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WAVE BOTTOM BOUNDARY LAYER MODELS FOR SMOOTH AND ROUGH BEDS 

 

 

INTRODUCTION 

 

The goal of the 6.1 Foreshore Sediment Transport Study is to develop predictive capabilities for the 
hydrodynamics and sediment transport in the inner surf and swash zones using field data and numerical 
models. The sediment transport aspect of the study often stems from some prediction of the fluid-supplied 
bed-shear stress resulting from friction and turbulent fluctuations near the bed in what is termed the wave 
bottom boundary layer (WBBL).  Hence, knowledge of the time-dependent nature of fluid flows in this 
region will lead to better predictions of the turbulent motions and shear stresses and ultimately assist in 
improving sediment transport formulations in wave-dominated environments. 
 

Much of the work on WBBLs has focused on developing various forms for the vertical distribution of 
the turbulent eddy viscosity (generically referred to here as eddy viscosity models), an approximation 
assuming that turbulent motions diffuse momentum in a manner similar to that of a molecular diffusive 
process although generally at a much faster rate.  The form of the vertical distribution has varied from 
linear to parabolic to combined forms that do not have a single analytic function describing them.  For 
instance, Fredsøe and Deigaard (1992) discuss several forms for the eddy viscosity, including those that 
can be adapted to independently account for a superimposed current.   
 

A more detailed approach can be used by trying to calculate, rather than model, the turbulent motions 
themselves.  For instance, Spalart (1988) and Moneris and Slinn (submitted) used a direct numerical 
simulation (DNS), such that all scales of turbulent motion were calculated, rendering a description of the 
turbulent eddy viscosity unnecessary.  While DNS simulations are probably the most accurate for 
determining the fluid motions in the WBBL, their extensive computation requirements make them 
unusable for rapid estimations of the turbulent fluid motions in this region. 
 

Rather than specifying the shape of the turbulent eddy viscosity or calculating the fluid motions at all 
scales, a middle ground approach can be taken where the turbulent motions are modeled leading to a time 
and space varying eddy viscosity (generically referred to here as turbulence closure models).  One 
approach is referred to as the one-equation or k (turbulent kinetic energy) model. Here the turbulent 
kinetic energy fluctuations are modeled and the eddy viscosity is estimated by specifying some length 
scale of the turbulence based on the elevation above the bed (e.g., Wilcox 2000).  A second approach is to 
use a two-equation model where the length scale is no longer held constant and itself is allowed to vary 
(e.g., Rodi 1980, Justesen 1988, and Wilcox 1988).   
 

The purpose of this report is to analyze seven WBBL models incorporating various methods for 
estimating the turbulent eddy viscosity that can be used to rapidly predict the fluid flow structure and 
shear stress occurring near the bed.  The models will be compared using two test cases and against a 
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laboratory data set.  The report includes an appendix with the computer codes used (on disk), and a short 
description of how to run the simulations. 
 

BOUNDARY LAYER THEORY AND TURBULENCE MODELS 

 
The time-dependent equation of turbulent motion for an incompressible Newtonian fluid with an 

ensemble mean oscillatory velocity component u parallel to the bed is given by 
 

 ( )1
t

pu u
t x z z

υ υ
ρ

∂∂ ∂ ∂ = − + + ∂ ∂ ∂ ∂ 
, (1) 

 
where ρ is the fluid density, p is the pressure, υ is the kinematic viscosity of the fluid, υt is the turbulent 
eddy viscosity, x is the horizontal coordinate, and z is the vertical coordinate. 
 

Outside the boundary layer, in the free stream, shear stresses are no longer present such that there is a 
balance between the time-dependent free-stream velocity and the horizontal pressure gradient as 

 

 1 ,U p
t xρ

∂ ∂
= −

∂ ∂
           (2) 

 
where U is the free-stream velocity. 
 

Substituting Eq. (2) into Eq. (1) and rearranging yields 
 

 ( )d d
t

u u
t z z

υ υ
∂ ∂∂  

= + ∂ ∂ ∂ 
, (3) 

 
where the deflect velocity, ud = u-U, represents the difference between the depth-dependent velocity and 
that of the free stream. 
 

