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LIST OF SYMBOLS

a initial gas sound speed up-piston velocity

cv = specific heat at constant volume U = shock wave velocity

D= compression tube diameter up = up/a

L= initial compression tube length U = U/a

L = distance between piston and end of coma- UP/U
pression tube at start of shock compression V .= initial compression tube volume

m molecular weight of gas Vo = compression tube volume at the start of

shock compression
mp piston mass

n = number of shock transits Vf final volume

X =(y +l1) u/2

N = number of moles of gas

a p r distance between piston and end of compres-
PO initial pressure sion tube after nth shock transit

PO = pressure in front of initial shock wave y = ratio of specific heats

P= pressure behind nth shock wave a = mpup2/2NcTo

Pf = final pressure = (y + 1)/(y - 1)

R = universal gas constant 0a, = Pn/Pn-i

T= initial temperature X = (/., + 1)/0(1 - 1)

temperature in front of initial shock wave p = gas density in front of initial shock wave

Tn temperature behind nth shock Pn = density behind the nth shock wave

Tf = final temperature 'In = pn/Pn-i

to = time for nth shock transit Kn = Pn/po

7Tn =PnIPO

NOTE: A prime indicates the corresponding quantity for isentropic
compression. Tn = TnlTo
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An ideal model of light-gas gun operation that permits the evaluation of the effectiveness of shock
heating in the light gas as opposed to the heating due to isentropic compression is hypothesized. This
model assumes a shock wave generated by a piston which is instantly accelerated to some constant
velocity. After the shock wave traverses the compression tube of the gun four times, it is followed by
isentropic compression which absorbs all of the piston energy. The temperatures arrived at by shock
compression and isentropic compression are compared when the pressures of the final states are equal.
The results indicate that for reasonably fast pistons (around 6000 fps), the ideal temperature gains
are on the order of 30 percent and the corresponding sound speed gains are only about 15 percent.
The resulting increase in projectile velocity under these conditions cannot exceed 15 percent. Real
gas effects would be expected to make this value still lower. It is concluded consequently, especially
for the gun configurations currently used at NRL, that shock heating is not an important factor in the
gun operation nor a particularly fruitful means of enhancing gun performance.

INTRODUCTION

Current light-gas gun technology clearly in-
dicates that further advances in projectile ve-
locity, and gun capability in general, can only be
achieved by increasing the temperature and,
thereby, the sound speed of the light gas. One
possible method for obtaining this result is to
generate shock waves in the gas by an appropriate
piston motion. As the shock waves reflect up and
down the compression tube, the gas is heated
nonisentropically to a temperature higher than
that which would be obtained by isentropic com-
pression. A comparison of the final temperatures
for the two cases would provide a basis forjudging
the value of the shock heating as a technique for
improving light-gas gun performance.

The following model, which operates in three
distinct phases, has been selected for the purposes
of this comparison:

Phase 1 - Isentropic compression until the
piston reaches maximum velocity.

Phase 2 - Shock compression by a shock wave
due to a uniformly moving piston
and lasting for four shock transits
of the compression tube.

Phase 3 - Isentropic compression from the
fourth state of phase 2 to a final state

NRL Problem F04-04; Project RR 009-03-45-5801. This is an in-
terim report on one phase of the problem; work on this and other
phases is continuing. Manuscript submitted January 9, 1964.

commensurate with a change of in-
ternal energy of the gas equal to the
kinetic energy of the piston, which
comes to rest.

The following conditions are assumed: (a) the gas
is ideal, (b) there are no losses due to friction,
radiation, etc., (c) the shock wave in phase 2 is due
to a piston instantaneously accelerated to a given
velocity and moving uniformly thereafter, and
(d) the projectile is at rest until the end of the
piston compression; that is, until the end of phase
3. This model is essentially the same as that used
in the work reported by Stephenson (1) and
Lemcke (2). A more accurate, but considerably
more computationally involved model has been
suggested by Winter (3).

COMPUTATIONS

Phase 1

The light-gas gun is loaded initially to a pressure
PO, temperature TO, and volume VO. The gas is
then compressed isentropically, until the piston
reaches a maximum velocity and the gas has a
pressure Po, a temperature To, and a volume V0
which are given by

Po = PO(V°/VO) Y

To = TO ( V°Vo) 7-l

(1)

(2)

1



J. R. BAKER

Phase 2

The piston, having reached its maximum veloc-
ity, is assumed to generate a shock wave of velocity
(4)

U = (X + \/iV4 X) /2 (3)

where X = (y + 1) p /2, up = up/a, U = U/a, and
a = initial gas sound speed. The strength of this
shock wave is determined by the pressure ratio
across it and is a function of the piston velocity:

Al 1 y- (X +V4+ X) /2.

