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6 D. A. SWICK

2.  ASYMPTOTIC DISTRIBUTION OF THE FINITE FOURIER TRANSFORM OF

A ZERO MEAN STATIONARY PROCESS

In this chapter we investigate the asymptotic variances and covariances of discrete finite
Fourier transforms (DFT (1.6)) and the bias in the periodogram (1.9) in one and two dimen-
sions. There are no new conceptual problems in considering higher dimensionality; the re-
sults can be extended by induction, but the notation required is cumbersome. In anticipa-
tion of the tests of hypotheses of later chapters and to clarify the notation, one- and two-
dimensional processes will be represented here by {n(t), te T} and {n(x, N,x€X, te T},
respectively. Under the null hypothesis of subsequent chapters, the process {y(t), te T} of
Chapter 1, will be the two-dimensional process {n(x, ,x€X, t€ T}. Since it will be clear
from the context whether the discrete or the continuous transform is intended, the tilde will
be dropped from the DFT. The vector A will be represented by w in one dimension, and by
(K, w)' in two dimensions. The letter n in parentheses or as a subscript is an index, and of

course not the same as the functions n(t) or n(x,t).

2.1 The One Dimensional Case
Following Shumway [37], we consider a collection {n,.(t),t €T, r=1,... ,R} of obser-
vations of a zero mean wide-sense stationary time series, where T = {0,1, oo, N— 1}. Let

the cross correlation functions be represented as

Re(t—t') = E{ np(t)n (') }

m
=8 o= [ eiw(t-t') f(w)dw 2.1)

. where the spectral density f(w) is 2 bounded absolutely continuous function. (See (1.1),

(1.4), (1.5).) The DFT (1.6) of n,(t) is given by

1 Nt )
er(n) =—r= ) ny(t)e”int

VN =
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ABSTRACT

The discrete finite Fourier transform of a multidimensional stationary stochastic
process transforms a2 multivariate problem into an asymptotically univariate one. For a
one- or two-dimensional process it is shown that, under stated conditions, the correlation
between the real and imaginary parts of the transformed wvariables is

n PR
oo,
i=1

and that the variance of each is equal {o
1 = 1
gftew) + X o™,

where f(x,w) is the speciral density, 7} is the number of observations in the jt? dimension,
and n =1 or 2. The limiting joint distribution of a collection of two-dimensional period-
grams, defined as the squared modulus of the iransformed variables, is shown to be that
of mutually independent chi-square variates. The discrete finite Fourier transform also
concentrates the information for discrimination between hypotheses for a class of processes
of interest.

Several techniques for testing hypotheses concerning multidimensional stationary
stochastic processes were developed. These were applied {o thedetection of two-dimensional
plane-wave signals imbedded in a collection of independent identically distributed noise
processes.

When the signals are common to all realizations, a likelihood ratio test can be applied
in the transformed domain. If the signal model includes an unknown epoch or phase which
varies from realization to realization, no true replications are possible, and the test must
be modified. The modified test has reasonable power at acceptably low test levels. How-
‘ever an ad hoc test, based on the asymptotic distribution of averaged two-dimensional
periodograms, is shown to be more powerful than the likelihood ratio test under the con-
ditions considered. ¥ requires, however, that the signal components be isolated from each
other in wavenumber and in freguency, since it utilizes data from neighboring cells to
eliminate the unknown spectral density.

Analysis of variance and methods of multiple comparison have also been applied in
the transformed domain. With the model of signals with unknown phase differences, the
analysis is applied to the periodograms. The test is found to be robust to the resulting
non-normal (i.e., chi-square) population, at least when the spectral density is constant.
Non-constant speciral density results in unegual cell variances. In this case, the test with
a chi-square population is robust only to very moderate inequality of cell variances; the
test with a normal population is considerably more robust. When there are many signal
components, analysis of variance and multiple comparison tests are more powerful than
the ad hoc test. The latter, which considers each component independently, is less sensitive
o non-constant speciral density.
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The results of computer simulation of the various tests considered are presented, as
is a table comparing their power at test levels &, with 0.5 > « = 1076,
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SOME APPROACHES TO TESTING HYPOTHESES FOR
MULTIDIMENSIONAL STATIONARY STOCHASTIC PROCESSES

1. INTRODUCTION AND OUTLINE

To facilitate the discussion of hypothesis testing for multidimensional stationary stochas-
tic processes we consider some definitions. By an n-dimensional stochastic process (random
process) we mean a finite real-valued random variable y(t) for every fixed t in some n-
dimensional parameter set T. We will be primarily concerned with the discrete case, in which
T;=0,%1,%2,...,i=1,...,n. For n =1, we have a one-dimensional random function,
or time series, although the parameter ¢ may indicate ordering according to a spatial or other
dimension. (See, for example, Anderson [2], p. 1 or Hannan [15], p. 3). For n > 1 the
process may be termed a space-time series, if these are the parametérs and it is desirable to
distinguish between them. | V

The dimensionality of a particular process is sometimes a matter of interpretation. A
collection of observations made at discrete points in space and in time, for example, may be
considered for some applications as a set of realizations of a one-dimensional time series.
For other applications it may be necessary or at least preferable to interpret such a collection
as a single realization of a multidimensional process.

The n-dimensional stochastic process {y(t), tE T} is said to, be strictly stationary if its
n-dimensional distribution functions are invariant under parameter translation (Rosenblatt
[30], p. 100). The process is said to be wide-sense stationary if for each t its mean is a con-

stant (which we take to be zero without loss of generality) and its covariance function

R(t1,t2) = E{y(t1)y(t2)} (1.1)

depends only on the vector difference 7=t; — tg, i.e., R(t;,t2) = R(7). Such a process is
often called a homogeneous random field (Yaglom [48], p. 81, Cramér and Leadbetter [6],
p. 167) or a homogeneous random process (Hannan [15], p. 94). The terms multidimen-
sional stationary stochastic process, homogeneous random field, space-time series, or simply
process when no confusion can arise, will all be used interchangeably in the sequel, which
will deal exclusively with such processes. Examples are given by Cramér and Leadbetter
(ibid.).

The assumption of stationarity permits the spectral representation
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2 D. A. SWICK

=1 int
s = oo [ etave 12)

where the range of integration extends over the whole n-dimensional space of A =(0,---50)
in the continuous parameter case, and is [, 7] for each A; in the discrete case. (See, for
example, Doob {81, p. 481, p. 527). Here A - { indicates the inner product

At=0t3 + ...+ Nglpp -
The Y{(A) process has orthogonal increments, i.e., E{dYO\l) dY(?\g)} =0,M F Ag, and

E{|dY(|2} =dF(N), 1.3)

where F(Q) is the spectral distribution function, given by

R(D=

i)\-
G f e\ TAF() . (1.4)

When it exists, the spectral density is the derivative of the spectral distribution:

__a"FQy
M= 5, ...,

(1.5)
Although there is a one-to-one correspondence between {y(t)} and {Y()\)}, in many
cases it is advantageous to consider the variables in the transformed space. Measurement,
computation, and interpretation of the spectral density rather than the covariance function
is often preferable (Blackman and Tukey {31, p. 6), and spectral analysis may be the most
relevant analysis (Jenkins [19], Jenkins and Watts [20]). For discrete data, with which we
will primarily be concerned, Shumway [36,37] points out that in most time series applica-
tions the number of replicated series is much less than the number of points in each series,
so that the sample covariance matrix will have a singular Wishart density and the classical
multivariate tests are not applicable. The discrete finite Fourier transform (DFT), deﬁned
below, approximately diagonalizes the covariance matrix. In addition, it will be shown in
Chapter 3 that for certain models the DFT also concentrates the information for discrimina-
tion between hypotheses (Kullback [22], p. 5) in a particular region of the transformed

space. Some of the problems involved in estimating spectra from finite length records are
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discussed by Parzen [28]. See also Blackman and Tukey [3], Anderson {2], Chapter 9,
Hannan {15], Chapter V, and denkins and Watis [20], Chapter 6.

Consider a finite set of discrete observations, {y(t), ;= 0,1,...,Tj—1,j=1,...,n}.
The n-dimensional DFT of y(t) is defined as

n T1—1 Tp—1 o
Y(m) = I? 2T ) e, (1.6)
j=1 1=0 ;=0
where
m’ = (mT]_, ""an) 2
)\;n = (27!' mTl/Tla ...,271' an/Tﬂ) ? (1'7)
and
lim 27 mp/Tj = ¥g,i=1,...,n. 1.8

Tj—+°°

It will be shown in Chapter 2 that for n = 1 or 2, under stated conditions, the variance of

n

Fm) is FO0) + )| O(Ti ),

i=1

where 0(+) is defined in the Glossary, that

cov| Yg(m), Ya(m)] = ﬁ 0(T;1), and that
- j=1

cov[?@(ml ), 'i;ﬁ(mz) ] ~ COV[ ?&(ml )s?&(mZ)] = ﬁ O(Tfl) >
B =

for my # my. Here & and & refer to the real and imaginary parts, respectively. Extension

to higher dimensions is, in principle, straightforward but is notationally unwieldy.
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On the lattice points (1.7), we define the n-dimensional periodogram of y(t) as
It,y () = | Y(m)|2, (1.9)

where T' = (T¢,...,T,) and ?(m) is given by -(1.6). This definition differs by a factor of

1/2 or 27 from the two most commonly used definitions. It is adopted so that
n
E{Ity(\m) }=F) + ) O(T7Y).
j=1

If {y(t),t € T} is a Gaussian process, then ?(m) will havé a complex normal distribution
(Goodman [11]). Wahba [42] shows that if {y(t),t € T} is a P-variate zero mean Gaussian
process, it is possible to construct K sample spectral density matrices based on averages of
one-dimensional periodograms which converge jointly in mean square to K independént
complex Wishart matrices. (See Goodman [11].) Also considering Gaussian processes,
Liggett [24] shows that spectral analysis is asymptotically optimal in the sense that the
“expected cost” of a Bayes test based on a class of spectral estimates approaches that of
the Bayes test based on the original data.

The distributional properties of the one-dimensional periodogram have been extensively
studied. See, for exampie, Hannan [14], Chapter III. It y(A;) is not a consistent estimator
of f(A), since 2l ,, (A )T has a limiting chi-square distribution (Anderson [2], p. 474).
The usefulness of periodograms lies in. construction of spectral estimates from functions of
sets of them (Hannan [15], p. 213). Walker [44] discusses the asymptotic distribution of
one-dimensional periodograms and of sets of one-dimensional periodograms. Olshen [26] ex-
tends some of the results of Hannan [14] and Walker {44]. The processes considered are

one-dimensional moving averages

o0

yO= viut-i | @10

j:—OO

of independent random variables, u(t), which obey a Central Limit Theorem. Further exten-
sions are given by Pagano [27], who discusses the two-dimensional periodogram. Based on
the work of these authors, it is shown in Chapter 2 that the joint distribution of a set of
two-dimensional periodograms tends to that of a set of mutually independent chi-square
variates. This result is used to justify the approximate test statistics employed in subsequent

chapters,
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The remainder of the dissertation is devoted to applications of these concepts to the detec-
tion of two-dimensiona! signals imbedded in a collection of two-dimensional independent iden-
tically distributed noise processes. Two models are considered here. In the first, two-dimensional
plane waves are considered to be common to R realizations of the process. Walker [45] discussed
parameter estimation for a one-dimensional model, and Hinich and Shaman [17] have recently |
extended this treatment to a general n-dimensional model with Gaussian errors. In Chapter 3,
the approximate likelihood ratio test developed by Shumway [37] is extended to the detection
of two-dimensional signals. ' V

The second model considered is probably more realistic for many applications. In it, each
signal has an unknown uniformly distributed epoch or phase. Since the phase is different in each
realization, no true replications are possible. A modified version of the likelihood ratio test
meets with some limited success with this model, but both types of errors are increased.

In Chapter 4 an ad hoc test, based on the asymptotic distribution of Y(m), is developed.
Both computations of the distribution and the results of simulated tests are presented to show
that this nonlinear test can be more powerful than the likelihood ratio test, at least with ex-
tremely small type I errors.

Shumway [ 36] has applied regression and analysis of variance to the discrete finite Four
transform of a stationary normal one-dimensional process. In Chapter 5, analysis of variance
and methods of multiple comparison are applied to both transformed two-dimensional mode}:
With the second model, “noise” having a chi-square distribution is employed. Monte Catlo
methods show that under the null hypothesis the resulting distribution is indistinguishable f
the central F distribution, indicating the robustness of the test for type I errors. The power of
the simulated test is compared to the power with the normal distribution, both calculated and
simulated. The results, with degrees of freedom for both numerator and denominator very large.
are at least in qualitative agreement with those of Srivastava [ 391, Donaldson [7], and Tiku [4C:
who consider only much smaller degrees of freedom and larger type I errors.

In the final chapter, a~comparison of the power of the various tests employed is made,
and the results are summarized. Certain terms that are used without definition and theorems

that are cited in the text are listed in the Glossary.

GITITSSYTIOND
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ASYMPTOTIC DISTRIBUTION OF THE FINITE FOURIER TRANSFORM OF

A ZERO MEAN STATIONARY PROCESS

In this ehapter we investigate the asymptotic variances and covariances of discrete finite
Fourier transforms (DFT (1.6)) and the bias in the periodogram (1.9) in one and two dimen-
sions. There are no new conceétual problems in cansidering higher dimensionality; the re-
sults can be extended by induction, but the notation required is cumbersome. In anticipa-
tion of the tests of hypotheses of later chapters and fo clarify the notation, one- and two-
dimensional processes will be represented here by {n(t),t e T} and {n(x, f)h,x€X,t c T},
respectively. Under the null hypothesis of subsequent chapters, the process { y(t),t &€ T} of
Chapter 1, will be the two-dimensional prbcess {n(x, ), x € X, tc T}. Since it will k-
from the context whether the discrete or the continuous transform is intended, t+
be dropped from the DFT. The vector A will be represented by w in one dimr
(k,w)’ in two dimensions. The letter n in parentheses or as a subscript is an

course not the same as the functions n(¢) or n(x, t).

21 The One Dimensional Case
Following Shumway [37], we consider a collection {n,-(t),t €T, r=1,.
vations of a zero mean wide-sense stationary time series, where 7 = {0,1, ..

the cross correlation functions be represented as

R(t—t'y=E{n(t)ns(t') }
B "
=8, 2.; .[F efw(t—t )f(w)dw ,

where the spectral density f(w) is a bounded absolutely continuous function.
(1.4), (1.5).) The DF¥T (1.6) of r.(f) is given by

1 N-1 . ;
emy=— ) nit)en
=0




where

and
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= erﬁ(n) —i el'&(n) ] n= 03 11 ---7N - 19 (2-2)

wnp =2anN [N, lim wp =wgg,
) N—>oo

N-1

eRr(n) =—\}'—N— Z n(t) cos wpt (2.3)
t=0
N1

3(m) == ) m(t) in ont @4)
t=0

When r # r', cov(e,@,€'®), cov (.8, &), and cov(e, g, €-'4) all vanish. Forr=r’,
Anderson {2], Theorem 8.2.9, p. 457 shows that (in our notation, dropping the subscript)

E{eqg(n)eq(n')} =

E{es(n) ed(n")} =

cos[(w, —wn}(N —1)/2]

. cos[(wnwn-)(N—l)/z] f

4N f' Dy (w—wg) Dy(w—wy) fw)dw

—TT

Dy (w+ wy)Dy(w—wp) f(w)dw, (2.5)

cos[(wn —w, ) (N—1)/2]

47N f Dyn(w—wy)Dy(w —wp)} f(w)dw

—T

T
and
i n’ —wp)(N—1)/2
Eeqmesin} = =L@ “on® P2 f' Dpy(e—wr) Dy (2~ @pe) () deo
L

. sinf (W, + war ) (N—1)/2]

Y3
et | pr@ronpy@-en @, @)

AITITSSYTIINN




8 D. A. SWICK

where

_ sin(wN/2)
DNn(©) = <51(@/2)
is the Dirichlet kernel. If n = n', we have
2 1 ("
Elef?m} = gy | Pu(@-wn) fw)de
-
N—1 T
s o2 eonl 70 | Dr(@-wnDywrwn f@)ds,  (28)
—T

T

Blefm} = gy | Frtw-wn fw)de

cos wy(N—1) (7
- RN | Da@-enDy@ren fw)ds,  (29)
L
and
sin wy(N—1) 7
E{eqmed(n)} = — p— f Dy(w=wp)DN(@+wp) f(@)dw ,  (2.10)
—m
where Fy(w) = DNz(w) is the Fejér kernel.
Since
1 T
9N in Fy(w)dw =1, , (2.11)
and
. 1 _
Nh_)moo ST Fy(w)=0, w0 (2.12)

(see, e.g., Anderson [2], p. 461, Hannan [15], p. 507), Fn(w)/27N approximates the
properties of a Dirac delta function. Thus the first terms in (2.8) and (2.9) approximate
f(wn)/2. Let the bias in this approximation be represented by
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b =1 " F — dw — 1
(wn) = N »[71 N(w—wy) f(w)dw 5 f(wn)
T
- 4%1\7 I Fn(w—wy) [f(w)—f(wn)]dw (2.13)

T
using (2.11). If f(w) is a constant (““‘white noise”) then clearly b(w,) = 0.

Theorem 2.1. For |wy| <, if f(w) is continuous on [-w, 7] and differentiable on (—7,7),
then b(w,) = 0(1/N).

Proof. We have by the mean value theorem,

X
bon) = [ Fn@-on)@-edo,
-
where K = f'(v)/4m < oo for some |v| < 7. Thus

T—Wp
K Fpn(MADA
b(wn) = —N' ‘Lr—wn N( )

Z%{f;"w . f’ +fﬂ_w"} FNOOMA,
Lrwon Ly

n

where
0<n<1T-w,.
Now

T—Wp T—wWnp

K _K sin2(AN/2)
£ f n Fy(WAA = 3 fn Szoys, MM

A-wWp
K j >\d>\=0<1>.

< — 2 =
N sin2(n/2) n N

Similarly,

A3ITITSSYIONN




10 D. A. SWICK

-n
f{ﬁ f Fx(UMA = 0 <%>
—TT—Wn

while

17
-I]% f FyOOAA =0,
-1

since the integrand is odd. Q.E.D.

This result appears to strengthen that of Hannan [15], p. 286, Rosenblatt [30], p. 171,
Shumway [36, 37], and others who indicate O(InN/N) convergence. This difference can have
serious practical consequences. If, for example, an accuracy of 0.01 in the spectral estimate
is required, 100 terms will suffice in one case while over 600 are necessary in the other. The
difference is due to the assumptions about f(w). I will comment further on it in section 2.3,
after considering a numerical check, the second term in (2.8) and (2.9), and the two-dimen-
sional extension.

The result was checked by numerical integration for several functions, f(w) and several
values of w,. Because of the rapid oscillation of the integrand, 2000 functional values were

used with the trapezoidal method. The value of

f
%LN fﬂ Fy(X—2Z) f(X)dX

was calculated for N = 100(100)1000 and Z = 0, .35, .6m, .957. The difference between
this integral and f(Z) was divided by 1/N and by In N/N. The computer printout of these
calculations is shown on pp. 30 and 31. In Fig. 2.1 f(x) = cos x, and in Fig. 2.2 f(x) = x
sin x. The numerical results seem to support thve 0(1/N) bias shown for all functions satisfy-
ing the assumptions of Theorem 2.1.

We now consider the second terms in (2.8) and (2.9) and (2.10). If n = 0, then w, =0,
and these terms are identical to the first terms in (2.8) and (2.9), so that

2 1 m
Ele O} = gy | Fw(@f(@)de =),
—r

by a proof similar to that of Theorem 2.1, leading to an odd integrand, and € §(0) = 0 with
probability one.
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Forn=N/2, w, =7

2

sin2[(w —m)N/2] _ 1 4cos[(w—7T)N] _1 —(-'1)Ncos(Nw) ,

Fy(w=m) = sin2[(w —m)/2] 1 — cos(w—) 1+ cosw

and

cos [(N—1)7] Dy(w—m)Dy(w+m) = (~1)N 1 [C"S(N’T) - cos(Nw)]

COsS T — COS W

_1-(=1)Ncos(Nw)
1+ cosw

=Fn(w-m),
so that by a proof similar to that of Theorem 2.1,

E{eg? N/2)} = f(x) + O(1/N),

and ¢ §(N/2) = 0 with probability one.
For 0 < w, <,

1 T
WJ- DN (= wn)Dy(w+ wp) f(w)dw =
—

_1
2N

—Wp—N —Wp+n 0 Wn—1 Wnptn i
X f + f + f +f +J‘ +J
= —Wp—"N ~Wp+n 0 Wnp—1n Wp+n

X DN (0= wn)Dn(w + wy) f(w)dw . (2.14)

The magnitude of the first term of (2.14) is

1 (e
’ i L Dy (w2~ wn) Dy (@ + wp) () deo

Wp—n _ 1
m Iﬂ lI)JV(("’--(“)rl)”-D.N(""')+(»L)n)ldQJ—0 (ﬁ)
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by the second mean value theorem for integrals, where inf | f(w)| < K < sup|f(w)|, with the

last equality following from

sin (wN/2) < 1

Sn(@/2) |~ sG] for 0<é < |w| <m.