A variety of methods have been arrived at to determine or specify υt.  One option is to assume or 
require the flow be laminar, in which case υt is zero for all time.  Many other options exist, several of 
which are outlined below. 
 
Turbulent Eddy Viscosity Specification 

 
Borrowing from open channel flow, one can specify the shape of the turbulent eddy viscosity a priori 

as some function depending on the height above the bed and the friction velocity at the bed.  The height 
dependence arises because turbulent eddy size is restricted as the bed is approached.  Friction velocity 
dependence arises to incorporate the shear at the bed (and hence a measure of the strength of the flow). 
 

The linear form   
 ,t u zυ κ ∗=  (4) 
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where κ is the von Karman’s constant (= 0.4) and u* is the friction velocity was first used by, for example, 
Jonsson (1966), Kajiura (1968), and Grant and Madsen (1979), allowing for an analytic solution to  
Eq. (3).   
 

The friction velocity is given as 
 

 * ,u τ
ρ

=  (5) 

 
and the shear stress τ is, in turn, defined as 
 

 ( )
z
u

t ∂
∂

+= υυρτ . (6) 

 
Equation (6) is often seen without the kinematic viscosity term, however we include it since the flows 

will typically begin from rest and some form of shear near the bed will still exist on the molecular level.   
 
The linear form gives the expected behavior of the turbulent eddy viscosity near the bed, but is 

physically incorrect near the surface. The turbulent eddies near the surface are predicted to be too large 
according to Eq. (4), since it is expected that turbulent shear stresses vanish outside the boundary layer 
(assuming no mean currents are superimposed).   
 

To relieve some of this difficulty, Gelfenbaum and Smith (1986) modified the linear turbulent eddy 
viscosity by including an exponential term that decays with increasing elevation above the bed.  Beach 
and Sternberg (1988) further modified the linear-exponential form to  
 

 Dz
t zeu /*2

*
−= κυ ,   (7) 

 
where D is the domain depth in their study of sediment suspension, assuming that the diffusion of mass 
and momentum were equal.   
 

Finally, Fredsøe and Deigaard (1992) give a parabolic form of the turbulent eddy viscosity as  
 

 * 1t
zu z
D

υ κ  = − 
 

.      (8)   

 
It may expected that this latter form would be more correct compared to Eqs. (7) and (4) since it has 
roughly the same shape near the bed but goes to zero at the surface.  Equation (8) can also be modified 
such that D is replaced with the boundary layer height. 
 
One-Equation Model 
 

Rather than specifying the form of the eddy viscosity, it can be estimated based on the turbulent 
kinetic energy in the flow field.  The turbulent kinetic energy k for a one-dimensional problem is defined 
as 
 

 21
2 dk u ′= , (9) 
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where ud′ are the turbulent fluctuations from the mean velocity.  The transport equation for k is derived in, 
for example, Fredsøe and Deigaard (1992), and given as  

 

 ( )
32 2

1
d

t t
uk k kC

t z z z L
υ υ υ

∂∂ ∂ ∂   = + + −  ∂ ∂ ∂ ∂   
 ,  (10) 

 
where C1 is a constant (= 0.09) and L is a turbulence length scale given by  
 

 zCL 4
1κ= .  (11) 

 
In Eq. (10), the time rate of change of turbulent kinetic energy results from diffusion (both molecular 

and turbulent), production (note there is no molecular production of turbulent kinetic energy, hence υ is 
not included in this term), and dissipation.  Finally, the eddy viscosity results from the Kolmogorov-
Prandtl relationship between eddy viscosity, a mixing length and the turbulent kinetic energy as 
 

 kLt =υ . (12) 
 
Two-Equation k-ε Model 
 

Similar to the one-equation model, the turbulent kinetic energy is modeled through an equation similar 
to Eq. (10) in the two-equation model.  The turbulence length scale, however, is allowed to vary in time 
and space rather than remain fixed as in the one-equation model.  In order for L to vary, an additional 
equation is required to model the dissipation of turbulence ε, leading to the so-called k-ε equations as (see 
Justesen 1988 or Wilcox 2000 for the complete derivation): 
 

