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1

BLIND DECONVOLUTION TO IMPROVE CLASSIFICATION
OF TRANSIENT SOURCE SIGNALS IN MULTIPATH

1. INTRODUCTION

Automated classification of transient source signals has become a necessity as Navy operations have
shifted from the open ocean to the littoral environment. The multitude of transient signals received on a
passive sonar system from biologics and surface vessels can overwhelm the sonar operator monitoring an
area for targets of interest. Automation offers a means to identify and remove obvious false targets to signifi-
cantly reduce the number of potential targets for the sonar operator to classify. A difficult problem even in
simple cases, classification increases enormously in complexity when the received transient has been dis-
torted by multipath, which can be significant at operational detection ranges in shallow water.

The received signal in the underwater multipath environment x(t) is modeled by the convolution  opera-
tion between the transient source signal s(t) and a Green’s function g(t) that represents the multipath encoun-
tered by the source signal as it travels to the receiver. When x(t) = s(t) ∗  g(t) and g(t) is known, deconvolution
is used to obtain s(t). Removing the multipath distortions in the signal, which are especially detrimental
when multiple returns in the received signal overlap, allows more accurate classification of the source sig-
nal. Given the inherent uncertainties in underwater environmental data, it is virtually impossible to model a
Green’s function to represent multipath with sufficient accuracy for deconvolution to produce the correct
source signal [1]. However, the source signal may be estimated using blind deconvolution. Blind deconvolution
techniques do not require known Green’s functions but instead use assumptions about the statistical proper-
ties of the Green’s functions to obtain the source signal. One such technique is the subject of this report.

Section 2 of this report contains a more detailed description of the blind deconvolution problem in
seismology and underwater acoustics and Section 3 gives one specific technique (the Cabrelli algorithm).
Section 4 shows the results of some parameter studies using the Cabrelli algorithm and discusses the results
of the simulation studies and future directions for research. Section 5 gives the conclusion.

2. BLIND DECONVOLUTION TECHNIQUES

Blind deconvolution is commonly used to mitigate multipath distortion that occurs over communication
channels. It is also used to reduce blurring in image restoration. More closely related to the blind deconvolution
problem in underwater acoustics is the seismic application, which attempts to retrieve the reflection coeffi-
cients for layers within the Earth without exact knowledge of the input waveform. The similarity is that in
both the underwater acoustics and seismic applications, the multipath function (Green’s function for under-
water acoustics, reflectivity series for seismology) is well represented by a series of spikes interspersed with
small, near-zero values. Each application assumes that the multipath function is “sparse.”

One thoroughly investigated blind deconvolution technique proposed by the seismic community is the
Wiggins’ minimum entropy deconvolution technique [2]. This was the initial impetus for investigating the
multipath problem in transient classification [3-5]. The Wiggins’ method is now considered one of a series
of cumulant  maximization techniques [6, 7]. These techniques assume that the convolution of a multipath
function with a source signal produces a received signal that is less sparse than the multipath function since
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convolution is a smoothing process. The methods attempt to derive filters that drive the received signal to
higher sparseness to obtain multipath functions that may then be used to implement deconvolution to obtain
the source signal. Wiggins’ measure of sparseness is the V-norm,

V y yj
j

j
j

(y) = ,






∑ ∑4 2

2

which is essentially the same as kurtosis. Wiggins’ technique can be recast using non-Gaussianity as the
statistical feature of the multipath function that is reduced (i.e., made more Gaussian) by the process of
convolution. Maximization of the V-norm leads to an iterative technique that has been shown to be quite
sensitive to noise [8].

Later, Cabrelli [9] introduced a technique analogous to that of Wiggins in many respects. Most notably,
Cabrelli’s method uses the D-norm,
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as a measure of sparseness and, like the V-norm of the Wiggins’ algorithm, the D-norm tracks closely with
kurtosis. However, comparative studies show that the Cabrelli algorithm is less sensitive to noise than the
Wiggins algorithm [5] and is better suited to the underwater acoustics application of blind deconvolution.
Thus, the following presentation is limited to the Cabrelli method.