Introducing the results of Evans and Evans (5),
let ca- = Pd/Po, or in general,the pressure ratio
across the nth shock is

0rfl = Pit/P1lI = A+ L+ n
X +n -I

Phase 3

As the shock wave reflects off the piston for
the second time, all of the gas in the compression
tube is in the n = 4 state (see Fig. 1). In the re-
maining compression, the entire kinetic energy
of the piston is assumed to go into the internal
energy of the gas, and the piston comes to rest;
hence

mpup 2/2 = Nc, (Tf - T4)

or

Tf = T 4  mpup2

To To 2Nc, To' (10)

The standard isentropic relationship PTey( 1 -I) =
constant divided by Po and To gives

(5)

where n = 1,2,3, ... is the number of the shock
transits, ,= (y+ l)/(y- 1), and X= (,u± 1)/
(o- - 1). Similarly, for the density ratio across
the nth shock

/ + + n-1 (6)

These equations may then be used to express the
conditions b)ehind the nth shock relative to the
state before the first shock; thus

P,, =r(x)r(x+ n+1) (7
ff =-F1Cr (A + ,u + i)r(x + n)

Pt " f(X + )F(X + ,i + n)
K u F(X1)7X=in) (8)K,, = =r( + )r( + n +l)

T,o (X + n) (X + + n) (9)
KTo, Kit X( + A))

where I' is the gamma function and is defined by

l (z) = J e-t tzldt and F(z+ 1) =zr(z).

Calculations of these quantities for the first
four shock transits are shown in Table 1 for
selected values of iu. Evans and Evans show that
after the fourth shock transit the change of state
is essentially isentropic. Furthermore, in the
fourth state, the gas is at rest, as it must also be in
the final state; consequently, phase 3 is assumed to
begin at the end of the fourth shock transit.

(I 1)

Equations (10) and (I1) determine the final state
of the gas for the caseof shock heating. In order
to compare this to the isentropic case, it is neces-
sary to specify that either the pressure, the tem-
perature, or the density be the same for the two
cases. The other two quantities may then be com-
pared. For the case of the light-gas gun, it is felt
that the most meaningful comparison can be made
when the pressures are the same. This is because,
of the three quantities, the pressure most directly
controls the gun's performance. For example, the
pressure determines the time of projectile re-
lease. Also, the maximum capability of the gun is
limited by the peak pressures it is able to contain.
Therefore, choosing P. = P' and Pf = Pf, the state
of the gas for isentropic compression is given by

., (,Y- I )/Y (12)

and

To (Vo )
(13)

The quantities -r, also appear in Table 1.

The comparison that is of particular interest
is the ratio TfITr, and for the model used here
it can be shown that this ratio is the same as

2

Pf P4 TflTo
Too 'Po (T4/To)
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Relative Shock and
TABLE 1

Isentropic Temperature Ratios for y = 1.4

!'L - ,

(n 0)|

Up(n=) U (n0)

E -Up (1) t

(I) U (2 )

i op (2)!
<-- -X 2 me

Up F (3) U(2)1

Up (3)

1 E- X3  i

[p (3) 4 (4)

up 4

.-< X4 -

u Jn | Tn Kn Tn |_7n* Tn/lrT (n ITn)1/2

0.5 0.6 1.941 7.440 1 1.941 1.592 1.219 1.209 1.008 1.004
2 3.550 2.436 1.458 1.436 1.015 1.007
3 6.183 3.602 1.716 1.683 1.020 1.010
4 10.329 5.177 1.995 1.949 1.024 1.012

1.0 1.2 3.473 2.831 1 3.473 2.305 1.506 1.427 1.056 1.027
2 9.818 4.691 2.093 1.921 1.090 1.044
3 24.044 8.713 2.759 2.481 1.112 1.055
4 52.909 15.091 3.506 3.108 1.128 1.062

1.5 1.8 5.716 1.484 1 5.715 3.012 1.897 1.645 1.153 1.074
2 21.818 7.335 2.974 2.413 1.233 1.110
3 65.646 15.513 4.232 3.305 1.280 1.131
4 168.12 29.656 5.669 4.324 1.311 1.145

2.0 2.4 8.734 0.905 1 8.734 3.624 2.410 1.857 1.297 1.139
2 40.824 9.863 4.139 2.886 1.434 1.198
3 139.19 22.490 6.189 4.097 1.511 1.229
4 388.69 45.416 8.559 5.494 1.558 1.248

*For isentropic compression to the same pressure, i.e., for the same 7r,.