 
2

1
t d

t
k

uk k C
t z z z

υ
υ υ ε

σ
   ∂∂ ∂ ∂  = + + −    ∂ ∂ ∂ ∂    

 (13) 

and 

 
2 2

2 1 3 .t d
t

uC C C
t z z k z kε

υε ε ε ευ υ
σ

   ∂∂ ∂ ∂  = + + −    ∂ ∂ ∂ ∂    
 (14) 

 
The use of C1 in the dissipation terms follows Justesen (1988) and is a simplified method of reducing 

the dissipation rather than using empirical functions (see Hwang and Jaw (1998) for a description of these 
various functions). 
 

The constants used in Eqs. (10), (13), and (14) are often found from direct numerical simulations with 
the typical values given in Table 1. 
 
 

Table 1  Constants Used in the k-ε Model 

C1 C2 C3 σk σε 

0.09 1.44 1.92 1.0 1.3 
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Upon determining k and ε, the turbulent eddy viscosity is determined by 
 

 
2

1 .t
kCυ
ε

=  (15) 

 
It is known that the k-ε model has particular difficulty in complex flows and those with separation 

points and adverse pressure gradients (Rodi and Scheuerer 1986, Pope 2000, and Wilcox 2000). Hence, it 
should be used in direction-reversing boundary layer flows with caution. 
 
Two-Equation k-ω Model 
 

Like the k-ε model, the k-ω model, which is known to be more robust than the k-ε in regions of adverse 
pressure gradients (e.g., Wilcox 2000), is a two-equation turbulence closure scheme except that the 
second equation models the specific dissipation rate ω (= ε/k), rather than the dissipation rate ε. 
 

The model equations (Wilcox 1988) are 
 

 ( )
2

* *d
t t

uk k k
t z z z

υ σ υ υ β ω
∂∂ ∂ ∂   = + + −  ∂ ∂ ∂ ∂   

, (16) 

 

 ( )
2

2d
t t

u
t z z k z
ω ω ωυ συ αυ βω

∂∂ ∂ ∂   = + + −  ∂ ∂ ∂ ∂   
, (17) 

and 

 ,t
kυ
ω

=  (18) 

 
and the coefficients are given in Table 2. 
 

Table 2  Constants Used in the k-ω Model 
 

σ σ* Β β* α 
0.5 0.5 3/40 9/100 5/9 

 
NUMERICAL METHODS 
 
Finite Difference Equations 
 

The equations for the boundary layer flow and the various eddy viscosity approaches are solved 
numerically via an implicit algorithm using 2nd order spatial differences using a logarithmically spaced 
grid.  The implicit Euler method is given as (using deflect velocity as an example) 
 

 
1

,
n n
d du uu

t t

+ −∂
=

∂ ∆
  (19) 

 
where the superscript is the time level. Second order spatial differences are given as 
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 1 1
, , 1 , 1

1 1 1

1d i i i i
d i d i d i

i i i i i i

u h h h h
u u u

z h h h h h h
− −

+ −
− − −

 ∂ −
= + − ∂ +  

  (20) 

and 

 
2

, 1 , 1 ,
2 1 1 1

22 d i d i d id

i i i i i i

u u uu
h h h h h hz

+ −

− − −

 ∂
= + − +∂  

, (21) 

 where i is the grid point location and  

 
 1 .i i ih z z+= −  (22) 
 

Systems of equations are developed upon substituting Eqs. (19) through (22) for the various variables 
into the model equations. 
 
