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Optimal Piecewise-Constant Control of Dynamic Systems
with Applications to Kalman Filtering

Jong-Sen Lee

Operations Research Branch
Mathematics and Information Sciences Division

Abstract: This report presents the theory and applications of a suboptimal control
algorithm for a general nonlinear control system. This suboptimal algorithm requires the
optimal control to be piecewise constant. Necessary conditions are derived for both discrete-
time and continuous-time systems. The application to Kalman filtering problems is specif-
ically carried out to illustrate the theoretical results.

INTRODUCTION

In the control of a dynamic system, the optimal controls, in general, are found to be time-varying
functions. Difficulties are frequently encountered implementating these time-varying controls, especially
in high-order systems. The reasons are twofold; first, the difficulty in storing the complete histories of
the values of these time-varying controls; second, the difficulty of synchronizing the time-varying control
with the real time (refer to [1] and [2]). Suboptimal algorithms were suggested to overcome these dif-
ficulties. Most of the known suboptimal algorithms are derived for a specific class of problems. Johansen
[3] gives a lower dimensional controller for the class of linear stochastic systems. Athans et al. [2] re,
strict the feedback gain of linear systems to be a linear combination of known time functions, and in
their other paper [41, they restrict the feedback gain of the linear system to be piecewise-constant. The
concept of piecewise-constant control seems more appealing than other suboptimal algorithms.

This report intends to extend the idea of optimal piecewise-constant control to nonlinear control sys-
tems. Both discrete-time and continuous-time systems are considered. Necessary conditions are derived
for each case. It is shown directly that the problems treated in [2] and [4] can be solved by applying
the necessary conditions derived in this report. Numerous applications are expected. The application to
the Kalman filtering problem is specifically treated in this report where the Kalman gain matrices are
restricted to be piecewise-constant.

Notation

Small letters x, y, .. . represent vectors. Capital letters A, B, . .. represent matrices. The transpose of
A is A T. The trace of A is Trace (A). The expected value of x is E[x] .

2. OPTIMAL PIECEWISE-CONSTANT CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS

Consider the following problem:

NOTE: The results of this report were announced at the Navy Research and Technology Conference on Optimization,
Statistics Information Processing and Simulation, Monterey, California, May 1970.

NRL Problem B01-10; Project RR 003-02-41-6152. This is a final report on one phase of the problem; work is contin-
uing on other phases. Manuscript submitted April 19, 1972.
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N-1
minimize = (xN) + E L(xi,ui),

i=O

xi+l = fi(xi,ui) ; X = C ,

subject to

for i = 0, 1, .. ., (N- 1), where xi is an n vector and us is an m-dimensional control vector to be
chosen to minimize J. Instead of optimizing J with respect to ui for i = 0, 1, ... , (N- 1), the u1 are
restricted to be piecewise-constant, i.e.,

ui = a for ki < i < k+ 1 , (3)

where ki, for j = 1, 2, . .. , J, divides the interval [0, N] into (J - 1) subintervals, and k1 < k2 < k3 ..
< kj, k1 = 0 and kj = N. In this section, the set k is predetermined. The problem is to choose the
set I ai/ = 1, 2, . .. , (J - 1)} to minimize J.

Necessary conditions and sufficient conditions are easily derived in the following by applying the
general technique of parameter optimization [51.

Adjoining Eq. (2) to with the Lagrange multiplier sequence Xi, Eq. (1) becomes

N-1

= (XN) + E [Li(xi, ui) + XI (fi(xi, Ui) - i+i)] -
i=O

(4)

For convenience, we use Eq. (3) and define the Hamiltonian sequence

Hi(xi, a1, Xi+1) = Li(xi, a1) + X 1fi(xi, a 1), k• i < k+ 1 .

For a differential change in a1, the differential change in is

(kj+l-1

i=kj

da;
aaj 

N-i/
+ E a- X' xdxi

i=1

Let

XT = aHi(xi, a, Xi+l)
ax,

and

(5)

(6)

(7)ki < i < k+1

XN = d (xN)
N axN (8)

(1)

(2)
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For dJ =0, we must have A

act= ° for j1,...,(J- 1), (9)

i=k

where

ki+ 1-1

i=k.

gives the gradient of J with respect to ac. Equations (2), (7), (8), and (9) are the necessary conditions.
It should be noted that Eq. (9) is replaced by aHilaui = 0 when the piecewise-constant constraint is not
imposed.