3. CABRELLI’S ALGORITHM

Cabrelli starts with a simple but reasonable signal model. The time series arriving at the jth hydrophone
of an array is

        x (1)s ,g nj j j= ∗ +

where s is the signal leaving the target of interest, g
j
 is the Green’s function describing the propagation from

the target to the jth hydrophone, and n
j
 is the noise on the jth hydrophone.

A filter f of length l is defined that acts on all of the data channels to produce filtered output,

      y f x .f s g f n (2)j j j j= ∗ = ∗ ∗ + ∗

It is clear from Eq. (2) that a desirable filter would render the first term equal to the Green’s function
while correlating poorly with the noise term. Such a filter would be

f s (3),= −1

since the first term would be rendered equal to the Green’s function while s, and hence its inverse, is totally
independent of the noise. If such a filter could be found, then the desired signal could be extracted as its
inverse, and the Green’s function estimate for each data channel could be found simply as the filtered data

       y f .x s (4)s g gj j j j= ∗ ≅ ∗ ∗ =−1
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Cabrelli attempts to find such a filter by assuming that the Green’s functions are considerably sparser
than the original data. The main assumption is that increasing the non-Gaussianity of the data will drive it
toward the Green’s function. Thus, by driving the sparseness of the original data up (by way of the filter f),
Eq. (4), and hence, Eq. (3) could be satisfied. As a measure of sparseness, he used the simplicity or D-norm
defined by

            
D(Y) = max (5),

y

Y
j,k

j,k












where

 Y y (6)j k

j k
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,

,

is the Euclidean norm of the matrix Y = [y
j,k

], and y
j,k

 is the kth bin of the filtered data from the jth hydro-
phone. Cabrelli obtained this norm via geometric arguments, and showed the relationship of this norm with
the varimax (kurtosis) norm used by Wiggins. Cabrelli argues that optimization of the D-norm will produce
an estimate of a filter that satisfies Eqs. (3) and (4).

To optimize the D-norm, derivatives of y
j,k

 and  Y  will be required. These derivatives are easily calcu-
lated:
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It will be convenient later to express this latter derivative in terms of the data autocorrelations,
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To optimize the D-norm, the normal equations for the filter coefficients are obtained by setting the
derivatives with respect to the filter coefficients equal to zero. This gives
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which can be written as

      x y Y fj k m j k n n m
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where Eqs. (7) and (10) have been used and where j runs over hydrophones while k runs over bins.

By constructing an autocorrelation matrix R whose elements are given by

         R , (13)nm n m= −Γ

the normal equations can be written in matrix form as

              y Y R . (14)f xj k

jk

,

− ⋅ =2

f is a column vector composed from the filter coefficients, and xjk is the transpose of [x
j,k

 , x
j,k-1

 , … , x
j,k-l

], with
x

j,n
 = 0 if n does not correspond to a bin number.

Notice that the normal equations are invariant under the scale transformation f → λ f, where λ is a scalar
multiple. Since y

j,k
  Y  −2 is a scalar, then the simpler equation

          R (15)f x
jk⋅ =

has the same solution set as the original normal equations.

Assuming that R is well conditioned for inversion,

      f R (16)x
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is evaluated for the set of filters (one for each j,k pair), each filter is applied to the original data to get
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can now be evaluated to select the optimum filter from the set { f jk}. The optimum filter is then inverted to
give the signal estimate. If the Green’s functions are desired, they are given by the yjk

m
  used to compose Yjk for

the optimal jk pair that has already been calculated to evaluate the D-norm in Eq. (18).

Cabrelli denotes the process just described as
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The first statement in Eq. (19) says to choose the filter that optimizes the D-norm—an obvious state-
ment of the problem. However, the second statement says that the operations are interchangeable and that it
is much simpler to find a set of optimal filters (one for each jk pair) and then pick the one that maximizes the
D-norm. This process is described by Eqs. (16) through (18).

4. SIMULATIONS

This report gives three basic simulation analyses of the Cabrelli algorithm:

(1) Cabrelli performance vs signal complexity,

(2) Cabrelli performance vs Green’s function complexity, and

(3) a classification operating characteristics (CLOC) analysis of Cabrelli performance vs signal-
to-noise ratio (SNR).