Boundary Conditions 
 

In order to fully specify the problem, boundary conditions are needed for Eqs. (10), (13), (14), (16), 
and (17).  For the velocity, the boundary condition imposed at the bed is no slip such that the deflect 
velocity at the roughness level (the first grid point) is  
 

 , ( ),
30
N

d
k

u t U t  = − 
 

 (23) 

 
where kN is the Nikuradse equivalent sand roughness and z0 = kN/30 is the roughness length where the 
fluid velocity goes to zero.  The velocity gradient is assumed to vanish at the top of the domain, leaving 
 

 ( ), 0.du
D t

z
∂

=
∂

 (24) 

 
The boundary conditions for k are 

 

 
1

1,
30
N d

t
k u

k t
zC

υ
∂  =  ∂ 

 (25) 

and 
 

 
( ) .0, =

∂
∂ tD

z
k

 (26) 
 
The lower boundary condition on k stems from the fact that the turbulent velocity fluctuations need not go 
to zero on a hydraulically rough bed.  Moreover, equilibrium is assumed to exist between the production 
of turbulent kinetic energy and dissipation, yielding Eq. (27); see Justesen (1988).  Rodi (1980) gives the 
boundary conditions for the dissipation equation as 
 
 

 
3

3 2
4

1
0

, ,
30
Nk kt C

z
ε

κ
  = 
 

 (27) 

and 
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( ) .0, =

∂
∂ tD

z
ε

 (28) 
 
The bottom boundary condition for the specific dissipation rate is (Wilcox 2000) 
 

 

( )

1
2

1
* 4

0

,
30
Nk kt

z
ω

β κ

  = 
 

 .   (29) 

 
Solutions are sensitive to the value of a Dirichlet free stream boundary condition so we apply a 
Neumann condition at the surface similar to the conditions for k and ε. 
 

 ( ), 0.D t
z
ω∂

=
∂

 (30) 

 
Free-Stream Forcing 

The models can be forced by either a time series of free stream velocity measurements or any analytic 
wave representation with or without a superimposed current.  Analytic wave representations used in this 
study are sinusoidal and sawtooth waves.  Sinusoidal forcing is given by  
 

 2( ) sinm
tU t U

T
π =  

 
, (31) 

  

where Um is the maximum free stream flow amplitude and T is the sinusoidal wave period.  Sawtooth 
waves can be forced using the form described by Fredsøe and Deigaard (1992) as 
 

 

1 2 0
2

( )
1 2

1 2 2

m s

m s
s

t TU t
T

U t t
T TTU t

α
α

α
α

 < <


=  −
≤ < −

  , (32) 

 

where αs is a parameter controlling the skewness of the wave and T is the sawtooth wave period.   

 
Boundary Layer Estimation 

The boundary layer height is calculated in one of two ways as  
 

  (hereinafter referred to as BL1),du U
z P

U δδ
+

= =  (33)   

 
where ud + U is the depth-dependent velocity.  Pδ is the ratio of the velocity to that of the free stream and 
is usually set to 0.95 or 0.99; the location where this occurs is defined as the boundary layer thickness δ.  
Difficulties can arise with Eq. (33) because the free-stream velocity goes through zero when forced by 
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oscillatory and aperiodic direction-reversing flows. Hence, a second option for calculating the boundary 
layer thickness is to determine when the magnitude of the gradient of ud passes a tolerance threshold as 
 

 (hereinafter referred to as BL2).d
z

u
z P

z δδ
∂

= ≥
∂

   (34) 

 
Starting at the surface and moving in the downward direction, the location where the magnitude of the 

velocity gradient meets or exceeds Pδz specifies the height of the boundary layer.  This method can 
produce realistic boundary layer heights even during times of zero or near-zero flow above the boundary 
layer. 
 
SOLUTION PROCEDURE 
 

The models (laminar, linear, linear-exponential, parabolic, k, k-ε, and k-ω) have been coded in Matlab 
using the implicit numerical methods mentioned above.  Unfortunately, the models represent coupled 
systems of equations relying on an unknown (n+1) time step.  The implicit solution procedure for the 
turbulence closure models requires iteration on the variables (ud, k; ud, k, ε; or ud, k, ω) to obtain a 
converged solution at each time step.  The eddy viscosity models do not require iteration. 
 

