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ABSTRACT

The word error rate of an ensemble of cryptographic
systems is determined. The word error rate is specified as a
function of the corresponding plain-text bit error rate. Deg-
radation is defined and computed for the case of phase shift
keying and white Gaussian noise. Finally, the effect of
differential encoding on a cryptographic system is investigated.

Manuscript submitted May 23, 1973.



WORD ERROR RATES IN CRYPTOGRAPHIC ENSEMBLES

INTRODUCTION

In any digital communication system, the transmitted bits and words have certain error
rates. When the digital bits are enciphered but the other system parameters remain unchanged,
these error rates increase. It is the object of this report to obtain theoretically a quantitative
measure of this degradation.

A standard enciphering technique is the modulo-2 addition of the plain text with a
pseudorandom code sequence. Figure 1 shows an implementation in which a four-stage feed-
back shift register and exclusive OR gates are used. For each distinct setting of the switches,
there is a different enciphered output stream. The corresponding deciphering system is shown
in Fig. 2, where the switches must be set in the same manner as those of the enciphering
system. A detailed discussion of this type of cryptographic method can be found in the

literature (1-4).

Qualitatively, the reason for the degradation in cryptographic systems is due to the pres-
ence of shift registers in the enciphering and deciphering mechanisms. A bit error due to
random noise will be carried through a shift register, causing additional bit errors down the
line.

GENERAL DISCUSSION

The bit error rate for ordinary transmission is a function of the modulation system.
For most modulation systems, when white Gaussian noise is present, the bit error rate has

the functional form specified by
B
P = a—— 1
» =F No (1)

where f is a function, N, is the noise power spectral density, and Ej, is the mean energy for
a bit in the ONE state. Assuming that bit errors occur independently of each other, the
associated word error rate is

P, =1—(1— Py, (2)
where k denotes the number of bits per word.

It is shown in the next section that the corresponding formulas for cryptographic bits
and words are

Py =P A— By l+ 12 (1+5) [1-a — Ry1]; 3)
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Fig. 2 — Corresponding deciphering system

Foy = [1 —27k (1 —pb)k] [1 - -—pb)n—-k:l
k—1
"'2 P, [1 — 271 —P, )k] (1 — By)n—i—1
i=1 (42)

sf1—a-pr] a—-pr1,  a>k

n—1
B, = z P, [1—27ia —B)] (1 — i
(4b)

i=1
+ [1—(1—P,,)k] (1—P,)~1,  n<h,

where P, and P, are the ensemble average error rates of a cryptographic bit and a crypto-
graphic word respectively. In these formulas, n denotes the number of bits affected by an
initial bit error. For example, in the linear system of Figs. 1 and 2 an initial bit error at the
input of the deciphering system is carried by the shift register until » — 1 more bits are
received. Thus n is equal to the number of shift-register stages in the usual linear system.

It is immediately noticed that the cryptographic-error-rate formulas are written as
functions of the bit error rate due to random noise. If Eq. (1) is substituted into Egs. (3)
and (4), there result formulas in terms of E,. By comparing these formulas with Egs. (1)
and (2), we can determine the increase in Ej required for enciphered bits or words to
maintain the same error rates as plain bits or words. This increase provides a quantitative
measure of cryptographic degradation.
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The cryptographic-error-rate formulas are very tedious to use in manual computations.
In many cases, approximate formulas are highly accurate over the range of interest. It is
shown in the next section that the following approximations can be used:

P, ~ kPy; (5)
— n+1
Py =~ ( 2 )Pb; (6)
[n+k—2—2%n—k—2)]1 P, n>k;
Pow ~ (7)
[n+k—2+2" (1] p, n<k.

A sufficient condition under which these equations are accurate for n > 1 is

Py < min {n~1, 1}, (8)

where the notation indicates that P, must be much less than the smaller of the two quantities
in the braces.