In all three studies the received data were simulated according to Eq. (1) by convolving artificially con-
structed transient signals with artificially constructed Green’s functions. Noise was added only in the third
study. The constructed transients and Green’s functions were different for each of the three studies and are
described separately for each study.

Performance of the Cabrelli algorithm was evaluated by calculating a normalized correlation between
the transient signal that Cabrelli’s algorithm estimates and the actual transient used to simulate the data. The
normalization was performed according to

         γ( , )
max

max max
a b (20),

a b

a a b b
=

⊗( )

⊗( ) ⋅ ⊗( )

(where ⊗  represents correlation) for the normalized correlation between two signals a and b. Although most
classifiers are generally much more sophisticated and involve many signal features, this performance mea-
sure is adequate for these studies that compare only the quality of the source estimate with no processing
(the received signal) with the source estimate obtained from the blind deconvolution algorithm.

It is assumed that the passband of the received signal has been estimated prior to this stage of process-
ing. With this assumption, the received signal was bandpass filtered before it was sent to the Cabrelli algo-
rithm, and the signal estimate produced by the Cabrelli algorithm was again bandpass filtered before it was
sent to the classifier (i.e., before the normalized correlation was calculated).
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4.1 Signal Complexity

The waveform type that Cabrelli originally developed his algorithm for was the simple wavelet
signal commonly used in seismic petroleum exploration. This naturally raises the concern that this algo-
rithm might not perform adequately when it is used with the more complicated transient signals commonly
encountered in underwater acoustics. To study the effect of signal complexity on Cabrelli performance,
complexity must first be defined.

Cabrelli’s algorithm does not perform well for hyperbolic frequency-modulated (HFMs) or linear
frequency-modulated (LFMs) signals. Since it does work well on continuous wave (CW) signals, the ques-
tion arises: How does its performance behave as a function of signal bandwidth?  Thus, the bandwidth of an
LFM with a fixed center frequency was used as the measure of complexity.

A series of 100-ms LFMs were produced, each one centered on 100 Hz with bandwidths increasing from
0.001 to 180 Hz. These trial LFMs were convolved with a set of synthetic Green’s functions from the set
described in the next section to make a set of received signals at the three hydrophones of an array. The
Cabrelli algorithm was applied to each member of this set for all reasonable filter lengths, and the correla-
tions of the outputs with their corresponding transients were calculated using Eq. (20). Figure 1 shows the
maximum correlation (over filter length) plotted against bandwidth. The trend to poor performance at high
bandwidth for LFM signals is clearly demonstrated by this figure. The same trend is observed in Fig. 2 for
the correlations averaged over Green’s functions.

Why does this degradation occur? One possibility is that the simplicity as measured by the D-norm
might increase as bandwidth increases. If the D-norm of the simulated transient (without multipath) is com-

0 20 40 60 80 100 120 140 160 180
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bandwidth (Hz)

N
or

m
al

iz
ed

 C
or

re
la

tio
ns

Fig. 1 — Normalized correlations of the transient signals extracted by Cabrelli’s algorithm with the
simulated transient signal used to construct the data as a function of signal complexity as measured
by the bandwidth of the LFM used in this study
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parable to the D-norm of the Green’s function, the performance of Cabrelli’s algorithm might be compro-
mised. Figure 3 shows the D-norm of the simulated transient prior to convolution with the Green’s function
plotted against bandwidth. The simplicity increases with increasing bandwidth from about 0.135 to about
0.1455, but this change in the D-norm across the bandwidth explored is relatively small. This change was
only about 0.0105, approximately 3% of the variation in D-norm usually encountered in the loop over jk
pairs performed in the Cabrelli algorithm. The D-norms for the Green’s functions were 0.55, 0.25 and 0.28.
At the low bandwidth end, the ratios of transient D-norms to Green’s functions D-norms for the three hydro-
phones were 24%, 54%, and 49%. At the high end, they were 26%, 58%, and 52%. It would be hard to
imagine that this slight increase in the percentages would produce such a noticeable change in performance.

