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IMPLEMENTATION OF A DISCONTINUOUS GALERKIN DISCRETIZATION OF 
THE CONSERVATION OF MASS EQUATION IN QUODDY 

 
 
1. INTRODUCTION 
 

In this effort, a discontinuous Galerkin (DG) formulation is developed for the primitive 2-D unsteady 
depth-averaged conservation of mass equation. The formulation is implemented into QUODDY5, 
developed by Lynch and Werner [1] at Dartmouth University and capable of solving the 3-D shallow 
water hydrodynamics and temperature and salinity transport. 
 

Traditional continuous Galerkin finite elements have historically not performed well when applied to 
the primitive form of the shallow water conservation of mass equation due to spurious oscillations 
introduced into the solution. In an effort to eliminate the spurious oscillations, Lynch and Gray [2] 
developed the generalized wave continuity equation (GWCE). The method eliminated the spurious 
oscillations and has been adopted in several shalow water hydrodynamic codes, for example QUODDY 
[1] and ADCIRC [3]. The term discontinuous Galerkin (DG) method refers to several finite element 
methods that use discontinuous discrete approximating spaces, such as the Bassi and Rebay method [4], 
the Local Discontinuous Galerkin (LDG) [5] method, the Oden, Babuska, and Baumann method [6], the 
interior penalty Galerkin methods of Wheeler [7], Douglas and Dupont [8], and the NIPG methods [9,10]. 
Cockburn et al. performed an extensive study of the DG method for hyperbolic conservation laws in a 
series of papers [11-15]. Arnold et al. [16] present a general framework of these methods. Application of 
these methods to a wide variety of problems can be found in Ref. 17. 
 

A unique property of the DG method is that the DG solution satisfies the mass conservation equation 
locally element by element. In addition, the flexibility of DG methods facilitates dynamic h-p adaptivity. 
The basis functions are defined as piecewise discontinuous polynomials on each element, so the order of 
polynomials can be refined locally (p-adaptivity). Additionally, elements can be nonconforming, which 
facilitates local mesh refinement (h-adaptivity). These features can be exploited separately or in 
combination (h-p adaptivity) to locally refine the approximation in regions of high gradients. Moreover, 
because they are highly local, DG methods only require communication between elements that share 
faces; thus they are well-suited for parallel computation. 

 
2.  ORIGINAL FINITE ELEMENT FORMULATION IN QUODDY 
 

QUODDY is capable of computing 3-D shallow water flow, as well as transport of temperature and 
salinity. The system of equations for computing the velocity field implemented in QUODDY are the 
GWCE, the 3-D primitive momentum equation, and 3-D incompressible conservation of mass equation. 
The GWCE is used to compute the elevation given the depth-averaged velocity components. The 3-D 
primitive momentum equations are used to compute the 3-D horizontal components of velocity, and the 
3-D incompressible conservation of mass equation is used to compute the vertical velocity. Reference 1 
provides a detailed discussion of the governing equations and finite element method implementation. 
QUODDY is capable of incorporating land, velocity, and elevation boundary conditions into the solution. 
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The numerical procedure currently in QUODDY is as follows: 
 
1. Given an initial depth H and depth-averaged velocity field (U, V), update the elevation by solving 

the GWCE using a three-level time differencing. The solution is semi-implicit in that all of the 
linear terms are solved implicitly, but all of the nonlinear terms involving velocity are lagged. 

2. Using the new computed depth, compute the components of velocity for the entire 3-D domain 
using a two-level time differencing. 

3. Compute the component of velocity such that the velocity field is divergence free, i.e., 0.V∇ ∗ =  
 
3.  DISCONTINUOUS GALERKIN FORMULATION 
 

In this section, a DG formulation on triangular elements is developed and presented. The method 
begins by forming a weighted residual statement and integrating over a typical element. Summing over all 
elements produces a system of equations to advance the solution in time. Integrating the test and basis 
functions over each element produces volume and interface integrals that must be evaluated. In this 
formulation, the volume integrals are evaluated analytically and the element interface integrals are 
evaluated using Gaussian quadrature. 

