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PULSE-RADAR RANGE-CALCULATION WORK SHEET

Based on Eq. (13)

1. Compute the system input noise temperature T,, following the outline in section A below.
2. Enter range factors known in other than decibel form in section B below, for reference,

3. Enter logarithmic and decibel values in section C below, positive values in the plus column and nega-
tive values in the minus column. For example, if ¥ (qpy 8s given by Figs. 4 through 9 is negative,
then -V, 4p, is positive and goes in the plus column. For Cz, see Fips. 1 through 3. For definitions
of the range’factors, see Eq. (13).

153

L Radar antenna height: » = ft. Target elevation angle: ¢ = °. (See Fig. 13.) —|
A, Computation of T,: B. Range Factors C. Decibel Values | Plus {+) | Minus (-)
T, = Ta + Tr + L. T, Pt(kW) 10 log Pt(kW)
fhise 10 log o R .
(a) Compute T,. S pERE
G, Gy (ap) .
For T,y = T;, = 290 and e G, camy
r r *
T, = 36 use Eq. (37a). Pp— 10 log o -
Read T; from Fig. 11. Funs <20 Tog fym, ;
Locapy L,: . ('K -10 log Ts R
T, = (0.876 T} - 254)/L, + 200 Vo ~Vo cam) .
T, = K Cs ~Ch(4p) v
L ~Lecapy /
{b) Compute T, using Eq. (40). Ly, -Ly(dB) A,
For T,. = 200 use Table 1. Ly ~Lx¢dB) 7
L . T = K Range-equation constant (40 log 1.292) 4,45
r(dB)* r -
e 4. Obtain the column totals N
(¢) Compute T, using Eq. (41) 5. Enter the smaller total below the larger » .
or using Table 1, 6. Subtract to obtain the net decibels (dB)—»| +
F . T s °K 7. In Table 2 find the range ratio corresponding to
n (dB)* et —— this net decibel (dB) value, taking its sign (z} into
L. LT, = °K account. Multiply this ratic by 100. This is R,—
8. Multiply R, by the patiern-propagation factor
Add. T, = °K F = {see Eqgs. (42) through {65) and

Figs. 12 through 19):

RyxF=R' -

9. On the appropriate curve of Figs. 21 and 22 determine the atmospheric-absorption
loss factor, L, 4p,, corresponding to ®'. This is Lycarycny- I

10. Find the range factor 5, corresponding to ~Lycasy¢1y from the formula
§ = antilog (-Lg 4p4/40) or by using Table 2. F

11, Multiply ¥' by 5,. This is a first approximation of the range R,.

12. If R, differs appreciably from R', on the appropriate curve of Figs. 21 and 22, find
the new value of L, 5, corresponding to ®,. This is Lycamycay- -

13. Find the range~-increase factor (Table 2) corresponding to the difference between
LC‘(“‘B)(I) and Lo:(dB)(g)- This is 5,. -

14. Multiply R, by 5,. This is the radar range in nautical miles, E.

Note: If the difference between Locapyoyy and Ly any¢2; is less than 0.1 dB, £, may be taken as the final
range.value, and steps 12 through 14 may i)e omitted. If Ly 4py.q, iS less than 0.1 dB, R° may be
taken as the final range value, and steps @ through 14 may be omﬂ:ted (For radar frequencies up
to 10,000 megahertz, correction of the atmospheric attenuation beyond the Lycgpy(ay value would
amount to less than 0.1 dB.)
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PREFACE

The first edition of this report was published in 1962 as NRL Re-
port 5868, (Inturn, Report 5868 was preceded by NRL Memorandum
Report 1106, dated 1960, and it in turn was preceded by a number of
informal documents.) It was reprinted in 1963 with a few minor cor-
rections and revisions. Part 2 was begun at that time, but it was never
finished because of the pressure of other work. Part 1 has now been
rewritten to incorporate new material and bring it up to date, Much of
the new material is the result of applying the digital computer and ma-
chine plotting to radar detection problems.