4.2 Green’s Function Complexity

The type of Green’s function for which Cabrelli originally developed his algorithm was the extremely
sparse “reflection time series” commonly found in seismic petroleum exploration. These Green’s functions
are zero almost everywhere, with only a few nonzero spikes which are usually well spaced. This fact natu-
rally raises the concern that Cabrelli’s algorithm might not perform adequately (or even at all) when it is
used with the vastly more complicated Green’s functions commonly encountered in shallow-water acous-
tics. Two Green’s function complexity studies were done. The first used artificial Green’s functions of in-
creasing complexity, while the second used Green’s functions constructed with the SACLANTCEN
Normal-Mode Acoustic Propagation Model (SNAP) using the environmental parameters from a range inde-
pendent run from an acoustically shallow site in the Atlantic Ocean near the Blake Plateau [10]. This latter
set of Green’s functions was made more complex in a realistic way by increasing the range from the target to
the receiver; range was the complexity measure.

Fig. 2 — Normalized correlations of the Green’s functions extracted by Cabrelli’s algorithm for
hydrophone 3 with the simulated Green’s functions used to construct the data as a function of the
bandwidth of the LFM used in this study
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The artificial Green’s functions consisted of 3 to 25 alternate-sign spikes modified with an exponential
decay to simulate decreasing size of returns with increasing range imposed on a sequence of 1000 zeros. The
spacing between spikes was prescribed at 10, 20, 30, 40, and 50 bins. The signal used was a 300-pt metallic
bang (i.e., an exponentially damped sinusoid centered on a frequency of 20 Hz). A single hydrophone was
simulated.

Figure 4(a) shows a plot of the normalized correlations between the source estimate and the true source
vs the number of spikes in the Green’s function for the case of no deconvolution. The multiple traces on this
plot correspond to different spike spacings. Figure 4(b) shows the same calculations for source estimates
obtained from the blind deconvolution technique. Figure 4(a) shows what might be expected-performance
degrades as the complexity of the Green’s functions increases. Except for an initial result with the 10-point
spacing and a 3-spike Green’s function, the correlation coefficients are less than 0.9, and for simulated
Green’s functions with 9 or more spikes, the correlation coefficients are less than 0.7. Figure 4(b) shows
performance oscillating as the complexity of the Green’s functions increases. The oscillation is probably an
artifact caused by the regular spacing of the spikes in the artificial Green’s functions, but the lack of a
degrading trend as the number of spikes is increased (except for the 10-bin spacing) is encouraging. The
exceptional performance that occurs with a spacing of 30 bins is an artifact of the processing and should not
be regarded as expected behavior. The original damped sinusoid has a 15-bin periodicity, and the 30-bin
spacing between Green’s function spikes results in constructive interaction in the convolution process. The
Green’s function spikes line up with the sinusoid peaks, leading to high correlations in this example. With a
phase shift in the damped sinusoid, the Green’s function spikes could line up small values within the sinu-
soid and result in correlations that are stable with increasing spike number but significantly lower than that
shown.
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Fig. 3 — Values of the D-norm for the transient signals used to construct the data
as a function of the bandwidth of the signals
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The second Green’s function complexity study uses the same metallic bang but more realistic Green’s
functions to form the multipath corrupted received signals that would be used for classification. The Green’s
functions were obtained using the SNAP normal mode model at differing ranges to produce a set of received
signals on an array of 16 hydrophones for each range. The unprocessed source signal estimates were pro-
cessed using Cabrelli’s algorithm, and the output was compared to the initial transient signal using Eq. (20)
for a range of filter lengths. Figure 5 shows the result.

This figure plots correlations vs filter length and range. At each range, filter length can be scanned to see
if there are any filter lengths that produce correlations greater than the unprocessed correlation (which is
plotted vs range in the left-most column of the figure). As the ranges of Fig. 5 are examined, it becomes
apparent that at the smallest ranges (600 and 2400 m) Cabrelli output is no better than the unprocessed
signal. This is not surprising since at these ranges there is very little multipath corruption of the signal.