3. OPTIMAL PIECEWISE-CONSTANT CONTROL OF CONTINUOUS-TIME NONLINEAR SYSTEMS

Consider the following problem:

minimize = ¢(x(tf)) + f L(x(t), u(t)) dt, (10)

subject to

x =f(x,u), x(O) =x0 , (11)

where x is an n-dimensional state vector and u is an m-dimensional control vector. The final time tf is
fixed. The problem is to find an optimal piecewise-constant u(t). Let

u(t) a1, t t < tj+1 , for =1,2,..,J, (12)

where the set t divides the interval [0, tf) into (J - 1) subintervals and t < t2 < t3 ... < tj, t = 0
and tj = t. The set aj = 1, 2, . .. , (J - 1) and the set ti = 2, . . ., (J - 1) are to be chosen
to minimize j. The necessary conditions for this class of problems are obtained by the same technique
of Section 2. We define the Hamiltonian

H(x(t), aj,X(t)) = L(x(t), a) + X?(t)f(x(t), a), (13)

where t t < t+ 1 . Then the following necessary conditions are obtained (see the Appendix and
[6]).

XT= aH(x(t),al) x(t))..i
axT~tt) = a(¢ ), (14)

XT qtf) = x(tf) (15)
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ji+ ~~jt~dr = 0 (16)
ft aai(6

for j = 1, 2, ... ,(J-1), and

H(x(t1 ), aj, X(t1)) - H(x(tj), &jp1, (tj)) = 0 (17)

for j = 2, 3,..., (J - 1).
The left-hand sides of Eqs. (16) and (17) provide the gradient of J with respect to j and t respec-

tively. The proof of these necessary conditions is given in the Appendix. An alternative proof has been
given by Chang [7], using the generalized version of Pontryagin's maximum principle, for the class of
curve-fitting problems. Equation (17) is also derived by Jacobson [8] as a necessary condition to obtain
the optimal switch time in a bang-bang control problem.

Remarks:

1. The constraint of piecewise-constant control does not complicate the computing process for numer-
ical solution. Rather, it simplifies the process, since the dimensions of the optimization variables are
greatly reduced under the piecewise-constant assumption.

2. As has been mentioned, the necessary conditions for the suboptimal linear feedback system con-
sidered by Athans et al. [2,4] can be directly obtained by applying the necessary conditions (Eqs. (14)-
(16)) without complicated derivations. Furthermore, by using Eq. (17), it is possible to optimize
numerically the set tj/j = 2, ... , (J - 1)} by applying the gradient method.

4. APPLICATIONS TO LINEAR FILTERING PROBLEMS

Numerous applications of this suboptimal control algorithm can be found. As an example, however,
we consider the application to linear filtering problems (Kalman filter). One of the difficulties in imple-
menting Kalman filters is the computational complexity, specifically the process of updating the covari-
ance matrix for the purpose of calculating Kalman gain matrices. Hence, in this section, an algorithm
for computing a piecewise-constant gain matrix is developed, and a second-order numerical example is

presented.
Consider the well-known linear filtering problem:

plant

xi+ = ixi + Wi (18)

measurement

Zi = Mx + Vi, (19)

where the n-dimensional xi is the state to be estimated from the measurements (zo, zj, . . ., Zi), wi and
vi are white sequences with zero means and correlations Qi5ij and Ri5ij respectively, and the initial state
xo has mean Yo and covariance Po. Let i1 be the estimate of xi using z; for I = 1, .. , i. Then it is
reasonable to assume xi+j to be a linear combination of xi and zi+1, or

xi+i = Aixi + Bizi+l ; lo = - (

4

(20)
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The A i and Bi are to be optimally chosen to minimize the following performance index:

N-1
= E[(XN 5N)TDN(XN -XN)] + E [(xi- _i)TDi(x -i)] (21)

i=0

where Di, for i = 0, ... N, is a sequence of prescribed weighting matrices and is assumed to be positive
semidefinite. The presence of Di in Eq. (21) increases the generality of . For example, letting Di = 0
for i = 0, ... , (N - 1) would result in a problem of minimizing terminal variances.