Thiz revision of Part 1 has taken precedence over completion of
Part 2, and some of the material originally intended for Part 2 has now
been incorporated into Part 1. Work on Part 2 continues.*

The principal revisions in the second edition of Part 1 are: addi-
tion of signal-to-noise-ratio curves for various probabilities of detec-
tion and for fluctuating as well as steady signals, discussion of the
problem of curved-earth reflection-interference, extension of the
antenna-noise-temperature curve to 100 GHz, change of the reference
point for system-noise-temperature computation to the antenna output
terminals (to conform to the new IEEE standard definifion of anienna
noise temperature), discussion of detection of targets in clutter, and
updating of the material on reflection from a rough sea {(citing experi~
mental and theoretical material not previously included, although it had
been previously published). Numerous minor revisions have been made
which are intended to clarify discussions without changing their tech-
nical content,

*As this report goes to press, Part 2 has been completed and has been assigned
NRL Report No, 7010.
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ABSTRACT

This report extensively revises NRL Report 5868 of the same title
and introduces updated material on many of the topics and extended
treatment of others. The basic equation for pulse-radar maximum-~
range calculation is presented in a form convenient for numerical com-
putation. Charts, graphs, tables, and auxiliary equations are presented
for evaluation of the various factors in the range equation. Inciluded
are graphs for the required signal-to~-noise ratio as a function of prob-
ability of detection, false-alarm probability, and number of pulses in-
tegrated, for both nonfluctuating and fluctuating (Swerling Cases 1 and
3) echoes. Also treated are the effects of receiver bandwidth, antenna
and receiver noise, sea-reflection interference, refraction and absorp-
tion by the atmosphere, and various system losses. Standard defini-
tions of range-egquation gquantities are given. The effects of jamming
and clufter echoes are treated briefly, as are also cumulative proba-
bility of detection and accuracy of radar range prediction. Asystematic
procedure for range calculation, employing a work sheet, is presented.

PROBLEM STATUS

Thig is an interim report on the problem; work is continuing.

AUTHORIZATION

NRL Problem R02-55,101
Project RF 05-151-402-4011

Manuscript submitted May 8, 1869,
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A GUIDE TO BASIC PULSE-RADAR MAXIMUM-RANGE CALCULATION

PART 1 —EQUATIONS, DEFINITIONS, AND AIDS TO CALCULATION

1, INTRODUCTION

This report presents the basic information required for calculating the maximum
range of a conventional pulse radar. It is presented without detailed explanation or
proofs, but references to sources of some of the information are given, Part 2 will con-
tain more detailed information on some subjects that are less basic than those treated
here in Part 1 and will contain derivations of some of the results presented here,

Although the basic physics governing the prediction of radar range has been well
known since the earliest days of radar, the problems of evaluating some of the factors in
the radar range equation are still not completely solved for all circumstances. Some of
these problems pertain to the vagaries of electromagnetic wave propagation in the earth's
atmosphere, and others are related {o the statistical or probabilistic nature of the radar
signal detection process, arising partly from the nature of the noise from various
sources which competes with signals. There are also problems of definition of terms.

In this report these and other problems will be considered, and a method of predict-
ing radar range in certain standard sitwations will be given. Insofar as possible, infor-
mation will be given on how to extend this method to nonstandard situations.