START OF PHASE 2
BEGINNING OF IST SHOCK TRANSIT

END OF IST SHOCK TRANSIT

END OF 2ND SHOCK TRANSIT

END OF 3RD SHOCK TRANSIT

END OF 4TH SHOCK TRANSIT

Fig. I - Piston position and gas state during phase 2

PISTON
SHOCK WAVE
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the ratio of the temperatures at the end of four
shock transits (see Appendix A); that is,

Tf r 4
o T- (14)

This ratio indicates the relative advantage of
shock heating over isentropic heating. Even more
meaningful, however, is the square root of this
ratio, which gives the ratio of the sound speeds
for the two cases; and it is the sound speed of
the gas which ultimately limits the obtainable
projectile velocity. These ratios are listed in
Table 1 and appear graphically in Figs. 2 and 3.

The relative advantage of shock heating over
isentropic heating is independent of the gun

I .

0.5 1.0 1.5
Up

Fig. 2 - Ratio of relative shock and isentropic
temperatures vs relative piston velocity

up
2.0

Fig. 3 - Ratio of relative shock and isentropic
sound speeds vs relative piston velocity

geometry and the initial gas state. The absolute
values of the final state of the gas, however, do
depend on both of these. Therefore, by using
the following relations for an ideal diatomic gas
N= PO V/RTT, cv = 5R/2, a2 

= yRTO/m we obtain
from Eq. (10)

Tf = T, + (5R m/ POVO ( 0 ( 15)

and by ( 11) we obtain

Pf = P4  } * (16)

Since the number of moles is constant

Vf F (By&) rif- V° . (17)

Consequently, by altering the values of PO or
VO it is possible to adjust the final temperature,
pressure, and volume while retaining the same
relative advantage of shock heating. Consider
the following numerical examples:

Let DO = 3.25 in., LO = 64 DO, mp = 2270 g,
Upp= 1, PO = 3.447 X 107 dynes/cm2 (500 psia),

2.o TO = 300'K, y = 1.4, m = 2 g (hydrogen), and
V°/V0 = 2 (the piston reaches maximum velocity
halfway down the compression tube). From
Eq. (15) and obtaining T4 = T4 To from Table 1

4
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we see that Tf = 3830'K. Then by Eq. (16) and
obtaining P4 = 'i 4 Po from Table 1 we see that
Pf = 2.43 X 106 psi. Now if the compression tube
is lengthened so that LO = 256 DO, then, proceeding
as before, Tf = 2000'K and Pf = 0.25 X 106 psi.
Note that TfITj = 1.128 for both cases. Thus, while
the temperatures, pressures, and volumes differ
for the two examples, the final temperature ratio
of shock heating to isentropic compression re-
mains the same.

In addition, it is possible to obtain an approxi-
mate equation for the location and time of travel
of the piston after n shock transits. It is assumed
that when the piston has reached its maximum
velocity, the shock wave is created at the piston
face. In reality the shock wave will be formed at
some distance from the piston; consequently,
empirical results should give somewhat larger
ta's and smaller x,,'s than the equations below.
If the piston is a distance L from the end of the
compression tube at the start of phase 2, then the
distance between the piston and the end of the
compression tube after the nth shock transit is

where -=1,.,a

where n = 1,3,5, ........, and (I (8a)

where n = 2,4,6,...,

and where u = uIU (see Appendix B); and the
time for the nth shock transit is

= -u )(n-l)/2 L

where n = 1,3,5,..., and (19a)

tn = (I - E) - where n = 2,4,6, (I9b)

The total time elapsed after n shock transits is

= [I - (1 + E)(12 L
1 + up

where n = 1,3,5,..., and

wr = [I n 214)n/2] L

where n = 2,4,6, (20)

Note that since (1 - i)/(1 + ( ) < 1, as n - 00

then Xn - 0, tn - 0, and Tn - L/lu.

