
NRL Report 6918

Graphical Methods for
Plasticity Corrections in Fracture Mechanics

J. A. KIES, H. L. SMITH, AND F. R. STONESIFER

Ocean Materials Criteria Branch
Ocean Technology Division

September 18, 1969

NAVAL RESEARCH LABORATORY
Washington, D.C.

This document has begn approved for public release and sale; its distribution is unlimited.





CONTENTS

Abstract ii
Problem Status ii
Authorization ii
Definition of Symbols iii

INTRODUCTION 1

FORMULA FOR SEMIELLIPTICAL- AND
ELLIPTICAL-SHAPED CRACKS 3

LIMITATIONS ON SEMIELLIPTICAL
CRACK FORMULA 3

THE SINGLE-EDGE-NOTCH (SEN)
TEST SPECIMEN 5

FOUR-POINT BEND TEST
(SRAWLEY-BROWN EQUATION) 8

THREE-POINT BEND TEST 10

CENTRALLY NOTCHED SPECIMEN 13

SUMMARY AND CONCLUSIONS 16

ACKNOWLEDGMENT 16

REFERENCES 17

i



ABSTRACT

Fracture mechanics is an analytical procedure that relates the critical
stress, critical crack dimensions, and toughness of a given material so that
standards of inspection and tolerable defects may be set. Failure analysis is
a relatively simple and useful application of fracture mechanics. The subject
of failure prevention and reliability assurance is at least equally important,
but it is complicated by present limitations on the ability of nondestructive
tests to measure, with sufficient accuracy, individual small defects in spec-
imens or in structures.

The application of fracture mechanics to the study of stress corrosion
cracking has led to results that are drastically changing our ideas of what is
and what is not susceptible to this kind of failure.

For very tough materials, i.e., those in which the plastic zone size devel-
oped at the border of a crack becomes comparable with the crack dimensions,
the applicability of fracture mechanics formulas becomes uncertain. In this
case, a more empirical type of evaluation based on the total work for plastic
flowing may be more useful. A gr aphi ca method is proposed for making
plasticitycorrections so that the linear elastic equations may be applied.

PROBLEM STATUS

This is an interim report; work on plasticity c o r r e c t i o n s in fracture
mechanics is continuing.

AUTHOR IZATION
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and Project Order 7-0001
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DEFINITION OF SYMBOLS

A - cross-sectional area fractured.
a - effective length, half-length, or depth of crack according to type of specimen.

a, - length of open crack.

Aa - increment added to a to account for plastic flowing, equal to ry(a = a + A a).

B - plate or specimen thickness.
Bc - lower limit on B for which a valid measurement of KIC can be obtained.

Bnet - net B for side-grooved specimens.

E - Young's modulus of the material.

a - strain energy release rate per unit area of fracture (driving force).
hi - value of for opening mode of crack extension.

-zc C critical plane strain value of .
K - fracture toughness stress intensity factor.

K1 - value of K for opening mode of crack extension.

K10 - critical plane strain value of K.

L - moment arm for bend specimen.
L,- moment arm for three-point loaded bend specimen (one-half the total span).

I/g r elastic compliance ( = spring constant)'.
P - load, sometimes expressed as load per unit thickness.
R - used for convenience to replace K/(PL 1/BW 3 /2 )

r - polar coordinate for distance from the crack tip.
a - angular polar coordinate with origin at crack tip.

ry - increment added to a to account for plastic flowing, equal to Aa.

ry- ry for plane strain.
s - slope of straight line drawn from a on the abscissa axis to the corrected value

of the function f(a/W) as the ordinate.

W - total specimen width (in the case of bend specimens, equal to beam depth).

a - used for convenience to replace [1 - (a/W)].

- Poisson's ratio for the material.
- applied nominal tensile stress.

anet -average stress on the net section of a centrally notched plate.
ay - component of stress normal to crack plane.

ay- yield strength of the material.
cp - shape factor (elliptical integral) given by

p712 [ 1 (c2 a2)i 20 1/2 do

where c is the semimajor axis and a is the semiminor axis of the elliptical
crack.
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GRAPHICAL METHODS FOR
PLASTICITY CORRECTIONS IN FRACTURE MECHANICS