The report applies primarily to conventional pulse radars in the 100 MHz to 100 GHz
frequency range, especially those located at or near the earth's surface. However, much
of the material is applicable to radars of other types. The word "basic" in the title re-
fers to the emphasis on calculation for the simplest type of situation. Through most of
this report it is assumed that the detection is based on discrimination between a signal
and the ever-present receiver noise, without complications such as clutter echoes, jam=
ming, or interference by other signals. Normal environmental conditions are assumed
{no precipitation and no abnormal refraction). The target is assumed to be a point target
(small in size compared to the radar's resolution cell) and to be moving at a speed that
does not result in appreciable movement during an integration period. Near the end of
this report elementary theory will be given for detection of targets in clutter and in the
presence of jamming. Further details will be discussed in Part 2,

Conventions

The maximum detection range of a radar depends partly on conditions of the environ-
ment — geophysical factors; these are not controllable by the radar designer and are sub-
ject to unpredictable variation. Examples are atmospheric refraction and absorption of
radio waves, noise radiation by extraterrestrial sources such as the sun and the galaxy,
and retlection from the earth's surface, which varies in its reflective properties from
place to place and, expecially in the case of the ocean, from time to time. Consequently
a prediction of radar maximum range cannot be guaranteed to be accurate in the exact
sense. Even if the geophysical factors were invariant and exactly known, prediction of
maximum range would still not be exact because of the statistical nature of the detection
process for signals embedded in a background of electrical noise. o
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The signal-in-noise problem is amenable to a well-established statistical analysis,
which leads to the concepts of probability of defection and probability of false alarm. But
the statistics of variation of the geophysical phenomena are not sufficiently well estab-
lished to allow a statistical treatment, at least not with the degree of refinement possible
for the signal-in-noise problem. Therefore, to make radar maximum range calculations
at all, it is necessary to adopt conventions for the effects of the relevant geophysical
phencmena.

A convention, in simplest terms, is a generally accepted assumption for the value of
some variable factor. An example is the value 6370 km for the radius of the earth. This
ig 3 convention because the earth is not a perfect sphere; its approximate surface curva-
ture has different radii at different latitudes. The 6370-km value is not even a statisti~-
cally mean value. Rather, it is a round number that lies somewhere between the maxi-
mum and minimum values observed and that is not unreasonable as a typical value. Thus
conventions are physically realistic and convenient but statistically imprecise. They
contain an element of arbitrariness. Nevertheless, they have great value from two points
of view. First, they permit calculations to be made which are physically realistic even
though imprecise. Second, for two or more different systems they permit precise com-
parison.

Ideally, conventions should be promulgated by some recognized standards organiza-
tion, preferably one that is internationally recognized, Unfortunately this has been done
for only a few of the conventions needed in radar performance calculation. Other conven-
tions have no formal status but are widely accepted by the engineering profession, Where
such conventions are known to exist, they are followed in this report. Where they do not,
but where they are needed, arbitrary conventions are adopted. Wherever possible the
range of variation likely to be encountered in nature is indicated.

Range Prediction Philosophy

Sinece environmental conditions are variable and to some extent unpredictable, a
range prediction based on a conventional assumption will not always be gecurately con-
firmed by individual experimental results. This conclusion is further indicated by the
basically statistical character of the signal~-detection process, which means that a range
prediction is not likely to be verified exactly by the result of a single experiment even i
all the quantities in the range equation are known exactly, including those determined by
the environment. Finally, there is practically some indeterminacy associated with ail of
the range eguation factors, even those measurable in the laboratory. Therefore, range
prediction is not an exact science.

Nevertheless, calculations to predict radar range are useful. However inexact they
may be on an absolute basis, they permit meaningful comparisons of the relative per-
formance of competing designs, and they indicate the relative improvement that will re-
sult from a design improvement, They are therefore a powerful tool for the system
designer. Moreover, despite the inexactness of predictions, the error can be made small
enough so that the calculated range is a reasonable indication of performance to be ex-
pected under average environmental conditions. The predicted range is a figure of merit
for a radar system, though not necessarily a complete one, since other factors such as
target-position measurement accuracy, data rate, reliability, serviceability, size, weight,
and cost may alsc be important.