PROOF OF THE CRYPTOGRAFHIC ERROR
RATE FORMULAS

Suppose an enciphered bit is erroneously received as a result of random noise or other
interference. As the erroneous bit proceeds through the deciphering system, each of the
next n — 1 bits will be affected. We define a “train’’ as a set of n consecutive enciphered
bits, the first of which has been erroneously received due to interference.

The probability of error for each bit of a train could be computed for any specific
deciphering system, e.g., the system of Fig. 2 with the switch settings specified. However,
this computation would have to be repeated each time the configuration of the deciphering
system is altered. Therefore, a more useful approach is to consider the ensemble of all
possible cryptographic systems with trains of n bits. The average probability of error for
each train bit over this ensemble is one-half, regardless of the level of random noise or
interference. We now derive the ensemble average probability of word error.

Consider an enciphered word of % bits. The probability of a word error, F,,,, is defined
to be the probability of one or more erroneous bits. The probability of a word error and a
train of external origin extending into the word is denoted by P(w,t). If no train of external
origin extends int6 the word, the probability of word error is denoted by P(wlt). The
probability that a train of external origin does not extend into a word is denoted by P(t ).
It then follows from the theorem of total probability that

P,, = P(w,t) + PwIT) P(T). 9)
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A train will extend into a word if, and only if, one of the n — 1 bits immediately pre-
ceding the word is in error due to random noise. Thus assuming bit errors are uncorrelated,

Pt)=(1—p)» 1, (10)

Clearly, P(w It_) is the same as the probability of a word error for plain text. From Eq. (2)
we obtain

Pwlt)=1— (1 — Py)k. (11)

To determine P(w, t), additional notation must be introduced. If i bits of a train of
external origin extend into a word, we denote this condition by the symbols tb = i. For
example, P(tb = i) denotes the probability that a word contains i externally generated train
bits. Since P(w, tltb = i) = P(wltb = i), we can write

P(w, t) = P(wltb = k) P(tb = k)

r—1 (12)
+ Z P(wltb = i) P(tb = i).

i=1

If at least one of the n — k bits preceding the word is in error and n > k, it is clear
that tb = k. Thus

1—@Q =Pk n>k;
P(tb = k) = (13)
0, n <k

For tb =i, where 1 < i < k, it is necessary that there be an error precisely n — i bits prior
to the word but no erroneous bits among the next n —i — 1 bits. Therefore, for 1 < i<k,

Py (1 —Py»— 1, n>i;
P(tb = i)= (14)
0, n<i.

Substitution of Egs. (10) through (14) into Eq. (9) yields
P, = Pltb = k) [1 — (1 — P, "] u(n—F)
min(k—1,n—1) (15)
+ z P(wlthy = i) Py(L — Py yn—i—1 + [1 —1 —P,,)k] 1 — P11,
i=1

where u(n — k) is a step function, i.e., u(n — k) is zero for n < k and is one for n > k.
Note that in the summation term, i extends to the least of the two integers 2 — 1 and

n — 1. To reduce Eq. (15) further, we would have to know the exact configuration of the
cryptographic system, since P(wltb = k) and the P(wltb = i) depend on the interaction of train
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bits. As mentioned previously, it is more relevant to derive the average of P,,, over the

ensemble of all possible cryptographic systems characterized by a specific value of the
parameter n.

The ensemble average probability of bit error is one-half for every bit in a train,
regardless of interference level.

Let a bar over the P indicate an ensemble average. To determine P (wltb = i), note
that when tb = i there are i bits with an ensemble average probability of error equal to one-
half. For no word error to occur, each of these i bits must be correct and each of the word
bits at the input of the deciphering system must be correct, for if a word bit is in error at
the input, it will trigger an internal train. It follows that

Pwitb=i)=1— @-)' (1 —Py)-. (16)
Similarly

_ ~[1\F

Pwlthb =k)=1— (§> (1 — Py)k. aan

From Egs. (15) through (17), we obtain

Poy = [1—27R(L = Py)k] [1— (1 — B *] u(n — k)
min(k—1,n—1)
. z P, (1 — P,y»—i—1[1 — 2=i(1 — P,)t] (18)
+1— (A= PR)] A =Rl
which can be put in the form of Eq. (4).