INTRODUCTION

The analytical procedure known as fracture mechanics was first formulated by Irwin
in a long series of papers starting in 1947 (1). Since that time hundreds of papers on the
subject have been published, and they are all based on one or the other of two kinds of
equations. One equation gives the strain energy release rate in terms of the specimen or
structural compliance (2) as

_P
2 d(1/M)
2 dA (1)

where U s the strain energy released per unit area of crack as it propagates, P is the
load, A is the crack area, and 1/M is the elastic compliance. It is usually easier to mea-
sure 1M as aunction of A than to calculate it. The second kind of equation, based on
stress analysis around the end of a crack (3), is written as

K f(O) (2)

where ay is-the component of stress normal to the crack plane at a distance r beyond the
crack tip. For points on the x axis, i.e., in the direction of propagation, the quantity f(0)
is equal to unity.

Many stress analyses for cracks in various geometrical and loading situations have
been published by a rather long list of authors, whose references may be found listed in
the reports of ASTM Committee E-24 over the past five years. The differences between
plane stress and plane strain fracturing are of great practical importance and have been
explained by Irwin (3). Generally, we have a mixture-of plane stress and plane strain
conditions because cracks often occur on a free surface. But at the deepest penetration,
conditions usually approach plane strain. Since lane strain conditions prevail for high-
strength materials when they are in sections much thicker than the critical crack depths,
we shall center our attention on this situation in the present paper.

The use of fracture mechanics can be schematically presented as in Fig. 1 which
shows the various steps down from theoretical material strengths to those encountered
in service experience. The first step down is caused by the motion of dislocations and
other atomic-scale defects (microflaws) leading to yield. The next step down is caused
by much larger defects such as cracks produced in fabrication or heat treatment. This
population of defects is often not known or appreciated, but it can become known, to a
degree, by nondestructive testing. Note that the short-term reliability of structures
containing a population of such flaws increases as we impose lower stresses, but the
reliability may never become 100% and the acceptable stress level for materials suscep-
tible to stress corrosion may approach zero. This is the normal realm of application
for fracture mechanics, i.e., for fracture failure at stresses below the general yield
stress level.

There is a school of thought which maintains that a material being used should always
be so tough that it cannot possibly fail in a brittle manner, i.e., at strength values below

1
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yield stress. However, for high-performance aircraft, rockets, and very deep submers-
ibles, we may wait a long time for such quality to be discovered or produced at sufficient
strength levels. If we insist on a fail-safe criterion for all materials, there are many
important missions which we cannot accomplish in the foreseeable future.

By the use of fracture mechanics procedures for material evaluation and for estab-
lishing critical flaw sizes, we can hope to achieve high reliability even with nonfail-safe
materials.

A further simple illustration of the province of fracture mechanics is given in Fig. 2.
Here we see that the failure stress is a decreasing function of flaw (crack) size. If gen-
eral yielding occurs before crack propagation is noticeable, then fracture mechanics is
not useful.

For some materials such as glass, the flaw size a which is small enough to permit
short-time plastic flow without crack propagation is of the order of a few millionths of
an inch. For steels having a yield strength of 250,000 psi and upward, the critical surface
crack depth at yield stress is usually 0.010 to 0.020 inch. Such cracks are difficult to
detect and even more difficult to measure; nevertheless, this is a task that we must
accomplish.

FORMULA FOR SEMIELLIPTICAL- AND
ELLIPTICAL-SHAPED CRACKS

Probably the most useful formula in fracture mechanics is the Irwin semielliptical
surface crack formula because this shape is frequently present n large structures. It
gives the Irwin critical stress intensity factor (or toughness) K for plane strain as

KI 0 = 1.1 a W. (3)
( 2 - . 212 (/a ) 2 )1 2

where is an elliptical integral whose value depends on the shape of the crack. The solu-
tion of Eq. (3) has been shown graphically by Tiffany and Lorenz (4). That reference also
defines and provides photographs of semielliptical surface cracks. In Eq. (3) the nom-
inal tensile stress component normal to the crack is a, ay is the yield strength, and a is
the crack depth. For a completely submerged elliptical crack, a is the semiaxis perpen-
dicular to the free surface of the plate, and the multiplier 1.1 is omitted.

Although the graph of Eq. (3) has been widely published, it is repeated here as Fig. 3
for convenience. The integral is also defined on the figure.