 
3.1 Problem Statement 
 

The primitive form of the 2-D depth-averaged inviscid shallow water equations is written in 
conservative form as 

 ( , )Q F G S x t
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
, (1) 

where 
 

 
2

2

0

2

2

UH
H VH

H hQ UH F UUH g G UVH S gH
x

VH HUVH hVVH g gH
y

               ∂      = = + = =      ∂          ∂   +      ∂ 

 (2) 

 
are the 3 × 1 vectors that represent conservation of mass, x-momentum, and y-momentum, respectively. 
 

This effort focuses on incorporating the conservation of mass into QUODDY using the DG method. 
However, the continuous Galerkin method already implemented into QUODDY is retained for 
conservation of momentum. 
 

Before developing the numerical formulation, element nomenclature used throughout the remainder of 
this work is defined. Each element contains three nodes and three edges as shown in Fig. 1(a). The edges 
between each element are denoted by kΓ . Each interior edge is attached to two elements, defined as the 
left (L) and right (R) element. The unit normal to an edge kn  is defined such that it always points outward 
from the left element. This is described in Fig. 1(b). Edges on the boundary are only attached to the left 
element. The boundary condition replaces the right element. 
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Fig. 1  (a) Element and (b) edge nomenclature for typical interior elements 

 
 
The DG method involves jumps and averages across edges. The jump and average of any quantity (a) 

across edge k are defined, respectively, as 
 

 
[ ] ( )

{ } ( )1 .
2

R Lk

L Rk

a a a

a a a

= −

= +
 (3) 

 
Multiplying conservation of mass by a test function w and integrating over a typical element jΩ  

produces the semidiscrete weak statement of conservation of mass and is written as 
 

 ( ) ( )
3

,
1

0,
j k j

j j j k o k j
k

d w H d w F n d F w d
dt =Ω Γ Ω

Ω + ⋅ Γ − ⋅ ∇ Ω =∑∫ ∫ ∫   (4) 

 
where kΓ  are the edges of element j, and ( ) ( )ˆ ˆF UH i VH j= +  is the flux vector. In Eq. (4), the normal 

,
ˆ ˆ

k o x yn n i n j= +  is the unit outward normal vector to element j. Therefore, ,k oF n⋅   is the outward flux 
normal to the element edge k. As noted previously, normals in the implementation of the algorithm, 
defined as per Fig. 1(b), point from L to R. Therefore, for all right elements, the normal for an edge must 
be multiplied by minus one. This prevents the need to define two normals for each edge. 
 
3.2 Basis and Test Functions 
 

In the current work, linear basis and test functions are used. Linear basis and test functions are defined 
for the jth element. Linear basis functions provide three degrees of freedom per element. Several 
formulations are possible depending on the degrees of freedom chosen. The general forms of the basis 
and test functions are 

 ( ) ( )
3 3

1 1
.j i i j i i

i i
H x a w x b

= =
= φ = φ∑ ∑  (5) 

 
The specific form of the basis functions φi depends on the degrees of freedom chosen. Commonly, the 
degrees of freedom are the element average and gradient, the three element vertices, or the three element 
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edge midpoints. In this work, two formulations are investigated: element average and gradient (denoted as 
Method 1) and element vertices (denoted as Method 2). 
 

The functions φi and coefficients ai are given in Table 1. The coefficients bi (Eq. (5)) are arbitrary 
numbers that are eliminated from the final set of equations. The element centroid is written as ( ),x y . 
 

Table 1  Test Functions and Coefficients 
i Element Average 

and Gradient 
Element Vertices 

 
 ai φi ai φi 
1 Hjo 1 H1 ( )( )( )( )2 3 2 31

3 2 e

y y x x x x y y
A

− − − −
+  

2 
jH

x
∂

∂
 

( )x x−  H2 ( )( )( )( )3 1 3 11
3 2 e

y y x x x x y y
A

− − − −
+  

3 
jH

y
∂

∂
 

( )y y−  H3 ( )( )( )( )1 2 1 21
3 2 e

y y x x x x y y
A

− − − −
+  

 
 
3.3 Linear Integration Rules for Triangular Elements 
 

Applying the linear basis and test functions of the DG method to triangular elements produces 
integrals of the form 
 

 ( ) ( ) ( )( )
2 2

x y xy
A A A

I x x dA I y y dA I x x y y dA= − = − = − −∫ ∫ ∫ . (6) 

 
The integrals are evaluated as 

 

 

( )
( )
( )

2 2 2 2
1 2 3

2 2 2 2
1 2 3

1 1 2 2 3 3

1 1
12 4
1 1

12 4
1 1 .