At 4300 m, the unprocessed signal correlates poorly with the initial transient, but there is a range of
filter lengths around 40 m for which the Cabrelli estimated source signal is significantly better than the
unprocessed signal. (The small filter lengths are ignored because the signal extracted from such a short filter
would not have enough points to give an adequate representation of the initial transient.)  As the rest of the
ranges are scanned, it becomes clear that at any range there are always sufficiently large filter lengths for

Fig. 4 — Maximum values (over filter length) of the normalized correlations as functions of Green’s
function complexity as measured by the number of spikes in the Green’s functions
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which application of the Cabrelli algorithm would be better than no preprocessing. The conclusion that
Cabrelli’s algorithm can perform adequately with Green’s functions of the complexity found in shallow
water at tactical ranges is justified.

4.3 Classification Performance Analysis

In this study, the Cabrelli algorithm was run using five different signals that represent five different
classes of transients. Noise levels at five SNRs were tested, with SNR  defined as the ratio of signal and
noise standard deviations and converted to decibels (dB) for display. The signal types are labeled Bang,
Pulse, LFM, Sumsin and PRN.

The bang is an exponentially damped sinusoid centered on 60 Hz. The pulse is constructed to have a flat
(real) spectrum from 25 to 75 Hz. The LFM is a 333-ms sweep from 30 to 90 Hz. Sumsin is a sum of two
sine waves at 30 and 33 Hz, with the second one phase-shifted to make the transient taper at its extremities.
The PRN contains uniformly distributed, zero-mean white noise bandpass filtered to the band from 20 to
70 Hz. All of these signals were zero padded with as many zeros preceding them as there were bins in the
nonzero part of the signal and with the same number of zeros following them.

A single set of SNAP-generated Green’s functions from Section 4.2 (one for the propagation to each
hydrophone) was used to create received signals at a range of 11400-m for use in this study. The 11400-m
range was chosen because it presents significant multipath corruption and corresponds to good results for
the performance of the Cabrelli algorithm. As an example of the degree of multipath corruption in each of

Fig. 5 — Normalized correlations of the signals extracted from Cabrelli preprocessing with the transient signals
used to construct the data as functions of filter length and target range that were used as a measure of Green’s
function complexity

R
an

ge
 (

m
)

600

2400

4300

6000

7900

9600

11400

13200

15000

20 40 60 80Before
Processing

Filter Length

Damped Sinusoid
1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5



Blind Deconvolution to Improve Classification of Transient Source Signals 11

the five signals, Fig. 6 shows the five simulated transients next to one channel of received data for the
11400-m range.

Twenty realizations of the noise were mixed with each of the five received signals at a fixed SNR. These
100 prepared signals were each run through the Cabrelli algorithm for a set of reasonable filter lengths (the
l in  the definition of the xjk used in Eqs. (14) and (15)), and the optimal filter length was chosen for each
signal, based on correlations with the true source. In practice, the optimum filter length is unknown (see
Section 5, Discussion), but it is assumed to be known in this study to illustrate the best possible performance
for the algorithm.

The 100 resulting output signal estimates were compared with the five trial transients using the correla-
tion (Eq. (20)). The 500 resulting correlations were used to populate a confusion matrix. A confusion matrix
has the signal type for the unidentified source labeling the rows and classification choices labeling the
columns.

Figure 7 shows the data used to construct a confusion matrix for this study, corresponding to an SNR
of 15 dB. The plot in each block of this 5 × 5 matrix shows the correlations for that box plotted in increasing
order. For each threshold value, the counts from each block can be easily ascertained visually. These counts
are needed to calculate probabilities. The diagonal blocks represent correct classifications (or false

Fig. 6 — Five classes of transient signals (a) through (e), and the received transients at
the 11400-m range (receiver depth of 96 m) (f) through (j)
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dismissals), while off-diagonal blocks represent false classifications (or correct dismissals). A confusion
matrix is judged “good” if correlation values in its diagonal blocks are large and the correlation values in its
off-diagonal blocks are small.