LIMITATIONS ON SEMIELLIPTICAL CRACK FORMULA

When the crack is circular or semicircular, then = /2 (or 2 2.47). When the
surface crack is long with respect to its depth, i.e., when it has a length on the surface at
least ten times its depth, 2 is essentially unity. This represents the worst case or the
lowest critical stress for a given crack depth a.

Equation (3) contains a built-in plasticity correction in the term 0.212 (ay/a) 2 and
can be solved for K for values of a/ay, up to (/ayS)upper im 3.41 for semicircular or
circular cracks. Similarly, the upper limit of a/ayS for a long crack is 2.17.

For values of a/ays > 2.17, Eq. (3) cannot be solved for a long crack (2 = 1). For
this value of the ratio, K approaches infinity, which is not realistic. The solvability of
Eq. (3) for a/ay' approaching 3.41 does not imply validity in the Kc result. In the
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Fig. 3 - Graphical solution of the Irwin semielliptical crack
equation as given by Tiffany and Lorenz (4)

derivation of Eq. (3), Irwin stated that the formula should be restricted to surface cracks
a not more than half way through the plate (i.e., a < B/2) and to buried cracks in which 2 a
does not exceed B/2, where B is the plate thickness.

There is a further arbitrary decision required in defining the applicability of Eq. (3):
by crack depth a the Irwin restriction should mean the open crack depth ao plus the plas-
ticity correction d C/(6rra2= Aa . Thus, the restriction 2a< B placed on the applicability
of the solution obtained by the theory of elasticity, i.e., Eq. (3), should read

2(a,+ Aa) B

or, rearranging,

A a KI0 /(67Ta2S ) . (B/2) - a (4)

This restriction may be required for validity either in a test or in application to a field
service situation. The meaning of the word validity in such matters is not clear because
absolute accuracy is never achieved and is not needed. Furthermore, the errors resulting
from violating the rule have not been calculated.

The limitation 2a DB on the validity of the elastic stress analysis, i.e.,

a = a + rly < B/2 where ry a a,

is probably too severe and is certainly inconvenient because many real-life situations,
particularly in failure analyses, involve cracks in which a > B/2. A reasonable, although
somewhat empirical, treatment of deeper surface cracks can be made by writing, instead
of Eq. (3),

4
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2 1.21 a2 2B tan (ra/2B) (3a)
<,2 O. 212 (la) 2

When ra/2B is small, tan (ra/2B)7a/2B in which case Eq. (3a) reverts to Eq. (3). Forsubsurface flaws the factor 1.21 on the right is omitted in Eq. (3a) and 1.1 is omitted inEq. (3).

Since the plane strain plasticity correction Aa rIy = K /(67 ay2 ) is not the actual
size of the plastic zone but rather about half of it, we could state that the nonapplicability
of fracture mechanics has been reached when

K2I/(3Z a2s) > B- a. (5)

This corresponds to plastic yielding across the entire ligament (B - as) which may betoo generous an allowance.

By using Eq. (5) rather than Eq. (4) as the criterion of acceptability, we have muchmore latitude in applying the formula. A test program should be carried out to determinethe ratio r/(B - a) beyond which K20 is no longer constant but is declining as ry/(B - a0 )increases. From this rather important example, we see that some of the work in estab-lishing fracture mechanics remains to be done. Such experiments are in progress byKrafft at NRL for the single-edge-notch (SEN) specimen, but there seems to be no par-allel effort for specimens to which Eqs. (3) and (3a) apply.

THE SINGLE-EDGE-NOTCH (SEN) TEST SPECIMEN

In determining K for a given material it is often necessary to examine the effect ofthe strain rate or, better still, the effect of the temporal rate dKIC/dt on KIC during thetest at different temperatures. For this purpose, Krafft (5) and Sullivan (6) have employeda new type of testing machine especially suited, but not restricted, to the SEN specimen.For present purposes we could use any one of the several formulas and calibrations thathave been published or used.

The Sullivan experimental calibration (7) is selected for convenience and is shown asa graph in Fig. 4. Here we find, for a specimen with pin loading on the center line of thetest piece, E 1 /u 2W plotted vs a/W where a/W is the ratio of the observed edge notch deptha to the total specimen width W. In the calibration, the compliance 1/M and d( 1/M)/d(a/W)
are determined experimentally. When multiplied by Young's modulus E for the material,there results

E d(1/M) E(I
2 d(a/W) 2 W

where the subscript I indicates a plane strain direct opening crack. The curve presented
in Fig. 4 is independent of the material since the compliance is inversely proportional to
E. Here a is by definition equal to P/W, where P is the load per unit thickness given interms of the quantity in Eq. (6) (see Eq. (1)).