12 4

x

y

xy

I A x x x x

I A y y y y

I A x y x y x y xy

 = + + − 
 
 = + + − 
 
 = + + − 
 

 (7) 

 
 
3.4 Edge Fluxes 
 

The weak statement of conservation of mass includes integrals of the fluxes at the edges of each 
element. Upwinding is achieved by replacing the normal flux in the edge integral of Eq. (4) with an 
upwinded numerical flux function normal to the element edge, denoted by fn. The numerical flux function 
is computed by solving a Riemann problem normal to each element interface. With this substitution, Eq. 
(4) becomes 
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3

1
( ) .

j j k

j j j j n k
k

d w H d F w d wf d
dt =Ω Ω Γ

Ω = ⋅∇ Ω − Γ∑∫ ∫ ∫  (8) 

 
This can be written in matrix form as 
 

 [ ][ ] [ ][ ] [ ],d
dt

= −
HM V H F  (9) 

 
where [M] is the mass matrix, [V] is a 3 × 1 matrix involving the volumetric flux integral, and [F] is a  
3 × 1 vector involving the edge flux integral. [H] is a 3 × 1 vector involving the degrees of freedom for 
each element. The specific form of the vectors and matrices depends on the method chosen. 
 
3.4.1 Riemann Problem 
 

The jumps in the dependent variables across element interfaces produce a Riemann problem normal to 
each element interface. The governing equations, as represented by Eqs. (1) and (2), are linearized by 
Roe-averaging, and the solution to the linearized Riemann problem computed. Once the solution to each 
local Riemann problem is obtained, the edge fluxes are computed. The solution to the linearized Riemann 
problem is well known (see, for example, Leveque [18]). 
 

The solution to the normal Riemann problem is written in terms of the eigenvalues and eigenvectors of 
the normal Jacobian matrix of Eq. (1), which is written in quasilinear form as 
 

 [ ] [ ] ( , )Q Q QA B S x t
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
, (10) 

 
where [A] and [B] are 3 × 3 matrices. 
 

The Roe-averaged normal Jacobian, [A]n = [A]nx + [B]ny, is written as 
 

 2

2

0

[ ] ( ) (2 ) ( ) .

( ) ( 2 )( )

yx

n x x y x y y

x x yy y x

nn
A U n gHn UVn Un Vn Un

Vn Un VnV n gHn UVn

 
 
 = − + − +
 
 +− + − 

 (11) 

 
The eigenvalues of [A]n are 
 

 
1

2

3 ,

n

n

n

u gH
u

u gH

λ = −
λ =

λ = +

 (12) 

 
where  n x yu Un Vn= + is the velocity normal to the edge and the overbars denote Roe-averaged values.  
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The corresponding right eigenvectors are 
 

 1 2 3

1 10
.xxx

y yy

U gHnnr r rU gHn
n V gHnV gHn

          +−= = =  −        +   −    

 (13) 

 
The Roe-averaged values are defined for an edge k as 
 

 
2

.

L R

nL L nR R
n

L R

H HH

u H u H
u

H H

+
=

+
=

+

 (14) 

 
The subscript (L,R) denotes computing the given quantity within the left or right element at edge k. 

The value of the numerical flux function for conservation of mass on given edge depends on the signs of 
the eigenvalues at the edge. The numerical flux function for conservation of mass is written as 

 

 1 3

1 3

1 3
1

3
3 1

0 and 0 Critical and Supercritical
0 and 0 .
0 and 0 } Subcritical

( ) ( )

n nL L

n nR R

n nL L R L nR R nL L

f u H

f u H

f u H H H u H u H


= 

 λ ≥ λ >  = λ < λ ≤
 λ < λ >λ  = + λ − − − λ − λ 

(15)  

 
4. SOLUTION ALGORITHM 
 

The solution to Eq. (8) involves evaluating the integrals using the analytical integration rules presented 
in Section 3.3 for the volume integrals, and Gaussian quadrature for the edge integrals. The time 
derivative is approximated using a second-order Runge-Kutta method between time levels n and n + 1. 