Figure 1 shows a flow chart of the solution procedure. After defining the variables in the workspace 
and the initial conditions, the deflect velocity is solved for and the vertical derivative of the deflect 
velocity determined.  In the case of the linear, linear-exponential or parabolic model, the friction velocity 
is next found and used to update the turbulent eddy viscosity for the next time step.  For the one-equation 
model, the k value at time n + 1 is determined and used to update the turbulent eddy viscosity using the 
length scale through Eq. (12).  These steps are repeated for this time step until the error on the turbulent 
eddy viscosity is smaller than an iteration tolerance.  In the two-equation models, the k equation is solved, 
followed by the ε or ω equation, and, finally, the turbulent eddy viscosity is calculated through Eq. (15) or 
(18).  Similar to the one-equation model, these steps are iterated upon until the error in the turbulent eddy 
viscosity is smaller than an iteration tolerance.  The variables are then updated for the next time step, the 
boundary layer thickness and bed shear stress are calculated, and the next time step is initiated.  
 

Define variables 
Set initial conditions

Determine velocity and its derivative

Calculate friction
velocity

Determine boundary layer thickness

Calculate eddy viscosity

Solve u,k
Solve u,k,ε
Solve, u,k,ω

Update variables

Linear or Parabolic

One  Equation Two  Equation

Laminar

Calculate eddy 
viscosity

ite
ra

te

iterate

Which Model?

 
Fig. 1  Flow diagram of boundary layer model solution procedure 
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MODEL RESULTS 

All seven models were tested against each other for two generic cases. (The linear-exponential model 
is not shown in any of the figures because of the similarity to the linear and parabolic eddy viscosity 
model.)  The first case (CASE1) is a 5-s sine wave with an amplitude of 0.8 m s-1.  The second case 
(CASE2) is a 5-s sawtooth wave with an amplitude of 0.8 m s-1 and αs = 0.25.  In both cases, kN  = 1×10-4 
m, the domain height is 0.1 m, the grid spacing was specified as logarithmic (with 300 points), and 2000 
time steps were completed for each of four wave periods (only the last was retained for comparison). 

 
Figure 2 shows velocity from four phases (at 0°, 45°, 90°, and 135°) of the CASE1 comparison.  At 0°, 

the flow has reversed from negative to positive, and the phase lead of the boundary layer flow can be seen 
in all cases.  The laminar simulation predicts a very small boundary layer height and the largest near bed 
velocity at over 0.25 m s-1.  The other simulations have similar (to each other) near-bed velocity maxima 
of about 0.18 m s-1 (0.22 m s-1 for k-ε model) but vary higher in the water column.  The k-ε and k-ω 
velocity predictions decrease with elevation more rapidly than the k, linear, or parabolic simulations (note 
that the linear and parabolic simulations are nearly identical).  Also, these two simulations still predict 
negative flow from about 0.02 m to 0.045 m, whereas the linear, parabolic, and k simulations do not. 
 

 
Fig. 2   CASE1 velocity profiles for various wave phases: laminar ( ); linear ( ); 
parabolic ( ); k ( ); k-ε ( ); and k-ω ( ). 

 
At 45°, when the flow is accelerating, all simulations except the laminar one have essentially the same 

structure with small variations. For instance, the k, linear, and parabolic models do not have an inflection 
point near z = 0.02 m. At 90°, the acceleration is 0 and the free-stream velocity is at its maximum.  Again, 
the simulations look similar with only subtle differences.  For instance, the k-ε and k-ω velocities increase 
with respect to elevation faster than do the other simulations (except laminar).  Finally, by 135°, the flow 
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is decelerating.  Note the difference in vertical structure between this plot and that for 45°.  Both have the 
same free-stream velocity, but the flow at 45° is accelerating while the flow at 135° is decelerating.   

 
Figure 3 shows the CASE2 profiles.  At 0°, the shapes of the vertical profiles do not vary much from 

their CASE1 counterparts.  The laminar model, as before, predicts a much thinner boundary layer and 
larger near-bed velocity.  At 45° and 90°, the shapes of the profiles are similar to those of CASE1, but the 
velocity magnitude is reduced by roughly one half and one fourth, respectively, due to the skewed forcing 
of the sawtooth wave.  The wave skewness, however, causes the velocity maxima at 135° to exceed those 
in CASE1 by over 0.2 m s-1. 