Four probabilities can be calculated from Fig. 7 by counting the numbers of correlations above and
below a threshold value and normalizing by the number of possible outcomes.

These four probabilities for a given prepared signal type are:

P
cc  

= (probability of correct classification)—number of correlations above threshold in diagonal
block/number of realizations,

P
fc  

= (probability of false classification)—number of correlations above threshold in rest of row/
(number of signal types-1)(number of realizations),

P
cd  

= (probability of correct dismissal)—number of correlations below threshold in rest of row/
(number of signal types-1)(number of realizations), and

P
fd  

= (probability of false dismissal)—number of correlations below threshold in diagonal block/
number of realizations.

Fig. 7 — Confusion matrix for an SNR of 15 dB from the CLOC analysis. The graph in each square of the
matrix shows the correlations over 20 realizations. Counts of correlations above and below a given threshold
can be read visually from this figure for the construction of CLOC curves.
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If a particular correlation value is greater than the threshold value, it is counted as a classification. If it is
less than the threshold value, it is counted as a dismissal.

Each probability could be plotted against the threshold value or, as is more common, parametric plots of
one probability vs another could be made. Note that the scales on the plots of correlation values in Fig. 7 are
not consistent across subplots but are scaled to be relevant for each particular case. In many cases, the
correlation values are below 0.8, which in general represents poor correlation for these signals.

Tables 1 through 10 give the confusion matrices resulting from use of the maximum correlation as the
classification criterion for the five different SNRs. Each element contains the number of realizations (out of
20) for which the signal heading each column is chosen by the classifier. When all five signal classes are
used for classification, as done in Tables 1 through 5, the pulse and Sumsin signals are properly classified
with high probability (implies high P

cc
) at all SNRs. In no instance is the signal improperly dismissed (im-

plies low P
fd
). However, the bang, LFM, and PRN are almost as likely to be falsely classified (implies high

P
fc
) as the pulse or Sumsin, as these two signals are to be correctly classified. Removing the pulse and

Sumsin signals from the classification classes results in high P
cc

 and low P
fd
 for the bang, but the LFM is

falsely classified as the bang well over 50% of the time; it is falsely classified as the PRN the remainder of
the time. The PRN is somewhat better with higher correct classifications at the high SNRs.

Bang Pulse LFM Sumsin PRN
Bang 0 19 0 1 0
Pulse 0 20 0 0 0
LFM 2 17 0 1 0
Sumsin 0 0 0 20 0
PRN 0 20 0 0 0

Table 1 — Five-Class Confusion Matrix for SNR = 5 dB

Bang Pulse LFM Sumsin PRN
Bang 0 20 0 0 0
Pulse 0 20 0 0 0
LFM 2 17 0 1 0
Sumsin 0 0 0 20 0
PRN 0 19 0 1 0

Table 2 — Five-Class Confusion Matrix for SNR = 10 dB 

Bang Pulse LFM Sumsin PRN
Bang 3 17 0 0 0
Pulse 0 20 0 0 0
LFM 1 18 0 1 0
Sumsin 0 0 0 20 0
PRN 0 20 0 0 0

Table 3 — Five-Class Confusion Matrix for SNR = 15 dB
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Finally, Classification Operating Characteristics (CLOC) curves for the five SNRs are shown for the
five signals in Fig. 8. These curves include only two of the probabilities (i.e., P

cc
 and P

fc 
) and are created by

varying a threshold correlation value and calculating the probabilities as defined above. The pulse and
Sumsin signals in (b) and (d) are classified correctly with P

cc
 reaching 1.0, while P

fc
 is still zero. The bang in

(a) reaches a P
fc
 of between 0.3 and 0.4 before P

cc
 reaches 1.0. However, the remaining two signals (c) and

(e) reach P
fc
 values of about 0.7 to 1.0 and 0.35 to 0.45 before P

cc
  reaches 1.0.