CONCLUSION

It can be seen from the next to the last column
of Table 1 that shock compression does provide
higher final temperatures than isentropic com-
pression for the same final pressure. With current
gun configurations, however, the improvement
seems to be marginal at best. Significanc gains
in sound speed begin to appear for piston speeds
on the order of Mach 2 or greater, which, for
hydrogen gas initially at 300'K, would mean
speeds in excess of 8500 fps. On the other hand,
the ideal model used here must be regarded as
an upper limit on the improvement to be ex-
pected because of the energy losses and real gas
effects that occur in the real gun. Furthermore,
serious deviation from this model occurs, par-
ticularly, at low piston velocities, because the
piston is not accelerated instantaneously to its
maximum velocity. Consequently, the shock wave
may not form or may not arise until projectile
launch has begun. This, of course, would reduce
any augmentation of temperature over isentropic
compression.

The model also has assumed that the projectile
is stationary until the piston comes to rest. In
the light-gas gun this condition is controlled
primarily by the projectile release pressure at
which a valve or some corresponding device is
activated to release the projectile. In order that
the conclusions of the analysis used here be di-
rectly applicable to the light-gas gun, it is neces-
sary that at least most of the shock heating shall
have occurred before the projectile release pres-
sure is attained. Assuming then that at least three
shock transits must occur before projectile release,
it can be concluded that the analysis is valid for
piston velocities of less than 4000 fps with pro-
jectile release pressures as low as 5000 psi and
valid for higher piston velocities with correspond-
ingly higher release pressures. (The projectile
release pressures here depend on the initial
gas loading pressures, which are in the range of
100 to 500 psi for the conditions cited above.)
For those cases where projectile launch occurs
at the same time as shock heating, the compres-
sion process becomes considerably more com-
plicated and further work will be necessary to
correctly analyze this interaction and apply it to

5
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the light-gas gun. It seems doubtful that the
motion of the projectile and its effects could
enhance the shock heating per se.

The real gas effects on the shock heating of air
has been reported by Stollery and Maull (6)
and shows that serious departure from the ideal
gas assumption appears at about !I = 4. More-
over, the deviations are of such a nature as to
detract from the desirability of shock heating.
For the shock heating of a real gas, not only is
the temperature increase less than for an ideal
gas, but also, the pressure increase is greater. It
therefore seems doubtful, particularly with pres-
ent gun facilities, that shock heating of the light
gas is the most fruitful method for advancing
gun capabilities.
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Appendix A
Ratio of the Final Shock Temperature to

the Final Isentropic Temperature

By definition From Eq. (12)

r 4 T 4 /To and ir 4 = P 4 /Po.

From Eq. (15)

T4 = ( 7 4 )( v-)Iv

and from Eq. (13)

7n li' 'i
Tf - 2N4 -MPUP

To To- +McL To
- T4 + as = T4(1 + a/T 4 )

T. (Pf ('Y-')l
T0 kTf0) = (w4(v-1)/l (1 + a/74)

from Eq. (I 1)

Pf P4 (T) Y/(vY-) -P4 (TfIToj//<)
T. Po ¼4) N T4/To0

= 7r 4 (1 + aTr4 )/'(zY)

Hence

Tf Tf TO =74 (1 + alT4 ) T4

Tf ITo i(+a /r4T T'

7-4 (I + a/7-4 ) -
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Appendix B
Piston Position and Time
After nth Shock Transit

Initially the shock wave must travel a distance
L to the end of the compression tube at a velocity
U. This requires a time

t, = L/U

in which time the piston moves a distance upt1
and is then a distance (see Fig. 1)

xi = L-upt, = - u-)L

from the end of the compression tube, where
- = un/U. The new distance the shock wave must

travel back to the piston is X 2 = X I- Ut 2 in time
t2 = x2 /U. Therefore

X2 L1+u

and

t2= g+Us -

Continuing in this manner

t. I- )(n-1)/2- x =n 1-)/2 -u)
135.(1. -n)L

n=1,3,5,..., and

The total time for n transits is given by

n

Tn = E tk = ± t2i-1 + E t 2 j
k=1 i i

where ij = 1,2,3,...,

U...U

Now let the upper limit be n = 2j, then since

E x =X

T2j = I u ) L ' (I +L(I + -)i 1- L

N s [Ii _ (I/-+u)j] L<

Now since (1u/ -)<1, then (1--a /1I+ a-)i
<I1 and as Jo -o, (1 - Ell + U)j- 0

=Q-u ~n/2 L
t = U

n = 2,4,6,....

therefore

T.= lim T2jL= L L.T ->0 i UUP

)i Q + w) L + :
= I 1 - u -Ui i

Xn = ti - ii )n/2L

� -1+ T