Before discussing the limitations on the validity of IC and K determined by usingFig. 4 and Eq. (6), the graphical method of making the plasticity correction for djcs andthus of determining r = Aa = K /677 o,2, for plane strain, is as follows. We have the tworelations
Eh 2 = f(-w + a (7)
a W WWIT
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BEND TEST 3-POINT LOADING
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a
W

Fig. 6 - Results of notched-bend, three-point loaded
beam tests for determining the K values for such
beams. The tangents to f(a/W) = R2 atpointsAand
B determine the limits of solvability for the plas-
ticity correction at the given a /W ratios.

and

Aa E4 a[ 2
W a2W U.2 67(l - v2)

where v is Poisson's ratio for the material.

For any test the relation P2 /W2 = a2 is determined at pop-in of the crack. When a2

is thus determined, a straight line is drawn through the point a/W on the abscissa corre-
sponding to the initial notch depth and having a slope given by

y -a 2 6( v 2 )
s= =

- a/W = a2t (9)

The intersection of this line with the curve plot of y = EI/a 2W Vs a/W determines the
corrected value of E/a 2W . (The construction is shown for four- and three-point bend
tests in Figs. 5 and 6, respectively.)

The first test of validity has to do with whether an intersection can be achieved. The
limiting case is for the slope y/(Aa/W) to be a minimum, i.e., just tangent to the curve.
By construction, we have

(10)( E7W = 54.6 for a/W= 0.3.

Thus, the upper limit of (a/ays)upper Iir is equal to 0.56 for solvability.
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Equations (6) and (10) contain an artificiality in the relation a = P/W for a notched
specimen eccentrically loaded. For a/W = 0.3, W. Payne* has shown that the average net
stress at the root of the notch is

Unet = (1 [1 - (a/W) ()

For a/W = 0. 3 , we have a nom = 2.29 a 1im or

(anet/aYs)upper im = 1.28 (12)

For a/W = 0.2, we have (a/ays)upper im= 0.80 by construction, and

(anet/ys)upper lim (13)

Equations (12) and (13) give the extreme values of anet/ay5 for which a graphical
solution can be obtained. Corrected values of Xc or Kc, and the corresponding ry
K 2f/67 a2S , can then be calculated from the graphical solution. Figure 4 shows that large
values of r are computed at the extremes. Again, mathematical solvability does not
guarantee validity for the plasticity correction.

Freed and Krafft (8) have written that the constancy of K.,, is experimentally achieved
for specimen thicknesses B 2 13.5 rry where ry = Ki2/6, ay2 as for plane strain.t If we
postulate that (a) for B > 13.5 ry, a true and constant K1c is measured in the SEN test,
and (b) for B < BC = 13.5 rry, the failure read from a load extension curve is dictated by
plastic flowing, then the apparent K2 is too low and is porportional to B such that

K2 = B-/B for B < B0 = 13.5 z.y (14)

where Bc is the lower limit on B for constant KIC. If the postulate is correct, then we
have a convenient rule for estimating proper KT, values even when B < BC, i.e., B is too
small for an intrinsically valid plane strain test. The quantity Bc is not predictable from
theory at present. It must be determined by experiment, after which K values can be cor-
rected to KIC for thinner specimens.

Data published by Freed and Krafft (8) indicate that Eq. (14) works well for SEN tests
of commercial-purity titanium and for a 12 % nickel-maraging steel. The general validity
of Eq. (14) should be examined more thoroughly.

FOUR-POINT BEND TEST (SRAWLEY-BROWN EQUATION)

The four-point loaded notched-bend test formula provided by Srawley and Brown (9) is

Eh2/I 34.7 (a) 552(a) _ 19() 3= f(a) = f(ao +- ) --55.2(.)+196 (a)=f()

If we consider a = ao + r.y, where ry = Aa = 2 /6,7r for plane strain, we have for the
slope S

*Private communication.
tKrafft's rule B > 4.5 ry was based on ry = KI c27r aus.

8
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S (W W) B2 W 67T y( S v2) (15)

Aa/W P2 L 2

Here P is the total load, L is the distance from an outer load point to the nearest inner
load point, W is the total beam depth, ayS is the yield strength, and a is the initial depth
of the notch, including the fatigue crack tip, in the bend beam.