Historical Nofes

Possibly the first comprehensive treatise on radar maximum-range prediction was
that of Norton and Omberg (1), issued as a U.S. Army Signal Corps report in 1943 and
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published as a paper in the Proceedings of the IRE in 1947. It presented a fairly detailed
range equation and contained information on evaluating some of the more problematical
factors, such as multipath interference and minimum-detectable signal, within the limi-
tations of the then-available knowledge. The signal-detection process was agsumed to be
based on visual observation of a cathode-ray-tube digplay. The antenna was assumed to
searchlight the target., Statistical aspects of signal detection were not considered,

D, O. North, in a classic report published with a military security classification in
1943 (2), outlined the basic theory of a statistical treatment of signal detection, This
report was later republished in the Proceedings of the IEEE, but not until 1963, He in-
troduced the concepts that are now called probability of detection and false-alarm proba-
bility, and he clearly delineated the role of integration in detection of pulse signals. This
report also introduced the concept of the matched filter, a contribution for which it had
achieved some recognition prior to 1963, but its contribution to signal-detection theory
was virtually unrecognized by radar engineers generally until the report was republished
20 years later.

In a famous report first published in 1948 (3) and also republished in IRE Transac-
tions on Information Theory in 1960, J. I. Marcum extensively developed the statistical
theory of detection, with the aid of machine computation, employing the basic concepts of
North's report, which he referenced. He computed probabilities of detection as a function
of a range parameter related to signal-to-noise ratio for various numbers of pulses in=-
tegrated and for various values of a false-alarm parameter which he designated false-
alarm number, He employed this type of computation to study the eifects of various
amounts and kinds of integration, different detector (rectifier) laws, losses incurred by
collapsing one spatial coordinate on the radar display, and various other effects. His
results are presented as curves for probability of detection as a function of the ratio of
the actual range to that at which the signal-to-noise ratio is unity on the assumption that
the received signal power is inversely proportional to the fourth power of the range.
Since this proportionality holds only for a target in free space, application of Marcum's
results is sometimes complicated by this mode of presentation.

Marcum considered only steady signals (target cross section not varying during the
period of observation), and most of his results assume the use of a square-law detector.
Robertson (4) has published exceptionally detailed and useful steady-signal results appli-
cable to the linear-rectifier detector, which is the type of detector almost universally
used. The square-law-detector results are also useful, however, because they differ but
little from the linear-detector results. Swerling (5) extended Marcum's work to include
the case of fluctuating sighals. His report was also republished in IRE Transactions on
Information Theory, in 1960, Fehlner (6) has recomputed Marcum and Swerling's results
and presented them in the more useful form of curves with signal~to-noise power ratios
as the abscissas. The fluctuating signal problem has been further treated by Kaplan (7),
Schwartz (8), Heidbreder and Mitchell (9), Bates (10), and others.

Hall (11} published in 1956 a comprehensive paper on radar range prediction in
which the concepts of probability of detection, false-alarm probability, and the relative
effects of predetection and postdetection integration were considered, and the effects of
scanning the antenna beam. The range equation was formulated in terms of an ideal
(matched filter) utilization of the available received signal power, with loss factors to ac-
co;{nt ftor departures from the ideal. This paper constituted a survey and updating of the
subject.

A paper further updating the subject was published by Blake (12) in 1961, I applied
recent advances in system-noise-temperature calculation, atmospheric absorption,
plotting of coverage diagrams for a realistic refractive~index model, and multipath
interference calculation. It was based on the material of NRL Memorandum Report 11086,
issued in 1960, NRL Report 5868 (13) presented the same material in greater detail,
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Contributions to the subject of range prediction have also been made by many others,
far too numerous to name. Only the major contributions can be recognized in this brief
history. Special mention should be made, however, of the many contributions made by
two volumes of the Radiation Laboratory Series, volume 13 edited by Kerr {14) and vol-
ume 24 edited by Lawson and Uhlenbeck {15). Much use is made in this report of results
originally published in those volumes.