[Dn(w)| =

Similarly the 3rd, 4th, and 6th terms of (2.14) are 0(1/N). For the 5th term, we have

1 Wn*n
WJ D (w=wn)DN(w + wp) f(w)dw
wWnp—N
K i
< 2N f | DN (w) | DN (@ + 20wp) | do
-n
K! s _ N
< 5N | |Dn(w)ldw =0 | 5= ) - (2.15)

where inf| f(w)] < K < sup|f(w)|, and K’ < K/sin(§/2) for 0 < § < wp. The last equality
follows from Appendix 2A at the end of this chapter.
The 2nd term is similar, so that for 0 < w, <,

f

T

g DN(w—wn)DN(wwn)f(w)dw, =0 (%i,ﬂ) (2.16)

x|
Numerical integration of (2.15), illustrated in Fig. 2.3, seems to imply o (InN/N) depend-
ence, not merely 0(InN/N), but clearly not 0(1/N). (Minor discrepancies in this and subse-
quent calculations can be attributed to the inaccuracies of the numerical integration.) Nu-
merical integration of (2.14) for various f(w) and various w, € (0, ) implies 0(1/N)
dependence, however. This is illustrated in Fig. 2.4 for f(w) = cos w and in Fig. 2.5 for
f(w) = w sin w. Since 0(1/N) clearly implies O0(InN/N), these numerical results do not
violate (2.16). Analytic verification of 0(1/N) dependence follows from Lemma 8.3.4 of
Anderson [2], p. 471. The left hand side of (2.15) vanishes since the integrand is bounded

and n can be arbitrarily small.
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2.2 The Two-Dimensional Case
Consider a collection {nr(x, n,xeXx,teT,r=1,..., R} of observations of a two-
dimensional zero mean wide-sense stationary stochastic process, where X = {0,1, M —1},

and T = {0, 1,...,N —1}. Let the cross correlation functions be represented as

Rypr(x—x',t—t") = E{n,(x, t)ny (x', t')}

T i :
=&y ! f f eilk(x—x")ro(t-t") 1k w)drdw , (2.17)
@ny2 J_; Jg

where the two-dimensional spectral density f(k,w) is a bounded absolutely continuous func-
tion with continuous first partial derivatives for x, w € [—m,7]. If x and ¢ are space and
time variables, kB = k/27 may represent wavenumber and f = /27 may represent frequency.

The two-dimensional DFT (1.6) of n.(x,t) is given by

M-1 N-1
__1 —i(Kmx+wpt)
€r(m,n) = 2 E ny(x,t)e
x=0 t=0

MN

=€r @(m,n) —ie, §(m,n), m=0,...,M—-1,n=0,...,N—1, (2.18)
where
Km =2mmpy /M > kpyas M >0, wp = 2nnN[/N > wp, as N > oo, (2.19)
€r,@(m,n) = —(— ny(x,t)cos(k mx +wnt) , (2.20)
MN x=0 t=0 C
and
1 M-1 N-1
€, d(m,n) = ——— ne(x,t)sin(kpmx + wpt) . (2.21)
\/M—N x=0 t=0

We extend the results of the previous section to two dimensions and consider unequal

wavenumbers and unequal frequencies. As in section 2.1, cov[erg(m,n), erq(m'’,n')] =
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covlerd (m,n), e Q(m',n')] = covle,g(m,n), e, Q(m',n" Y] =0ifr#r. Ifr= r', we drop

the subscript and have

E{eq(m,n)eg(m’,n")}

s T
alPe— f f f(x, w)eilk ="y e (t=t) ] dxde
(2m)"MN x=0 =0 x=0 t=0 |J-m J-7

cos{Kp,Xx + wpt)cos(Km e’ + wn't')}

B 4(21r)2MNf f Fli, @)

{[DM(K+Km)ei(K+Km)(M—1)/2DN(w+ wn)ei(w+wn)(N_1 )/2
+ Dpy(x _Km)ei(rc—fcm)(M_l)/2DN(OJ _wn)ei(w—wn)(N_l)/g]
[DM(K + Km ,)e—i(K+Km')(M—1)/2DN(w + wnr)e_i(w+“’n')(N‘1)/2

+ Dpp(k =k ) e i EKmIM=1Y2D 05 — 5, nye M@= @n YN-D)2]} g,

_ Cos[(Km —kp ) (M —1)/2 + (wp — wp')(N —1)/2]
2(21)2MN

. fﬂ fﬂ Dy(K = Km) Dy (K — Km*)DN(w — wp) Dy (w — wp?) f(K, w)drdw

o Coslkm + Km YM —1)/2 + (wn + ©n) N ~ 1)/2]
2(2m)2MN

1,

( Dy (K + K ) Dag (K — Ky ') DN (w + wp) Dn(w — wp ) fk, w)dkdw
-7 (2.22)
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where Djs(x) = sin(Mx/2)/sin(x/2) is the Dirichlet kernel. Here we have used the fact that
for real n(x,t), f(—k,—w) = f(k, w). '

Similarly,

E{eg(m,n)es(m’,n')}

T T
Jf(K’w)ei[K(x—x')+w(t—t')]dew

T v-7
Sin(Kmx + Wy t)sin (K, 1x'+ wn't')}

cos[(Km =Km ") (M —1)/2 + (wp —wy')(N —1)/2]
2(2m)2MN

id id .
j f Dy (K = K ) Dag (€ = K ) Dy (0 = @) Dy (@ = ) (K, ) dicd e
- Y7

_cos{(Km +Km ) (M —1)/2 + (wp + wp')(N —1)/2]
2(2m)2MN

: { f Dt (K + k) Dag (K = K YD (w0 + ) Dy (w = wp ) F(K, w)dKde

and

E{e@(m,n)e&(m',n')}

M-1 N-1M
x

m bid
0 —-m v-7

_ 1 -1 N-1
2
(27T) MN x=0 t=0 x =0 t'=

COoS(KmX + Wpt)sin (K 'x' + wyt’ )}

_ sinf(km' —Km)(M —1)/2 + (wp' —wy) (N —1)/2]
B 2(27)°MN

ITITSSVIIND
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id T
- f f Dt (k = K ) Dy (k = km ) DN (@ — ) DN(@ = wp*) F(ie, w)didw
- Y7

L Sinl(km * Km )M —1)/2 + (wn ¥ wp')(N —1)/2]
2(27)2MN

T m
. J f Dag(K + K ) Dt (K = K V) DN (0 + ) D (@ — ) Flke, w2)dide
- o (2.24)

For a single wavenumber-frequency pair, by putting m = m' and n =n' in (2.22)-(2.24) we

have
E{egi(m,n)} = A + cos[km(M —1) + w,(N—1)] - B, (2.25)
E{eg?(m,n)}=A — cos[km(M —1) + wy(N—1)] * B, (2.26)
and

E{eq(m,n)ed(m,n)} = sinlkm(M —1) + wx(N—1)] * B, | (2.27)

where

1 T ' ,

A= o Lr LT Fa (K — k) Fiy (00 — wp) F(k, w)drde (2.28)

1

T i
B= 2@ N LT Lr Dyr(K + K )Dpp (k6 — xm)DN(g + wy) Dy (W — wp) f(k, w)dkdw ,

(2.29°

and Fy(x) = DM2 (x) is the Fejér kernel. Equation (2.28) approximates f(Km ,wn)/2, with

bias given by b(Km,wn) =A — f(Km,wn)/2. Since

o [ [
—— Fy(k—Km)Fn(w—wp)drdw
2m?2MN ) J . misa "

1 4 1 "
=§7—r—f FM(K—Km)dK'm—f Fy(w—wp)dw =1,

-7 -
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by (2.11) we may write

i vig .
b (ki , o) = f [ Fat (k = Km) Fyy (0= 0) [F(K, ) = (ks )] didco .

1
22m2MN J ).
If |km| <, |Jw,| < mand if f(k,w) is continuous and has continuous first partial
derivatives for k € [—7,7] and w € [—7,w], we have by the mean value theorem for a func-

tion of two variables

T s

f f Far (6 —m) Fn (0~ ) [(£ —Km) f (£,1)

- =T

1

b(Km,wn) = 2(2m)2MN

+ (W —wp)fw(émldedw , - (2.30)

where f, and f., denote the partial derivatives of f with respect to k and w, respectively, and
&) <7, |n| <=. Using (2.11), (2.30) becomes

il w
b(Km, wn) = f';f}‘;) f Fy(K—Kkm)(K—Km)dk + f‘ifl’\?) j Fy(w—wp)(w—wp)dw

-of3)o 8

as in the proof of Theorem 2.1.

By the second mean value theorem for integrals, (2.29) may be written for x,, + 0, 7,
wp #F 0, 7 (with inf f(k,w) < K < sup f(k,w))

K 4 i
B= o f_  Darlc* ) Das = )i f_ Do+ eon)Div = con)des
ol ofL '
‘°(M> 0(N>, (2.32)

by Lemma (8.3.4) of Anderson [2], p. 471. This appl_‘oach,'applied to (2.22)-(2.24), shows

that for unequal wavenumbers and frequencies,

AITITSSYIONN
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E{eq(m,n)eg(m’,n')} = E{ed(m,n)ed(m',n'") } = E{eq(m,n)ed(m’,n')}

= <ﬁ> .0 (-]1\7>, m#*m', n#n'.

Finally, if m = m' and n # n’ we have

K i - " - - = _1.
(212 MN J:T( Fy(k —km)dr f—w Dn(w — wy)Dn(w —wp)dw =0 <N> ,
- so that
E{eg(m,n)eq(m,n')} ~ E{ed(m,n)eg(m,n’)} =0 <%> ,
while

E{e(g(m,n)e&(m,n')} =0 G‘ﬁ) <0 <ﬁ> , n¥#n,

Summarizing the main result of this section, by (2.25)-(2.27), (2.31) and (2.32), we

have

E{eaz(m,n)} ~ E{E&z(m,n)} =f(Km,wn)/2 + 0 <%> + 0 <%> ’

and

E{eq(m,n)es(m',n")} =0 (%) -0 (%) .

Thus if n,(x,t) is a Gaussian process, eg(m,n), eg(m',n’), e4(m,n), ey(m’,n'), m # m',
n # n' are asymptotically normally and independently distributed.

Numerical integration of (2.28) is illustrated in Fig. 2.6, p. 35. Here f(x,w) = cos(k —w),
Ky = 6T, wp, =0, .35m, .6m, and .95m, M = 1000 and N = 100(100)1000. The integral was
computed by the trapezoidal method using 2000 values of the integrand, f(Km, ,wn) Was sub-
tracted and the result divided by 1/M + 1/N and by 1/N. The results show O0(1/M) + 0(1/N)
dependence, as indicated by (2.31). By (2.32), (2.29) is the product of two terms like the
ones illustrated in Figs. 2.4 and 2.5.
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2.3 Lipschitz Conditions and Order of Convergence

By (2.13), the bias in the one-dimensional periodogram is™

_ 1 " [sin[(w-wa)N/21) _
Nwﬂ—zﬂfiﬁ{smuw_w“m]}[ﬂw)f&mHMm

For lw, |<m, if f is continuous on [—,n] and differentiable on (—,7), we have shown in
Theorem 2.1 that b(w;,) = 0(1/N). Hannan [15], p. 286 states that if f € Lip 1 near w,,
b(wy,) = 0(InN/N), and that this condition holds in particular if f is differentiable at w,.
His definition of a Lipschitz condition (p.513) follows that of Zygmund [49], p.42 who

defines the modulus of continuity as
w(8,f) =sup|f(xg) — f(x1)|, forxi,xg € [a,b],|x; —x2| <§. (2.33)

If, for some « > 0, we have w (6, f) < C6%, with C independent of 8, f is said to satisfy a
Lipschitz condition of order « in (a,b), written f € Lip «.

Zygmund shows ((3.15),p.91) that if f € Lip «, b(wy,) = 0(1/N®) or 0(InN/N) accord-
ing as 0 < a <1 or « = 1. The further restrictions that f be continuous and differentiable
were used in Theorem 2.1 to invoke the mean value theorem to show b(wy,) = 0(1/N).

These restrictions imply f € Lip 1, but the converse is not necessarily true. Another common

definition of a Lipschitz condition (with constant K) is that
|F(x2) ~ flx1)| <Klag —x1]. (2.34)

This condition implies but is not implied by Zygmund’s condition. The inequality (2.34) is
not sufficient to show 0(1/N) convergence as in section 2.1 but (2.34) in addition to the
assumption that f is monotonic would be sufficient. It can be shown (Royden [31], p. 108,
problem 16) that (2.34) implies that f is absolutely continuous and hence differentiable a.e. .

Olshen [26] uses Zygmund’s proof to show that if f € Lip «, a remainder term is
0(1/N) or 0(InN/N) according as 0 < ¢ <1 or o =1. Pagano [27], generalizing Olshen’s
work to two dimensions but using a Lipschitz condition similar to a two-dimensional exten-
sion of (2.34), claims O(M~ %+ N -8 ) convergence, requiring only that a and f be positive
constants. If oo = = 1, this result agrees with that of section 2.2, where, however, the two-
dimensional analog of the restrictions of Theorem 2.1 were imposed.

In the one-dimensional case, Rosenblatt [30], p. 171 seems to be too restrictive in re-

quiring that f be continuously differentiable to obtain 0(InN/N) convergence. Grenander and
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Rosenblatt [13], p. 130, impose a restriction similar to (2.34), and thus could cite Zygmund
rather than Fejér [9] (see Appendix 2A) for the 0 (InN/N) result. Shumway [37] requires

that f be absolutely continuous and hence differentiable a.e.

2.4 The Asymptotic Joint Distribution of Two-Dimensional Periodograms

In this section we revert in part to the notation of Chapter 1, in order to avoid confu-
sion in subscripts. Let {y (x,t), x € X,t € T} represent a set of observations of a two-
dimensional zero mean wide-sense stationary stochastic process, where X = {0,1, cees M—l}
and T = {0,1, - ,N—l}. On the lattice points (k. ,wy), where k,, and w, are defined by
(2.19), the periodogram of y(x,t) is given by (1.9) and (1.6) as

2
1 (M= e —i(K mx+wnt)
v, N,y (Km,wn) = |Y(m,n) |2 = gr=| 57 3 y(x,p)e mT*@n (2.35)
x=0 t=0

It has been shown in section 2.2 that

E{IIPI,N,y(Km;OJn)} = fy(Km,(,On) +0 <%> +0 (%) ,

if fy(x, w), the spectral density of y(x,?), is continuous with continuous first derivatives for
k € [-n,n] and w € [-7,7].

The process y(x,t) can be represented as a moving average (1.10)

Jj=—o0 k=—c0

ya,n= )" ) vGkuE-it=k), (2.36)

where

i i 170G, k)2 <o | (237

j=—oc0 k=—co

(See Doob [8], p. 498, Anderson [2], p. 400). The residuals u(x,t) are orthonormal, that is

E{ux,t)} =0
var{u(x,t)} =1
cov{u(x,t),u(x',t')} =0, x#x or t#+t. ' (2.38)
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Hence the covariance function of u(x,t) is
Ry(g,h) = E{lu(x,yu(x +g,t +h)} =8g08h0 » (2.39)

where 6,-’0 is one if i = 0 and is zero otherwise, and the spectral density is

ful,w)= ) D Rulgh)e-ilkgrwh) =1,

g=—0c0 h=—o0

so that {u (x,t)} represents a ‘“white noise’ process. Using (2.36), (2.38) and (2.39),
E{y (x, t)} = 0, and the covariance function of y(x,t) is

Ry(g,h) = E{y(x,t)y(x +g,t + h)}

= Y VGG R B u —h t—kyu—i + gt -k + )}
j

ji' k k'
=3 ) G k)Y —gk—hY,
i k

independent of x and t, verifying the wide-sense stationarity of {y (x, t)}. The spectral den-

sity of the y process is

fy(k,w) = Z Z Ry(g,h)e—i("g+wh)

g=—00 h=—o0

=20 2 L VG RV 8 k — hyemitkaren)

g h ] k

=20 20 2 2 VU ke R o Rl G 0R)

j' k' j R
=T (i, w)|?, - (2.40)

where
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Pe)= ). ) G meitiren),

j=—o0 R=—00

Let the DFT (1.6) of y(x,t) be represented by Y(m,n). For fixed M and N, the
dependence of mys and ny on M and N, respectively (see (2.19)) may be suppressed. Since
for real y(x, 1),

M-
YM—-—m,N—n) =—F——=

ot
i
ok

y(x, t)e—27ri [(M-m)x/M+ (N—n)t/N]
0

EIH

x=0 t

M-1 N-
Z Z y(x, t)e27rl(mx/M+nt/N)

= Y*(m,n), the complex conjugate of Y (m,n), these terms are redundant. Consider the set

of lattice points

Q= {(m,n):m=0,...,M—1, n=1, ...,%—1}+ {(m,n): m=0,...,%, n=0,%}

where M and N are assumed to be even for convenience. Then the transformed set of ob-

servations {Y(m,n) :(m,n) € Q} are a set of sufficient statistics. Within @, define the set of

four points
= {(m,n) :(m,n) = (jM/2,kN/2),j,k = 0,1} . (2.42)
Y(m,n) is in general complex for (m,n) € Q, but is purely real for (m,n) € D. This distinc-

tion will govern the degrees of freedom of the chi-square variates to be considered below.
Let the DFT of u(x,t) be represented by

M-1 N-1 _ :
U(m,n) = 1N Z Z u(x,t)et Kkm**@nt) = yoon n) — iUg (m,n) .
x=0 t=0 .

Pagano [27] shows that if f(k,w) is continuous, if (2.36)-(2.38) are satisfied, and if the

random variables u(.,.) are mutually independent and satisfy the ‘“central limit condition”
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U(0,0) 3 N (0,1,

then the random variables Inf N,y (km ,wp) are asymptotically independent and (in our

notation)

2 F(kmy @) X2, (m,n) € Q=D

£
Iy N, y(Km,wn) = (2.43)
f(Km,wn) X%, (m,n) €D,

where sz denotes a chi-square random variable with v degrees of freedom. We conclude

from (2.43) and Theorem 2 of Chernoff [5], section 2 that the ratio of in_dependent sums of
periodograms has a distribution asymptotically proportional to the F distribution. This con-
clusion, and hence the conclusion that the type I error of tests based on such ratios converges
to the nominal type I error of an F test, also follows from Theorem 2.2 below, which is an
extension of the work of Walker [44], Olshen [261, and Pagano [27]. If asymptotic normality
can be assumed a priori, then the result follows from Theorem 8.10.2 of Anderson [1], p. 224,

which is an application of Chernoff’s theorem.

Theorem 2.2. Let fy(kj,wr) #0,j=1,...,J,k=1,..., K. Then as M —> o and N = oo,
the joint distribution of Iy N, y(Kj,wE),i=1,...,d,k=1, ..., K tends to that of JK mu-

tually independent random variables with

2y, 01 X2, (k) €Q-D

L
Iy N,y (Kj,0R) =
fy(kj,wr)X1> , (,R)ED.

Proof. Let
M-1 N-1
Sun =) ) elx,tulx,t),
x=0 t=0
where
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with a(j,k) and b (j, k) arbitrary. Then

K
[a(,R)Ug(i,k) + b(i,R) Uy (J, k)] . (2.44)

k=1

J
SuynN =/ MN Z
j=1

Let

. \ M-1
siv = E{Sin} = )
x=0

N-1
Z c2(x,t)
=0

MN J\ K J K
=8N )T (@GR + BRI+ MNY | ) a2(ik) . (2.45)
j=1 k=1 j=1 k=1
Uk)eQ-D (R)eD
For arbi-

Let n(x,t) = c(x,t)u(x,t), and let G ¢(n) be the distribution function of n(x,1).
trary 6 > 0, let

gMN(5)=s71" Z )3 n2dGy,¢(n)

1588y

1 Ill_—‘l N-1

> c2(x, t) f u2dFy ,(u) ,
SMN x=0 t=0 SsMN
o 1> D]

where F ¢(u) is the distribution function of u(x,t). Since
J K 9
le(e,t)l <) D" [la(i,k)l +16(,k)I1, and siy ~MN,gun(8) = 0 as M,N > oo
j=1 k=1
Hence by the Lindeberg-Feller theorem (Lodve [25], p. 280), Syn/suN £ N(0,1), so that

J K
[a2(f,k) + b2, k)] + ) ; a2(j,k) | (2.46)

=1 k=1

(j,kYeD

Syn//MN LC’N 0,%
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using (2.45). Let ¢yn(0) = E{eiesMN v MN} be the characteristic function of Sy /A/MN.
Then by (2.46) and the Lévy-Cramér continuity theorem (Lodve [25], p.191), as M,N = o

dMN(0) > ¢(0)

for-all real 8, where ¢(0) is the characteristic function of a random variable distributed as the
right-hand side of (2.46). That is, using (2.44),

lim E{ e 0SMN/VINL = lim E | 01 > i la(j, k) Ug(i, k) + b(i,k) Us (j, k)]
M — oo M oo k=1 » (R ) ’ BY ]5

N—o N—>oo J:1

1 (2 L X " J K
=exp~y {? 2.0 [a2(j, k) + b2(j, k)] + 623" >~ aZ(J',k)}

j=1 k=1 =1 k=1

(jk)e @-D (jk)e D

The limiting joint distribution of Ug(j,k), Ug(G,k),i=1,...,J,k=1,...,Kis
thus that of 2JK mutually independent random variables, each distributed as N(0,1/2) if
(J,k) € Q@ —D or N(0,1) if (j,k) € D.