It has been proved [61 that the optimal time-varying (Ai, Bi) would give a filter which is identical to
a Kalman filter [9] no matter what Di is used. In this report, for the purpose of illustration, only the
Bi will be restricted to be piecewise-constant, whereas the Ai are obtained by requiring that is be an
unbiased estimate of xi, which implies

Ai = 'i- BiMFi. (22)

Substituting Eq. (22) into Eq. (20) gives

Xi+ = 1ii + B(zi+l -MF.~1 , (23)

where B corresponds to the Kalman gain matrix.
Defining

Pi = E [(xi -i)(xi x)T] (24)

and using Eqs. (18), (19), and (23), we can easily obtain

Pi + = (I - BiMy)iPi T(I - BM) T

+(I-BiM)Q_(I-B1M)T + BRiBi7, (25)

where Po is given. Also, in Eq. (21) can be written as

N-1

= Trace DNPNI + 21 Trace IDiPi . (26)

i=O

We have now formulated the linear filtering problem as a member of the class of problems considered
in Section 2. Equations (25) and (26) are the concerned equations. We define the Hamiltonian

Hi = Trace D1P + Ai+1 (right-hand side of Eq. (25)) 1, (27)

where A, the Lagrange multiplier, is an n X n symmetric matrix. Using the matrix differentiation rule
and applying the results of Section 2, the necessary conditions for optimal piecewise-constant Bi can be
easily obtained as follows:

A = D + (I - jM)TDTAi+j i(I - jM); k < i < kj+l (28)
and

5

AN = DN; (29)
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the gradient is

21 {-2Ai(I - M + Q1)MT + 2AiPJRi} = 0,
i=k1

where for piecewise-constant Bi we have used Bi = aP for k1 < i < k1 +i . Jn general, a solution in closed

form is not available. Numerical solutions can be computed by applying the steepest-descent method [5]

or, for faster convergence, applying the conjugate-gradient method [10]. To illustrate the method de-
veloped in this section, we consider the following example.

Example. A second-order linear filtering problem is described by

[xi+] [1 0.641 j (31

i+ = 0.641 9.74 [

and

Zi = + Vi,

where

Q= [
0 0.004

R =2.0,

and

The linear filter is of the form

xl1 0.641 x' a1

641 974=+ (zi+1 + 0.641ci -9.74Di)

Yi+1 -0.641 9.74 Yi -big

ai and bi are the weighting coefficients. The performance index is taken to be the cumulative mean-
square error or

N

gj =ZZE{(xi-i)2 + (yi -~)2}-
i=l

6



NRL REPORT 7433 7 

co

The optimal piecewise-constant ai and b were computed by the steepest-descent method for 1, 2, 4,
and 8 subintervals. These solutions are shown in Figs. 1, 2, and 3 for N = 100. For comparison, the
optimal a and b, computed by Kalman's algorithm, are also included in these figures. It is seen that
the piecewise-constant a and bi are fairly close to the "average" value of optimal (Kalman) ai and bi.
The costs associated with these cases are listed in Table 1.

Table 1

Costs for Various Subintervals

Algorithm One Subinterval Two Subinterals Four Subintervals Eight Subintervals (Kalman)

8.6213 1 8.5363 1 8.5100 F 8.4814 1 8.256

0.008

0006

0004

0.002

0

0.008

T

0 25 50

0.03

0.02

ma'

0.01

0
75 loo

Fig. 1-Optimal piecewise-constant
Kalman gain matrices calculated for
one subinterval and two subintervals

0 25 50 75 100

Fig. 2-Optimal piecewise-constant
Kalman gain matrices calculated for
four subintervals

0.03

0.02

0.01

0
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25 50 75 l0o
i

I I II

Fig. 3-Optimal piecewise-constant Kalman gain matrices
calculated for eight subintervals

25 50 75 100

It is seen that if the gain is restricted to be constant over the whole interval, the cost is within 5% of
the optimal (Kalman) cost. If eight piecewise-constant gains are used, the cost improved to within 3%.