2. RANGE EQUATIONS
Radar Transmission Equation

The basic transmission equation for radar is given here in the form derived by Kerr
{14}

PG00 R
Fe (S2 YR

{1)

The symbols are defined as follows:
P, - received signal power {at antenna terminals),
P, - transmitted signal power (at antenna terminals),
G, - transmitting antenna power gain,
G, - receiving antenna power gain,
¢ = radar farget cross section,
A - wavelength,
F, - pattern-propagation factor for the transmitting-antenna-to-target path,

F, - pattern-propagation factor for target-to-receiving-antenna path,

e
%

radar-to-target distance (range).

{Actually this equation is not quite identical to Kerr's; he assumed that the same antenna
ig used for transmission and reception, so that ¢,6_becomes G? and F2F.? becomes F4.)
The only factors in the equation that may reguire explanation are the pattern-propagation
factors F, and F., Factor F, is defined as the ratio of the field strength F at the target
position to the field strength E; which would exist at the same distance from the radar

in free space and in the anterma-beam maximum-gain direction. F. iz analogously de-
fined, These factors account for the possibility that the target is not in the beam maxima
(G: and G. are the gains in the maxima) and for any propagation eifects that would not
oceur in free space, such as absorption, diffraction and shadowing, certain types of re~-
fraction effects, and multipath interference, to mention the most common ones. Detailed
definitions of these and other range-equation factors will be given in Sections 3 through 7.

Maximum Range Equation

Equation (1) is not a range equation as it stands, although it can be rewritien in the
form
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)

1/4
R = PthGra,\th2Fr2
(4’7)3Pr

which says that ® is the range at which the received echo power will be P, if the trang-
mitted power is P,, the target size is o+, and so forth, I becomes a magximum-range
equation by the simple expedient of attaching subscripts to P, and R, so that they be-
come Priminy and R ...,. Thatis, when the value of P, in Eq. (2) is the minimum de-
tectable value, then the corresponding range is the maximum range of the radar, How-.
ever this is a rudimentary and unscphisticated maximum-range equation. In fact the very
term "maximum range' has no clear meaning without certain qualifying words or phrases,
although it is a useful expression for conversational purposes.

A first step toward a more useful equation is replacement of P, ,;,y by a more
readily evaluated expression. This expression is obtained by first defining the signal-
to-noise power ratio:

P

S/N = P_‘" , (3)

where P, is the power level of the noise in the receiving system, which determines the
minimum value of P, that can be detected. This noise power, in turn, can be expresse
in terms of a receiving system noise temperature 7;: :

P = kT.B, , {4)
where k is Boltzmann's constant (1.38x10723 watt-second per degree Kelvin) and B, is

the noise bandwidth (hertz) of the receiver predetection filter. (These quantities will be
defined more completely in Sections 3 and 5.) Therefore :

P.= (S/N)kT.B_ . - (5}

This expression may now be substituted for P. in Eq. (2). It is advantageous to do so,
because, as will be shown, (S/¥)_ ;. (or other quantities related to it) can be directly
evaluated more readily than can P, (miny, and so also can T, and B,.

Sometimes the range equation is written in terms of a system noise factor (noise
figure} F, instead of a system noise temperature, The relationship between them is
F, = T,/T,, where T, = 290°K is the standard reference temperature established by the
IEEE for noise-factor definition (16), This system noise factor is not, however, an
IEEE-defined quantity, although it was introduced by D. O, North (17) in 1942. The term
""system noise temperature," though widely used, is also not found in IEEE standard defi-
nitions (16), but the concept is there defined as a quantity called the "operating noise
temperature (of a system).”