The limiting joint distribution of Iy n ,(kj,wg) = IU(m,n)Iz, i=1,...,Jd,kR=1, - K
is therefore that of JK mutually independent random variables, each distributed as %X% or
X? according as (j,k) € @ —D or (j,k) € D. The conclusion then follows from (2.40) and
the fact that

P
I, N,y (Kj, wr) > 1T (K5, wp) 21y v k), wr)
as is shown by Pagano [27]. Q.E.D.

Corollary. If I'(.,.) is continuous, then the limiting joint distribution of Yg(j, k), Y& (Jj,k),
J=1,...,d,k=1,...,K is that of 2JK mutually independent random variables each distri-
buted as N (0, fy(kj, wg)/2) or N(O, fy(kj,wg)) according as (j,k) € @ —D or (j,k) € D.
The proof follows from the above, from (2.40), and the fact that if I'(.,.) is continu-
ous, Y(j,k) converges in mean square to I' (kj,wp) U(j,k). (See Pagano [27].)
This theorem and corollary are the justification for the approximate test statistics used

in the following chapters.
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APPENDIX 2A
ASYMPTOTIC BEHAVIOR OF THE INTEGRAL OF THE
MODULUS OF THE DIRICHLET KERNEL

This appendix follows Fejér [9].
Lemma. Let f(x) be an arbitrary function, finite and continuous on (a,b). Then

b b
lim f(x) |sin nx| dx = % j f(x)dx .

n—o a

Proof.
Lt (-1 T<a<jT<(G+)IT<...<kL<b<(+1)y.

(j+1)m/n ku/n
f(x)|sinnx|dx+...+J f(x)|sin nx| dx+o(1) .
(k-1)7/n

b
Then J f(x)|sin nx |dx =
a jmin

(m+1)m/n : 1 (m+1)m (_1)m (m+1)7w
Now, f |sin nx |dx = & f |sin x |dx = f sin x dx

ma/n mm mTm

— m
=—(—% (—Zcosmw)=%, Vm.

Hence, by the second mean value theorem for integrals, if f(x) is integrable on (a,b),

b
[ r@snnciaz =3 (n v otk fe) v o),

a

where m; < f; < M;,i=1,...,k—j, and m; and M; are respectively the infinum and

supremum of f(x) on the ith interval.

26
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Since

b jn/n (j+1)m/n ka/n b
f(x)dx = fx)dx + fx)ydx + ...+ f(x)dx + f(x)dx
J; J J J( J‘

a jnin k-1)m/n kmin

=T (fi*fat...*frj) +o(l),

by the first mean value theorem for integrals, it follows that

~b
| retsinnxiax =2 - L e )+ o)

a

1)

b
=% j flx)dx +0(1). Q.E.D.

We now apply this lemma to evaluate the “Lebesgue constants” (Fejér [9], Zygmund
[49], p. 67), L,,.

Let
2 /2 [sin(2n + 1)t|
Ln=7% f ——(Sint, ) dt =Ap +up, (2A.1)
0
2 + 1)t
where An = % f Ism( sin(2n + 1)t| dt
0
_2 (™1 1y,
and Bn = 7 ini 1t |sin(2n + 1)t|dt .
0

By the lemma,

Tz g
lim ;u,,=;r—2f0 (Sint—?>dt=0(1). (2A.2)

3TIT1SSYTINN
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We can write

AN =Vnp *+8n, (2A.3)

(n+1)7/(2n+1) | +
where by = 2 J |s_1£(2_r;__ﬂ| ”
0
m2 . +
and n = —72_; J |_SE(2_nt_ﬁ| dt
(n+1)7/(2n+1)
(2n+1)m/2 .
_ 2 |sin ¢
-7 b H
(n+)m
n+ =
2 2
Sq ooy o, (2A.4)

dt

_ 2 J(””)” Isin ¢|
Now Vn = 3 —_—

The digamma function may be expressed as (Whittaker and Watson [46], p. 241)

—

I(x) 1. %1 1
W‘““E*Z(rwn)’

n=1

Py

where C is the Euler-Mascheroni constant.
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Thus

Hence vy, =

1 ’
J; <lnn—I;‘—((tt))>sin1rtdt+o(l)

4
=;r—2— Inn+0(1). (2A.5)
By (2A.1)-(2A.5), we have
L, = 4 l +0(1
n 7T2 nn ( ),
so that

Lp
n

o fre 3}

1
2mn . sin (£/2)

dt =0(ln n/n) .
Finally, letting N = 2n + 1 we have
1 s
5 | 1DN(@)] do=00n NIN),
-

where Dy (w) = sin (Nw/2)/sin (w/2) is the Dirichlet kernel.
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2009 VALUES

180

200 :

380
4900
580
690
700
800
900
1000

120
200
300
480
560
660
700
800
980
1900

Appendix 2B

NUMERICAL CALCULATIONS

-e999916
~+999832
~+999747
-+999663
~-+999578
~e999494
-+999409
~+999325
=-¢999240
~+999156

«60 PI

« 308990
« 308964
« 308938
«308912
« 308885
« 368860
« 308834
« 308808
308782

« 308756

F(Z)=CO0S(Z)

LNC(N)/N

Do PI

~«217129
~-.188707
-+175278
-+166848
-+160843
~¢156246
-+152556
~+149496
-+146895
-e144643

e 60 PI

«D67096
«258314
«@54164
«@51559

« 349703

«348282
«B4T7142
346197
«345393
«B44697

«35 PI

-¢453952
-«453915
-+ 453876
-+453838
-+453799
‘0453761
-+ 4353722
-+ 453685
~e 453646
~+453608

«95 PI

987742
« 987524
« 987571
« 987364
«987394
« 987210
«987212
«987062
«987022
« 986923

- e - -

LN(N)/N

+35 PI

-e98574
-e@85672
-eB79574
~e@T75747
-+B730821

-e@70934 .

-e069259
~eP67870
~«066689
~eP65666

+95 PI

«214485
«186384
+173143
«164795
«158883
154326
« 150695
v147662
« 145099
«142872

Fig. 2.1—Illustration of 0(1/N) Convergence of the Bias due to the

Fejér Kernel, £(Z) = cos(Z)

30




2000 VALUES

N

100
200
300
400
508
600
700
806
9006
1000

100
200
300
400
5680
600
100
800
900
1000

h |

1386346
1.386308
1.386301
1.386299
1386298
1.386297
1386297
1.386296
1.386296
1.386296

«60 PI

-1.428690
-1.488647
~1+408516
-1.408371
-1.468223
-1.408873
-1.407923
~1e407772
-1.407621
=1« 407 469

‘NRL REPORT 7466

F(2)=2 SIN(Z)

I-F((2)

LN(N)/N

Ge P1I

« 301041
«261651
« 243049
«231379
«223071
+216713
«211613
«2P17386
« 203795
200687

«60 PI1

-+305893

~e265867
-e246944

-«235063

~«226599
-220117
-e214915
=+210599
~+206930
-+2083752

Fejér Kernel, f(Z) = ZsinZ

«35 PI

‘0061378
-e061209
-e@61152
~+@61056
-+060982
-+B60893
-+@60BE15
~eB60728
“o®6@649
-eQB60563

+95 PI1

1.663046
1.672814
1669825
1671407
1670469
1671214
1.670695
1.671209
1.670821

1.671267

31

LN(NY/N

+35 PI

+013328
«P11552
310721
«@310190
«09813
«P09519
«0@9283
309985
«P08916
«P08T67

«95 PI

«361126
«315725
«292757
«278965
268797
«261253
255026
« 250008
«245622
+241941

Fig. 2.2—Illustration of 0(1/N) Convergence of the Bias due to the
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2009 VALUES INTEGRALLABS(DIRICHLET KERNEL)]

I(ABS) I1(ABS)
N @ ecemecmmee eceecam—-
1/N LNC(N)/N
100 2.857030 « 620396
206 3142686 «593148
300 3.300262 « 578609
420 3446217 «575188
500 35553087 + 572089
609 3581973 « 559952
190 3647627 + 556798
800 3622720 e 541949
960 3746962 « 550830
1600 40817716 « 581624

Fig. 2.3—Numerical Integration of the Absolute Value of the
Dirichlet Kernel




2002 VALUES

169
200
300
489
S90
600
0
800
o000
1000

100
200
300
400
500
600
700
800
900

1000

M

- o  a— -

<10 PI

-1.C0E0B83
-1.900164
-1.020246
-1.080327
~1.0C0409
~1.000491
-1.089572
~1.000654
-1.6006736
-1.008817

«6@ PI

~e999949
-+«999897
=e999845
-+999794
-¢999742
~¢999690
-«999638
~+999585
~+¢999533
=+999481

Fig. 2.4—Numerical Integration of Eq. (2.14) with f(w) = cosw

NRL REPORT 7466

F(X)=CO0S(X)

LNIN) /N

<10 PI

-+217165
-.188770
-«175365
-+166959
-«160977
‘01564®2
-«152734
-+149695
-«147115
-+ 144883

«600 PI

~«217136
~«188728
-+175295
-+16687€
-«160870
-e156276
~+152591
‘0149535
‘0146938
-2144690

+35 P1

1.800047
-1.000695
1.000142
~1.060190
1.000236
-1.0080284
1.888331
-1.000379
1.000426
~-1.6800473

«85 PI

+ 999543
-e999115
« 998658
-+«998229
«997773
-+997341
« 996889
-e996453
« 9960665
-+995564

33

LN(NY/N

«35 PI

«217157
-« 188757
.+ 175347
‘0166936

« 160949
~e156369

«152697
-e149654

« 1470270
-+144833

«85 PI

«217048

-+188572

«1750887
-+166608
« 164553
-+155989
+152172
-+ 149667
» 146420
'0144123
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2000

100
200
300
400
509
600
7900
800
90@
1000

160¢
200
360
400
SBe
600
700
BGOO
960
16049

VAL UES

- Fig. 2.5—Numerical Integration of Eq. (2.14) with f(w) = wsinw

1361562
1.361516
1.361500
1361489
1361489
1361471
1361462
1361454
1361445
1361437

«60 PI

323354
« 322946
« 322625
«322318
« 322015
«321713
«321412
«321111
« 320811
« 320510

D. A. SWICK

F(X)=X SINCX)

LN(NI/N

<10 PI

+ 295660
256971
«238701
« 227238
«219077
«212832
«207823
« 203670
<2001 42
«197088

« 60 P1

«P70215
« Q60952
+356563
«@53796
«@51816
« 358292
« 349062

048037

«347161
e 046399

«35 PI

-1.067288

1.867273

-1.867145

1.867856

~1.066946

1.866850

~1.066743

1966645

-1-066539

1.066440

«85 PI

1524844

-1.524287

1.525236

-1.525663

1526375

-1.526897

1.527562

-1.5281149

1528760

~-1.529316

LN(N)/N

«35 PI

-+231759
«201436
-+187094
«178096
-«171684
«166775
~+162835
« 159567
~e¢156789
« 154383

«85 PI

«331116
-.287693
« 267408
~«254639
«245611
-«238692
233177
-«228601
224739
-0221391




2000 VALUES

M=1000

100
200
300
406
50
647
720
820
999
1600

M=10909

143
2009
360
4600
5009
600
7009
820
966
1060

WN=

WN=

Fig. 2.6—Illustration of 0(1/M) + O(1/N) Convergence of the Bias

I-F(KsW)

- e - - -

1/M+1/N

De PI

« 308688
« 328672
-« 328658
« 368646
« 308636
« 308628
» 308620
« 308613
« 3088667
« 308601

«60 PI

-+998939
- 998887
-+998843
-+998865
-.998772
-+998743
-+998718
-+998696
=+998675
-+998657

NRL REPORT 7466

FKsWI)=COS(K=-W),

I-F(KsW)

¢ 339557
« 370466
« 4801256
« 432105
« 462955
« 493806 4
« 524654
«555583
« 586353
617202

«68 PI

-1.098833
-1.198664
=1.298496
-1.398327
-1.498158
=-1.597989
-1.697821
v‘10797652
-1.897483
~1997315

KM=1.884954

I-F(K>W)

1/7M+1/N

«35 PI

- 706357
-« 706320
-«T7T06289
-~ 756262
-+726239
°o7®6218
-« 736201
-« 706185
-.7@617@
~e 706157

«95 PI

-+453548
- e453487
-.453498
‘0453451
=~ 453459
~+453425
=e453429
-+ 453487
- 453404
-+453393

due to the Fejér Kernel in two dimensions

35

I-F(KsW)

«35 PI

~e776993
-+ 847584
-+918176
-«988767

~1.259358
~1.129949
-1.200541
-1.271132
=1.341724
~1+4412315

+95 PI1

-+ 498903
~ e 3544184
=+589547
~+634832
-+680189
-+725481
—.77@83@
-+8B16132
-+861468
-e906786
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3. APPROXIMATE LIKELIHOOD RATIO TESTS FOR TWO-DIMENSIONAL SIGNALS

3.1 Signals Common to R Stationary Noise Processes

Let {y,.(x,t), xeX teT, r=1,... R} once more represent a collection of observa-
tions, where X ={0,1,...,M—1},and T={0,1, ..., N —1}. Let
yr(x,t) = S(x,t) + nr(x’t), (3'1)

where s(x,t) is a fixed signal common to all R replications, and n,(x,t) is a realization of a two-
dimensional zero mean wide-sense stationary noise process. It has been shown in Chapter 2
that the variance of €.(m,n), the DFT of n.(x,t), is f(Km,wn) + O(M 1) + O(N1), and that the
correlation between its real and imaginary parts is 0(M~1) - O(N 1), where f(K,,wy,) is a con-
tinuously differentiable spectral density. K, and w, are defined in (2.19). We assume that
n.(x,t) can be represented as a moving average as in (2.36), with I'(x,w) continuous, so that
by the corollary to Theorem 2.2, €,.(m,n) is asymptotically normally distributed.

Let S(m,n) represent the DFT of s(x,t). Then

Y (m,n) = S(m,n) + €(m,n), (m,n) €Q, (3.2)
where @ is defined by (2.41). With D given by (2.42), and assuming the asymptotic distribu-
tion, the development given by Shumway [37] may be extended to two dimensions. The ap-
proximate joint likelihood of the RMN real observations

{¥@r(m,n), Y8&:(mn):(mn) € @ — D, r=1,..,R}
and

{Y@{r(m,n):(m,n) eD r=1,... R}

may be written as L = Lg_p * Lp, where
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R
1
Lop = JJ JT tnftemon)i exp{—m; | (m,m) —S(m,nnz} (3.3)

m
(m,n)e@-D

and

1 1
= J] T T (2nfim/2.eni2)1-R/2

=0 k=0

 2f(jM/2,kN/2)

R
. exp{ 1 Z [Y@a-GM/2,EN/2) — S(ﬁ(jM/Z,kN/2)]2}. (3.4)
r=1

Letting 3 log L/3aSg(m,n) = 0 and 9 log L/3Sg(m,n) = 0, we obtain

R
Sa(mn) = = Y Yarmn) = Yg(mn),

r=1

1
R
and

R
Sy(mn) = & 2, ¥8(mn) = Ya(mn),
r=1

so that
S'(m, n) = é’@{(m,n) - i.§& (m,n) = Y (m,n) .

Similarly letting 9 log L/9f(Km,wn) = 0, we obtain

R
Femowon) = % 2 ¥elmn) = Yomm)i2,  (mm)€Q-D,
r=1

and

(3.5)

AITITSSYTINN
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R
flkmwn) = 5 2 [Y@mn) — Yoimm12, (mn)ED. (3.6)
r=1

Assuming the asymptotic distribution, for (m,n) € Q@ — D,

VR[Yg(m,n) = Sg(m,n)]

[f(Kﬂhwn):l %
2

and

VEIYy (m,n) — Sy(m,n)]

[f(Km, Wn ):I 12
2

are independent, each distributed as N(0,1), and are independent of R f(fcm,wn)/ [f(Km,wn)/2]

which is distributed as x2(2(R —1)), while ﬁ[?@(m,n) = Sg(m,n)}/[f(Km,wn)]* and

R f(lcm,wn )/ f(Km,wy) are similarly distributed when (m,n) € D. (cf. Wilks [47], p. 208.)
Thus, under the null hypothesis,

R|Y(m,n)|2

¥ (m,n) = (8.7

i Y, (m, n) - Y(m n)[2

has asymptotically the F distribution with 2 and 2(R — 1) degrees of freedom when (m,n) €
@ — D, and 1 and R — 1 degrees of freedom when (m,n) € D. Under the alternate hypothesis,
4 (m,n) has asymptotically the non-central F distribution with the same degrees of freedom

and non-centrality parameter

RIS(m,n)12/[f(km,wn)/2), (Mmn)EQ—D
82(m,n) =

R[S@(m,n)12/f(km,wp), (mn)ED. (3.8)

An analysis of power table, analogous to an analysis of variance table may be written for

each wavenumber-frequency combination as shown below.
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TABLE 3.1
ANALYSIS OF POWER AT WAVENUMBER k;,
AND FREQUENCY w,

Degrees of ¥
Source Power Freedom
Due to Signal R|Y(m,n)|? d

R
Due to Noise Z | Yr(m,n) — Y (m,n)|? d(R—1)
r=1

R
Total Z | Yr(m,n)|? dR
=1

td=2if (m,n)€EQ—D,d=1if (m,n) €ED.

3.2 Plane Wave Signals

Let s(x,t) be a superposition of J two-dimensional plane wave signals of the form

J
stx,t) = ) Aj cos (kjx + wjt — ¢) (39)
j=1
where «; = 27k;/M, k; € {0, 1,..., M/2} represents wavenumber, w; = 27f;/N, f; € {0, 1,

c e N/Z} represents frequency, and ¢; € [0,27] is an unknown phase. Parameter estimation
for n-dimensional plane waves has recently been discussed by Hinich and Shaman [17]. The
signal (3.9) may be considered either as a deterministic signal with unknown parameters, or as
a random signal conditioned on the random variables A; and ¢;. The stochastic signal model
arises naturally in many physical contexts as, for example, when the jth component at each
spatial point x represents the superposition of many plane waves of the same frequency with
uniformly distributed phases. Baron Rayleigh [29] showed in 1880 that the resultant ampli-
tude A; has the distribution which now bears his name:

dFa(4) = —5 A,-e‘Aiz/z"fszj, A;>0,

2
oj

where

GITITSSYIIND




40 D. A. SWICK

21V
o; —5; njkA]zk

and njp, is the number of subcomponents with amplitude Aj. The amplitudes Aj and phases
¢; are independent, and are independent of Aj' and ¢j' for j' #j.

If we let aj = Aj cos ¢; and bj = Aj sin ¢;, then

J
s(x,t) = Z [a; cos (kjx + wjt) + bjsin (kjx + w;t)] ,
j=1

where a; and b; afe distributed independently as N (0,01-2). This signal process is wide-sense

stationary with correlation function

Rs(x.7) = Els(x + Xx,t+ 7)s(x,t)]

J
o7 cos (kX + wjT) . (3.10)
j=1
Eq. (3.1) represents a set of observations at discrete spatial and temporal points of a con-
tinuous space-time phenomenon. For a finite set of (x,t) pairs to properly represent a con-
tinuous function, it is necessary that the latter vanish for values of its arguments outside of

finite intervals. Thus (8.1) represents a sampled version of a truncated continuous space-time

function. Then

X T

J j IRy (o )ldxdr = j j IR, () ldxdr
o o X T

J
< 4XT ) o <eo,
j=1

so that Rs(x,7) is absolutely integrable. The signal spectral density function (1.5),

Fg'(k,w) =J J e_i(Kx+wT)Rs(x,T)d.xd1-,

—00 =00
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exists and is bounded and continuous, by an extension of the Corollary on p. 188 of Loéve
[25]. In connection with the discrete representation, it is useful to consider the idealized
situation in which (3.10) is valid for all x and 7. In this case a signal spectral density func-
tion does not exist in the ordinary sense, but by (1.4)

T (KX+wT)
_ e dF (1,0
Rixor) = | | S
- -
where the spectral distribution function
I
Fy(k,w) = 2n2 Z 0211,k < Ikl < K141, w1 < lwl| < wre
j=~J
jF0

is a two-dimensional step function, a generalization of that considered by Anderson [2], p.
385.

Substituting (3.9) in (3.1) and transforming, we have

1 M-1 N-1
— ~2mi(mx/M+nt/N')
Y,(m,n) = yr(x,t)e
? MN
x=0 =0
1 Eﬁ M-1N-1 _
_ A;lei®j Z Z ezm(kj—m)x/Me2m(f,'—n)t/N
2 TRANT J
MN o x=0 t=0
M-1 N-1
+ % Z Z o~ 2milkj+m)/M -2Mifi )N | ¢ o n)
x=0 =0

J
v MN i e
= 5 Z Aj[e 0 5kjm 6fjn + el¢l Bkj,M—m 6fj,N—n] + €(m,n),
j=1

m=0,.. ,M—-1;n=0,..,N—1;r=1,...,R, (3.11)
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where the Kronecker deltas are to be considered mod M or mod N. As before, the Y,(m,n)
are independent for (m,n) € Q. For each (m,n), S(m,n) =0 under the null hypothesis.
Under the alternate hypothesis m = kj and n = f; for one and only one j, so the notation

may be simplified with (3.11) replaced by
Y.(m,n) = B(m,n) + €(m,n) when(mn)€Q—-D, (3.12)

where B(m.n) = (1/2) /JIN Aje” "% for some j € {1,..., J}.