 
4.1 Temporal Discretization 
 

Two variations of a second-order Runge-Kutta method were investigated. Each is a predictor-corrector 
type discretization. The first method advances the solution from time level to time level as follows: 

 

 
H

n+ 1
2 = Hn +

∆t
2

L(Hn,Vn ,Fn )

Hn +1 = Hn + ∆tL H
n+ 1

2 ,V
n+ 1

2 ,F
n+ 1

2
 

 
 

 

 
 .

 (16) 

 
The second method, known as Henn’s method, advances the solution through the following predictor-

corrector sequence: 
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 1

( , , )

( ( , , ) ( , , ))
2

n n n n

n n n n n

tL
t L L

∗

+ ∗ ∗ ∗

= + ∆
∆

= + +

H H H V F

H H H V F H V F
, (17) 

 
where L(H,V,F) are written as 
 

 1 11( , , ) .L
A

− −= −H V F M VH M F  (18) 

 
As discussed below, the second method is somewhat more stable than the first.  
 
A 3 × 3 system of algebraic equations is produced for each element to update the value of Hj. Note that 

each element is coupled only to its neighboring elements via the edge flux integrals. 
 
4.2 Volume Integrals 
 

The volume integral involving the time derivative at time produces, for methods 1 and 2, respectively, 
 

 

 

0

1

2

3

1 1 11 0 0
6 12 6
1 1 10 .

12 6 12
1 1 10

12 12 6

j

j

xyx jj j
j j jA

xy y
j

H
HII HwH d A A A HA A x
HI I

H
A A

y

               ∂Ω     = = =     ∂            ∂         ∂ 

∫ MH  (19) 

 
 
Similarly, the volume integral of the flux produces, 
 

 

00

0

0 0 0
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j
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n jnj j j
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Ω

         ∂ ∂ ∂ ∂      + +  ∂   ∂ ∂ ∂ ∂   ⋅∇ Ω  = =       ∂       ∂ ∂ ∂ ∂ ∂   + +  ∂ ∂ ∂ ∂    ∂      

∫ V H
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24
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y y U U U y y U U U y y U U U

y y U U U y y U U U y y U U U

y y U U U y y U U U y y U U U




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
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− + + − + + − + +

1

2

3

.
H
H
H

            

(20) 

 
In Eq. (20), the velocities have been projected from nodal degrees of freedom to DG degrees of 

freedom. The projection algorithm is described in Section 5.2. 
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4.3 Interior and Boundary Edge Integrals 
 

For a given edge k attached to element j, the edge flux integral is written as 
 

 
13
2

1
3

.
k

n
n k

k
f d

= Γ

φ 
 = φ Γ 
 φ 

∑ ∫F  (21) 

 
The edge flux integrals are evaluated using Gaussian quadrature. Both methods produce integrals of 

the following form: 
 

 
1 1 1

( ) .

( )k k k

n n n
n j k n k j n k

j j

f x x d f x d x f d
yy y yΓ Γ Γ

        − Γ = Γ − Γ        −        

∫ ∫ ∫  (22) 

 
Note that, in general, the integrand depends not only on the value of the edge flux, but also on the 

values ( )jx x− and ( )jy y− for the given element j. Thus, the same edge integral will have two different 

values for the two elements sharing the edge. For computational efficiency, the integrals given by the first 
expression on the RHS of Eq. (22) are evaluated using Gaussian quadrature for each edge, and the total 
integral for an edge connected to element j is found by summing the two terms on the RHS of Eq. (22). 
Using Gaussian quadrature, this is evaluated as 

 
 

 
,N

,
1

,

1

2

p

k

n
n m

n nk
n k m m n m

m n
m n m

f
Lf x d w x f

y y f
=Γ

 
   
   Γ =   
    

 

∑∫ , (23) 

 
where Np is the total number of integration points, (xm, ym) are the Gaussian integration points, wm 
represents the Gaussian weighting factor, and Lk is the length of the edge. This implementation uses a 
two-point Gaussian quadrature. 
 

For the interior edges, the flux is evaluated using the Roe-averaged variables based on the left and 
right states adjacent to the edge and substituting these into Eq. (15). The boundary edges are evaluated 
similarly, but the right state is replaced by an appropriate boundary condition. 
 

There are five possible boundary conditions implemented into QUODDY implementation of the 
boundary condition for each case described below. 
 