Equation (15) gives the slope S of a straight line to be drawn from a/W on the a/W
axis of a graph of f(a/W). The intersection of the line with f(a/W) gives the value of
f(a/W) corrected for the plane strain plastic zone.

The limits of solvability of the corrected K are determined by drawing a line
through a, and tangent to f(a/W) as shown on Fig. 5. For the purpose of making com-
parisons, the bending moment PL/2 at the notch is converted to as the nominal stress at
the root of the notch, based on the simple assumption that

3PLa =
B(W - a) 2

Equation (15) then converts to

S = 54(1 2 ys2 (16)
[l - (a0 /Wf)]4 \a

for the slope of the line to be drawn from a/W. For the condition of tangency to f(a/W)
and for a/W = 0.2, we have

(a)iim ) 2.06 (17)
Ys i.

as the upper limit on alays for solvability of the plasticity correction.

For a/W = 0.3, we have

( ) = 2.32 . (18)
orYS ) im

Limitations on the solvability of K10 do not automatically indicate directly the lim-
itations on the validity of the K thus determined. Much experimental work remains to
be done, but it seems reasonable that the bend bar dimension B should be subject to the
same rules as Krafft seems to be finding for the SEN test, i.e., the critical thickness B0
is given by

B, Ž 13. 5 ry (19)

where r = KI2C/6nTaY25. At present there are not enough efforts underway to establish
rules for finding true K values for test specimens in which B < B. For high toughness
to yield strength ratios, the present situation requires caution in these cases where B < B.

The latitude in rIy with respect to the ligament below the notch has not been inves-
tigated for four-point loading but should be the same as for three-point loading. In the
latter case considerable data have been accumulated, so this will be considered next.

9
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THREE-POINT BEND TEST

The three-point loading test deserves consideration at least for its convenience and
economy. The formula

22/K* 
R- K -4.24(- ac~ (20)

P2 L2 /B2 W 3
\a /

1

where a (1- aIW), is shown graphically in Fig. 6. Here P is the total load, B is the bar
width, W is the total beam depth, L is half the span, a is the notch depth, and a is the
notch depth without a plasticity correction. In two previous papers (10,11) by Kies, et al.,
Eq. (20) was used without a plasticity correction. In principle, the method of correcting
for plasticity is the same as for SEN and four-point bending. Thus, the slope of a line to
be drawn on Fig. 6 through as/W is

-R 54v2 (c0,~)2 (1
Aa/W [1- (a./W)] 4 a

where a is from the simple bend formula for stress without regard to the stress concen-
tration factor. As shown in the construction in Fig. 6, the limit of solvability for the
plastic zone for a /w = 0.2 is

() 2.11 , (22)
aSy l im

and for a/W = 0.3

2.04 .*(23)
(aYS) im (3

Equations (17), (18), (22), and (23) all have the inaccuracy of assuming a linear rela-
tion between nominal stress and the neutral axis of the unbroken ligament. The number
of significant figures is less than shown, and it is recommended that the value

(a)i = 2.1 (24)
Ys im

be used as an estimate of the limit of solvability for both kinds of bend bars if plasticity
is to be included according to the concept proposed by Irwin (12).

Examples of K,, results with and without the plasticity correction obtained graph-
ically are shown i Table 1 for a maraging-steel base plate and "Big TIG*" welds. In
these examples, the value of Aa - ry ranges between 7% and 15% of the notch depth a0 .
Corresponding to this we note that KI, is increased by about 7% or 8% upon application
of the plasticity correction. It has not been adequately established by experiment as to
the upper limit on qyla, or r/(W - a ) for validity, but in any case when r becomes
large, i.e., when

r1y >. 0.1 a, ry > B/13.5, or r.y 0.1 (W - a),

the computed value of K10 is at least conservative if no plasticity correction is made.
General experience, which needs to be documented by further tests, indicates that our
error in the corrected K10 is less than the standard deviation of K1 c if the corrected

*TIG = tungsten-inert gas.

10
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Table 1
Examples of KC, Values Obtained-With and Without

Graphical Plasticity Corrections. Data are for 18%o-Ni Maraging-Steel Plates
and "Big TIG" Welds Using Three-Point Loading Bend Test

Specimens Having 5% Side Notches.