The system noise factor (called by North the operating noise factor) is different in
concept from the more familiar noise factor of a two-port transducer F,. The relation-
shipbetween the latter factor and transducer input noise temperature T, is F, = (T,/T,)+ 1.
If the terminals of a receiver whose noise factor is F, are connected directly to the an-
tenna terminals, or if the transmission line is lossless, the relationship between the
system and receiver noise factors is (as was shown by North) F, = (7,/T,) + F, - 1,
where T, is the antenna noise temperature discussed in Section 5. The two noise factors
are then equal if T, = 7,, The minimum possible value of F, is 1 {perfect receiver),
but that of F_ is zero (noise-free receiver and noise-free antenns and environment).
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Another slight modification that is convenient is to define £, as the transmitter
power output rather than {(as in Eq. (1)) the power at the ferminals of the transmitting
antenna. With this changed definition, P, must be replaced by P;/L;, where L, isa
ioss factor defined as the ratio of the transmitter power cutput to that actually delivered
to the antenna {L, = 1), It will later prove convenient to introduce additional loss fac-
tors; all of them are basically required to compensate for redefinition of certain guanti~
ties as compared with the definitions that apply for Eq. (1), These loss factors are mul-
tiplicative; that is, if there are three loss Iactors L,, L,, and L,, they can be represented
by a single loss factor L = L,L,L;. This generalized loss factor is placed in the denomi-
nator of the range equation.

The resulting maximum range equation is

1/4
. P,G,G oA F,*F? ®)
MR N 4z Y (S/N) y n KT, B L

Pulse Radar Equation

Equation (8) does not specify the nature of the transmitted and received signals —they
may be CW, amplitude or frequency modulated, or pulsed, Because of the special impor-
tance of pulse radar, it is justifiable to modify the equation in certain ways that are ad-
vantageous for this special case. The modified equation is then restricted to pulse radars.

If the radar pulse is of duration {length) -, it is demonstrable that the detectable
signal power will have its minimum vaiue when the receiver bandwidth has a particular
value B, op¢y Of the order of the reciprocal of the pulse length {2,15,18). That is, in
general

Bn{eg)t) = a/7 (7)
where o is of the order of 1, Following Omberg and Norton (1), a visibility factor is
defined by

P £

V:k_Ts:"Nz‘ (8}

which is the ratic of the received pulse energy 5, to the noise power per unit bandwidth
(spectral density), ¥,. From Egs. (6) and (8) it is readily apparent that the product
(S/¥3B, in Eq. {6) can be replaced by the quotient V/r, provided that now Vv is under-
stood to mean V_, . Next, it is convenjent to define V, as the value of V,,;, correspond-
ing t0 By = Ba¢opey Obviously as 8, is varied, ¥, will have its smallest value when

B, = Byrapry- In general,

Voin=YCs . £

mil

where Cp =1 is a bandwidth torrection factor. Making these various substitutions
yields the range equation for pulse radar: ‘

i/4
: PthtGra)tzptzFf (10)
(4n YKL, V,CaL

Rmax
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Evaluation of the factors « and Cp will be discussed in Section 3. (Note that « does not
appear explicitly in the range equation; its only effect is in determination of Cp.)

Among the virtues of this form of the range equation is its demonstration of the sig-
nificance of the transmitted pulse energy P, r as the determining factor in radar range
performance, rather than the pulse power P, by itself. This conclusion was emphasized
by Omberg and Norton (1) by writing £, in place of P, r in their range equation.

North {2) reached the same coneclugion in his analysis and noted the fundamental im-
portance of the ratio #.7/kT, = E./N, (here called V, as it was by Norton and Omberg),
Lawson and Uhlenbeck (15) have also used this ratio as a logical parameter for present-
ing the results of their minimum-detectable-signal studies (designating it S, ).

The pulse energy is the significant quantity for single-pulse detection, and also when
pulses are integrated if the integration is done for a fixed number of pulses., If integra-
tion is done for a fixed length of time, however, then the transmitted average power is
the determining factor; it is the pulse energy multiplied by the pulse repetition frequency.