1. Land: Zero normal flow boundary condition is applied to external boundaries.  
 
2. Island: Zero normal flow boundary condition is applied to internal boundaries. 

 
Land and island boundaries are zero normal flow boundaries. At these boundaries, the Roe-averaged 

normal velocity is set to zero. This is accomplished by setting the right value of the normal velocity equal 
to the negative of the left value and setting the right value of the elevation equal to the left value, i.e., 
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 nR nL

R L

u u
H H

= −

=
 (24) 

 
at land and island boundaries. 
 

3. Non-zero normal velocity: Value of velocity is specified at given boundary. 
 

At non-zero normal velocities, the boundary specified normal velocity replaces the right value as 
 

 , .nR n BCu u=  (25) 
 

4. Geostrophic outflow: Elevation is specified at the given boundary. 
 
5. Surface elevation: Elevation is specified at the given boundary. 

 
Since geostrophic outflow and surface elevation boundary conditions both specify elevation, they are 

handled the same way in the DG formulation. The specified surface elevation at the boundary replaces the 
right value on elevation prescribed edges as 

 
  

 .R BCH H=  (26) 
 

The velocity on the boundary is found by a conservation of mass constraint, such that 
 

 , .L
nR n BC

BC

Hu u
H

 
=  

 
 (27) 

 
4.4 CFL Condition 
 

The explicit formulation of the DG method restricts the time step via a Courant-Friedrichs-Levy (CFL) 
condition. The courant number is defined for each edge k and the time step is limited by the maximum 
courant number in the mesh. The courant number is defined as 

 

 ,max| |
1 ,

min( , )
k k

k k
L R

t L
C

A A
∆ λ

= ≤ ∀Γ ∈Ω  (28) 

 
where 

,maxk
λ is the maximum absolute value of , 1, 2,3i i =λ  on each edge. 

 
4.5 Slope Limiting 
 

The stability of the DG method cannot be ensured without incorporating some type of slope limiting 
into the algorithm. Two-dimensional slope limiters are a subject of current research. Cockburn and Shu 
[14] develop a total variation-bounded (TVB) slope limiter valid for linear approximations on rectangles 
and triangles with certain restrictions. Hoteit et al. [19] propose a new slope limiter they claim achieves 
limiting without introducing excessive numerical viscosity. In that work, they also review the slope 
limiter of Cockburn and Shu. In this effort, the slope limiter of Cockburn and Shu is currently being 
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implemented into the algorithm and is briefly described below. The discussion follows closely the 
discussion presented in Hoteit et al. [19] and is presented here for completeness. For further details, the 
reader should consult the references. 
 

Let Ko denote an arbitrary element and Ki, i =1,2,3 the neighbors of the element. Further, let bi, i = 0, 
1,2,3 denote position vectors of the centroids of the elements, and mi denote the position vectors of the 
midpoints of the edges of element Ko. This is illustrated in Fig. 2. 

 

 
 

Fig. 2  Triangle nomenclature for slope limiting procedure of Cockburn and Shu 
 
 
For any edge m1, we can write 
 

 1 0 1 1 0 2 2 0( ) ( )m b b b b b− = α − + α − , (29) 
 
where (α1, α2) are constants that depend only on the geometry. Additionally, for any linear function uh, we 
can write 

 
 1 0 1 1 0 2 2 0( ) ( ) ( ( ) ( )) ( ( ) ( )).h h h h h hu m u b u b u b u b u b− = α − + α −  (30) 
 

The element average hu is the value of the function uh evaluated at the element centroid. Additionally, 
we can define 

 
 1, 0 1 0( ) ( ) ( ),h hu m K u m u K= −  (31) 
 
which, by Eq. (30), can be written as 

 
 

1 0 2 01 0 1 2 1 0( , ) ( ) ( ) ( , ).h K K K Ku m K u u u u u m K= α − + α − ≡ ∆  (32) 

 
With the above definitions, the slope limiting proceeds as described below. First compute the quantity 

∆i for each edge of the element Ko as 
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 1 0 1 0( ( , ), ( ( , ))),i hM u m K u m K∆ = ν ∆  (33) 
 
where M is a minmod function defined by 
 

 

 1 2
1 2

min | | if ( ) ( )
( , )

0 otherwise
is a s sign a sign a

M a a
= =

= 


 (34) 

 
and v is a constant greater than one. Cockburn and Shu use v = 1.5. With ∆i  computed by Eq. (33), there 
are two possibilities: 
 

1. If 
3

1

0i
i=

∆ =∑ , then 

 

 
0

3

1
( , ) ,h K i i

i
u u x y

=
∆Π = + ∆ φ∑  (35) 

 
where huΛΠ is the slope-limited value of uh and φ(x,y) are the basis functions. 
 