The points (m,n) € D are of no practical consequence, since they can be examined by an
analysis at a different sampling rate. For testing, we consider the data array to be relabeled to
yield the 2M'N'R real variables Yg,(m, n), Y8r(m,n),m=1,..,M' <M,n=1,..,, N'<
N/2,r=1,..., R, but will drop the primes on M and N.

The difficulty in detecting a signal depends on its strength relative to that of the noise,
parameterized by the signal to noise ratio. For a deterministic (or conditional) sinusoidal sig-
nal component of amplitude A, the signal to noise ratio is independent of wavenumbér and

frequency and is defined as
A2/2

(2;)2 Jﬂjﬂf(fc,w)dfcdw

= -

S/N =

_ A2)2 _ A2/2
R(0,0) var{n(x,t)]

1 M-1 N-1
—_ 2
uy L L s
~ m , (3.13)
M-1 N-1 .
= F(Km»on)
MN ms n
m=0 n=0
where
Tow

R(x,7) = E[n(x + X%t + Dn(x,t)] = J J XN (e woYdedw [(2m)2

-~ =T
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is the correlation function of the noise. The non-centrality parameter (3.8) for a particular
(m,n) cell is MNR times (S/N) times the ratio of the average spectral density to that of the
particular cell. The factor MNR may be termed a “processing gain.”

For stochastic sinusoidal signal components with uniformly distributed phase and ampli-

tude A; having a Rayleigh distribution with parameter g, the 51gnal to noise ratio may be de-

fined equivalently as

SN = E(4;"/2) _ _g°  _ R(0,0) _ var [s(x,0)]
T ' R(0,0) R(0,0) var [n(x,t)]
(2m)2 J f(k,w)dkdes
~ -T
1 M-1 N-1 1 1 N-1 .
N . 2. var [S(m,n)] M— =3 b
~ =0 n=0 _ m=0 n=0 , (3.14)
1 M-1 N-1 1 M-1 N-1
N var [e(m,n)] N Z Z f(Km,wn)
m=0 n=0 2=0

where R (X,T) is the jth component of (3.10), and p(m,n) = (MN/2)oj26ikjm 5fjn is the variance
of S(m,n). In the last two forms of (8.14), we have var [S(M — m,N — n)] = var [S(m,n)] and
var [e(M — m,N — n)] = var [e(m,n)].

With the stochastic signal model or the deterministic or conditional signal models, the
DFT transforms a multivariate problem in the space-time domain into an asymptotically uni-
variate problem in the wavenumber-frequency domain. The total effect of signal énefgy and
noise energy and hence the discrimination information (Kullback [22], p. 9, Kullback [23],

p. 92.4) from R replications is distributed over the entire M X N array in the space-time do-
main. In the wavenumber-frequency domain however, the effect of signal energy but not the
effect of noise energy is concentrated, so that the information for discrimination in favor of
H; against Hy is also concentrated. Thus the DFT not only yields noise variables which are
asymptotically uncorrelated, but also concentrates the discrimination information for these
models. The asymptotic independence of the €(m,n) shown in Chapter 2 and the inherent in-
dependence of the S(m,n) from signal components with differing values of j = 1,...,d,

allow the consideration of MN independent hypothesis testing problems in the wavenumber-
frequency domain. With these models, the problems of interest are detection of the indepen-
dent signal components and not the estimation of the waveform (3.9). Thus there is no need
for the inverse transform to the space-time domain. After detection, estimates of the com-

ponent waveforms are available without the inverse transform.
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3.3 Simulated Tests in the Common Signal Case

A computer simulation of the approximate likelihood ratio test developed in section 3.1,
using the plane wave signals of section 3.2 has been made. Simulation was performed in the
wavenumber-frequency domain, starting with (3.12). There were several reasons for this start-
ing point rather than (8.1), the primary one being cost. Available computer time can be spent
either on the two-dimensional transformations or in obtaining more replications in the interest-
ing regions of extremely low probabilities. If a suitable correlation structure in the space-time
domain were postulated, it could be simulated using (2.36) or by the two-dimensional inverse
transform of the corresponding spectral density. The latter would be followed by a re-trans-
formation for the analysis. In some applications it is desirable to analyze data that has already
been transformed for other purposes. Since the analysis of power at each wavenumber-fre-
quency cell provides the desired information, no transformation is required in this simulation.
Finally, since an array of convenient size to simulate is but a small scale model of realistic
arrays of interest, reality is closer to the asymptotic approximations than to a space-time simu-
lation of this small scale model. I therefore chose to asssume that we have reached ‘“‘asymp-
topia” in the wavenumber-frequency space, and test the procedure from this point. Since the
theory is exact, simulation serves as a check on the computations and a reference for the ap-
proximate procedures to be considered later.

Some signal detection applications require a test level smaller than that of the usual F
tables. (Type I errors less than 104 are not uncommon.) Furthermore, Pearson-Hartley and
Fox charts for the power of the test exist only for test levels higher than those of interest.
Thus the tables had to be extended.

A computer program for the central and non-central F distribution was written, using
prute-force numerical integration of Eq. (10) of Anderson [1], p. 114. Up to 100 terms of
the sum were used for each non-central density point, 1000 terms were used in the trapezoi-
dal method of numerical integration for the central F, but 10 terms seemed to suffice for the
non-central integration. Within the range of the available tables and charts, spot checks
showed agreement with my calculations.

An independent test was simulated at each of the 2566 combinations of M = 8 wave-
number points and N = 32 frequency points. A pseudo-random sequence algorithm written
by F.M. Young (private communication) was used to simulate uniformly distributed random
variables. This algorithm combines subsequences to yield a psuedo-random sequence length
on a small (Honeywell 1648 with 16 bit words) computer much longer than the standard
algorithms found on larger machines. A very long pseudo-random sequence length was found -
to be necessary in order to reliably simulate the extreme tails of the F distribution. N(0,1)

random variables were obtained via the Box-Muller [4] transformation. Independent and
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uniformly distributed random variables to represent the phase ¢ for each of the assumed
signal components were simulated by a separate copy of the pseudorandom algorithm. This
permits testing different “‘signals’ with the same “noise” and vice-versa, if desired.

Fig. 3.1 is a typical computer printout of the results of one run of this simulation. The
format was designed to display the results of all 256 tests, rather than 256 separate results in
the form of Table 3.1. Eight replications of the 8 X 32 data array were generated in accord-
ance with (3.12), assuming a white Gaussian noise process with f(i,,,wn) = 1. The numbers
labeled “INIT.” are the initialization parameters of the pseudo-random generators and are
printed to allow re-generation of either the “signal” sequence or the “noise” sequence. They
are either specified in advance, or are related to prior computation time and time of day. For
23 of the 256 cells, identified by “*”, the null hypothesis was in fact false. Signal com-
ponents with a signal to noise ratio (3.13) of 0.01566, or -18.05 dB were added to the noise
in these cells. The resulting non-centrality parameter is 64. ¥ (m,n), given by (3.7), has 2 and
14 degrees of freedom, and was computed for each (m,n) combination. A transpose of the
matrix (¥'(m,n)) is shown in the figure. The ‘“>” symbol identifies those F which fall in
the rejection region of a test of size & = 106, Thus an entry of a number not followed by
either symbol identifies correct rejection. The “*’’ symbol alone indicates a type II error
(miss) and “*>” indicates detection, both at the 106 level. A type I error (false alarm)
would be identified by “>” without the asterisk, but none have occurred in this run.

Theoretical probabilities and observed relative frequencies are tabulated at the bottom of
the figure. “ALPHA” represents the level of the test, with .4 > a > 106, “FR.FA” indi-
cates the relative frequency of type I errors at each of the above test levels. “PR(D)” and
“FR(D)” represent the probabilities and relative frequencies of /detection, respectively, at each
of the above test levels. |

Fig. 3.2 is a portion of the printout of 100 similar runs in succession, with a slight change
in format. Since the object is to tabulate the results of a large sample, the run number, coor-
dinates and ¥ value are printed for only those (m,n) for which ¥ (m,n) indicates rejection at
o = 1075, with the symbol ‘> indicating rejection at & = 106 as well. H 1(m,n) is indicated by
*m,n. All the entries shown in the figure indicate correct detection, most at the level a = 10-5.

Theoretical probabilities and observed relative frequencies are again tabulated at the bot-
tom of the figure, with the same notation as in Fig. 8.1. There are now 23300 samples for
which Hy is true, and 2300 samples for which H; is true. The results show good agreement
with the theory.

Some results of simulation with non-white noise are shown in Figs. 3.3 and 8.4. The

noise spectral density was

AI1I1$SYIIND
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SIGNALS COMMON TO & REALIZATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)
INITe N: 3388 1062 3389 1862 P: 3391 1e62 3392 1062

23 SIGNAL COMPONENTS: S/N=0.01566 (-18.85 DB)

Y

F(MsN)
N\M 1 2 3 4 S 6 7 8
1 @.72 237 B.02 Be47 P32 1.20 3.18. .33
2 4494 2.93 3.81 SBe97%> @05 B+86 1e.41 Be16
3 D21 P41 1.04 .26 2.34 @30 .87 Del4
4 B.20 @.62 3.14 4417 Be46 @15 Be58 @+38
5 B.62 @.33 1.08 157 434 12% 151 1«61 @.82
[ 2.16 2473 2463 .20 2.20 . @71 @20 .02
7 Ze.21 1.83 B.85 B.11" 65+ 13%> (54 ?.00 B.10
8 @58 D19 D64 @.51 2067 1.84 g.22 @.15
9 1.86 1.36 37.14% 177 B« 46 25.11% .50 .03
10 Z.95 Be19 1.96 @13 @53 1.64 2.81 2.66
11 D10 1.19 1.84 Be26 S.06 B.56 D69 Be12
12 1.16 1.84 17« 42% D19 2.20 P06 1¢54 2.09
13 @90 2.23 Ge4l Be97 53+33%> Be@9 Be44 @45
14 1.02 2.66 1.08 B89 D38 3B 67* Bed4 .20
15 B.29 1.83 165 @.38 G177 1.19 5.21 2.63
16 @57 B.02 29.72% 1.87 102 2.58 6495 B39
17 B«93 De4a1 Beds 1.55 D.30 2475 De 62 ‘Bel4
18 Be94 G226 gd.02 B.05 Bed4 Q.24 47.88%> 1.78
19 @65 ?.80 21.20% P26 Be43 ge.21 Be64 B.62
20 D59 @.80 1.26 2e44 S5.60 33.24% P61 B9
21 B.083 Be07 1.21 Be54 [ P.91 145 B.70
22 119 @.23 374 B 45 D44 2410 21.79% 938
23 B 42 23.51% 4674 Be617 @45 P77 1.89 Be@4
24 D29 275 Be76 @.32 1.27 145 B+84 D53
25 Jel4 S5.18 B.83 B+51 1.20 DeB5 Be55 P23
26 20«2 4% P.98 1.92 49..76%> 248 27 82% @49 21+ 14%
27 2.95 Be«36 @97 B« 49 De4l .21 P53 10.06
28 385 1.01 1.08 B85 .33 D.19 B.57 2.35
29 2+.23 2.61 .97 B.36 20.27% 3.13 P.03 55¢61%>
30 17+86% B.85 @d.82 B.96 B .48 P68 D6 Bel7
31 .20 B34 @80 .21 Be20 @40 @16 1.34
32 B.07 Ge0A D07 13.90% 1.36 1.28 52.63%> 2.67
PROB. FALSE ALARM (TYPE 1 ERROR) 233 SAMPLES

ALPHA: 40 «30 +20 +10 85 .01 +0010 .00010 .Q00010 .0000010
FReFA: ©e35 027 Be21 @09 Q.05 0.01 0.0000 0.00000 0.000000 8.0000000.

PROB. DETECTION (POWER OF TEST) 23 SAMPLES
PR(DY: 100 100 100 1900 100 1.00 ©.99 Be90 Be63 B.30
FR(D): 1.00 100 1.00 100 1.00 1.00 1.00 D87 @52 B.30

Fig. 3.1—Simulation of Likelihood Ratio Test for Signals Common to
R Replications: Results of One Run, White Noise
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SIGNALS COMMON TO 8 REALIZATIONS OF ‘NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)
INITe N 1751 11922 1752 11922 P: 1753 11922 1754 11922

23 SIGNAL COMPONENTS: S/N=0.@1566 (-18.@85 DB)

C(MaNsF): F(MoNI>F(.0000132514)1]

RUN M» N: F M, N: F M, N F - Ms Nt F M3~ N: F
1 %55 5 3509 %65 9 31.79 %3512 30«43 *3s516 40.52 %7518 32.06
1 %3519 2958 %6520 43.68> *7,22 66¢15> %2523 44+55> %1526 T4+47>
1 %5529 42.27 %1230 51.23> %4,32 33.48 %7532 54.50>
2 k45 2 52442> %55 5 3367 *55 T 47+90> %3, 9 7338> *3,16 45.76>
2 %3519 52.21> %7522 35.50 #2523 42.64 *4,26 38.89 *6,26 35.91
2 %8526 57+76> *5,29 3106 *8B>29 96.08> *1,30 54.58> *7,32 48.39>
3 %55 7 S54.87> %3512 3097 %6514 T3432> %7518 93+65> %3519 42.95
3 #6520 60+T71> %722 64.85> %2523 3648 *4,26115646> %6526 46.27>
3 %4532 40.05 %7»,32 42.08
4 k45, 2 3132 %55 5 66.02> %55, T 3282 *3s 9 43413 %5513 54.45>
4 %6214 47.60> %3516 29.67 %7518 6B8+70> %3519 S1e74> %7522 34.09
4 %2523 5025> *15,26 93627> %4526 5S2+28> %5529 65+64> %8,29 33.78
4 %1538 38.06 *4,32 35.15

97 %55 5 3246 %55 7 35.01 *6s 9 3480 *3,12 32.33 %6514 77.58>
97 %3516 67+18> %6520 32.60 %2523 63.09> %1526 32.01 *6,26 54.94>
97 %8526 B6+6T> *5529 44434> %8,29 60+12> %4532 48.81>

98 %55 5 50.40> %5, T 47.09> %35 9 36208 %65 9 97.07> %3512 49.15>
98 %5513 41.40 %6214 54.56> %7522 56e54> %4526 53.74> %6526 80.88>
98 %8526 S53.03> *Bs29 TTe6T7> %1530 62.89> %*4,32 33.17

99 *4s 2 56.00> %55 5 51+36> %35 9 35.30 %65 9 49.43> *5,13 63.85>
99 %6514 59+05> %7518 42.64 %3519 81+54> %6520 38.96 *2,23 57.68>
99 %6526 4243 *8526 S56.47> %4532 38.78 %7532 T4.84>

180 %45 2 56+72> %55 5 63+66> %55, T 41.81 %65 9 3029 %3519 96.806>
180 %7522 T6+70> %2523 41.92 %1526 3368 %6526 38.87 *1530 49.44>
103 %4532 42.69

PROB. FALSE ALARM (TYPE I.ERROR) 23300 SAMPLES

ALPHA: 40 <38 +20 +10 0S5 <01 0010 .Q801@ 2060810 .00080210
FReFA: De40 030 G20 Q.10 P-85 0.01 G.0009 ©.00004 9.000000 0.0000000

PROB. DETECTION <(POWER OF TEST) 23P@ SAMPLES
PR(D): 100 100 1.00 1.00 1.00 1.00 0.99 @90 @.63 @.30
FR(D): 100 100 160 100 100 1.00 0.99 @.90 Ge62 @e31

Fig. 3.2—Simulation of Likelihood Ratio Test for Signals Common to
R Replications: Summary of 100 Runs, White Noise

n
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SIGNALS COMMON TO 8 REALIZATIONS OF NORMALLY DISTRIBUTED NOISE

SPECTRAL DENSITY=F(KsW)=

SIMULATED ARRAY=

INITe N: 338

6 SIGNAL COMPONENTS:

N\M 1
1 Be72
2 494
3 g.21
4 .20
S B.62
6 2.16
7 g.21
8 2.58
9 1.86
10 D95
i1 Getl
12 116
13 090
14 1.82
15 @.29
16 @57
17 Z.93
18 Be94
19 Be65
20 @59
21 G.033
22 1.19
23 @42
24 B.29
25 @.14
26 @25
27 2.95
28 385
29 2.23
30 @42
31 B.20
32 G007

8

1062

2

2.37
2.93
B4l
P62
2+33
2.73
1.93
@.19
1.36
@e19
1.19
1.84
2.23
266
1.83
@02
Do 4l
Ge26
2.80
D.80
D@7
0.23
1.96
2.75
5.18
9.98
B.36
1.01
2.61
.85
Pe34
GeB4

PROB. FALSE ALARM

ALPHA: .40

« 30

«20

1+.2

8 X 64 WITH 8 REPS/RUN

3389 1962 P: 339

S/N=@.01566

F(MsN)

3 4
.02 Bea7
3.81 1.89
104 @26
314 4417
1.08 1.57
2.63 B.20
B85S Be11
@Be64 251
373 177
1.96 @13
184 .26
4418 P19
P41 B«97
1.68 ?.89
1.65 B.38

31 89# 1.87
Dedi4 1.55
D02 GBS
Ael1 D26
1.26 2444
1.21 Be54
374 Be45S
4474 Beb67

37.191 P.32
Ge83 @51
1.92 @.22
Be97 @e 49
1.08 @85
B.07 P«36
@82 .96
0.806 Fe21
QD7 149

(TYPE I ERROR)

<10 «85

<01

FReFA: B+37 C+29 0.22 0.10 0.06 0.01

PROB. DETECTION

PR(D#>: 1.00
FR(D#): 1.00

PR(D*): 1.00
FR(D*)>: 1.00

PR(Dt)Y: 1.00
FR(Dt): 1.00

1.89
1.00

(POWER

1.0 1.00
1.60 1.00

1.00 1.00
1.0 1.00

OF TEST)

5%¥COSC(K+PI/4)%COS(2W)

(8 X 32 COMPLEX VARIATES)

1 1962 3392 1862
(-18.85 DB)

S 6 7 8
(32 1.20 3.18 @+83
B«B5 BeB6 1.41 P16
234 @.30 D87 Gels
De 46 @15 @e58 .38

48¢95%> 151 1.61 g.82
Q20 DeT1 D.20 G.02
3.32 Be54 D00 .10
2¢67 1.84 Ge.22 Pe15
Oea6 2.37 G50 0«03
@Pe53 1.64 2.81 2. 66
S.06 Be56 BDe 69 Bel2
2.20 29+24% 1.54 2.09
Ge11 DBeB9 Q.44 Do 45
B«38 D62 Bed4 2.20
BeT7 1.19 S.21 2463
1.062 2458 695 D.39
Oe30 2475 @62 D14
Bed4 BGe24 1.29 178
D43 .21 D64 e 60
S«60 Be56 @61 Be09
Qe b4 .91 145 B.70
Be44 2.10 0«39 B+38
D« 45 BGe77 1.89 Be04
1.27 1.45 Ble54#> @53
1.20 GBS D55 @.23
2448 Be79 B« 45 2.00
Ge4l .21 @53 10.06
@33 .19 Be«57 2+35
3.87 3413 .93 @39
@48 B.68 B.06 Be17

. Q20 Be 40 Be16 1.34
136 1.28 49.561t> 2467

250 SAMPLES

«3210

« 000

10

« 000

210

0.0000 G.00000 C.0806000

2 SAMPLES EACH

1.00 P.98
1.00 1.00
@.99 2.90
1.00 1.00
Be96 2.78
1.00 1.00

B.63
@50

Be44
1.00

« 00000210
B.0000000

Fig. 3.8—Simulation of Likelihood Ratio Test for Signals Common to

R Replications:

Results of One Run, Nonwhite Noise
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SIGNALS COMMON TO 8 REALIZATIONS OF NORMALLY DISTRIBUTED NOISE
SPECTRAL DENSITY=F(KsW)=1++25%COS(K+PI/4)%C0OS(2W)

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/KUN (8 X 32 COMPLEX VARIATES)
INITe Nt 1751 11922 1752 11922 P: 1753 11922 1754 11922

6 SIGNAL COMPONENTS: S/N=@.81566 (-18.05 DB)

[L(MsNsFI: FMaNI>F(.0008132514)1]

RUN Ms N2 F Ms DNt F M» Nt F Ms Nt F Ms Nt F
1 %6512 36463 #3216 5169> #7524 30«41 17532 43.58>
2 #3516 TR62> #7524 55.12> 17532 4107
3 %6512 55.72> 13524 4059 #7524 93.47> 175,32 33.21
4 %55 5 41.22 %6512 T73e35> #3516 3089 13,24 29.67 #7,24 35.47
4 17,32 34.33
S %55 5 45.22> %6512 57.29> #3516 33¢74 17532 29.54
6 %55, 5 41.80 #3516 4B«26> #7524 44.83> 17,32 66.96>
T 13224 68.77> #7524 5S4.16>_17532 41.75
8 %55 5 34¢77 #3516 3B+26 13,24 51.91>
9 %55 5 36455 #3216 39.27 #7224 82.68>

10 %6512 3739 #3516 59.51> #7524 54.36>

11 *55 5 39.59 %6512 43.13 #7524 39.59 17,32 34.59

12 %6512 3752 #3,16 34463 13,24 29.44 #7524 3027 17,32 41.10
13 *5, 5 34436 %6512 38+51 #3516 52.59> t3,24 33.71 #7:24 62.83>

93 %55 5 38¢79 *6512 33.22 #3516 50.96>

94 %6512 39.87 #3516 2940 13224 3698 #7524 S52.74>

95 *55 5 60+74> #3516 45.59> 13,24 52.38> #7524 30.90

96 *5, 5 B4.96> #3516 4109 #7524 77.92>

97 *5, 5 32.51 *¥6512 38«68 #3516 80.22> 13,24 58.85> #7524 31.36

98 *5, 5 5B.95> #7,24 40.13

99 *5,5 S 60.02> #7524 46.82> t7532105.29>

1080 *55 5 67.47> %6512 3417 #3516 53«11> 13,24 40.94 #7524 29.79
PROB. FALSE ALARM (TYPE 1 ERROR) 25000 SAMPLES

ALPHA:  +40 30 20 +10 <05 .01 +.0010 +.00010 .000019 .0000010
FReFA: 040 0.30 (.20 0.1¢ 0.05 G.01 P.0009 0.00004 0.000000 @.0000000

PROB. DETECTION (POWER OF TEST) 200 SAMPLES EACH
PR(D#): 1.00 100 100 1.00 1.00 1.00 1.00 B.98 B.85 Be54
FR(D#): 1.00 100 1.00 1.00 1.00 1.0 1.00 2.98 B89 @.60
PR(D*): 1.00 100 100 1.00 1.00 1.00 0.99 B.90 B+63 ?.30
FR(D*): 100 100 1.00 1.00 1.00 1.00 0.99 291 B.68 B.36
PR(D1): 1.00 100 1.00 100 1.90 1.80 @.96 .78 Beb4 D17
FR(Dt): 1.00 1.00 100 1.00 1.00 1.80 @.97 @77 @41 2.19

Fig. 3.4—Simulation of Likelihood Ratio Test for Signals Common to
R Replications: Summary of 100 Runs, Nonwhite Noise
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| f(k,w) = 1 + cos (k + 7/4) cos (2w)/4 . (3.15)

Six signal components with the same signal to noise ratio as before (-18.05 dB) were added,
two each in regions of low (f = 0.75), medium (f = 1.0) and high (f = 1.25) noise spectral den-
sity. These are indicated by the symbols “#”, “*” and ““1”, respectively. The respective non-
centrality parameters are 85.33, 64 and 51.2. Figure 3.3 is a computer printout of a single
run, and Fig. 3.4 is a portion of the printout of 100 successive runs. The notation is that of
Figs. 8.1 and 3.2, except that the probabilities and relative frequencies of detection are listed

separately for signals in each of the three types of noise regions. The agreement is quite satis-

factory.