North also showed that the signal-to-noise power ratio at the output of the predetec-
tion filter (e.g., IF amplifier) has its maximum possible value when the filter character-
istic is matched to the pulse waveform (matched filter) and that this value is equal to
E./Ny. In some of the literature it is stated that the matched-filter output signal-to-noise
ratio is 2E. /¥, but this result is based on definition of signal power as that not only at
the maximum of the pulse waveform but also at the peak of an RF cycle. North's defini-
tion, baged on the power averaged over an RF cycle, is appropriate for the case of a
pulsed carrier signal in a background of band-limited thermal noise and is the one ordi-
narily used by radar engineers. In particular it is the definition used in computing the
signal~detectability curves of Figs, 4 through 7,

This concept of the significance of the pulse energy also provides a simple answer
to the question of what pulse length to use in the radar equation if the radar employs
pulse compression, in which a coded pulse waveform of relatively long duration is trans-
mitted, and is compressed to a short pulse on reception. In fact, either the long trans-
mitted pulse length or the short compressed pulse length can be used, provided thatan
appropriate value is used for P, so that the product P, r is equal to the transmitted
pulse energy. '

Probabilistic Notation

It has been mentioned (Section 1) that the radar signal detection process is basically
probabilistic or statistical in nature. This fact results from the nature of the noise volt-
age that is always present in the receiver circuits. This voltage is randomly varying or
fluctuating, and when it is intermixed with a pulse signal, it becomes impossible to tell
with certainty whether a momentary increase of the receiver output is due to a signal or
a chance noise fluctuation. However, it is possible to define probabilities for these two
possibilities and to discuss the detection process in terms of them, in a quantitative man-
ner. Thus the probability that the signal, when present, will be detected is called the
probability of detection P,;, and the probability that a noise fluctuation will be mistaken
for a signal is called the false alarm probability P,,.

The notations ®,,, and F, (miny €an then be replaced by more precise notation,
using subscripts to denote the applicable values of Py and Pr,. However, the P, sub-

scr(;pt is ordinarily suppressed, though implied. Thus R, denotes the range for 0.5
(50%) probability of detection and some separately specified false-alarm probability.
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If the target cross section o fluctuates, as often happens with moving {argets, and
if ¢ in the range equation is defined as the average value, then if the visibility factor is
given a particular value such as Vg4, determined on a steady-signal basis, the range
that will be calculated from Eq. (10) will not be, in general, Ry,. In other words, Vy g1,
for a steady target is not the same as Vy,90, fora fluctuating target. As mentioned in
the historical notes (Section 1), this problem has been analyzed by Swerling {5} and others
{8~10), and curves have been calculated that allow determining the appropriate value of
v, for the fluctuating-signal case.

Sometimes the fluctuating target cross section is defined in terms of a percentile
value; €.g., o90 denotes the value of » thatis exceeded 90% of the time. It fortuitously
happens {13) that if the cross section fluctuates and o, i8 used in Eq. {10}, then the
steady-signal value of Vv, 50, Will result approximately in R ,. However, this is a spe-
cial case, and the procedure cannot be applied for other probabilities of detection, Thus
in general when the target cross section fluctuates, o in the radar range equation is de-
fined as the average value, and V, is then assigned the value appropriate to fluctuating
gignals.

Range Equation for Automatic Detection

Detection is said to be automatic if the decision concerning presence or absence of a
received signal is made by a purely physical device without direct human intervention.
Such a device, described by North (2), establishes a threshold voltage level {for example,
by means of a biased diode). If the processed {e.g., integrated) receiver output exceeds
the threshold (as evidenced by diode current flow), some mechanism ig actuated to indi-
cate this fact in an unequivocal fashion — by lighting a light, ringing a bell, or more gen-
erally by setting a bit equal to 1 in a binary data channel wherein a zero corresponds to
no-signal, {Various additional consequences may then of course automatically ensue,)
The analysis of radar detection then becomes a problem in statistical decision theory,
and this analysis has been extensively pursued in ferms of the probability of detection
{probability that the voltage will exceed the threshold when a specified nonzero signal-to-
noise ratio exists) and of the probability of false alarm {probability that the voltage will
exceed the threshold when in fact no signal is present),

For the ordinary radar situation the signal-to-noise ratio that must be used for this
analysis is that which exists at the input terminals of the detector,* corresponding to the
output of the predetection filter. In the derivation (14) of Eq. (1), P, refers to the re~
ceived signal power at the antenna. Consequently ($/%) in Eq. {6) and V, in Eq. {10} are
also referred to the antenna terminals. These facts must be reconciled if the equation is
to be used for an automatic-detection radar.