 
 

 
Fig. 3   CASE2 velocity profiles for various wave phases: laminar ( ); linear ( ); 

parabolic ( ); k ( ); k-ε ( ); and k-ω ( ). 

 
 
Figure 4 shows the boundary layer estimations based on the two methods (BL1 and BL2) for CASE1.  

The advantage of BL2 (Fig. 4A) over BL1 (Fig. 4B) is clearly seen at flow reversals when the free-stream 
velocity passes through zero, and the BL1 estimate reaches the domain height.  While the boundary layer 
estimation using the velocity gradient appears to perform better, there are still considerable differences in 
the shapes between the various simulations.  Decreases in the estimated boundary layer height are seen 
for the k-ε and k-ω simulations near-flow reversal, while decreases are seen for the other nonlaminar 
simulations closer to peak free-stream velocity magnitudes.  Other estimations for the BL2 method can be 
obtained by varying the cutoff Pδz from the value of 1 used here.     
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Fig. 4  CASE1 boundary layer estimations for BL2 (A) and BL1(B): laminar ( ); linear 

( ); parabolic ( ); k ( ); k-ε ( ); k-ω ( ). 

 

Bed shear stress estimates for CASE1 show variation over the period and between the different model 
formulations (Fig. 5).  For instance, all stress estimates have the same shape, but vary in magnitude from 
a maximum of nearly 1 kg m-1 s-2 for the laminar simulation (Fig. 5; thin dashed curve) to just over 4.0 kg 
m-1 s-2 for the linear and eddy viscosity model simulations (Fig. 5; bold dashed curves).  These 
simulations also show the phase lead of the bed shear stress with respect to the free-stream velocity.  This 
is apparent because the free-stream velocity maxima occur at 16.25 and 18.75 s while the two peaks in the 
bed shear stress occur at 16.0 and 18.5 s for the linear and parabolic simulations and 15.625 and 18.125 
for the laminar simulation.  This represents a phase lead of 0.25 s (18°) for the linear and parabolic 
simulations and 0.625 s (45°) for the laminar simulation.  The 45° lead for the laminar simulation exactly 
matches the phase lead predicted by boundary layer theory (Eq. (3)) for sinusoidal wave forcing (Stokes 
1845). 
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Fig. 5   CASE1 bed shear stress estimate, laminar ( ); linear ( ); parabolic ( ); 

k ( ); k-ε ( ); k-ω ( ). 

 

Bed shear stress estimates for the turbulent closure schemes (Fig. 5; solid curves) have the same shape 
as the eddy viscosity estimates but, interestingly, are generally smaller in magnitude.  The phase lead of 
the bed shear stress of 15.8°, 12.2°, and 18° for the k, k-ε, and k-ω simulations, respectively, is similar to 
that of the linear and parabolic simulations and comparable to those given by Fredsøe and Deigaard 

(1992, pg. 32) for amplitude Reynolds  numbers (
T
U

a
aU

RE mm π
υ

2
, == ) used here.  The inflection in 

the k-ε model bed shear-stress estimate is likely attributed to the flow reversal. 
 
MODEL-DATA COMPARISON 
 

Jensen et al. (1989) collected depth-dependent flow velocity measurements in a U-shaped oscillatory 
water tunnel for smooth and rough bed cases using a laser Doppler anemometer (LDA).  The tunnel was 
10 m long, 0.29 m wide, and 0.3 m deep (0.28 m in smooth wall cases). The models will be tested against 
the Jensen et al. (1989) Test10 and Test13.  Test13 was forced with a sinusoid of 9.72 s, a maximum 
velocity of 2 m s-1 and a roughness of KN = 0.84 mm.  Test10 was forced with the same conditions except 
the bed was made smooth by the installation of PVC plates.  Because the models require a z0 (= KN/30) 
value, a smooth bed was approximated by using KN = 1×10-4 mm (four orders of magnitude smaller than 
the rough bed case and one order of magnitude smaller than the largest clay particle size on the 
Wentworth scale).  Similar to the generic cases, 2000 time steps per wave period were used, and the 
number of grid points was 300.   
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Figures 6 and 7 show the velocity comparison for every 15 degrees of phase for the first half of the 
wave for the simulations (solid lines) and the Jensen et al. (1989) Test13 (dots).  Each successive profile 
is offset by 2 m s-1 (denoted by the zeroes in the plot).  The panels in Fig. 6 are A) laminar, B) linear, and 
C) parabolic.  Similarly, the panels in Fig. 7 are A) k, B) k-ε, and C) k-ω.  The laminar simulation has 
difficulty matching the observed profile shape at all phases of wave motion.   
 