Equation (18) is the formula for the general cryptographic word error rate. To obtain
the cryptographic bit error rate, set k = 1 in Eq. (18); this yields

— 1
Py = (1+Py) [1—a—r)— Y +Ba—py L (19)
Approximations to the formulas can be obtained by employing Maclaurin series expan-

sion about the point P, = 0. By this technique the plain-text word error rate given by Eq.
(2) can be shown to be approximately

P, ~ kP, (20)

under the condition that

2
P € ——, k> 1. 21
A —1 (21)
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By the same method, Eq. (19) becomes

— n+1l
P, ~ . P, (22)
under the condition that
< 2n *+ 2 >1 (23)
& —, n .
b nn —1)

A Maclaurin-series expansion of Eq. (18) yields
[n+k—2—2"k(n —k—2)]P, n > k;

R, = (24)
In+k—2+2-("—1]P, n<k.

The condition of validity obtained by this procedure is too complicated to be useful.
Thus we derive Eq. (24) by an alternative technique which yields a simple condition of
validity. First, each of the terms of the form (1 — P, )™ is expanded separately, dropping
quadratic and higher order terms. Substitution into Eq. (18) yields an approximate expression
for P,,, that still contains quadratic terms in P,. If these terms are dropped, we are left with
Eq. (24). The various conditions arising from each step of this procedure can be combined
into a single condition of validity:

P, < min ;(n — 1)1, k—lg. (25)
This condition is more restrictive than those given in Egs. (21) and (23). Thus Eq. (25)
is a sufficient condition for the validity of Egs. (20), (22), and (24). A slightly more
convenient and more restrictive sufficient condition is given by Eq. (8).
AN EXAMPLE: PSK MODULATION
In this section it is assumed that the information is transmitted by means of phase

shift keying (PSK). If white Gaussian noise is present at the receiver input, the plain-text
bit error rate for an ideal receiver is given by (5)

P 2E,
» = erfc N, ) (26)
where by definition
fo (x) = = r <x2>d @7)
erfc (x) = = | exp \—— }dx.
Vanr Jx P 2

Note that Eq. (26) is in the form of Eq. (1).

In this example we let n = 60 and 2 = 10. Application of Egs. (2), (3), (4a), and
(26) leads to the plots shown in Fig. 3. Alternatively, according to Eq. (8), we could use
Egs. (5), (6), (7), and (26) to determine the points where P, < 1074,
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Fig. 4 — Degradation as a function of plain-text error rate

From Fig. 3 the degradation due to the enciphering can be determined. In Fig. 4 the
degradation for a cryptographic bit is plotted as a function of the plain-text bit error rate.

In the same figure the corresponding curve for a 10-bit cryptographic word is plotted as a
function of the plain-text word error rate.
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Suppose 10-bit words are to be transmitted at a word error rate of 10~5. According
to Fig. 4, an additional 0.7 dB of power is required, when enciphering is employed, to
maintain the error rate. Assuming this power is provided, is the performance of the
cryptographic system as good as the plain-text system? The answer is usually no, due to
the different costs of word errors in these systems. A word error in a plain-text system
usually involves a single erroneous bit. On the other hand, in a cryptographic system a word
error usually implies several erroneous bits. Thus the cryptographic word error causes a
more severe misinterpretation of the transmitted data.

It is seen in Fig. 4 that for a cryptographic system, approximately 1.3 dB of extra
power are required to maintain a bit error rate of 10~2. Again the question arises as to
the relative performance of the cryptographic and plain-text systems. In this case the per-
formances are usually comparable. In the cryptographic system the bit errors occur in
clusters. Thus although there are fewer word errors than in the plain-text system, the bit
errors do greater damage. Relative performance must be determined by weighing the costs
of a word error with a single erroneous bit relative to those of a word error with several bit
errors.