Further divisions would bring the cost even closer to the optimal cost but at the expense of implementa-
tion difficulties. Application of piecewise-constant control to the continuous-time filtering problem [11]
can be similarly formulated and solved by using the necessary conditions derived in Section 3. For fur-

ther information, refer to [12].

5. CONCLUSION

It has been shown that simple mathematical programming techniques can be used to derive the neces-
sary conditions for nonlinear systems with piecewise-constant control. Applications to the Kalman
filtering problem has been specifically considered where the Kalman gain matrices are taken to be
piecewise-constant. It is believed that this suboptimal algorithm should find numerous applications in

optimal control problems.
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Appendix

DERIVATION OF THE NECESSARY CONDITIONS OF THE
SECTION ON OPTIMAL PIECEWISE-CONSTANT CONTROL

OF CONTINUOUS-TIME SYSTEMS

This appendix is devoted to deriving the necessary conditions of Section 3. For clarity, we restate
the problem:

minimize = X(tf)) + L (x(t) , u(t)) dt, (Al)

subject to

= f(x,u), x(0) = x0 , (A2)

and

u(t)=a j for ti6t<ti+1, (A3)

where j = 1, 2, . J. J, t1 = 0 and tj = tf. We define the Hamiltonian

H(x(t), a1, X (t)) = L (x(t), aj) + XT(Of(x(t), ai) (A4)

for tj 6 t < tj+1. Then Eq. (Al) becomes

J-1 t+¢(x(0t) + E -i [H -rXT ] dr. (A5)
J=- ftit

We consider the differential change in J for a differential change in alj and tj}

J-2 J-1
d = ao x(t f) dx(tf) + 2 L(t+l)dt+l - 2 L(tt)dt

j=l j=2

+ 2 tl J a Sx + aH dai - XT&i dT (A6)
~L f + lax 3a I

where L(ti) = L(x(ti), a1 -1 ) and L(tJ+) = L(x(t 1 ), a,).
Integrating f XT6ix dT by parts and collecting terms gives

10
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r-J-2
d = ax(tf) dx(tf) + 2 [L(tj+1)dtj+i

j=1

J-1

-21 [L(tj+)dt - XT(t ) 8x(tj)]
j=2

+ + ax
i { f1 (O

+ T) }xd + { ti
=1 I~t

aH dr}dai

- [T6x t=tf + [T6x] t=0 (A7)

Since x(ti), the variation in x(tj), means "for tj held fixed," dx(tj), the differential in x(ti), can be
written (refer to Section 2.7 of [5] ) as

dx(ti) = x(ti) + x~tj)dtj

forj=2, ..., (J-1) or

5x(ty) = dx (tj) - x (tj) dtj. (A8)

Furthermore, since t(=O) and t(=tf) are fixed.

Sx(tf) = dx(tf); x(0) = dx(O).

Substituting Eq. (A8) into Eq. (A7) and using Eq. (A4), after manipulations Eq. (A7) becomes

J-1
dg= a - XT(tf) dx(tf) + {H(tT) - H(tj+)}dt

/ 1~=2

J-1

_21 {XT(tT) - T(t+)}dx(t.) + XT(o)Sx(o)
j=2

+ 21
i=1

FJy+I (aH 

aJj \ x
)Sxd} +

j=

(A9)1X aH d daj 
+ ctIa

So the necessary conditions are

xT _ H
TXI

XT(tf) = 3 '
ax Jf) 1

for j 2, ... ,(J -1) ,

- XTQi- 1 )5ix~.+i)]

I1I

I XT(q) = T(t,+) (A10)



12 JONG-SEN LEE

H(t)- H(t+) =0 for j 2, .. ,(J-1) (All)

and

aal =t a-H dT 0 for =2, ... , (J- 1)

Equations (AlO) and (All) mean that X(t) and H(t) are continuous at I t/j = 2, ., (J - )}.
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