 
Fig. 6   Rough wall (Test13), experimental data (.), model (solid curves). A) laminar, B) linear, and 

C) parabolic eddy viscosity. 
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Fig. 7   Rough wall (Test13), experimental data (.), and model (solid curves): A) k, B) k-ε , and C) 

k-ω turbulence models. 

 
The k-ε simulation generally has the correct velocity profile shape and magnitude in the upper portion 

of the domain.  Near the bed, however, the k-ε simulation only matches the shape of the observations, 
underpredicting the velocity magnitude at nearly all phases of the wave.  The rest of the simulations are 
very similar and qualitatively match the data (quantitative comparisons are given below). 

 
Figures 8 and 9 show the velocity comparisons to the data of Jensen et al. (1989) Test10 (layout is the 

same as in Figs. 6 and 7).  The results are similar to the rough bed test in that the laminar simulation is the 
worst performer and the k-ε simulation underpredicts the near-bed velocity at nearly all phases of wave 
motion.  Figures 6 through 9 show that the simulations are qualitatively similar regardless of whether or 
not they are applied to rough or smooth beds. 
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Fig. 8   Smooth wall (Test10), experimental data (.), and model (solid curves): A) laminar, B) 
linear, and C) parabolic eddy viscosity. 
 

 
Fig. 9   Smooth wall (Test10), experimental data (.), and model (solid curves): A) k, B) k-ε , and 
C) k-ω turbulence models. 
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A quantitative measure of the predictive capability of the models can be determined from the 
normalized time dependent error  
 

 
( )∑ −

=
z data

eldata
p t

uu
E

)(2

2
mod

σ
,   (35) 

 
where )(2 tdataσ  is the time-dependent vertical variance in data.  Ep values were calculated using the model 
grid points closest to the measurement locations.  This distance was typically on the order of 1×10-5 m or 
less except in the upper few centimeters of the domain where the maximum distance was 1.6×10-3 m.  The 
smooth- and rough-bed comparisons show that the linear model was most accurate (although the 
parabolic, k, and k-ω models had similar errors) while the laminar model was least accurate (see Fig. 10; 
laminar errors extend beyond the axis range shown). The k-ε model had normalized errors that were up to 
six times as large as those of the k and k-ω model.  The largest errors are observed between 0° and 20° 
and between 160° and 180° near flow reversals.  Away from flow reversals (adverse pressure gradients), 
all of the models except the laminar and k-ε perform nearly equally for both the rough bed (Fig. 10A) and 
smooth bed (Fig. 10B) tests.  In general, the best performers for both tests were the linear and parabolic 
eddy viscosity simulations and the k-ω model.  Note the difference in scales on Figs. 10A and 10B, 
implying the models as a whole perform more poorly (by up to a factor of 3) for the smooth-bed 
simulation. 
 