CORRELATED BIT ERRORS

So far it has been assumed that at the input to the deciphering system bit errors occur
independently of each other. There are many important situations in which this assumption
is untenable. In this section an example is presented which indicates how the theory can
be extended to handle correlated bit errors.

It is sometimes desirable to encode cryptographic or plain bits in terms of bit transitions.
For example, after encoding a ZERO may be represented by a transition; a ONE may be
represented by no transition. With this representation, the transmitted signal can be inverted
in polarity without affecting its interpretation. This representation is called differential
encoding. It is useful in phase-locked-loop systems and other systems which have no sense
of absolute polarity. The original bits can be recovered by sampling the differentially en-
coded bits and comparing the polarity of adjacent samples to determine if a transition has
occurred. Figure 5 illustrates a cryptographic system with differential detection. We now
proceed to determine the word and bit error rates at the output of the deciphering system.

PLAIN TO FROM PLAIN
BITS ENCIPHERING DIFFERENTIAL| TRANSMITTER RECEIVER _ |[DIFFERENTIAL DECIPHERING| BITS
—> . ————p | BITS o,
SYSTEM ENCODER DETECTOR g SYSTEM

Fig. 5 — Cryptographic system with differential detector

The calculation of the word error rate is a straightforward but extremely tedious ex-
tension of the method used for the uncorrelated bit error case. The reason for the complex-
ity will now be explained. Consider two consecutive bits at the input of the differential
detector. Since the detector compares the polarity of adjacent bits, bit errors will usually
occur in pairs. The exception is when the two consecutive bits are both in error. Then the
second bit at the output of the detector will be correct, since the relative state of the second
input bit is unchanged with respect to the first input bit. Taking the latter situation into
account is what makes the analysis difficult. If P, is small, as is normally true in practical
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systems, we can obtain accurate asymptotic formulas by ignoring the latter anomaly. Thus
we assume that a bit error at the input of the differential detector will always cause two
consecutive erroneous bits at the output of the detector.

Under the latter assumption the trains will be n + 1 bits long. Clearly, Eq. (11) will
remain the same as in the previous derivation. Equations (10) and (13) must be modified
by substituting n + 1 for the symbol n in these relations. However, Eq. (14) is altered in
a different manner. The reason is that for tb = i, where 1 < i < k, it is necessary that
there be an error at the input to the detector precisely n — i + 1 bits prior to the word.

The bit located exactly n — i bits prior to the word is then automatically erroneous at the de-
tector output, according to our assumption. It is, however, necessary that there be no errors
among the n —i — 1 bits preceding the word at the input to the detector. From these
considerations, we have

Py (1 — Pyyr—i—1, n>i;
P(tb = i) = <P, n=i (28)
0, n<i.

Similar reasoning shows that Eqgs. (16) and (17) remain unchanged except when tb = n.
In this case, P(wltb = n) = 1 because of the initial assumption.

Using the same methods previously employed and some algebraic manipulation, it
follows that the asymptotic formulas for word and bit error rates of the system of Fig. 5
are

[n+k—1—27k (n—k—1)] P,. n>k;
P = 29
cw [n+k—1—2"(=1)] P, n<k (29)
n+2
_ P, n>1;
P, = (2 )b (30)
2P, n=1.

Equations (29) and (30) could not have been obtained directly by substituting n + 1 for the
symbol n in Egs. (22) and (24). When n = 1, it is seen that 17‘_,1, = 2P, which is a restate-
ment of our initial assumption concerning the operation of the differential detector. A
sufficient condition for the validity of Eqgs. (29) and (30) can be given once again by Eq. (8).

In the previous example of PSK modulation with n = 60 and % = 10, it is seen that the
differential encoding causes utterly negligible degradation for small values of Py.
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