only one side of an equation, then a summation over the
range of the index is implied.

3
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= (X1-iX 2 ) z 2 (2.8a)

and
1 +ix 2) z 1 , (2.8b)

where i means the complex conjugate of z, are true. Using the complement notation,
Eqs. 2.8a and 2.8b become

zu = zu (2.9)

For a general tensor TS... tu. (zn) the corresponding statement to Eq. 2.9 is that

Ts... tk = 2 = Ts - (2.10)

is true when Ts.. tu. (zn) is transformable to Cartesian coordinates. This is easily shown
by the following argument. Under the transformation 2.1b we have that

Tu . w z(xn) = aXU ... - ... T (Zn). (2.11)
azS F~tW ax 3z k.. 

When the xn are real, it follows from Eq. 2.9 that

aXU aXU

azv azX (2.12)

so that the complex conjugate of Eq. 2.11 is

U .. w .. ~x) aXU axu azk 73z2 -Z)

T u U z~xn)= aZ ... azT axw . aXZ Ts tk (2.13)

When the tensor components are Cartesianand hence real, the left sides of Eqs. 2.11 and
2.13 are equal. Substituting - s, t - t, k -* k, ..., Q - into Eq. 2.13 and equating the
right sides of Eqs. 2.11 and 2.13, Eq. 2.10 is obtained.

The Alternating Tensors and the p Function

As given in Section 7.5 of Green and Zerna, the Airy's stress function O(Zn) for zero
body forces is defined in terms of the stress tensor TUP(zn):

TuP = eusept 0 st, (2.14)

The alternating tensor ers is obtained from the tensor e of the Cartesian system by the
transformation (Eq. 1.7.14 of Green and Zerna)

ers = ers = ers. (2.15)
)1rg
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Since r and s must be either 1 or 2 and r cannot be equal to s, an obvious simplification
of Eq. 2.15 is obtained using the complement notation, so that Eq. 2.15 becomes

ers = err s = ierr s. (2.16)

Since err is +1 or -1 depending on whether r = 1 or r = 2, a further simplification can be
arrived at by introducing the integer function p(r) defined as

p(1) = + 1 (2.17a)
and

p(2) = -1. (2.17b)

Using Eqs. 2.4b and 2.17, Eq. 2.16 then becomes

ers =-ip(r) 5rs (2.18)

The Airy's stress function now becomes

Tu = - p(u) p(P) 0 lup. (2.19)

The p function has a further use in simplifying the compatibility equation (Eq. IV-33
of Pearson (1959))

esu etv Est I st = 0 (2.20)

In terms of the p function and complement notation Eq. 2.20 becomes

-p(s)p(t) Est I-F = 0. (2.21)

Further simplifications are possible when the rotation transformations are introduced.

Rotations and the s Function

When the Cartesian coordinates are rotated through an angle 0, the derivative of the
transformation is given by*

l ayu _ [cos 0 -sin 0(

3xu sin Cos 2.2

and the corresponding derivative in complex coordinates is

awU = azu axt ays (2.23)

aZV axs azv axt

Using Eq. 2.2a, Eq. 2.2b, and the p function, this becomes

*Covariant differentiation wrt contravariant components of the position vector produces covariant com-
ponents, so that the tensor ayu/axv is contravariant wrt u and covariant wrt v.

5
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aW - Lo ] el e. (2.24)

The general tensor TU.vw .. z(zn) becomes under the transformation 2.24

Tuvw...z(Wl n.. = T- aW k .. aZ2 Ts...tk Q(zn)

(2.25)

= ei[P(u)+--+P()+P(w)+--+P(z)OTu ... v V

If the integer function s is defined by

s(u ...v) = p(u) + ... + p(v), (2.26)

then Eq. 2.25 becomes

Tu vw z(Wn) = eis(.. w---z)OTu...v wz(zn). (2.27)

Of particular interest is the case for 0 = ir/2, which corresponds to rotating the
coordinate system clockwise through 900 or by rotating the tensors counterclockwise by
900. For this case Eq. 2.27 becomes (using the fact that e-iP(u)IT2 = ip(U))

T u w ... v W... (wn) = jlp(u) ... p(v)p(Uj)-p(Q)Tu...w (zn)

(2.28)
= T I.. V Q (Zn )

where the symbol i is used to indicate the transformation

Tu1 .. L = ip(u)Tu--- (2.29)

By use of Eq. 2.29 and associated tensors, Airy's stress function as defined by Eq. 2.19
can be written as

TUP - U Iulp' (2.30)