5. DISCUSSION

The results of the previous sections show that Cabrelli’s algorithm performs well with complicated
propagation Green’s functions of the type common to tactical ranges in a shallow-water environment over a
range of reasonable SNRs. However, it is quite sensitive to signal type and signal complexity that increases
with frequency. While this study shows that there are two signal types for which the algorithm improves
correct classification with high probabilities (pulse and Sumsin), the degree to which this will improve a
classifier for the pulse is limited by high probabilities for false classification of the remaining signals. The
algorithm generates source signal estimates for the received bang, LFM, and PRN signals that are just as
likely to be classified as a pulse as is the received pulse. The pulse appears to be the “default” estimate.

Using only the bang, LFM, and PRN signal classes, the bang was always correctly classified as a bang
(see Tables 6 through 10). Unfortunately, the PRN was also classified as a bang in a significant number of
the cases for the five SNRs (17, 13, 5, 12, and 9 times out of 20, respectively). However, the PRN was
correctly classified in the remaining cases. Even with only three choices, the LFM was never classified as an
LFM but as a bang and occasionally as a PRN.

The results given in this report are dependent on the correlation as the classifier. Therefore, they are not
sufficient to draw complete conclusions about the improvements that the Cabrelli algorithm may have on
classification. For example, when the bang is falsely classified as the pulse, the source estimate generated
by the Cabrelli algorithm is visually something in between the two signal types, as illustrated in Fig. 9.
Here, the source estimate derived from the received bang in the 11400-m case from the earlier section is

Bang Pulse LFM Sumsin PRN
Bang 0 20 0 0 0
Pulse 0 20 0 0 0
LFM 0 20 0 0 0
Sumsin 0 0 0 20 0
PRN 0 20 0 0 0

Table 4 — Five-Class Confusion Matrix for SNR = 20 dB

Bang Pulse LFM Sumsin PRN
Bang 1 19 0 0 0
Pulse 0 20 0 0 0
LFM 0 18 0 2 0
Sumsin 0 0 0 20 0
PRN 0 20 0 0 0

Table 5 — Five-Class Confusion Matrix for SNR = 25 dB
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Bang LFM PRN
Bang 20 0 0
LFM 16 0 4
PRN 17 0 3

Table 6 — Three-Class Confusion Matrix for SNR = 5 dB

Bang LFM PRN
Bang 20 0 0
LFM 16 0 4
PRN 13 0 7

Table 7 — Three-Class Confusion Matrix for SNR = 10 dB

Bang LFM PRN
Bang 20 0 0
LFM 12 0 8
PRN 5 0 15

Table 8 — Three-Class Confusion Matrix for SNR = 15 dB

Fig. 8 — CLOC curves (the five curves in each subplot represent SNR values of  5, 10, 15, 20, and 25 dB)
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more correlated with the pulse signal rather than the bang, but other classification features might easily
recognize it as the bang.

So far, the issue of filter length has been ignored. There are different approaches to dealing with this
unknown parameter. The first approach is to directly pass the source estimates generated for each filter
length to the classifier. An alternate approach is to cull the source estimate set to a significantly smaller set
before passing to the classifier. For example,  if the hydrophones are separated such that the Green’s func-

Bang LFM PRN
Bang 20 0 0
LFM 12 0 8
PRN 12 0 8

Table 9 — Three-Class Confusion Matrix for SNR = 20 dB

Bang LFM PRN
Bang 20 0 0
LFM 16 0 4
PRN 9 0 11

Table 10 — Three-Class Confusion Matrix for SNR = 25 dB

Fig. 9 — Source estimate generated by the deconvolution algorithm for
the received bang signal compared to the bang and the pulse
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tions are significantly different from channel to channel, then the average autocorrelation of the received
signals will be similar to the autocorrelation of the source signal. This average autocorrelation can be used to
reduce the size of the solution set by comparing the autocorrelations of the extracted signals with the
autocorrelations of the classification signal types. Also, exploratory studies have shown that for some signal
types, the best source esimate often appears at multiple filter lengths, while the other estimates are dissimi-
lar. This redundancy can be exploited to cull the solution set. However, any sort of culling before classifica-
tion introduces more uncertainty into the problem. As long as the classifier operates quickly, it is the most
reliable way to cull the solution set. Thus, at the expense of higher P

fc
, it is perhaps better to pass the entire

source estimate set directly to the classifier.