 
Fig. 10   Normalized errors for rough-wall Test13 (A) and smooth-wall Test10 (B): laminar (gray *-); 
linear (*); parabolic (square); k (diamond); k-ε (o); and k-ω (x). 
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DISCUSSION AND CONCLUSIONS 

The performance of seven boundary layer models has been investigated for two generic cases (sine 
wave and sawtooth wave) and data collected in a laboratory U-shaped oscillatory water tunnel.  The eddy 
viscosity boundary layer models, where the vertical profile of the turbulent eddy viscosity is assumed to 
have a specific shape were similar in their predictive capability.  Their similarity stems from the fact that 
within the boundary layer, the linear, linear-exponential, and parabolic forms for the eddy viscosity are 
also similar.  The shapes of the eddy viscosity profile for these varies outside the boundary layer, but 
because there is little shear in the water column at these elevations, the differences have little effect on the 
predicted velocity profiles.  The effect of a superimposed current is not included in the eddy viscosity 
models used here, but can be included through a modified eddy viscosity by either including the current 
effect in the bed shear stress estimate (e.g., Grant and Madsen 1979) or in a region-dependent (i.e., in the 
boundary layer or above) eddy viscosity model (e.g., Fredsøe and Deigaard 1992).  

 
The accuracy for the turbulence closure schemes cannot be determined from the generic cases; rather, 

the attempt was to see how these models compared to the simplified, less numerically intensive eddy 
viscosity models.  Based on these generic cases, it does not appear that the turbulence closure models 
yield velocity profiles that differ much from the eddy viscosity models.  There was discrepancy, however, 
between the predicted bed shear stress between the two model types, with the eddy viscosity models 
predicting larger values than the turbulence closure schemes.  These differences stem from the fact that 
the eddy viscosity models have a predefined shape for the eddy viscosity whereas the turbulence closure 
models do not.   

The comparison to laboratory data showed how accurately the eddy viscosity and turbulence closure 
models, with the exception of the k-ε model, predicted the observations. For instance, the k and k-ω 
models performed well at all phases of the wave.  The eddy viscosity models also compared well to the 
laboratory data for smooth and rough beds except, at times, in regions of flow reversal.  The consistently 
larger errors associated with the k-ε model result from the inability of the model to compensate at later 
phases for the overprediction during flow reversal.  It has been suggested and shown previously (Rodi and 
Scheuerer 1986 and Wilcox 1988) that the k-ε model can perform poorly during flow reversal (in regions 
with an adverse pressure gradient) as was observed.  A typical workaround that was shown here, use of 
the k-ω model, has better predictive capability during these times (Wilcox 1988).  

 
The WBBL models presented here are a means by which vertical velocity profiles and bed shear 

stresses can be generated for a variety of analytic wave forms and free-stream velocity time series.  The 
purpose of the models is to provide a simple means to estimate these parameters under a variety of 
conditions with the hopes of improving the knowledge of the fluid flow within the boundary layer and 
potentially enhancing sediment transport predictive capability.  Based on this analysis, it does not appear 
that the extra computation time for the turbulence closure schemes (six times slower than the eddy 
viscosity models for the number of time steps used here) affords improvement in predictive capability.  In 
conditions with much higher Reynolds numbers (i.e., cases with much larger velocities), stronger adverse 
pressure gradients, and/or 2D or 3D simulations, the use of the turbulence closure models may be more 
appropriate.   
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Appendix 
 

MATLAB CODES 
 
 

The Matlab (written using Matlab 6.0) codes shown in Table A1 are included on the accompanying 
disk for convenience to the reader.  The codes are heavily commented to explain the procedure 
throughout.  The included setvars.m file will perform the simulation referred to as CASE1 for linear eddy 
viscosity.  Every variable is described after it is defined and the recommended values are used.  As an 
example, at the Matlab prompt, type: setvars(‘case1’).  Then type evmodel(‘case1’).  To see a quick plot 
of the velocity, load case1.mat and type plotmodel. 
 

Table A1   Matlab Codes Used for Modeling the WBBL 
 

setvars.m Sets up the variables and constants for a model run.  Used for all 4 model.m 
files 

evmodel.m  The WBBL model for the laminar, linear, linear-exponential, and parabolic 
eddy viscosity model cases 

kmodel.m The WBBL model using the one-equation turbulence model 
kemodel.m The WBBL model using the two-equation k-ε  turbulence model 
kwmodel.m The WBBL model using the two-equation k-ω  turbulence model 
plotmodel.m Plots the velocity profiles for the last wave in the simulation at 45-deg intervals. 

 
 