Similarly the compatibility equation 2.22 becomes

Est 1s tl = (2.31)

3. DIFFERENTIAL CONSTRAINTS OF PLANE
LINEAR ANISOTROPIC ELASTICITY

The differential relationships of plane linear elasticity are represented by the graph
of Fig. 1. The linear constitutive relationship of the state of stress, TUP, and the state of
strain Est is given in the figure by the sequence

TUP (zn) Sst ESt(Zn)

UP up _ (2) (3.1)

6
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Tu(Zn)

Fig. 1 - Graph of the relationship and dif-
ferential constraints for plane linear elastic-
ity of anisotropic bodies. Node numbering
will be the same throughout the text. The
half arrow indicates in which direction the
transformation written on that side of the
edge takes place. In addition the value of
a node is to be taken as the sum of any
edges which are connected within the node
symbol.

and the strain displacement relations are given by

It Ds(zn)

(3.2)

which is read as

Est = It Ds + Is Dt

= Ds It + Dt Is. (3.3)

The compatibility condition given by Eq. 2.31 is represented by the sequence

I Isi it'
ESt(zn)

-)' (3.4)

where 4(zn) is a zero-order tensor which provides the zero for the compatibility condition,
and where the double circle indicates that the value of the node is to be taken as zero.

Vu(Zn)

Ds (Zn)

Dt(Zn)

7
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The Airy's stress function, (zn) is given by the sequence

O(zn)

Qi 
1u pi

using the previously derived form given by Eq. 2.30.

The equilibrium conditions are given by the sequence

TuP(zn) jU()~
Ip

Here vU(zn) is the first-order tensor, which provides the zero vector for the relationship.

The last sequence of Fig. 1 is the stress-vector- and stress-relationship given by

TuP(zn)

The-vector Yp is the tangent vector to the
And is by Eq. 2.28 the normal vector

The character of the sequences

Q

and
lit'

iU tI

IsI Iti

api Tu(zn)

-Q (3.7)

arc across which the stress vector TU(zn) acts.
to this arc.

VU

Ip
(3.8a)

Est It Ds

(3.8b)

should be noted. Such sequences are called exact. An exact sequence is one in which
the image of a node under the edge transformation connecting that node to the next node
is the kernel of the next node, where the kernel of a node is the domain of that node
which transforms into the zero element of the next node (the identity element for the
node). Such sequences have been observed to occur in many areas of mathematical analysis.
The occurrence of exact sequences in the formulation of elasticity does not seem to have
been pointed out before; use should be made of it in stating clearly the structures of con-
tinuum mechanics. For example, given the equilibrium condition, it is obvious from the
notation what the stress function definition should be in order that the stress function
definition and the equilibrium conditions form an exact sequence. The property of an
exact sequence that is used here is that in the sequence 3.8a any path covering the edge
(1,2) insures that the edge (2,4) maps node 2 onto the zero element of node 4, and sim-
ilarly in the sequence 3.8b any path covering edges (5,7) and (6,7) insures that node 7
maps onto the zero element of node 8.

TuP(zn)
(3.5)

(3.6)

8
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4. PARTIAL DIFFERENTIAL EQUATIONS

In continuation of the theory of linear anisotropic elasticity started in the last section,
the governing fourth-order partial-differential equation of the theory (Eq. 4.3) will be con-
sidered here in detail. That the discussion applies directly to any-order homogeneous
partial-differential equation is obvious if the polynomial of Eq. 4.3 is converted to an nth-
order polynomial by introducing additional indices and vectors I 

When the sequences 3.8 are connected by the edge (2,7), two paths through the graph
satisfy both the compatibility and equilibrium conditions. They are the paths (1,2,7,8) and
(5,7,2,4). The first gives the stress-function formulation, and the second gives the displacement-
vector formulation. The paths are represented by the differential equations

sSt O(zn) u 1 Pi ti = 0 (4.1)
UP

and

CP Ds(zn) It = 0 (4.2)

formed by taking the product of the edges connecting node 1 to node 8 and nodes 5 and
6 to node 4. C is the inverse of Sst and use is made of the symmetry of CuP. Only
the stress-function formulation (Eq. 41) will be investigated.