2. If 
3

1

0i
i=

∆ ≠∑ , compute the following: 

 

 

pos = max(0,∆i ) neg= max(0,−∆i )
i=1

3
∑

i =1

3
∑

θ+ = min 1,
neg
pos

 

 
 

 

 
 θ− = min 1,

pos
neg

 

 
 

 

 
 

ˆ ∆ i = θ+ max(0,∆i ) − θ− max(0,−∆i ) .

 (36) 

 
Then set 

 

 ΛΠuh = u K0
+ ˆ ∆ i

i =1

3
∑ φi (x ,y) .  (37) 

 
The limiting operator locally conserves mass and guarantees that the reconstructed gradient of huΛΠ is 
not greater than that of uh. 
 
5. IMPLEMENTATION INTO QUODDY5 
 

The details of the numerical implementation of the DG algorithm are described below. 
 



12 Guillot et al. 

5.1 Numerical Algorithm 
 

QUODDY contains a subroutine called ELEVATIONQ5 that computes the depth H using the GWCE 
and a continuous Galerkin finite-element approximation. The numerical implementation of the DG 
method replaces ELEVATIONQ5 with a subroutine ELEVATIONQ5DG, which serves as the driver 
program to compute the depth using the DG method. The subroutine calls additional subroutines to 
complete the computations described in Section 4. 
 
5.2 Projection to and from Nodes 
 

The input for QUODDY5 provides values of the dependent variables at the nodes. However, the DG 
method 1 requires the degrees of freedom to be defined in terms of the element average and the derivative 
with respect to x and y. Additionally, once the depth is computed in terms of the DG degrees of freedom, 
they must be projected back to the nodes so that they can be used to compute the velocities using the 
continuous Galerkin method. 
 

The projection from the nodes is found by solving the 3 × 3 matrix, 
 

 

0
1 1 1

2 2 2

33 3

1 ( ) ( )

1 ( ) ( ) ,
1 ( ) ( )

j
j j j
j j

jj j

H
x x y y HH
x x y y Hx

HHx x y y
y

 
 − −   ∂     − − =  ∂      ∂− −      
 ∂ 

 (38) 

 
for each element. Similar projections are used to compute the DG degrees of freedom for U and V. 
 

After computing the depth using the DG method, it is necessary to project the DG degrees of freedom 
back onto the nodes. This is not as straightforward as projecting from the nodes, since each node can be 
connected to any number of elements. The projection back onto the nodes is found by computing the 
value of the depth at the node using the DG degrees of freedom for each element attached to the node, and 
then dividing by the total number of elements attached to the node. The algorithm proceeds as follows. 
Let ek denote an element attached to node n, and Hn(ek) the elevation computed at node n using the basis 
functions on ek. If a total of K elements are attached to node n, then the average value Hn at the node is 
given by 

 

 
1

1 ( ).
K

n n k
k

H H e
K =

= ∑  (39) 

 
5.3 Input Modification 
 

The DG implementation into QUODDY changes the input minimally. The idea was to make the 
implementation as transparent to the user as possible. Only one file, the .inq file, has been changed. A 
typical .inq is shown in Fig. 3. Only one line has been added to the file. The last line is a flag that allows 
the user to choose “GWCE” to use the original formulation or “DGSL” to choose the DG method. Within 
the code itself, anyplace where modification to existing code has been made, the lines mjg_begin and 
mjg_end have been placed between the modified code. Finally, a file called quoddy_5.1.1_DG_SUBS.f 
that contains the DG subroutines has been added to the existing suite of subroutines. This file must be 
added to the makefile and compiled with the existing code. 
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Fig. 3   Typical .inq file 

 
 
6. VALIDATION 
 

The implementation is validated in the test cases described below. 
 