The relationship of the signal-to-noise ratio in one part of a cascade system fo that
in another is a subject that requires careful definition of terms if confusion is to be
avoided. A distinction must be made between the ratio of the signal power at a point to
the actual noise power at that point and the ratio of the signal power to the equivalent
noise. The latter concept will always be meant here. Equivalent noise at a point means,

*A note on meanings of the words "detector" and "detection” is desirabie here. In radio usage, &
detector has come to mean either a freguency converter {e.g., superheterodyne first detector) or a
demodulator {often the second detector of a superheterodyne receiver, which is usually a linear
rectifier). This second meaning ig intended here., An automatic detector, however, means a
decision-making device, as described above—a device that replaces, for example, the human oh-
server of a cathode-ray—tube display. In the following discussion the meaning should be evident
from the context, Where confusion might otherwise result, the term detection-decision device may
be used to denote an automatic detector.
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in effect, the output noise power of the predetection filter divided by the power gain be-
tween that point and the output.

With this definition, if the filter is of such a nature that it does not change the signal
waveform, the signal-to-noise ratio will not change from point to point in the cascade.
In general, however, the filter does change the signal waveform, and therefore the signal-
to-noise ratio is different at the input and output of the receiving system.

Fortunately, however, as has been discussed following Eq. (10), if a matched filter
is used, the output signal-to-noise power ratio will be equal to the quantity Vv, in the
range equation. Therefore, Eq. (10) can be used for an automatic-detection radar if v,
is understood to be the value that applies when a matched filter is used and €y is a cor-
rection factor that takes into account not only the bandwidth of the filier but its complete
transfer characteristic in relation to the pulse waveform. This matter will be discussed
further in Section 4,

Bistatic Radar Equation

The foregoing equations assume that the transmitting and receiving antennas are at
the same location (monostatic radar). A bistatic radar is one for which the two antennas
are widely separated, so that the distance from the transmitting antenna to the target is
not necessarily the same as the distance from the target to the receiving antenna. More-
over, since the signal reflected from the target to the receiving antenna is not directly
backscattered as it is for monostatic radar, the target cross section is not usually the
same (for a given target viewed in a given aspect by the transmitting antenna). Thus a
bistatic radar cvoss section o, is defined, The symbol ¢ in the preceding equations
implies the monostatic cross section. The range equation for a bistatic radar is obtained
from the foregoing monostatic equations by simply replacing « by o5, and by replacing
R by VE.R,, where R, is the distance from the transmitting antenna to the target and 2,
is the distance from the target to the receiving antenna.

Equations in Practical Units

The equations that have been given are valid when a consistent system of units is
used, such as the rationalized mks system. In many applications, however, it is conven-
ient or necessary to employ "mixed" units, such as nautical miles for range, square
meters for target cross section, kilowatts for transmitter power, microseconds for pulse
length, etc. Moreover, it is usually more convenient to express the wavelength » in
terms of the equivalent frequency in megahertz. It is also desirable to combine all the
numerical factors and the various unit-conversion factors into a single numerical con-
stant. For a particular system of mixed units the following equations are obtained from
Eqgs. (6} and (10):

/4
R . = 726.8 "t onOcGeo B (11)
e fllesz (S/N)mianHzL ‘
1/4
P - 12 Pt(kw)r#secGrGr“ F:&:}Fr2 (12)
max = 129.2 £2. TV Col
MHz"s "0 "B

The subscript notat