The differential equation 4.1 becomes, after lowering indices and noting the equivalence
of the symbolization 0 I1Upl(K f IUi Ip

(SStup Iu I Iisl lti)k(Zn) = 0. (4.3)

Equation 4.3 is a fourth-order homogeneous polynomial in lu and can be factored into a
product of linear forms Xu luI (that is, - 1 a/az1 + iX2 a/az2), provided Xu is a vector in
complex coordinates. When factored, Eq. 4.3 becomes

(l kQxu lul (Zn) = 0, (4.4)

which can be inverted by successive integration (quadratures) to yield

kQ
O(zn) = k (Zu kQ\U) (4.5)

once it is noted that the integral of the differential equation

(XuIUI) (zn) = 0 (4.6)

is

O(Zn) = q(Zu Xu.) (4.7)

After taking the complex conjugate of 4.6 and requiring 4 to be real ( 0 = f), it is
seen that if Xu is a solution vector of 4.4, then X5 is also. A convenient way of denoting
this is by the relation

9



P. W. MAST

kQXu = RXu (4.8)

In addition the requirement that koq be real is satisfied by imposing the relationship

k0f = kQ. (4.9)

5. THE ELASTIC CONSTANTS OF
LAMINATED ANISOTROPIC SHEETS

The usual approach to computing the elastic constants (stiffnesses C.tp or compliances
Sst) of a laminate of anisotropic sheets is to assume either a constant state of stress TUP
or a constant state of strain Est through the thicknesses of the laminate.

The requirement that the stored strain energy of the laminate be the sum of the
stored strain energies of the individual laminas leads easily to the equations

otoCUtP(xl) = xtaqupJx) (5.1)

and

otoSst (f) = °tOstp(x ) (5.2)

Equation 5.1 applies to the case of constant strain through the thickness and Eq. 5.2
applies to the case of constant stress through the thickness. In these equations t is the
thickness of an individual lamina or of the laminate; the index ae to the upper left of t
and of the elastic constants indicates that those thicknesses and constants are for the ax
lamina, which designates one of all the laminas being summed, and the index 0 indicates
the composite laminate.

A general statement of Eqs. 5.1 and 5.2 is that the elastic constants of a laminate
are the weighted means of the elastic constants of the individual laminas.

The constants of Eqs. 5.1 and 5.2 are all with respect to the same reference frame xi.
Since the elastic constants in all likelihood will be available only with respect to some
preferred reference frame clyi (the ae indicates the preferred reference frame for each
lamina), Eqs. 5.1 and 5.2 can be modified to

ot0Ctp(xj) = at a8x axp aaym aayn ackck(0Yj) (5.3)
St aexyk auy axs axt 

and

otOsst (xJ) = t axs axt aaym aaYf n Skk (Cyi). (5.4)
UP aayk ayR axU axt m

When the transformations indicated in Eqs. 5.1 and 5.2 are carried out in Cartesian
coordinates, the computations can be quite lengthy. But if complex coordinates are used
and the reference frame alyi is transformable into the frame xi by a rotation through the
angle °tO, Eqs. 5.3 and 5.4 become

10
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0t0 CVf(zi) = aYt eis(UPst)"O a1CUtP() (5.5)

and

OtOSst (zi) = at eiS(stupfe0 ass(aWt ) (5.6)

These expressions are sums of only a terms each.

When the laminas are all of the same material, then the elastic constants can be fac-
tored out of the expression, giving

Oftuf(zi) = [t eis(iipstr CP(ao) 57

and

OtOSst (zi) = [t eis(iuP)" Y] S (aoW) (5.8)

A practical case is where not only are all the laminas of the same material but also
of the same thickness alt = t/n (n even) and constructed by alternately laying up the
laminas at ±0 angles from the xi reference frame. For this case Eqs. 5.7 and 5.8 become
still further simplified to the forms

°Csutp(zi) = cos[s(!upst)o] CsUP(wo) (5.9)

and

Qst (zI) = cos[s(wup)0] Sst (wi). (5.10)

For greater clarity as to the simplification effected, the individual stiffness constants
OCuP(zi) are tabulated as

oC11 = C1l (5.11a)

0C" = (cos 20) C", (5.11b)

0C" = (cos 40) C", (5.11c)

0Cl2 = C12 (5.11d)
12 12'

The neglected constants are accounted for by the symmetry relations

°CSUP = CPU = Cusp = (5.12)

and that the CsutP(z) must be transformable into the Cartesian components OCu/P(xi) is
expressed by the relationship

° OU¶P(zi) = 0C_'P(zi). (5.13)

11
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A general statement about the elastic constants of a laminated composite constructed
by alternating the layup angle = 20 of an even number of identical anisotropic sheets
of equal thickness is that the elastic constants of the laminate are proportional to the
elastic constants of the laminas and that the proportionality coefficients are one of the
set (cos 0, cos 5, cos 2) when the elastic constants are the stiffness OCUP for the assumption
of constant strain through the thickness and are the compliance OSSt for the assumption
of constant stress through the thickness, provided a complex coordinate system is used.