3.4 Signals with Unknown Epochs

In many applications to periodic phenomena, the assumption of a fixed signal common
to all replications is not valid if “replications’ are to be obtained over successive spatial or
temporal intervals. The epoch of an otherwise fixed signal may vary in successive realiza-
tions. For periodic signals, the relative phase between realizations or the epoch of each
realization depends on the signal frequency. This is not a serious problem if a hypothesis
test for a single specified frequency component is to be made. In general, however, the
alternate hypothesis is composite and the problem becomes more difficult.

In view of Fourier’s theorem and its various extensions, a fairly general model for two-
dimensional periodic signals is a more realistic version of the model used in section 3.2. Con-
sider a signal component represented by s(x,t) = A cos (kx + wt) for continuous x and ¢,

where
K= 2m(e s SRM, 18k] <G, E=0,.. M2,

and

w=2u(f+8AIN, |81 <=, f=0,...,N/2. (3.16)
Observations at discrete spatial and temporal points x =0, ..., M —1,t=0,..., N-1 yields

y1(x,t) = A cos [2m(k + 83)x/M + 21(f + 8 )t/N — 1 + ny (x,1) (3.17)

where ¢ is the phase relative to the origin of observations. Consider R realizations, obtained

during successive time intervals.
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Then
yr(x,t) = s1(x,t+ (r —1)N) + ny(x,t)
=Acos [2m(k + bp)x/M + 2w (f + 8£)t/N + o] + np(x,t) , (3.18)

where o = 26 f(r—1) — ¢, r=1,..., R.

If 55 and &7 are both zero, i.e., if the signal is a member of the basis set used in the
DFT, then (3.18) reduces to a special case of the model considered in sections 3.1-3.3. In
general, it cannot be assumed that the signals are members of the basis set, so that we no
longer have a fixed signal common to all realizations, and no true replications are possible.
In this section, we will attempt to make reasonable estimates of the unknown «,. In the -
next chapter we will eliminate this unknown, thereby altering the problem.

Since wavenumber resolution and frequency resolution are limited to Ak = 1/M and

Af = 1/N respectively, we may write
yr(x,t) = A cos (2nkx/M + 2nft/N + 0g.) + n,(x,t) . (3.19)

In obtaining (3.19) from (8.18), we are ignoring the effect of non-zero §; and §¢ on wave-
number and frequency, but not on phase. Non-zero 8; and § means that signal energy will
be distributed over the entire wavenumber-frequency space, rather than being concentrated in
a single cell. In general, if S,(m,n) # 0, a signal effect may be expected in three adjacent
cells when &, and 8 are not zero. For the weak signals wh'ich are of primary interest, the
signal effect beyond these four cells may safely be ignored. It is notationally convenient to
maintain the fiction that the energy from each signal component is concentrated in a single
(m,n) cell. Signal detectability on a cell by cell basis will of course require greater signal
energy when that energy is spread over a cluster of four cells.

Generalizing to J signal components, the model becomes

J
Yr(x,t) = Ajcos(2nkjx/M + 2wfit/N + o) + ny(x,t) ,
j=1 '

x=0,...,.M—1,¢t=0,...,N—1,r=1,...,R. (3.20)
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The DFT is as in (3.11), with &, = 27 §(r — 1) — ¢; replacing —¢;. With the same simplifica-
tions as (3.12) when the null hypothesis is not valid it yields

Y,(m,n) = B(m,n)e®r™" 4 ¢ (m,n) when (m,n)€Q-D), (3.21)

where B(m,n) = (1/2)/MN Aje "% and B,(m,n) = o + ¢; = 2n8;¢(r — 1), for some j €
{1, ceesd } As in section 3.2, we consider the data array to be relabeled to yield the
2M'N'R real variables

Ygr(m,n), Yy, (m,n), m =1, ...,M <M,n=1,...,N' <N/2,r=1,..., R, but drop the
primes on M and N when testing hypotheses.
Letting Y. (m, n) = Y, (m,n)e " *Pr(™™") (3 .21) becomes

Y;(m, n) = B(m, n) + €.(m, n) (3.22)
where
er(m,n) = €@, (m,n) =i €j,(m,n),
€q,(m,n) = €g,(m,n) cos Br(m, n) — €,(m,n) sin fy(m,n),
and

e&r(m,n) =e@r(m,n)sin .(m,n) +€y-(m,n) cos B,(m,n).

Then e&,(m, n) and e&r(m, n) are each distributed as N (0, (1/2) f(km,wn)), and

cov (e&,(m, n),e&r(m, n)) = 0<—1%4—> . O<%) .

. Equation (3.22) has the same form as (3.12) and (3.2), so that
- -~ ~ —_ 1 R .
B(m,n) = Bg(m,n) + iBy(m,n) =Y'(m,n) = 7 Z Y, (m,n)ye fr(mm) (3 23)
r=1

by (3.5). If one is willing to accept a less powerful test and pay the price of increased com-
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putation, a modification of the development of section 3.1 can be applied even though

Br(m, n) is unknown. Consider replacing (3.23) as an estimator of B(m, n) by
2 1 i
B(m,n) =% 2 Yi(m,nye”Yr(mm) (3.24)

with ¥,(m, n) to be chosen. Then

- R
Bg(m,n) = % Z [Y@r(m,n) cos v, (m,n) — Yy,(m,n)sin v,(m, n)] (3.25)
r=1
is normal with mean

- R
E{Bg}=% Z [(Bg cos B, — By sin B;)cos ¥, + (BR sin B, + B§ cos ) sin 7]
r=1

R
= % Z [Bg cos (Y, — Br) + By sin (7r — B;)]
r=1
and variance f(Km,w,)/2R, and
2 1 R
By(m,n) == % ) [Yg:(m,n)sin ¥ (m,n)+ Y9, (m,n)cos Y, (m,n)]  (3.26)
r=1 X
is
1 R
Ni—x% Z [BR sin (Y —B;) —BJcos(¥r —B)1, f/ZR> .
r=1

Signal power at the point (m, n) is given by R |B(m, n)|? and estimated by R lé(m, n)|2,
where R |é(m, n)lz/[ f(Km, wn)/2] has the non-central chi-square distribution with 2 degrees

of freedom and non-centrality parameter

82;(m, n) = RE? {Bg(m, n)}/ [ (Km>wn)/2] + RE2{Bq(m, n)}/ [F (Km, wn)/2]

r=1 r=1

2 2
=R|B|2{|:i i cos(Yr — B :I +l:-—1- i sin(Y, — B )] }/(f/Z) (3.27)
R r r R r r .
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< R|B(m,n)|2/[f(Km,wn)/2]

by the Cauchy-Schwarz inequality. The probability of “false alarm” (the size of the test) is
independent of 7¥,.(m, n) (chosen in advance) but the probability of detection (the power of
the test) is quite sensitive to choice of v,(m, n). At each point (m, n) let v, — 8, = (r— 1)x

= kx. Then by (3.27), the effective signal power density is reduced by the factor

1 R-1 . 2 1 R-1 2
P(R,x) = [E Z cos kx] + l:i Z sin kx:l
k=0 k=0

1 2 1 2

sin R+—>x cos x/2 — cos <R+ —)x

=1 —1—+ 2 —cos Rx +—1- 2 —sin R
RZ |2 2 sin x/2 R2 2 sin x/2 s fex

(See eg., Tolstov [41], p. 98.) After straightforward manipulation, this becomes

P(R,x) = ﬁ (1 — cos Rx) esc? x/2 . (3.28)

For fixed R, P(R,x) is an even function of x, monotonically decreasing for 0 < x < /2R,
P(R,x) = csc2(m/4R)/2R2 > 8/r2, and lim P(R,w/2R) = 8/m2. Recall that §,(m,n) =

27 8jp(r — 1) where |8;r| < 1/2. Let Vllzr;z),x;z) =f1(m,n) = 0. For all R and all ;s € [—1/2,
1/2], there exists an integer k € [~R,R] such that 2R 6;f —1/2 < k < 2R djp + 1/2. For
this &, if v, = kw(r —1)/R for r > 1, then

'7r—ﬁr|

|x| ='7—1— == |k —2R8jr| < m/2R .
The signal power, and hence the signal to noise (power) ratio, will be reduced by a factor of
at most 8/72 > .8 (at most 1 dB), compared to the ideal situation of known §,(m, n).

If we choose ¥, = kw(r —1)/R for the k € [-R, R] which maximizes llé(m,n)l2 (see
(3.24)), the probability of false alarm will of course be increased. We can compensate for
this by choosing the nominal level of the test, o, low enough so that an adjusted level, o,
is as desired. The power (in both the statistician’s sense and the physicist’s sense) remains as
before, including the “penalty” factor of 8/72 for quantizing the analysis. For each value of
k, the statistic
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o R|B 2
F(m,n) = |Br(m,n)|

R ~
D |¥rp(m, n) = Bp(m,n)|2/(R - 1)
r=1

where ]_?)’k(m,n) is given by (3.24) with 7, = kw(r —1)/R, and Yr',; (m,n) = Yr(m,n)e_iyr(m’"),
has asymptotically the F distribution with 2 and 2(R — 1) degrees of freedom under the null
hypothesis. Under the alternate hypothesis, $5(m,n) has the non-central F distribution with
the same degrees of freedom and non-centrality parameter given by (3.27) and bounded be-
low by

8,2(m,n) = (8/72)R|B(m,n)|2/[f(Km,wn)/2] .

~

Let 5 '(m,n) be the corresponding statistic for the k which maximizes IB(m,n)|2. If the

%1 were independent, and if ¥’ = max ($p) (neither of which is claimed), then we would
kE[-R,R]
have

o = P[F' > Fyyyp,]

Plmax (¥_g,..., Fg) > Fa;V1,V2]

1= P[Fp < Fapypgr-- T2 < Fapypyl

1 — (1 -a)2B+1,

The required low adjusted test levels, o', thus require, a fortiori, extension of F tables to even
lower levels, «. Calculations using the computer program mentioned in section 3.3 revealed
that acceptable probabilities of detection still exist, even at the low adjusted test levels (false

alarm probabilities).

3.5 Simulated Tests of Signals with Unknown Epochs

That some limited success can be achieved with the above procedure is indicated by com-
puter simulation. As in section 3.3, simulation was performed in the wavenumber-frequency
domain, using (3.21)-(3.26). Fig. 3.5 is a typical computer printout' of the results of one run,
assuming a white Gaussian noise process with f(kp, ,wp,) = 1. The notation is the same as that
of Fig. 3.1, and the identical pseudo-random “noise’’ sequence was used. As before, “*” iden-

tifies those cells in which the null hypothesis was not true, with the signal to noise ratio the -
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same as in Fig. 3.1. LIE:Ik(m,n)I2 was computed for each of the 17 values of k in [-8,8], for
each of the 256 cells, and F'(m,n) computed for each of the largest lék(m,n)|2. A transpose of
the matrix (§'(m,n)) is shown in the figure. The ‘> symbol identifies those ¥’ which fall in
the rejection region of a test of size o' =1 — (1 — )17 = 10~4. (None did in this run. See

Fig. 3.6.) ' |

Theoretical probabilities and observed relative frequencies are tabulated at the bottom of
the figure. “NOM.ALPHA” represents the nominal o, with .4 > « > 5.9 X 1077, “MAX.P(FA)”
represents the level of the test, o’ = 1 —( — a)17, with 1 > &« > 1075, the “REL.FR.FA” in-
dicates the relative frequency of type I errors at each of the above test levels. “NOM.P(DT)”
represents the probability of detection for known §.(m,n) at each of the above test levels, cal-
culated from the F'2,1 4;64 distribution, while “PR.D:-1 DB” was calculated with a noncen-
trality parameter of 50.8, corresponding to a -19.05 dB signal and ‘PR.D:-2 DB” was calculated
with a noncentrality parameter of 40.32, corresponding to a -20.07 dB signal. “REL.FR.DT”
indicates the relative frequency of detection obtained.

Fig. 3.6 is a portion, including the tabluation of probabilities and frequencies, of a print-
out of 100 similar runs in succession. Although the type I errors are close to the expected
values, the observed relative frequencies of detection are lower than expected, but still within
an acceptable range.

It must be noted that this approach assumes that the signal components are sufficiently
stable in frequency to warrant R “replications™ (as well as that the noise is stationary during
the observation time). If this is the case, increasing N, the number of time samples, with con-
sequent increased frequency resolution (and fewer “replications”) may be desirable. In fact,

- if a single M X RN transform is feasible, the version of the problem of unknown epochs con-
sidered in this section disappears. In that case, R adjacent frequency ‘“columns” yield the de-
sired replications. If the size of the transform is limited, as it might be, for example, if the
analysis must be in “real time,” or if the analysis is on already transformed data, this approach
may be useful. It must, of course, be conipared with alternate techniques. If successive real-
izations result from observations at different spatial points (different arrays) the phase differ-
ence between realizations is completely unknown, and may be eliminated by the procedure

considered in the next chapter.
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B X 64 WITH 8 REPS/RUN

INIT. N: 3388 1062 3389
23 SIGNAL COMPONENTS:
F
NAM 1 2 3
1 3.37 2.86 4412
2 2.96 4417 3.11
3 4. 41 8.82 6.53
4 7.32 5.64 3.36
5 6411 3457 4446
6 642 4048 4454
7 3.44 2456 4417
8 2.51 3.83 4443
9 5.03 1.74  19.99%
10 3449 7+85 6449
i1 3.80 2.94 9.10
12 3.43 2.42  23.72#
13 5.74 3.64 2.80
14 4435 4.51 7445
15 9.21 5.93 3.19
16 3.90 2.18  28.81%
17 4.39 6460 2.87
18 3.60 2.77 5.34
19 4. 46 2.00 12.72%
20 5.01 4.28 4453
21 3.74 4.81 2.37
22 2.32 4.83 3.34
23 44180 11.32%  5.15
24 2.89 3.20 2.55
2s 4.86 7.21 2.66
26 18.02% 8415 3.23
27 2.67 3.80 441
28 9.11 5.18 2.50
29 4.24 4.13 6458
3@ 24.72%  Bel4 2.36
31 3.43 4405 2.54
32 2.29 4.10 8e56
PROB. FALSE ALARM (TYPE I
NOM.ALPHA: 40 .30 .28 .10
MAXSPCFAY: 1.80 1.0 .98 .83
REL.FR<FA: 1.00 1.60
PROB. DETECTION (POWER OF
NOMeP(DT): 1.00 160 1.60 1.90
PReD:=1DB: 180 1.00 1.00 1.00
PR.D:~2DB: 1.00 1.0¢ 1.00 1.00
REL«FReDT: 1.08 1.00 1.00 1.00

1062 P:

S/N=@.01566

" (MsN)
4

725
20.00% 1
394
3.92
204 2
357 1
4000 2
348
2.65
4439
S5.41
3.86
4482 2
3.29
364
3431
3.91
3.13
1004
4430
3.95
214
2463
2.29
10.32
18+39%
1364
4.16
3.71
2.27
3.65
24e84%

ERROR)

«B5
«58

o1
«16

Be99 B84 P56 Be13 O

TEST)

1.00 1.00 @
1.00 1.900 ©
1.00 3.99 0
1.00 1.9008 0

3391

1062

SPECTRAL DENSITY=1.0

(-18.805 DB)

5

5.26
B.T76
362
379
9e74%
3.55
4. 18%
195
3.24
262
Tel4
2.79
2+ 63%
2.69
2.13
358
397
9.36
342
4e 41
263
323
4e 4]
3.12
609
3. 48
6.09
4479
B 10*
Be87
Sed4
384

6

4017
2434
748
4493
3458
S5.83
352
4430
21.45
3.80
3.10
352
T.10
16.20
5.22
5.33
2.78
4418
4.87
13.98
354
4.26
389
T80
2464
28.66
3.75
334
553
6405
3.87
41

233 SAMPLES

<301
«@17
- 009

23

«99
«96
«89
«91

6E-S
<0010

2.0000 B.00000

SAMPLES

Be86
e 70
g.52
g. 43

(8 X 32 COMPLEX VARIATES)

3392 19062
7 g8
3.92 S.01
3.84 2497
3.16 3.24
2442 3.05
3«01 2+.66
1.94 3.03
3.98 3. 64
5.90 8.86
* 250 369
2.71 4437
9.66 635
4456 3.82
4. 68 4408
* 316 3.25
4419 5.45
654 4041
2.80 2.75
20« 49% 235
2.27 S.06
* 2.99 7.18
3«07 3.11
24.53% 3.98
2.27 3.22
421 S5¢66
1.69 4487
* S5.19 15.29%
3.00 5.05
4463 366
3.78 20« 63%
3.18 4e37
3.08 5.26
19.36% 3.18
Se9E~6 5.9E-7
00010 «0B0B1G
B.200000
@55 B.24
BDe36 Bel1l3
B.21 D06
0«08 D00

Fig. 3.5—Simulation of Modified Likelihood Ratio Test: Results of One Run
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SIGNALS WITH UNKNOWN EPOCHSs SPECTRAL DENSITY=1.0

SIMULATED ARRAY= 8 X 64 WITH 8 REPS/RUN (8 X 32 COMPLEX VARIATES)