 
6.1 Maximum Courant Number Verification 
 

Before choosing a test case, the courant number restriction was verified for a trivial case in which the 
surface elevation is initially zero and zero elevation boundary conditions are imposed. The elevation 
throughout the domain should remain zero for all t > 0. The Gulf of Maine mesh is used in this case. The 
maximum courant number for each element is shown in Fig. 4 along with the instability in the solution 
after 40 time steps, using a time step ∆t = 25 s. If the time step is reduced so that the maximum courant 
number in the mesh is below unity, the solution remains stable. 
 

The implementation was tested on a case provided by the developers of QUODDY. The test case is the 
Gulf of Maine with periodic tidal (elevation) boundary conditions applied on all boundaries. The mesh 
and bathymetry are shown in Fig. 5. The depth is in meters. 
 
6.2 Gulf of Maine with Elevation Boundary Conditions 
 

The elevation was computed using both the DG and GWCE methods. The tidal boundary conditions 
were ramped up over three tidal periods and a total of 10 tidal periods were computed. The slopes of the 
total depth are held constant at their initial values in the computations. A less restrictive slope limiter 
developed by Cockburn and Shu is currently being implemented into the algorithm. 
 

The elevations computed using the DG and GWCE methods are shown at 3 days along with the 
differences in elevation in Fig. 6. The computed elevation solutions are very similar and generally within 
1% to 2%. The corresponding velocity vectors are shown in Fig. 7. The velocity vectors are also 
quantitatively very similar. 
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6.3 Discussion of Different Methods Investigated 
 

Two methods of computing the degrees of freedom per element were investigated. In the first, the 
element degrees of freedom were the element average and gradient and in the second, they were the 
values at the element vertices. It was found that each method produced similar results, although, in the 
second method, computing elevation boundary conditions was facilitated by simply setting the value at 
the given boundary node to the value given by the prescribed boundary condition. Additionally, the 
element vertices method produced a simpler mass matrix that reduced the computational effort required. 
In addition to the methods investigated, Cockburn and Shu [15] used the element edge midpoints as the 
degrees of freedom. This has the advantage of producing a diagonal mass matrix for each element. 
However, in any case, the mass matrix is a 3 × 3 matrix that is easily inverted by hand, so this is not a 
great advantage, and Hoteit et al. [19] noted that using the midpoints of the edges produces “excessive 
smearing” of the solution. 
 

 

0.27 0.44 0.61 0.78 0.95

Courant Number

 
  

Fig. 4   Courant number (left) and instability in elevation solution (right) after 40 time steps, ∆t  = 25 
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Fig. 5  Gulf of Maine mesh and bathymetry (left) plan view and (right) 3-D view 
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Fig. 6  Elevation solution in meters at t = 3 days using DG 
and GWCE methods, and difference in solutions 
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Velocity Vectors
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Fig. 7  Velocity solution in m/s at t = 3.0 days using DG and 
GWCE methods, and difference in solutions 

 
 
Two different second-order Runge-Kutta methods were also investigated. It was found that Henn’s 

method, described by Eq. (17), produced somewhat more stable results than the method described by Eq. 
(16). 
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While both methods produced unstable results if the slopes were not restricted, the instability using 
Henn’s method grew at a slower rate than it did using the other method. 

 
7. CONCLUSIONS 
 

A discontinuous Galerkin method was implemented into QUODDY5 to compute the depth using the 
primitive conservation of mass equation, replacing the GWCE formulation in the code. Several variations 
were investigated and the advantages and disadvantages of each were discussed. 

 
The explicit formulation of the DG method limits the time step because of a CFL condition as 

compared to the semi-implicit formulation of the GWCE method. This time-step restriction is problem 
and mesh dependent, but for the Gulf of Maine case, the maximum allowable time step of the DG method 
was approximately 1/10 of the time step using the GWCE method, resulting in longer run times for the 
same problem. 

 
The DG method requires a slope limiter to ensure stability of the solution. The TVB slope limiter of 

Cockburn and Shu is currently being implemented into the code. 
 

8. RECOMMENDATIONS 
 

Future work in this area should include developing a fully DG version of QUODDY. This will 
facilitate a comparision of the DG method using the primitive conservation of mass equation with the 
continuous Galerkin method using the GWCE method. Since strengths of the DG method include ease of 
parallelization and h-p adaptivity, longer term goals should include developing a parallel version of the 
method including dynamic mesh adaptivity. 
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