6. GRAPHIC REPRESENTATIONS OF TENSOR TRANSFORMATIONS
AND TWO TYPES OF CHARACTERISTIC VECTORS

The classic example of a graphic representation of a tensor transformation is the Mohr-
circle construction, familiar to engineering sophomores, which uses as an input vector to the
stress tensor the normal to a surface and returns as an output the stress vector acting across
that surface. In that construction the vector local to the origin with its end resting on the
Mohr circle is the stress vector. This vector traces out a circle as the input vector rotates
about some fixed point. Early successful efforts by the author (1962) and later by Mulville
(1966) and Wu (1970) were directed at generalizing on the Mohr-circle construction so that
the case of third-, fourth-, and in general nth-order tensors could be considered. But the
graphic representations obtained were cumbersome.

The difficulties are attributable wholly to the fact that the tensors were being con-
sidered in Cartesian coordinates. When the tensors are considered in complex coordinates,
the apparatus of Section 2 can be applied. This allows the use of a quite simple graphical
technique for representing the transformation properties of general-order tensors, including
the previously unconsidered case when the tensor is not transformable to Cartesian
coordinates.

In the case of the general tensor

Tu. v... t (6.1)

in complex coordinates, the polynomial

Tu. w . t ZV ,...z Z. ... zt = Wu (6.2)

is an operator equation, where T operates on the input zu to produce the output wu. By
ranging the vector zu over the set of complex numbers ( 1 , z2 ), the vector wu is made to
describe a locus of points which graphically represents the transformation T.

Two questions can be asked of zn: for what values of zn is wu normal to zn, and
for what values of zn is wu parallel to zn?

The condition for a normal output can be stated as

z wu = 0. (6.3)

When applied to Eq. 6.2, the polynomial

(6.4)

12
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results, which provides as its characteristic vectors (those which satisfy Eq. 6.4) the required
zn satisfying Eq. 6.3.

The condition for a parallel output can be stated as

z 1 Wu = , (6.5)

where z = -ip(u)zu by Section 2 is the vector normal to zu.

When applied to Eq. 6.2 the polynomial

ip(u)TUV... W t zzv..zwzs ...zt = 0 (6.6)

results, which provides as its characteristic vectors the required zn satisfying condition 6.5.

Equation 6.2 can be mechanized via interactive computer graphics to render a graphic
display such that the input and output vectors are displayed. Then a trial-and-error search
can be undertaken to locate those input vectors satisfying either Eq. 6.3 or Eq. 6.5.

A more useful approach is to automatically scan over some input domain for the
operator and display the locus of the output vectors. The Mohr circle for example con-
siders as inputs a rotating unit vector (or points on the unit circle in the real plane). In
addition, since it is the output relative to the input that is of primary interest, the output
vector should use the input vector as a reference frame. This is the case for the Mohr-
circle construction.

This report will consider the case of all input vectors

zu = peis(U)o (6.7)

for 0 < p < oo and 0 6 0 < 2r which are transformable into Cartesian coordinates. Sub-
stituting Eq. 6.7 into Eq. 6.4, the polynomial

Tuv... ws. t) = u (6.8)

is obtained, where n is the order of the tensor T. To display wu relative to zu rotate the
real space through the angle 0 and scale it by 1p. wu becomes then (1Ip)e-s(u)wu = vu
and Eq. 6.8 becomes

Tuv... w ... t pneis(i. WS. t) = u. (6.9)

Equation 6.9 has a simple graphic interpretation. It can be viewed as n unit vectors
eilsu... Ws ... 0 + arg(TU ...w t)] IT Ipn connected together, with each vector rotating at an
angular frequency of + 20 greater than the preceding vector.

Similarly, Eqs. 6.4 and 6.6 become

Tuv... ws... teis(u ..ivs... t)O = 0

13
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ip(u)T UV... Ws t eis(ii . Os ... t)0 = 0

Let Tk be the sum of all Tuv... W
be (for k > 0)

's t such that k = s(il... h,s... t), let the polynomial P

(T~eiOO , n even)P= TneinO + Tn-2ei(n-2)0 + ... + TkeikO + ... + i n even
(TleiO , n odd , (6.12)

and let the polynomial Q be Q = P(-k).