INIT. N: 1751 11922 1752 11922 P: 1753 11922 1754 11922
93 SIGNAL COMPONENTS: S/N=0.81566 (~18.05 DB)
[MsNaF'>s F*(MsNI>F(5.9E-552514)]
RUN  M» Nz F° Ms Nz F° My N2 F° Ms N: F° Ms N3 F°
1 %5, 7 21.92 %3516 25.04 #7518 48.05> %3,19 33-95> *6,20 23.66
1 %7222 64.67> %1526 B4.97> *8,29 22.13
O %4y © 60.49> %5, 7 22455 *35 9 24.67 *65 9 35.81> *3,16 54.13>
O 7,00 D4.29 #1526 26452 *4,26 39.40> %6526 21.44 *5,29 2245
D *%,29 32.19> %1530 60.93>
3 k4, 2 30.16 %55 5 22.67 *5, 7 3B.36> %3, 9 22.12 *3,12 59.07>
3 %xT,18 21.92 #3519 22.72 #6520 26.43 *7,22 25.66 %7532 31.45
4 %4, 2 35.76> %5, 5 4F.30> %3, 9 39.85> ¥5,13 23.42 *6,14 22.58
4 *Ts1E 42.56> #3519 21.67 #7,22 23.69 *2,23 22.97 *1,26 66.24>
4 %6226 29.56 45,26 40.58> *8,29 21.34 *1,308 37.35> %4,32 29.86
S5 %S, 5 24.96 %5, T 33.36> %65 9 36.21> %6514 34.67> *3,16 36.02
S %3519 22.38 #4,26 44.25> %5,29 28.23 #4532 25.55
6 *k4» 2 38.91> %5, 5 34-13> #3512 64.82> *5,13 21.89 #*3,16 24.08
6  1+23 25.36 #2,23 23.43 *4,26 22.06 *5529 21.15 %1530 21.90
6 *4,32 30.86 %7532 27.80
96 *T»18 33.65> %6,20 42.70> %1,26 27+.63 *4,26 32.31> *5,29 62.36>
96 *7532 24.15 ,
97 %5, 7 26+76 1513 30.26 *3,16 34.34> %6520 30.21 *7,22 21.69
97 40,93 D3.39 #Bs26 44.TG> %5529 22.42 *§>,29 25.74 *1,30 22.03
97 *4,32 39.17> %7:32 27.22
9f *3s 9 22.51 4b6s 9 46462> %3512 25.84 %3,19 26.94 *2,23 32.44>
9E 46,06 DE.G8 *B»26 30.36 *8,29 24.11 *1,30 24.57 *7,32 21.24
99 %3, 91@3.8B4> %65 9 52.3F> *3,16 32.18> %7518 28.71 *3,19 26.33
99 %7522 26.07 *2,23 27.88 *5:29 30.59 %7,32 24.65
106 %5513 22.66 %3519 73.12> %6,20 25.8¢ *7,22 24.16 *2,23 36.10>
100 #4526 32.51> %4532 35.66>
PROB. FALSE ALARNM (TYPE I ERROR) 23300 SAMPLES
NOM.ALFEHAT <48 «3@ +28 <18 +65 <01 <001 6E-5 5.9E-6 5.9E-7
MAXeP(FAY: 180 100 +98 <83 +58 <16 «017 .0010 .00010 .000010
REL FReFA: 1400 1.00 1.00 0+87 B.57 @el4 0.012 2.0006 0.00004 G.GEOVO0
PKOB. DETEC1ION (POWER OF TEST) 2396 SAMPLES
NOMPC(DT): 1.0C 1.0¢ 1.00 1.00 1.A2 1.60 0.99 6.86 055 0.24
PReD:-1DB: 100 1.8¢ 1-06 1.00 1.00 1.00 0.96 ©.70 0.36 913
PReD:-2DB: 108 100 1.00 1.00 1.00 .99 @.89 0.52  8.21 B-G6
REL+FReDT: 100 1.G0 1.00 1.00 1.82 1.8 8.91 6.46 0.17 8.06

Fig. 3.6—Simulation of Modified Likelihood Ratio Test:
Summary of 100 Runs
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4. AN AD HOC TEST FOR SIGNALS WITH UNKNOWN EPOCHS

When the epoch or phase of a signal varies between realizations, the identical signal is not
common to all observations and no true replications are possible. Classical techniques involv-
ing averaging cannot be extended to this situation without difficulties. As in section 3.4, we

have

yr(x,t) = sp(x,t) + ne(x,t) , (4.1)
x=0,1,... ., M—1;t=0,1,.. ,N—1;r=1,.. ., R, and

Y,(m,n) = S,(m,n) + €.(m,n) 4.2)
m=0,1,... ., M—1,n=0,1,.. ,N—1;r=1,.. R, in place of (3.1) and (3.2).

If Sy(m,n) # S;'(m,n) when r # r’, observation of one provides no information concerning the

other, so that averaging over r may not be desirable.

One approach to the problem involves consideration of a single M X RN space-time series.

Various solutions in terms of orthogonal expansions of the signal and noise functions are pos-
sible, see, e.g., Selin [35], Helstrom [16], Wainstein and Zubakov [43]. For some problems
of practical interest this array may be too large for the discrete Fourier transform (DFT) using
existing computer technology. If the transform is feasible, smoothing over R adjacent fre-
quency ‘“‘columns’ may produce consistent estimators.

M one-dimensional time series of N points with a common signal may be obtained by in-
corporating the time delay corresponding to a particular direction of arrival into each spatial
sample. A separate analysis for each direction of interest using the one-dimensional DFT is
then possible. (See Shumway [37].) This approach provides a one-dimensional concentration
of information in the frequency domain, but does not permit any systematic use of informa-
tion from analyses at nearby directions of arrival. Furthermore, unless M series of length RN
are considered, R repetitions of the ‘“experiment” provide the same problem of phase differ-
ence as in the two-dimensional approach. The additional repetitions may be used to provide

estimators of the spectral mass function of a stochastic signal and spectral density function of
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the noise for use in the empirical Bayes method (see Shumway and Saikia [38], Saikia [32],
or Hoch [18]), but this does not seem to be the optimum use of current data.

In section 3.4 we attempted to make reasonable estimates of the unknown epochs and to
correct for them. In this chapter we eliminate the unknown parameter and consider a test

based on those aspects of the signals which are common to all realizations.

4.1 Distribution of the Test Statistic
From (3.21), we have

S,(m,n) = B(m,n)eiﬁr(m’") , (4.3)

where B(m,n) =\/MN Aje-i9j/2 when m = kj and n = f; for some j € {1, . . ., J}, and is zero
otherwise, and Br(m,n) is an unknown which dependsonr =1, ..., R. For all (m,n), Sy(m,n)

averaged over the unknown f,(m,n) vanishes:

o 2
o f S,dg 277(! erdp. =0,
0

but
IS,(m,n)|2 = |B(m,n)|2

is independent of r. Thus if f, is eliminated, a sample of size R provides K times the mean in-
formation concerning |B(m,n)|2 as in a single observation. (Kullback [22], p. 13). The hypothe-
sis Hp:Sy(m,n) = 0, r =1, ..., R may be replaced by the equivalent hypothesis Hg: |B(m,n)|2
= (. For a deterministic signal, or a conditional model, Y.(m,n) = Y,q(m,n) — iY,9(m,n) is
asymptotically distributed as N(O,f{(K, ,wrn)) under Hg and as N(Sr(m,n), f(km ,wnr)) under
Hy. Hence 2f~1(Km ,wn)|Yr(m,n)|2 has the central chi-square distribution with two degrees of
freedom under Hg and the noncentral chi-square distribution with two degrees of freedom and

noncentrality parameter 2f~1 (K ,wn)B(m,n)|2 under Hy. Letting
o R
Y (m,n)|2 = R'lz 1Y, (m,n)I2
r=1

we have
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U(m,n) = RIY(mn)2 | X2R (0) under Hy
, ﬂx—mzw—n) X2R (2Rf1 (K m , 0, )|B(m,n)|2) under H . (4.4)

This statistic depends on the unknown spectral density f(k,, ,wp,). In some situations,
analysis of variance applied to prior data may be used to obtain an estimator of f(k, ,wy), as
in the empirical Bayes approach [38,32,18]. In many applications, however, the assumption
of stationarity is valid only over short time periods, so that appropriate prior data may not be
available. If f(km ,wy) varies slowly, the asymptotic independence of Y,(m,n) and Y,(m',n’)
for m # m' or n # n' suggests using data from adjacent cells. One may either estimate
f(Km,wnp) in the spirit of empirical Bayes, or form an independent chi-square variable to ap-
proximately ‘“‘Studentize” U(m,n). Let u << M and v << N, let

Qmnpr) = {GHm-p<E<m+pn—-v<E<n+v, () *mn)}, (4.5)

and let H;(m,n), i = 0, 1 be the null and alternate hypotheses respectively for the (m,n)th cell.
(When the signal components are not members of the basis set used in the DFT, adjacent cells
as well as (m,n) itself must be excluded from 2. See the discussion following (3.19).)

If Ho(£,£) is true for all (£,8) € Q(m,n;u,v),

V(m,n) = Z U.%)
(.5EQ

has the central chi-square distribution with 4R(u + 2uv + v) degrees of freedom, and is asymp-

totically independent of U(m,n). Under these assumptions,

U(m,n)
V(m,n)

¥ (m,n) = 2(u + 2uv +v) (4.6)

has approkimately the central F distribution with 2R and 4R(u + 2uv + v) degrees of freedom
under Hg(m,n), and the noncentral F distribution with these degrees of freedom and noncen-
trality parameter 2Rf™1(kp, , wp)IB(m,n)|2 under Hy(m,n).

If Ho(m,n) is true but H1(¢,£) is true for some ({,£)EQ(m,n;u,pv), then 1/F(m,n) has a
noncentral F distribution with v1 = 4R(u + 2uv + v) and v9 = 2R degrees of freedom. The
false alarm probability (type I error) is then
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1
P[F(m,n) > Fopypl = P [\ff(m,n)

< Fl—a;ul,v2] <« 4.7)
i.e., less than the nominal false alarm probability o. If Hy(m,n) is true and Hq(§,£) is also
true for some ({,£)E2(m,n;u, ), then the probability of detection will also be decreased, since
both U(m,n) and V(m,n) will have a noncentral chi-square distribution. It happens sufficiently
often in practice to be of interest, however, that signal components are isolated from each

other in wavenumber and in frequency, so that for sufficiently small u and »,
Hi(m,n) = Ho(§,8),V (5.8) € Q(m,nup) . (4.8)

4.2 Simulated Examples

A computer simulated test of this procedure has been made. Each signal component was
confined to a single (m,n) cell in the wavenumber-frequency space, and was isolated from other
signal components in accordance with (4.8). To make room for more signal components in
this relatively small (8 X 382) array, we take g = v = 1 in (4.5), and assume the data to be
periodically continued in m and n.

Fig. 4.1 is a typical computer printout of the results of one run of this simulation. Eight
“replications” of the 8 X 82 data array were generated in accordance with (4.2), assuming a
white Gaussian noise process with f(k;; ,wn) = 1. The figure shows a transpose of the (¥(m,n))
matrix whose elements are given by (4.6), and have 16 and 128 degrees of freedom. Signal
components with signal to noise ratio, defined by (8.13), of 0.01566 or -18.05 dB were added
to the noise in 16 of the cells, identified by “*”. The resulting noncentrality parameter is 64.
The “>” symbol identifies those Fwhich fall in the rejection region of a test of size a = 1076,
Most entries in the table, having neither symbol, indicate correct rejection. An entry with an
asterisk alone, as in (5,5) indicates a type II error (miss) at the level a = 10'6(F10-6;16’128 =4.32).
A type I error (false alarm) would be indicated by “>’’ alone if there were any; “*¥>7 indi-
catesAcorrect detection.

Theoretical probabilities were calculated using the program mentioned in section 3.3. For
small type I errors the power of this test is greater than that of the procedure of Chapter 3,
even in the case where the frequency difference and hence the difference in phase between
realizations is zero. (Compare the theoretical probabilities in Fig. 4.1 with those of Fig. 3.1.)
This does not violate the optimality of the T2 test (Anderson [1], Theorem 5.5.3, p. 116)
since this test depends on W rather than _Y:(—"T,'_‘l—) Theoretical probabilities and observed
relative frequencies are tabulated at the bottom of Fig. 4.1. There are 240 cells in which
'Ho(m,n) is true. Of these, 112 are isolated, that is Ho(§,£) is true for all &.%) € Q(m,n;1,1).
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AD HOC TEST
SPECTRAL DENSITY = 1.0
SIMULATED ARRAY= 8 X 64 WITH & REPS/RUN » ( & X 32 COMPLEX VARIATES)
INITe N: 3388 1962 3389 1862 P: 3391 1962 3392 1862

16 SIGNAL COMPONENTS: S/N=G.01566 (-18.085 DB)

FMsN)
N\ 1 2 3 4 S 6 7 8
1 1.49 1.19 Je 46 Ge19 J.80 1.21 104 2.85
2 @55 FeB9 1.34 1.79 1.00 1.09 Pe62 D76
3 1.41 1.24 1.G6 @e57 1.62 298 @90 Z.91
4 G«99 B+53 1.86 Ge34 1.15 Ga81 Be61 GeT74
5 1.95 Be.72 @79 Be61 4e31% Be54 148 @95
6 1+ 40 Ge 4l 163 ZeB85 @52 1.01 @73 @57
7 @93 175 @55 De 60 Te 62 1.20 1.35 Ge69
8 D96 B.93 P35 D21 B.806 Ge49 B.28 200
9 G556 Be 49 5¢69%> B+49 DeT4 6+65%> (.36 1.31
19 0«98 G.73 G.73 Be 50 Be21 1.15 D60 149
11 .90 Z.84 Be61 Bed6 1.13 ?.83 De60 B.66
12 .29 Ge62 Te56%> (e4a7 GeSO 1.03 Beb4 2.15
13 1.06 B4z f.31 @70 2.83 B«87 D84 1.27
14 125 Deb60 PeB4 1.16 Be99 3.59% Q.85 1.21
15 0«99 B+91 P73 P«63 PDeb66 B.22 B84 @.83
16 @e8G 113 4] 3% 261 1.13 P56 B.97 124
17 Q.68 @36 1.11 Be76 1.08 Be76 P67 @59
18 Be18 g.76 Beb1 P71 @85 @e56 Se67%k> 110
19 %99 BeT9 3eTT%x B.98 1.11 Be45 De4l @ed9
20 Be62 1.27 Ae29 BeT0 @53 1«15 1.50 1.58
21 Ue57 G97 1.33 G177 200 Bea4 B 42 1.07
22 P37 Be95 Ge56 0.38 1.16 Bed47 6e08%k> ([Je49
23 G706 SeE8%> @59 1.61 B.53 1«18 739 Be72
24 Do 47 Be97 Ge71 1.33 0«38 1.08 1.87 1.84
25 D79 Cie4l Be 66 @53 1.02 @87 1.00 G506
26 3+18% 118 2.35 5.50%> (.81 G987 Be79 Pe5S7
27 @e56 B.97 Ge 49 D43 Q.89 048 117 1.26
28 @36 Be96 2.18 P33 " B34 B.96 P91 D39
29 Ge54 1.16 Bs71 He91 5.36%> @«59 Pe51 60 T9%>
30 P66 1el14 0«95 G385 Ded4 B.61 @78 D42
31 B.70 1.11 Ge57 Bed4 @55 @.68 P.98 2.81
32 1.49 1.15 Bo 44 6e76%> [e45 @55 3«69% 2.37
PROB. FALSE ALARM (TYPE I ERROR) 240 SAMPLES (112 1SOLATED)

ALPHA: 440 «30 20 10 +05 01 +0016 .00010 .000010 .Q000010
ISO«FA: Q+41 .28 021 Q.11 008 Q.02 0.0000 0.00000 0.0000C0 B.0000000
TOT-FA: D24 015 G+10 0.05 Q.04 0.81 0.0000 @.00000 0.€00000 G.0200000

PROB. DETECTION (POWER OF TEST) 16 SAMPLES
PR(D): 1400 1080 100 100 100 1.20 8.99 Be95 Qe85 D71
FR(D): 1400 100 100 100 1.00 1.00 1.00 D94 g.75 Be62

Fig. 4.1—Simulation of Ad Hoc Test: Results of One Run, White Noise
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The relative frequency of false alarm for these is shown in the row labeled “ISO.FA:”, and
the total relative frequency of false alarm for all 240 is shown in the row labeled “TOT.FA:”.
“PR(D):” and “FR(D):” refer to the probability and relative frequency of detection, respec-
tively, both at the levels indicated by the label “ALPHA:” above for the 16 cells for which
Hq(m,n) is true.

Fig. 4.2 is a portion of the printout of 100 similar runs in succession. Here, to avoid ex-
cessive data printing, the run number, coordinates and ¥ value are printed for only those (m,n)
for which (m,n) indicates rejection at & = 103, with the sumbol ‘>’ indicating rejection at
o =106 as well. Hj(m,n) is indicated by *m,n. All the entries shown in the figure indicate
correct detection, most at the level o = 1076,

Theoretical probabilities and observed relative frequencies are again tabulated at the bot-
tom of the figure, with the same notation as in Fig. 4.1. There are now 24000 samples for
which Hy is true, with 11200 of them isolated, and 1600 samples for which Hy is true. The
results show good agreement with the theory.

Some results of simulation with non-white noise are shown in Figs. 4.3 and 4.4. The

noise spectral density was

flk,w) =1+ cos(K + —}) cos (2w)/4.

Six signal components with the same signal to noise ratio as before (-18.05 dB) were added,
two each in regions of low (f = 0.75), medium (f = 1.0) and high (f = 1.25) noise spectral
density. There are indicated by the symbols “#”, “*” and “1”, respectively. The respective
noncentrality -parameters are 85.33, 64 and 51.2. Fig. 4.3 is a computer printout of a single
run, and Fig. 4.4 is a portion of the printout of 100 successive runs. The notation is that of
Figs. 4.1 and 4.2, exceptbthat the probabilities and relative frequencies of detection are listed

separately for signals in each of the three types of noise regions. The agreement is satisfactory.
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AD HOC TEST
SPECTKRAL DENSITY = 1.¢

SIMULATED ARRAY= 8 X 64 WUITH & REPS/RUN » ( 8 X 32 COMPLEX VARIATES)Y
INITe N: 1751 11922 1752 11922 P: 1753 11922 1754 11922

16 SIGNAL COMPONENTS: S/N=G.01566 (-18.85 DB)

LMoNsFI: FUMINI>F (0000151651283
RUN Ms N: F Ms» N: F Ms N2 F Ms N F Ms N F

*55 5 4434> *¥35 9 6e54> %3512 6.6T> %6514 4.94> *3,16 6.05>
*T7518 4¢54> %3519 575> %7522 638> %2523 5.62> %1,26 4.29
¥4,26 8BeT76> %5529 D5e41> %8529 654> %4532 6.72> %7532 S5.99>
*55 5 4.27 %3, 9 651> %65 9 Se24> %3512 S.58> %6514 575>
¥7518 620> %3519 4.63> %7522 427 %2523 7T.48> *1,26 5.63>
*¥4,26 S5.80> ¥85,29 S5.71> %7,32 T.84>

*¥55 5 8e94> ¥35 9 5.70> %3512 4.35> %6514 S.13> %3516 5.00>
¥7518 547> %3519 670> #7522 5.69> %2,23 4.38> %1326 4.92>
*4526 610> %5529 6.84> %4532 641>

*5, 5 5.56> %3, 9 482> k65 9 5.25> %3512 686> %6514 551>
*¥3516 626> %7518 5.58> #3519 4.16 %7522 4210 *%2,23 4.33>
1526 6490> %8529 S5.68> %4532 6+413> %7532 5.56>

%55 5 £e16> *3s 9 464> %65 9 4469> %6514 5.44> %3516 4.42>
*¥3519 5.23> %7522 5.65> %2523 5.08> %1526 5.30> %4,26 5.15>
*5529 TeT71> %8529 5.39> %7,32 4.86>

55 5 6.11> %35, 9 485> %6, 9 Se17> %3,12

DU UDNDADNWWWNNDN - -

*1s26 7.23>
98 *4,26 4.04 *5,29 4.85> *8,29 4.33> %4532 4.04 %7532 T.54>
99 %55 5 4e41> *35 9 5.27> %65 9 614> %3512 6.87> %6514 5.45>
99 %3516 382 %7518 6.78> #3519 4.23 *7,22 5.18> %2,23 5.13>
99 *1526 4.68> %4526 4e40> *55,29 6.85> %8529 5.18> %4532 5.53>
99 %7532 S.90>
1@ %5, S 5448> %35, 9 6.09> %3512 5.10> %7518 6.54> %3519 S.406>
168 *7,22 710> *2,23 6+64> %1526 4461> %*5:,29 4.56> %8529 5.95>
100 %4532 6.62>

PROB. FALSE ALARM (TYPE 1 ERROR) 24000 SAMPLES (11280 ISOLATED)
ALPHA:  +40 <30 <208 <10 <05 .01 Q610 .00010 .000010 .0000010

ISOeFA: @+40 0«30 G20 D10 F.05 0.01 0.0003 0.00000 0.000000 0.0000000
TOTFA: .23 016 0.10 0.05 G.02 0.00 0.0001 0.00000 G.005600 0.00000080

PROB. DETECTION (POWER OF TEST) 1606 SAMPLES
PR(D): 100 1+00 100 1.00 1.20 1.0 B99 B.95 D85S B.71
FR(DY: 100 1¢080 100 1.00 1.66 1.00 399 B.93 B84 g.72

Fig. 4.2—Simulation of Ad Hoc Test: Summary of 100 Runs, White Noise
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SPECTRAL DENSITY

SIMULATED ARRAY=

INIT. N: 12559 13834
6 SIGNAL COMPONENTS:
N\M 1 2
1 1.79 Q74
2 Z.81 Peb61
3 1.13 Be94
4 Beb4 B 40
S5 1.25 Z.92
6 1+16 B85
7 1.88 Pe78
g 1.39 Be62
9 G.90 0.88

10 B.99 289

11 150 1.59

i2 @45 @55

13 1.86 134

14 Be62 134

15 Be97 Beb66

16 1«21 Be 45

17 @eb69 B4l

18 1.29 2.12

19 070 145

2¢ 1.07 O« 43

21 130 1.26

22 G771 D88

23 1.68 BeT74

24 1.69 @.60

25 B.78 @83

26 D72 1.21

27 D69 1.36

28 @89 1.13

29 D60 @79

30 1.85 Q.42

31 1.02 1.00

32 De94 Do 48

PROB. FALSE ALARM

AL PHA: .40 « 30 20
iISO.FA:

TOT.FA:

PROB. DETECTION
PR(D#): 1.00 1.080 100
FR(D#): 180 1.00 1.80
PR(D*): 100 100 1.00
FR(D*): 1.00 1.0€ 1.060
PR(Dt)Y: 1.00 1.00 1.00
FR(Dt): 1.00 1.00 1.60

D. A. SWICK

AD HOC TEST

12559 13034

S/N=@.081566

FCMaN)

3 4
Be87 B+ 69
0-95 1.45
115 1.34
1.24 Bel6
1«44 @46
1.69 Oe47
1.47 1.65
@.85 8075
1.83 Ge.74
1.04 Be67
1.16 1.74
@48 B.90
g.72 150
g.62 1.98
@.89 0«52
S5.21#> @61
Be56 Ce 47
Be64 1.19
2.61 D77
ABe92 140
B.99 1.90
1.14 1.01
C.81 Fe71
3.63¢ 1.25
Ge.92 P96
Be95 B.61
.73 Je96
1.40 B.75
1.80 BeT7
1.09 B 68
1.1 P81
0.98 B.96

(TYPE I ERROR)

«10 85 .01

Ped2 P31 B+19 B.09 @05 0.00
De34 U225 Bel6 008 B.04 .00

(POWER OF TEST)

1.00
1.00

8 X 64 WITH 8 REPS/RUN »

P:

00

F(Ks¥W)=1+25%COSCK+PI/4)%C0OS(2W)

¢ 8 X 32 COMPLEX VARIATES)

12561

(-18.65 DB)

5

@.60
2«82
De97
0.32
6e76%k>
@55
l‘. 45
BV. 54
2.03
1.28
0063
Be«37
Be51
1.10
1.10@
156
Be.59
6079
1.28
1.30
BeT15
.82
Z.83
G884
B«95
1.22
1.23
@.92
.72
1.13
1.22
159

13034 1

6

@ed43
145
1.16
@+59
Bed4
g‘!33
1‘.45
B+96
G«33
@.58
g.77
6.03%>
@65
.89
1.26
BeT7
Be77
1.46
1.80
@e40
1.53
P66
Be78
D.99
Be43
1.12
1.06
Be.72
@69
171
@« 48
Be63

2561 1392

7

0.. 54
1e17
1.22
1.25
1.47
P93
BeT74
1.24
2.85
1.30
De65
BeT77
@e52
1.06
1.95
Be99
1.11
1.12
2.93
Ge62
1.08
1.17
Be69
Lo TTH#>
Be61
1.00
@.92
195
@« 45
P96
Beb67
S5.301t>

34

8

B 49
150
1.00
.92
1.18
B.69
B86
B+93
1.02
1.29
BeT1
Be46
1.11
1.64
D79
@d.76
154
P80
@59
1.24
1.00
Be93
D40
D85
Q.50
@.87
1.34
B.83
Be97
1.30
De94
Be 66

250 SAMPLES (

18 00010 .00

262 ISOLATED)

P210 0060810

D.0000 0.00000 0.000000 0.0000000
2.0000 P.00000 0.00000C 0.0000000

2 SAMPLES EA
1.00 0.98
1.00 1.60
Be95 B85
1.00 1.00
G.82 Beb64
@.50 @50

CH

Fig. 4.3—Simulation of Ad Hoc Test: Results of One Run, Nonwhite Noise
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AD HOC TEST
F(KsW)=1+25%COSCK+PI/ 4)*COS(2¥)

SPECTRAL DENSITY =

SIMULATED ARRAY=

INIT.

Ne

4259

8 X 64 WITH 8 REPS/RUN »

13973

6 SIGNAL COMPONENTS:

[(MsNsF):2

RUN Ms N2 F M> N
1 *5, 5 782> #6512
2 %55 5  4.87> %6512
2 17532 3.97
3 *5, 5 4e97> %6512
3 +7,32 4e.14
4 %55 5 388 %6512
4 175,32 4.60>
S %55, 5 Be42> %6512
6 #3516 4495> #7524
7 *55 5 5.95> %6512
8 %55 S5 4.17 %6512
9 %6512 4.00 #3216
10 %5, 5 524> %6512
10 17532 4.98>
94 %6512 5.96> #3516
95 %55 5 6.29> %6512
96 *6512 4404 #3516
97 %6512 4.76> #3516
98 %55 5 Tel14> %6512
98 t75,32 593>
99 %55, 5 632> %6,12
1028 %55, 5 4.13 %6512
PROB. FALSE ALARM
ALPHA: .« 40 « 30 «20
IS0.FA:
TOT.FA:

PROB« DETECTION
PR(D#): 1.00 1.00 1.50¢
FRC(D#): 1.00 1.00 1.0¢
PR(DX%x): 100 1.00 1.006
FR(D*): 1.00 1.00 1.00
PR(Dt): 1.80 1.08C 1.00
FR(Dt): 1.00C 1.00 1.93

4259

S/N=0.01566

: F

5.86>

4.26
680>
4429
4437>
663>
4+ 9@ >

5.59>
5.58>
S.25>
596>
436>
4491>

605>
Se 68>

(TYPE I ERROR)

«10

1.90
1.60

1.00
1.00

<35
D40 @30 0«20 B+10 Q05 G.01
Be34 @25 Be17 Co08 G-04 Q.01

1.00
1.9¢

13973

#3516
#3516

#3516

#3516

#3216
t7,32
13,24
#3216
13,24
#3516

#7224
13524
#3216
13524
135,24
#3516

#3516
#3516

«A1

(POWER OF TEST)

1.00 1.060
1.02 1.00

pP:

710>
489>

4e 48>

627>

492>
569>
393

579>
8.20>
549>

5.93>
4e35>
40 60>
5.85>
S5.29>
402

605>
412

( 8 X 32 COMPLEX VARIATES)

4261

(-18.05 DB)

F(MaNI>F(«0080013165128)1

#7524
t3:24

13,24
13,24
t3s,24

#7224
t3,24
#T7s24
13,24

#7224
#7524
#Ts24
#Ts24
13,24

13524
17,32

13973

563>
397

4 63>

S.22>

4.78>

726>
5¢96>
5.75>
4041>

8s19>
4¢55>
784>
6+ 45>
681>

S«63>
531>

4262

#1224

#7s24

#1524

#7524

#7s24

#7524

17,32
t7,32
t7532
t7532
#7524

#7s24

13973

439>

Te75>

8+36>

6.08>

4.98>

S.26>

4eg 4>
4e02
S«19>
3.90
5.61>

S5.82>

25000 SAMPLES (20260 ISOLATED)

@01

G 00010
C.0009 B.00010

<00

@010

«PO00010

0.00020¢ @.0000000

G.00G8 Q.00008 2.000000 0.0800000

200 SAMPLES EACH

Fig. 4.4—Simulation of Ad Hoc Test: Summary of 100 Runs, Nonwhite Noise
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5. ANALYSIS OF VARIANCE AND METHODS OF MULTIPLE COMPARISON
The model represented by (3.1),

yr(x,t) = s(x,t) + ne(x,t) , (5.1

x=0,1,...,.M-1;t=0,1,...,N—1;r=1, ... R, is a special case of a two-dimensional

extension of a general linear model considered by Shumway [36]

J oo oo
yrwt) =)0 >0 " Kpjlx—u, t —0)Bi(wv) + np(xt) (5.2)

Here {X,j(x,t), r=1,..,R, j=1,..., J} is an R X J matrix function of fixed space and
time invariant observables and {ﬁj(x,t), i=1,... J} is a J X 1 vector of regression functions.

In the present application, the regression functions are the signals (3.9)
sj(x,t) = Aj cos (Kjx + wjt—¢;) . (5.3)

As in previous chapters, the error series n,(x,t) is assumed to be a realization of a two-dimen-
sional zero mean wide-sense stationary noise process.

The transformed observations are given by (3.12):
Y (m,n) = B(m,n) + €:(m,n) (5.4)

when (m,n) € @, where B(m,n) = \/ﬁﬁAje'i¢j/2 when m = kj and n = fj for some
j€{1,...,J}, and is zero otherwise. Since the variance of .(m,n) is f(Km,wn) + O(M-1) +
O(N-1) as has been shown in Chapter 2, if f(k,,,wy,) is constant (“white noise”) and if the
signals are common to all R realizations, then the assumptions underlying the analysis of
variance (Scheffé [33], p. 55, p. 106) are asymptotically satisfied by the real and imaginary
parts of (5.4).
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5.1 The One-Way Layout, Common Signal Case

As in previous chapters, we consider the transformed array relabeled to yield M'N’ asymp-
totically independent complex variables, and again drop the primes. Consider first the case
$=0,j=1,...,J,and forr=1,.. ., R, let

Ur = (YT(R(]-’]-)a LS ] Yrﬁ(]"N)’ Yrﬁ(z’l)’ RS ] Yrﬁ(zyN)’ e ey Yr(R(le)a LS ] Yr(R(jw,lV)),, (55)

B =(B(1,1),...,B(1,N),B(2,1),...,B(2N),...,BM]),...,BMN)), (5.6)

and

er = (Er(ﬂ(lal)’ MRS ] Erﬁ(l,N), erﬁ(zal)’ RS ] erﬁ(er)’ MRS ] ET(R(M71)’ M ] eT(R.(M7N)),' (5'7)

Then for each r the M X N matrix of observations {Y,(R(m,n), m=1,... .M, n=1, ... N}
has been “‘strung out” into a MN X 1 (column) vector U,. Letting U’ = (U1, ..., Ug) and
e =(el,..., er) we have

U=Xg+e,

with X given below.
The problem is now in the form considered by Scheffe [33], Chapter 3, with the MN X
MNR matrix

00:---000---0 11---1

of rank MN, so that all parametric functions are estimable (Scheffe [33], p. 56). The test
statistic

SSy
- _ (MN-T)
¥ S8, , 4 (5.8)

MN(R —1)

dITITSSVIIND
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has the central F distribution with MN — 1 and MN(R — 1) degrees of freedom under the null
hypothesis, where

M N

R Z Z [Y.q(m,n) — Ygl2 ,

m=1 n=1

SSy

and

M N R
8Se = > D ) [Yr@lmn) = Y.g(mn)]? .

3
]
e
S
L}
[y
~
-

Here the dot replacing a subscript has the usual meaning of average. Let

1 M N
B..= i Z ZB(m,n)
m=1 n=1

Under the alternate hypothesis, § has the noncentral F distribution with noncentrality param-
eter 6 given by

M N
02862 = R Z Z [B(m,n) — B..12 ,

m=1 n=1
where 02 = f(Kp,w,)/2. As in (3.9), we consider J signal components. Let

J

B(m,n) = B)  Smi;dnf; , (5.9)
j=1

where k; and f; are the coordinates of the signal components. Then
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M N J
B BJ
B = N 2 2 mk;dnsy = MN °
m=1 n=1 j=1

so that

M N J BJ
0262 =R )’ 2 BZ Smijnf; = v

RIBZ(MN —J) 21%1\’ — (5.10)
Computer simulation has met with excellent agreement and some results will be shown
later. Since the theory is well established (cf. Scheffe [33], ibid.) this simulation serves
merely as a check of the simulation procedure itself and the F-distribution calculations. The
only unusual features are the degrees of freedom. As in previous chapters, an 8 X 32 array
with 8 observations per cell was used. This results in MN — 1 = 255 and MN(R — 1) = 1792
degrees of freedom. To calculate the upper alpha points, Fy, vy was approximated by

1
= GInFyypg ~ N(pi,pe) , (6.11)

N
|

1

(7t + v3')/2. (cf. Kendall and Stuart [21], p. 379). The

noncentral F;’1,V2;5 was approximated by

where u = (1)51 - VII )/2 and g

F ~ a0 Fy . . (5.12)

V1,09;6 Vi,V2
where ¢y = vy + 82 and ¢29] = vy + 282 (Scheffé [33], p. 414).

5.2 Robustness of the F-Test
With the same considerations as in section 3.4, we have from (3.21) for signals with un-

known epochs
Yr(m,n) = Sr(m,n) + er(m,n) (5'13)

when (m,n) € @, where S,.(m,n) = B(m,n)eiﬁf(m’") as in (4.3). Let
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Ur(m,n) = |Yr(m,n)I? , (56.14)
and let
1 2
Zy(m,n) = - Ur(m,n)dB,
0
1 2
- & [ Usimniz + 288, 0mm)elonn) + lertmni2} d,
0
= [B(m,n)I2 + le(m,n)|2 , (5.15)

with the dependence on f, vanishing as in section 4.1.
Let u(m,n) = [B(m,n)|2 (which is zero unless m = kj and n = f; for some j € {1, .. .,J})
and let

vr(m,n) = le(m,n)|2 (5.16)
Then (5.15) becomes
Zy(m,n) = u(m,n) + vr(m,n) , (6.17)

which has the same form as (5.4). Now, however, 2v.(m,n)/f(Km ,wpy) is asymptotically distrib-
uted as a chi-square variable with two degrees of freedom, by Theorem 2.2. |

There have been many investigations of the effect of non-normality on the type I error
of the F-test, and some on the effect on the power of the test. See Scheffé [33], Chapter
10, Srivastava [39], Donaldson [7], and the recent paper by Tiku [40] and the references
contained therein. In the present case, robustness of thé test to type I errors is illustrated in
Fig. 5.1 which shows both sides of the empirical distributions resulting from 1000 replications
of a simulation of (5.4) (normal population) and (5.17) (chi-square population) under the null
hypothesis. Each replication simulated an 8 X 32 array with 8 observations per cell. A chi-
square.test and a Kolmogorov-Smirnov test of these empirical distributions both show that
neither of them differs significantly from the central F distribution with 255 and 1792 degrees
of freedom. The computed chi-square values with 19 degrees of freedom are indicated by
“X 1 2(19)7 +/1000 times the computed Kolmogorov-Smirnov values are indicated by
“K—S X 31.62.”
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ONE-WAY ANALYSIS OF VARIANGE
SPECTRAL DENSITY=2.9

255, 1792 DF PN INIT.= 303.4300 1800 RUNS

N(B»1) POPULATION» H@G TRUE

AVe Yeoe= Q21660 > AVe. MSE= 1.002129

ALPHA: BeS0 B+42 030 Q.20 G100 @05 025 @.01 <G
NOe«>F: « 50 «39 «31 20 « 10 «35 22 «Q1 3.
NG« <F: « 49 « 39 29 20 «11 6 «@3 Q1 « G0

Xt12(19)= 214600 K-S X 31.62= « 47

CHI-SQUARE (2> POPULATION, HB TRUE

AVe Yeoe= 2001504 » AVe MSE= 3995411

ALPHA: DedDB BedB 030 G20 0l @85 025 @@l <321
NOe>F -« 5@ . 40) «31 20 « 29 D5 02 «21 0@
NOe<F2 « 50 «38& 29 19 o11 « @5 A2 1 1%

X12(19)= 21.G800 K-S X 31.62= «54

Fig. 5.1—Empirical Distribution of the Test Statistic with Normal and
Chi-square Populations
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Monte Carlo methods were also employed to determine the power of the test of the
model represented by (5.17). Again, an 8 X 82 array with 8 observations per cell was simu-
lated, with 100 replications per point. One signal component was included, and its signal to
noise ratio (3.13) was varied. Some results are shown in Fig. 5.2, where power is plotted as a
function of signal to noise ratio, S/N. The solid curves are computed for the normal distribu-
tion using (5.12). The + sign indicates simulation of (5.4) with a normal population, while the
w--x---x curve is the result of simulation of (5.17), with v,(m,n) distributed as f(km,wn)/2
times a chi-square variable with two degrees of freedom, with f(km,wy,) = 1. These results
imply that as the level of the test is decreased, the power of the test with a chi-square popu-
lation does not decrease as rapidly as that with a normal population. At very low test levels
the power of the test using (5.17) is greater than that using (5.4) at all signal to noise ratios.

The integration indicated in (5.15) disposes of the cross-product term and the dependence
onr=1,... R. Since such integration cannot be carried out /in practice, the test was also

- simulated for U,(m,n), given by (5.14). The results, indicated by___o___o in Fig. 5.2, gen-
erally fall between the other two curves. The cross-product term, with its dependence on r,
acts as additional noise and decreases the power slightly when the signal to noise ratio is high.
For very weak signals and low test levels, the power may be increased slightly.

As a check on the computation, a case similar to those studied by Donaldson [7] was
considered. Donaldson used Monte Carlo techniques to compute the power of the F-test with
normal, exponential, and lognormal populations. All of his distributions had a mean of 10
and a variance of 100 under the null hypothesis. Since this is not possible with N(0,f/2) and
(f/Z)Xg populations, I can only qualitatively match his results under the conditions of this
section. One thousand replications of a simulated 2 X 2 array with 4 observations per cell
were taken for each point, with f(km,wn) = 200. The resulting curves, shown in Fig. 5.3a

are similar to the curves of Donaldson’s Fig. 2. Here power is plotted against ¢, where

I .
_ (1 — w2 ("
¢ =|R Z{ —J_—Iog (5.18)
]=

is used by Donaldson to indicate the degree of inequality between means. In(5.18), [=MN, u is
the grand mean of all cell populations, y; is the mean of the jth population and 03 is the popula-
tion variance, estimated by SS./[I(R —1)]. The difference between Fig. 5.3a and Donaldson’s
Fig. 2 can be attributed to the differences in these parameters. The same data are plotted in
Fig. 5.3b as a function of signal to noise ratio in decibels, rather than the empirical parameter
¢. The relative positions of the two curves in the region of strong signals is reversed, with the

resemblance to Fig. 5.2 obvious.




UNCLASSIEFIED

75

NRL REPORT 7466

-10 dB

-20

1.0~
8
6
4
2
0
-30

-10 dB

S/N

S/N

R:
1=256
0=10"%

-

1.0 -

qamMod

-30 -10 dB
S/N

-10 dB

-30

R

A — X

2

N(0,1)

Fig. 5.2—Power Curves




D. A. SWICK

76

JIMod

1.0__
8
6
4

dB

S/N

2, R=4

=N

Fig. 5.3—Power Curves for the case M




NRL REPORT 7466 77

Non-constant spectral density (‘“‘nonwhite noise”’) means unequal cell variances. Scheffé
[33], p. 343 shows that the type I errors will be increased. Moderate robustness to unequal
variances with normal populations is indicated by Figs. 5.4 and 5.5. As in Fig. 5.1, these fig-
ures show the empirical distributions resulting from 1000 replications of a simulation of an
8 X 32 array with 8 observations per cell of (5.4)(normal population) and of (5.17) (chi-
square population) under the null hypothesis. In Fig. 5.4, f(k,w) =1 + .025 cos (x + 7w/4)
cos (2w). Both the chi-square and Kolmogorov-Smirnov tests indicate that neither of the em-
pirical distributions differs significantly from the central F distribution with 255 and 1792
degrees of freedom. In Fig. 5.5, f(k,w) =1 + .1 cos (k + m/4) cos (2w). Here the empirical
distribution with a normal population remains indistinguishable from the central F distribution.
Both the chi-square and the Kolmogorov-Smirnov tests show, however, that the differences
between the empirical distribution from a chi-square population with unequal variances and
the central F distribution are highly significant. The differences appear to be mainly at large
values of alpha. Further simulation, not shown, indicates that the test with normal popula-
tions is insensitive to unequal variances at least to the extent caused by the spectral density

given by (3.15) and used again in Chapter 4, namely f(k,w) =1 + .25 cos (k + 7/4) cos (2w).