Clearly, the Cabrelli algorithm alone will not be adequate as a general multipath compensation prepro-
cessor in shallow-water transient classification. It will have to be aided in some way, and this research now
takes this direction. Other algorithms under investigation use information that is independent of the infor-
mation that Cabrelli’s algorithm uses. For example, Rietsch’s algorithm [11] uses the fact that the signal is
common to all hydrophones of an array, while the Green’s functions are different from element to element.
This algorithm can handle any signal (no matter how complicated) and any Green’s function, but it is too
sensitive to noise in its present incarnation. Ways are being explored (with some success) to stabilize it
against noise. An algorithm derived from a joint “cost” function that uses stochastic information from Cabrelli’s
algorithm and deterministic information from Rietsch’s algorithm (or other deterministic algorithms) should
produce significantly improved results and be stable in noise.

6. CONCLUSIONS

The Cabrelli algorithm for blind deconvolution has been elucidated and tested with simulated multipath
corrupted transient data. It was found to be insensitive to the complexity of the Green’s function describing
the propagation, relatively robust against noise, but very sensitive to signal type and signal complexity.
Specifically, it was found to be a good preprocessor for the classification of pulses and sums of sines, but it
performed poorly with metallic bangs, LFMs, and PRNs. The probability of false classification as a pulse
was unusually high since it seemed to want to classify everything (except sums of sines) as a pulse. These
results might not be very reliable because an overly simplistic classification algorithm was used (normalized
correlation with ground truth). The algorithm should be tested in conjunction with a classification algorithm
more in line with those used in Fleet operations. Finally, a brief description was given of a procedure to
produce an algorithm that performs better than this one.

7. ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research and the Naval Research Laboratory.

REFERENCES

1. M.K. Broadhead, R.L. Field, and J.H. Leclere,  “Sensitivity of the Deconvolution of Acoustic Transients
to Green’s Function Mismatch,” J. Acoust. Soc. Am. 94, 994-1002 (1993).

2. R.A. Wiggins, “Minimum Entropy Deconvolution,” Geoexplor. 16, 21-35 (1978).

3. M.K. Broadhead, “Broadband Source Signature Extraction from Underwater Acoustics Data with Sparse
Environmental Information,” J. Acoust. Soc. Am. 97, 1322-1325 (1995).

4. M.K. Broadhead, L.A. Pflug, and R.L. Field,  “Minimum Entropy Filtering for Improving Nonstationary
Sonar Signal Classification,” Proceedings of the 8th IEEE Signal Processing Workshop on Statistical
Signal and Array Processing, Corfu, Greece, June 24-26, 1996, pp. 222-225.



Pflug et al.18

5. M.K. Broadhead and L.A. Pflug, “Performance of Some Sparseness Criterion Blind Deconvolution
Methods in the Presence of Noise,” J. Acoust. Soc. Am. 107, 885-895 (2000).

6. A.T. Walden, “Non-Gaussian Reflectivity, Entropy, and Deconvolution,” Geophys. 50, 2862-2888 (1985).

7. J.A. Cadzow, “Blind Deconvolution via Cumulant Extrema,” IEEE Signal Process. Magazine 13,
24-42 (1996).

8. M.K. Broadhead, L.A. Pflug, and R.L. Field, “Use of Higher Order Statistics in Source Signature
Estimation,” accepted for publication, J. Acoust. Soc. Am. (2000).

9. C.A. Cabrelli,  “Minimum Entropy Deconvolution and Simplicity: A Noniterative Algorithm,” Geophys.
50, 394-413 (1984).

10. R.L. Field and J.H. Leclere, “Measurements of Bottom-Limited Ocean Impulse Responses and Com-
parisons with the Time Domain Parabolic Equation,” J. Acoust. Soc. Am. 93, 2599-2616 (1993).

11. E. Rietsch, “Euclid and the Art of Wavelet Estimation, Part I: Basic Algorithm for Noise-Free Data,”
Geophys. 62(6), 1931-1946 (1997).