Then Eqs. 6.10 and 6.11 can be stated in terms of the polynomials P and Q as

2

P-Q -0
and

(6.13)

(6.14)

When the tensor T is transformable into Cartesian coordinates (Tu. ..W t =
then P = and Eqs. 6.13 and 6.14 become

P + P- =0O
2an

and
P-P

2i
0.

That is, the required vectors are such that the real part of
of P is zero, depending on whether output vectors normal
are desired.

P is zero or the imaginary part
or parallel to the input vectors

If n is even, the polynomial P has the form

P(O) = TO + T2e2iO + T4e4iO + ... + TneniO, (6.17)

and if n is odd, P has the form

P(O) = TleiO + T3e3iO + ... + TneniO (6.18)

Equations 6.17 and 6.18 have been mechanized via a computer time-sharing terminal with
a plotter output. Figures 2 are for n odd and Figs. 3 are for n even. The purpose of the
plots is to show the effectiveness of the techniques of Section 2 (tensor manipulations in
complex coordinates) in giving graphic interpretation to the nature of tensor operators.
In the plots the complex value of the polynomial P is represented by a point. The initial
value is for 0 = 0, and the arrows give the direction in which 0 is increasing. By counting
dots from the initial condition, the value of the vector zu = eis(u)0 can be determined
which causes the polynomial to have the value of the dots (interpreted as a complex
number). For example when 0 = 45°, 90°, or 1350 (12-1/2 X 3.60, 25 X 3.60, or 37-1/2
X 3.60) the value of the polynomial for T1 = () and T3 = ei( 0) is pure imaginary, so

14
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(6.11)

Tu---w. ..7),

(6.15)

(6.16)
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that the polynomial (P + P)/2 has the value zero. And for 0 = 0°, 900, or 1800 the poly-
nomial P has a real value and the polynomial (P - P)/2i has the value zero. The figures
explore some simple exercise of varying the number and value of the coefficients Tk of
the polynomial. It is left to the reader to explore the plots and determine the value of
any insight into the nature of tensor operators imparted by the presented technique.

2-

I/ I.

-2 -I * 0

A IMAGINARY
AXIS

0 *l ̂ b2 b -

REAL
AXIS

Fig. 2a - Outputs obtained from a computer
mechanization of Eq. 6.18 for values of 0 in-
creasing in increments AO = 3.60 starting from
0 = 0 with T1 = (00,1), T2 = (0,1), and all
other T's = 0, where T = (arg T, T I)

- 0=0T3 - A-'
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e =0

Fig. 2b - Outputs for Eq. 2.18 with AO = 3.60, T1 = (00,1),
T3= (90,1), and all other T's = 0

8=0 T3

*. T :

Fig. 2c - Outputs for Eq. 2.18 with AO = 3.60, T = (00,1),
T3 = (180 ,1), and all other T's = 0. A comparison of this
plot with those of Figs. 2a and 2b is of interest.

* * 
v - -
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T1 .. T3

Fig. 2d - Outputs for Eq. 2.18 with AO = 3.6, T1 = (,0.5),
T3 = (00,1.5), and all other T's = 0

9=0

Fig. 2e - Outputs for Eq. 2.18 with AO6 = 7.20, T1 = (00,2),
T3 = (00,1), and all other T's = 0

l o of
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Fig. 2f - Outputs for Eq. 2.18 with AO = 3.60, TI
T3 = (0 ,0.5), and all other T's = 0

1-

= (0,1.5),

Fig. 2g - Outputs for Eq. 2.18 with AO = 3.60, T1 = (0°,1),
T3 = (001), T5 = (0°,1), and all other T's = 0

e"I
T 8=0

T I T I ,/

8=o
T3- T5- /
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T 3 T5 T7

Fig. 2h - Outputs for Eq. 2.18 with AO = 3.60, T 1 = T3 =
T5 = T7 = (o,1), and all other T's = 0

t02 .. . 1 .'. /I '\
. 2

T _ ,I _
I t22I /

I /I,'
Yip

.til

Fig. 3a - Outputs for Eq. 2.17 with AO = 3.60,
T = T2 = (00,1), and all other T's = 0

| - e l - -
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Fig. 3b - Outputs for Eq. 2.17 with AO = 3.60,
T = T2 = T4 = (00,1), and all other T's = 0

Fig. 3c - Outputs for Eq. 2.17 with AO = 3.6,
TO = T2 = (001) T4 = (900,1), and all other T's
= 0. A comparison of this plot with that of Fig.
3b is of interest.