5.3 Multiple Comparisons

As with any application of analysis of variance, rejection of the null hypothesis can be
followed by tests of multiple comparisons to determine the statistical significance of the sources
of variation revealed by the data. See Scheffé [34,33], p. 68, Gabriel [10], and their refer-
ences. Specifically, determination of the subgroup of cells in the wavenumber-frequency 'space
contributing to rejection of the null hypothesis is equivalent to detection of the corresponding

signal components. We consider estimable functions of cell means

M-1 N-1 .
¥ = >3 c(mn)B(mn) (5.19)
m=0 n=0
and, in particular, contrasts, where
M-1 N-1
Z Z c(mn) = 0 . (5.20)
m=0 n=0

The function ¥ is estimated by
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ONE-WAY ANALYSIS OF VARIANCE
SPECTRAL DENSITY=1.00L1+.025 COS(K+PI/4) COS(2W)1]

255, 1792 DF PN INITe.= 324.5172 1000 RUNS

N(@s1)> POPULATION», H@ TRUE

AVe Yeoeo= Qo221 » AV. MSE= « 499630

Al.FPHA: PeS50 (edl@ (30 P20 (@Gel@ B35 025 .01 21 E-4
NQ.>F3 « S50 o 41 « 31 21 « 10 «@5 « 03 o1 B0 Qe
NQOe<F2 «50 « 41 « 30 «23 « 10 @b «@3 21 Do Do

X+2019)= 21.2000 K-S X 31.62= «85

CHI-SQUARE (2) POPULATION, H@ TRUE

AVe Yeoo= 1.000689 s AV. NMSE= 1.001621

ALPHA: PS50 Vedll B30 @20 Gel@ BB5 25 0.01 301 E-4
NOe«>F2 «53 « 43 «34 22 «11 «@5 2 «31 18105} Ge
NQO.<F¢ o 47 «39 29 «19 «10 « 35 @2 «@1 20 D

X12019)= 15.3200 K-S X 31.62= «92

Fig. 5.4—Empirical Distribution of the Test Statistic with Normal and Chi-square
Populations, Nonwhite Noise ’
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ONE-WAY ANALYSIS OF VARIANCE
SPECTRAL DENSITY=1.0001+.1 COS(K+PI/4) COS(2W)]

255, 1792 DF PN INITe.= 4038.5172 1066 RUNS

N(@Z>1) POPULATION, HO TRUE

AVe Yeoou= «BBOBS9 » AVe MSE= « 508965

ALPHA: (56 ©@+40 0«30 0.20 0.10 0.05 .025 @.01 001 E-4
NO«>F: 50 41 «32 «21 11 «@5 «B3 B2 ~00 Do
NQOe«<F: « 50 e 41 «31 «21 o111 D6 @3 <91 06 B

X12(19)= 87200 ' K-S X 31.62=  +32

CHI-SQUARE (2) POPULATION» H@ TRUE

AVe Yeooe= 1.001109 s AV. MSE= 1.0030852

ALPHA: @e50 @e¢40 Ge30 G20 0e1G G085 025 0.01 «001 E-4
NOe«>F's «59 e 49 « 37 24 14 07 «@3 21 <00 @
NOe«<F: « 41 « 30 .22 14 7 «?3 D1 3717 «00 Do

Xt2(19)= 59.8000 K-S X 31.62= 3.13

Fig. 5.5—Empirical Distribution of the Test Statistic with Normal and Chi-square
Populations, Nonwhite Noise
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N M-1 N-1
v = Z e(m,n)Y (m,n) (5.21)
m=0 n=0

in the case of signals common to all realizations, and by

M-1 N-1
¥ = Z e(m,n)U (m,n) (5.22)
m=0 n=0

when the signal epoch varies with realization, where U,(m,n) is given by (5.14). In the first

case, the variance of ¥ s given by

M-1 N-1

V = var (¥) - Z Z cZ(m,n) var [Y .(m,n)]

m=0 n=0

- IC _
= =, (5.28)

where

M-1 N-1

AC = Z Z cZ(m,n) ,

m=0 n=0

and is estimated by V =s2C/R, where s2 = MS, . Following Scheffé [33], we say that ¥ is signif-
icantly different from zero if and only if [¥|2 > §2V, where 82 = (MN —1)F . yN—1,MN (R—1)
Multiple comparisons were simulated along with the analysis of variance for both the
normal population (Y,.(m,n))and the chi-square population (U,(m,n)). The sum of all cell
means which exceeded a preset ‘‘threshold” was considered as an estimable function. Con-
trasts were formed between all cell means which exceeded (the same) preset threshold and all
other cell means. It was found possible with a signal to noise ratio of 0.015 (—18 dB) to set
the threshold so that it was exceeded by few if any means of cells in which the null hypothe-
sis was true. Some results will be shown in Table 6.1, where the power of various tests will
be compared. The power depends, of course, on the number of signal components as well as

the signal to noise ratio of each component. The power is very low for a single (—18 dB)
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signal component, but can be unity at test levels ddwn to a = 1076 if the number of signal
components is large.

For the normal population, little difference at all test levels was found between the power
of the test using this estimable function and that using this contrast. For the chi—square\ popu-
lation (treated as if it were normal) the test of this estimable function was more powerful at

all test levels than that of this contrast.

5.4 The Two-Way Layout

Since the models under consideration result in a two-dimensional array of data, it seems
natural to consider analysis of variance of a two-way layout. Here, however, a significant row
effect (‘““wavenumber effect””) or column effect (“frequency effect”) has a physically meaning- !
ful interpretation only under certain unusual circumstances. It may happen that the hypothe-
sis of no interactions is rejected, but the hypotheses of no main effects are accepted. In this
case we conclude that there must be_ differences in the main effects, but that the data are in-
sufficient to reveal these differences when the effect of the levels of one factor are averaged
over the levels of the other. (Scheffé [33], p. 94.) A significant interaction may be inter-
preted as detection of a two-dimensional plane wave with wavenumber and frequency com-
ponents corresponding to those responsible for the interaction. \

The power of the interaction test of the two-way layout has also been calculated and the
test simulated. Some results will be presented in Table 6.1, where they may be compared
with those of the one-way layout and wifh other tests. In general the one-Way layout produces
a slightly more powerful test both for the normal and the chi-square populations. In all of the
two-way layout results shown in the table there was not more than one signal component in
each row and in each column. With more than one component in a row or column, the power

of the interaction test decreases. Thus the one-way layout is clearly preferable.
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6. SUMMARY AND CONCLUSIONS

Several techniques for testing hypotheses concerning multidimensional stationary stochas-
tic processes have been developed. These were applied to the two-dimensional discrete finite
Fourier transforms of space-time series. The justification for this is the asymptotic normality
and independence of the transformed variables.

It was shown that the correlation between the real and imaginary parts of a transformed
M X N space-time series is 0(M~1)-0(N-1), and that the variance of each is equal to (1 [12)f(Kk,w) +
O(M~1) + O(N 1), where f(x,w) is the spectral density. The limiting joint distribution of a col-
lection of transformed variables was shown to be that of mutually independent normally dis-
tributed random variables. It follows that the joint distribution of a collection of periodo-
grams, defined as the squared modulus of the transformed variables, tends to that of mutually
independent chi-square variates.

In addition to transforming a multivariate problem in the space-time domain into a uni-
variate problem in the wavenumber-frequency domain, the discrete finite Fourier transform
also concentrates the information for discrimination between hypotheses for a class of processes
of considerable practical interest. "

When the space-time series under consideration consists of two-dimensional signal func-
tions imbedded in and common to all realizations of a stationary noise process, a likelihood
ratio test can be applied in the transformed domain. If the signal model includes an unknown

" epoch or phase which varies from realization to realization, no true replications are possible,
and the test must be modified. If one is willing to pay the price of increased computation and
increased errors of both kinds, the modified test has reasonable. power at acceptably low test
levels. However, an ad hoc test is at least as powerful at all tesf levels and is considerably more
powerful at very low levels.

The ad hoc test is based on the asymptotic distribution of averaged two-dimensional
periodograms. The test statistic is “Studentized” by use of data from neighboring cells to
eliminate the unknown spectral density. Thus it requires that the signal components be iso-
lated from each other in wavenumber and in frequency, a case which occurs sufficiently often
to be of interest.

Analysis of variance has been applied to the two-dimensional wavenumber-frequency variables,

both as a one-way layout and as a two-way layout. Since the row and column effects of the
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two-way layout have meaningful physical interpretations only under unusual circumstances,
the one-way layout seems a priori to be preferable. It is in fact at least slightly more powerful
than the test for interactions in the two-way layout in all cases considered, and clearly more
powerful when there are many signal components in a single row or column.

Unlike the ad hoc test which considers each cell separately, the power of the analysis of
variance test depends upon the relative number of signal components in the wavenumber-
frequency matrix. With more than two components, the power of the analysis of variance test
of the entire array exceeds that of the ad hoc test for each component. As with any applica-
tion of analysis of vériance, rejection of the null hypothesis can be followed by multiple com-
parisons to determine the source of the rejection. |

An estimable function consisting of the sum of all cell means which exceed a preset
“threshold” was found to produce a test slightly more powerful than that yielded by contrast-
ing all such cell means with all other cell means. With the test conditions used in the simula-
tion, it was found possible to set the threshold so that it was seldom exceeded by cell means
for which the null hypothesis was valid.

When signals have vai'ying epochs or phases, the two-dimensional periodogram is indepen-
dent of this unknown parameter. Analysis of variance and multiple comparisons have been ap-
plied to the periodogram in this case. The tests were found to be robust to errors of both
kinds with this non-normal (i.e., chi-square) population. ‘

Table 6.1 shows a comparison of the power of some of the tests considered. In it, all
simulated tests were of an 8 X 32 wavenumber-frequency array with 8 observations per cell.
This represents an approximately 8 X 64 array of space-time observations. All signal com-
ponents had a signal to noise ratio of 0.0156 or —18 dB, and the noise spectral density was
identically unity. There were 2300 samples in each simulation of the first two tests, 1600 in
the third, and 100 in each of the others. The same pseudo-random sequence was used to simu-
late tests 1-3, and the same sequence was used for corresponding items in tests 4-11.

The analysis of variance tests with normal populations were found to be reasonably robust
to non-constant spectral density (unequal cell variances). With chi-square populations, only a
very modest inequality in variances could be tolerated with acceptable type I errors.

For many signal components, each common to all realizations, the analysis of variance and
multiple comparison tests seem to be preferable. When the signal component epochs or phases
vary with realization the ad hoc test is better since it is more robust to non-constant spectral
density. It requires the signal components to be isolated from each other, however, while
analysis of variance does not.

Tests for the situation when these assumptions are not valid, in particular for non-station-

ary processes, remain for future work.
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GLOSSARY

Absolutely Continuous Function: A real-valued function f defined on [a,b] is absolutely con-

tinuous on [a,b] if, given € > 0, there is a § > 0 such that

) Ifah) —fa)l < e

i=1

for every finite collection {(x,-,x'i)} of nonoverlapping intervals with

n
Z lci —x;l < 8 .
i=1

Epoch: Phase relative to an origin. See phase.

First Mean Value Theorem for Integrals: If f(x) is continuous on [g,b}, then

b
f F@)dx = f(c)(b —a),

a

where a < ¢ < b.

Frequency: A measure of the rate of repetition of a periodic function, equal to the reciprocal

of the period.

Mean Value Theorem: 1If f(x) is continuous on [a,b] and differentiable on (a,b), then f(b) —

f(a) = (b — a)f'(c), for some ¢ between a and b.

Mean Value Theorem for a Function of Two Variables: If f(x,y) is continuous and has con-
tinuous first partial derivatives for x € [e,b] and y € [c,d], then there exists £ and 7
such that f(b,d) — f(a,c) = (b — a)fx(£n) + (d — c)fy(§,n) where fx and f, denote the
partial derivatives of f with respect to x and y respectively, and £ € (q,b), n € (¢,d).
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Noise: Error process, an undesired stochastic process.

Order Symbols 0, o, ~: f(x) = 0(g(x)) if f(x)/g(x) remains bounded as x tends to its limit. If
f(x)/g(x) tends to zero, then f(x) = o(g(x)), while if f(x)/g(x) tends to unity, then

flx) ~ g(x).

Phase: The angle kx + wt + ¢ in a plane wave s(x,t) = a cos (kx + wt + ¢). The epoch, ini-

tial phase, phase constant, or phase relative to an origin is ¢, often called simply the phase.

Plane Wave: A wave in which the disturbance is constant over all points of a plane perpendicu-

lar to the direction of propagation.

Second Mean Value Theorem for Integrals: If f(x) and g(x) are both integrable on (a,b) and
f(x) is always of the same sign, then

b

b
fx)g(x)dx = K f f(x)dx

~a

where inf g(x) < K < sup g(x).
Signal: A function of space and/or time potentially conveying information.
Wave: A disturbance propagating as a function of space and time.

Wavenumber: A measure of the rate of (spatial) repetition of a spatia.lly periodic function,

equal to the reciprocal of the wavelength.

White Noise: An error process with constant spectral density.

3TITSSYIIND




10.

11.

12.

13.

REFERENCES

Anderson, T.W., An Introduction to Multivariate Statistical Analysis, Wiley, New York,
1958.

Anderson, T.W., The Statistical Analysis of Time Series, Wiley, New Y_ork, 1971.

Blackman, R.B. and Tukey, J.W., The Measurement of Power Spectra, Dover, New York,
1958.

Box, G.E.P. and Muller, M.E., A Note on the Generation of Random Normal Deviates,
Ann. Math, Satist., 29, 610-11, 1958.

Chernoff, H., Large-Sample Theory: Parametric Case, Ann. Math. Statist., 27, 1-22, 1956.

Cramér, H. and Leadbetter, M.R., Stationary and Related Stochastic Processes, Wiley, New
York, 1967.

Donaldson, T.S., Robustness of the F-Test to Errors of Both Kinds and the Correlation
between the Numerator and Denominator of the F-Ratio, J. Amer. Statist. Assoc., 63,
660-76, 1968.

Doob, J.L., Stochastic Processes, Wiley, New York, 1953.

Fejér, L., Lebesguesche Konstanten und divergente Fourierreihen, J. reine angew. Math,
138, 22-53, 1910.

Gabriel, K.R., Simultaneous Test Procedures—Some Theory of Multiple Comparisons,
Ann. Math. Statist., 40, 224-50, 1969.

Goodman, N.R., Statistical Analysis Based on a Certain Multivariate Complex Gaussian
Distribution (An Introduction), Ann. Math. Statist., 34, 152-77, 1963.

Gradshteyn, 1.S. and Ryzhik, I.M., Table of Integrals, Series, and Products, Academic
Press, New York, 1965.

Grenander, U. and Rosenblatt, M., Statistical Analysis of Stationary Time Series, Wiley,
New York, 1957.

90




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

NRL REPORT 7466 91
Hannan, E. J., Time Series Analysis, Methuen, London, 1960.
Hannan, E.J., Multiple Time Series, Wiley, New York, 1970.

Helstrom, C.W., Statistical Theory of Signal Detection, 2nd Edition, Pergamon Press, Ox-
ford, 1968.

Hinich, M.J. and Shaman, P., Parameter Estimation for an R-Dimensional Plane Wave Ob-

served with Additive Independent Gaussian Errors, Ann. Math. Statist., 43, 153-69, 1972.

Hoch, P., Asymptotically Optimum Joint Estimation and Detection of Stochastic Signals
in Noise, unpublished D.Sc. Dissertation, The George Washington University, 1972.

Jenkins, G.M., General Considerations in the Analysis of Spectra, Technometrics, 3,

133-66, 1961.

Jenkins, G.M. and Watts, D.G., Spectral Analysis and its Applications, Holden-Day, San
Francisco, 1968.

Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics, Vol. 1, Griffin, London,
1963.

Kullback, S., Information Theory and Statistics, Dover, New York, 1968.

Kullback, S., Topics in Statistical Information Theory, unpublished typescript, The George
Washington University, 1971.

Liggett, W.S., Jr., On the Asymptotic Optimality of Spectral Analysis for Testing Hypo-
theses about Time Series, Ann. Math. Statist., 42, 1348-58, 1971.

Loéve, M., Probability Theory, Van Nostrand, New York, 1963.

Olshen, R.A., Asymptotic Properties of the Periodogram of a Discrete Stationary Process,
d. Appl. Prob., 4, 508-28, 1967.

Pagano, M., Some Asymptotic Properties of a Two-Dimensional Periodogram, Tech. Rept.

No. 146, Johns Hopkins U., 1970.

Parzen, E., Mathematical Considerations in the Estimation of Spectra, Technometrics, 3,

167-90, 1961.

Rayleigh, Baron (J.W. Strutt), On the Resultant of a Large Number of Vibrations of the
Same Pitch and of Arbitrary Phase, Phil. Mag., X, 73-78, 1880. Reprinted in Scientific
Papers, Vol. 1, 1869-1881, Cambridge, 1899.

Rosenblatt, M., Random Processes, Oxfdr_d, New York, 1962.

AITITSSYTIINN




92

31.

32.

33.

34.

35.

36.

317.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

D. A. SWICK

Royden, H.L., Real Analysis, Macmillan, New York, 1968.

Saikia, A., Asymptotic Methods for Estimating the Mean of N Stationary Time Series,
unpublished Ph.D. Dissertation, The George Washington University, 1971.

Scheffé, H., The Analysis of Variance, Wiley, New York, 1959.

Scheffe, H., Multiple Testing versus Multiple Estimation. Improper Confidence Sets.
Estimation of Directions and Ratios, Ann. Math. Statist., 41, 1-29, 1970.

Selin, I., Detection Theory, Princeton, N.J., 1965.

Shumway, R.H., Applied Regression and Analysis of Variance for Stationary Time Series,
J. Amer. Statist. Assoc., 65, 1527-46, 1970.

Shumway, R.H., On Detecting a Signal in N Stationarily Correlated Noise Series, Tech-
nometrics, 13, 499-519, 1971.

Shumway, R.H. and Saikia, A., An Empirical Bayes Approach to Stochastic Signal Esti-

mation, in press.

Srivastava, A.B.L., Effect of Non-Normality on the Power of the Analysis of Variance
Test, Biometrika, 46, 114-22, 1959.

Tiku, M.L., Power Function of the F-Test under Non-Normual Situations, J. Amer. Statist.
Assoc., 66, 913-16, 197t.

Tolstov, G.P., Fourier Series, Prentice-Hall, Englewood Cliffs, N.J., 1962.

Wahba, G., On the Distribution of Some Statistics Useful in the Analysis of Jointly Sta-
tionary Time Series, Ann. Math. Statist., 39, 1849-62, 1968. '

Wainstein, L.A. and Zubakov, V.D., Extraction of Signals from Noise, Prentice-Hall,
Englewood Cliffs, N.J., 1962.

Walker, A.M., Some Asymptotic Results for the Periodogram of a Stationary Time Series,
J. Austral. Math. Soc., 5, 107-28, 512, 1965.

Walker, A.M., On the estimation of a harmonic component in a time series with station-

ary independent residuals, Biometrika, 58, 21-36, 1971.

Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Macmillan, New York,
1944.

Wilks, S.S., Mathematical Statistics, Wiley, New York, 1962.




NRL REPORT 7466 93

48. Yaglom, A.M., An Introduction to the Theory of Stationary Random Functions, Prentice-
Hall, Englewood Cliffs, N.J., 1962.

49. Zygmund, A., Trigonometric Series, Vol. I, Cambridge, 1968.

AITITSSYTINN




Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate aulhor) 28, REPORT SECURITY CLASSIFICATION
Naval Research Laboratory Unclassified
Washington, D.C. 20390 2b, GROUP

3.

REPORT TITLE

SOME APPROACHES TO TESTING HYPOTHESES FOR MULTIDIMENSIONAL STATIONARY
STOCHASTIC PROCESSES

4.

DESCRIPTIVE NOTES (Type of report and inclusive dates)

Interim report on a continuing problem.

5.

AU THOR(S) (First name, middle initial, last name)

David A. Swick

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
October 2, 1972 104 19
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)

NRL Problem 81502-35

b. PROJECT NO. NRL Report 7466

<.

d.

Project RF 52-552-403-6079

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1n

. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217

13

. ABSTRACT

The discrete finite Fourier transform of a multidimensional stationary stochastic process transforms a
multivariate problem into an asymptotically univariate one. For a one- or two-dimensional process it is
shown that, under stated conditions, the correlation between the real and imaginary parts of the transformed
variables is

[
[y

oI,

and that the variance of each is equal to

1 n —
SHkw)+ 37 oI,
i=1

where f(k,w) is the spectral density, T is the number of observations in the jth dimension, and n = 1 or 2.
The limiting joint distribution of a collection of two-dimensional periodograms, defined as the squared
modulus of the transformed variables, is shown to be that of mutually independent chi-square variates. The
discrete finite Fourier transform also concentrates the information for discrimination between hypotheses
for a class of processes of interest.

Several techniques for testing hypotheses concerning multidimensional stationary stochastic processes
were developed. These were applied to the detection of two-dimensional plane-wave signals imbedded in a
collection of independent identically distributed noise processes. (Continued) —

DD °™.1473 (FAeE D

S/N 0101.807-6801 95 Security Classification

AITITSSYIOND




Security Classification 1

14. LINK A LINK B LINK C
KEY WORDS
ROLE wTY ROLE wT ROLE wWT
Discrete finite Fourier transform
Multidimensional stationary stochastic processes ]
Two-dimensional plane-wave signals ' e
Signal detection -

Hypothesis testing
Analysis of variance

When the signals are common to all realizations, a likelihood ratio test can be applied in the transformed
domain. If the signal model includes an unknown epoch or phase which varies from realization to realization,
no true replications are possible, and the test must be modified. The modified test has reasonable power at
acceptably low test levels. However an ad hoc test, based on the asymptotic distribution of averaged two-
dimensional periodograms, is shown to be more powerful than the likelihood ratio test under the conditions
considered. It requires, however, that the signal components be isolated from each other in wavenumber
and in frequency, since it utilizes data from neighboring cells to eliminate the unknown spectral density.

Analysis of variance and methods of multiple comparison have also been applied in the transformed
domain. With the model of signals with unknown phase differences, the analvsis is applied to the periodo-
grams. The test is found to be robust to the resulting non-normal (i.e., chi-square) population, at least
when the spectral density is constant. Non-constant spectral density results in unequal cell variances. In
this case, the test with a chi-square population is robust only to very moderate inequality of cell variances;
the test with a normal population is considerably more robust. When there are many signal components,
analysis of variance and multiple comparison tests are more powerful than the ad hoc test. The latter, which
considers each component independently, is less sensitive to non-constant spectral density.

The results of computer simulation of the various tests considered are presented, as is a table compar-
ing their power at test levels o, with 0.5 2 a = 1078,

DD %1473 (sacx)

(PAGE" 2) 96 Security Classification