-

20
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Fig. 3d - Outputs for Eq. 2.17 with AO = 3.60,
TO = T2 = (00,0.5), T4 = (00,1.5), and all other
T's = 0. A comparison of this plot with that of
Fig. 3b is of interest.

ljV ; - T
2

T4 _ T6

Fig. 3e - Outputs for Eq. 2.17 with AO = 1.80, TO = T2 =

T4 = T6 = (00,1), and all other T's = 0

- - w - - -
-

21

21 TO- T ,

-- I

. .



P. W. MAST

*o.. : T2 T4 T6 T 8 ._ 

Fig. 3f - Outputs for Eq. 2.17 with AO = 1.80, T = T2=
T4 = T6 = T8 = (,0.8), and all other T's = 0

7. MULTIVARIANT TENSOR POLYNOMIALS APPROXIMATING
YIELD SURFACES FOR COMPOSITE MATERIALS

The final application in this report of the techniques of Section 2 is to the generation
of candidate polynomials in approximating yield surfaces for composite materials. Tsai and
Wu (1971) demonstrated the effectiveness of using second-order Cartesian-tensor polynomials
in the state of stress to describe the failure (yield) surface of composite materials when the
candidate polynomials are of the form

f(TUP) = FuptTuPl t + FupTuP + F = 0. (7.1)

Though more effective than previous equations for approximating the yield surface of
composites, Eq. 7.1 still falls far short of what is needed for the problem. The basic problem
is one of obtaining a means of representing an experimental data base and providing a means
of interpolating between data points which requires, hopefully, far less computer storage space
than it takes to represent the data alone. One approach is to build as much a priori infor-
mation as possible into as small a candidate approximating function as possible.

Since the present problems of materials experimentation limits useful yield-surface infor-
mation to that obtained on two-dimensional specimens, the two-dimensional techniques of
the report are strongly applicable. Using the techniques of Section 2, much a priori informa-
tion can be simply constructed into a more powerful approximating polynomial for two-
dimensional composite yield-surface problems.

The first extension is to consider tensor polynomials in complex coordinates. Then by
Section 2 the coefficients of the polynomial which are general tensors FU...vs t have the
simplest transformation properties with respect to rotations given by

22e
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Fu ... v t(eiP(k)°Zk) = eis(UL-,s... t) Fu. .. t(zk (7.2)

which is at this point quite familiar to the reader.

The second extension is to make the polymonials multivariant in that not only will
they be functions of the state of stress but also of the elastic constants (the stiffnesses)
Cst . When the material is a laminated anisotropic body of the type considered in Sectionmn
5, the tensor Ct takes the form

°CPn (zk) = cos[s(fpmn)0] CP (wk), (7.3)

where wk is the preferred coordinate system for elastic constants.

The candidate approximation polynomials to the yield surface are then

Pjcos[s(UQmn)0]CuP (wk), TuP(zk)4 = 0 (7.4)

When the lamina are fiber-reinforced plastics (such as glass reinforced plastics), the elastic
stiffnesses CP are assumed to be homogeneous of rank one wrt the volume fraction af
of fiber of the composite; that is,

CuP (af) = afCuP (af=l). (7.5)

Then the candidate polynomial of degree n becomes

P{afcosls(Fpmn) ] CuP(ar1, wk), TuP(zk )} = 0. (7.6)

One last extension can be made to Eq. 7.6, in allowing it to be truncated. To provide
the high-order convolutions needed to fit the data and to avoid the problem of an exploding
number of coefficients, all terms need not be other than zero. This follows after a discussion
by Gilstrup (1972) on generally the same problem when providing predictions for developing
machines with high-level artificial intelligence.

8. EXTENSIONS OF THE WORK IN PROGRESS

The explanation of the applications of the tensor manipulation techniques presented
in Section 2 to engineering mechanics problems is rather terse and is meant to establish
the power of the technique for two-dimensional problems rather than to be exhaustively
informative about the actual applications.

Though the two-dimensional nature of the technique meets the present needs of the
author and his associates in dealing with problems of research on composite materials, the
technique has been extended to finite-dimensional tensor spaces, where the rotation oper-
ators are again diagonal and the tensor components come from the complex number field.

The finite-dimensional theory is not complete, but typically the technique involves
mapping a given tensor onto a higher order one; so that a first-order tensor in Cartesian
coordinates in three dimensions is mapped onto a fifth-order tensor in complex coordinates.

23
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Since the need for the extension of the theory will probably coincide with a general use
of computer symbolic manipulation, the apparent complication of raising the order of the
tensor will present no real problems.
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