Specimen Bar Uncorrected Uncor-
Specimen Thickness Depth Notch Depth rected KIc* 1

1S rSY a0 /rI,
No. B W O KR (ksi n) PrOX.) (gr aph) (graph)

. (in.) (in.) .(in.) (ks Jj)(

34-1 1.568 1.514 0.348 157.6 171.0 0.043 0.050 6.96
34-2 1.559 1.530 0.367 136.1 144.2 0.032 0.036 10.19
34-3 1.561 1.537 0.368 152.5 165.9 0.040 0.047 7.83

. 34-4 1.563 1.548 0.347 157.8 171.7 0.043 0.050 6.94
Q 34-5 1.578 1.555 0.351 135.5 143.8 0.031 0.035 10.03
¢ 34-6 1.574 1.554 0.371 156.9 170.6 0.042 0.050 7.42

34-7 1.574 1.534 0.368 164.4 180.6 0.046 0.056 6.57
_ 34-8 1.572 1.553 0.363 157.4 172.2 0.042 0.051 7.12

+.34-9 1.590 1.544 0.349 131.9 139.5 0.030 0.033 11.63
W .1 34-10 1.588 1.542 0.358 148.5 160.0 0.038 0.044 8.14
m ., 34-11 1.592 1.540 0.365 137.6 146.2 0.032 0.037 9.86

34-12 1.583 1.540 0.362 141.6 151.2 0.034 0.039 9.28

35-1 1.574 1.516 0.335 124.5 131.3 0.027 0.030 11.17
35-2 1.577 1.524 0.362 178.2 199.9 0.056 0.070 5.17
35-3 1.575 1.533 0.346 166.6 183.5 0.049 0.059 5.86

,u 35-4 Broken during fatiguing -- -_

' 35-5 1.576 1.533 0.351 156.7 171.4 0.043 0.051 6.88
¢ 35-6 1.573 1.544 0.366 152.3 165.0 0.041 0.048 7.63

35-7 1.575 1.543 0.366 163.1 178.7 0.047 0.056 6.54
35-8 1.581 1.531 0.366 150.6 163.1 0.040 0.047 7.79

++ 35-9 1.576 1.537 0.357 129.0 135.8 0.030 0.032 11.16
E ., 35-10 1.577 1.538 0.363 125.5 131.8 0.028 0.030 12.10
m 35-11 1.568 1.537 0.360 112.9 118.2 0.022 0.024 15.00

35-12 1.568 1.538 0.360 125.3 132.0 0.028 0.031 11.61

*With plasticity correction from graph.
TSpecimens tested parallel to roll direction (, = 176 ksi).
tSpecimens tested perpendicular to roll direction (a, = 174 ksi).
Note: The above values of K,0 include the multiplying factor (B/Bne

side grooves.
,)1/ 2 to compensate for

value exceeds the uncorrected value by less than 10%. Apparently the K data of Table 1
are on the border line between direct applicability and the situation where merely a lower
limit Of KIC is established.

Tests on the same bars cut down in size are in progress, and the validity of the KC
numbers will be reasonably well established if, after making the corrections, all sizes
give the same K.

The plasticity correction r for plane strain as defined in the Irwin model is just
half of the total extent of the plastic zone and comes from the formula

a= K,
Ys r'2ir ny

11
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for the normal stress at points ahead of the crack. This assumes uniform loading with no
bending. If loading comes entirely through bending, the applied nominal tensile stress de-
grades to zero at r = (W -- a)/ 2 and a = ay, would occur much closer to the tip of the crack
than for the classical case; thus, the plastic zone size should be smaller than that indicated
by the usual formula. The ratio

= I as - 0
( iY) tension

but for larger values of

(r ) bending -0 as rIy (W - a )/2

Since an accurate solution for the elastic plastic stresses is not available, it is hoped that
in the future the proper correction formula will be derived from experiments. As shown
in Table 1 for rIy between 7% and 15% of a, the difference between the first approxi-
mation of ry and the more complicated graphical solution is slight.

Table 2 for 12%-nickel maraging steel contains K values certain to be underestimates
before correction. This was a case where our ability to make the correction is open to some
question because we did not have specimens thick enough to establish a constant KI, inde-
pendent of W without correction. By adjusting r = K 0c/5.5u ,2 and solving graphically
for KIc, the average toughness of J-1 and J-2 samples were found to be independent of size,
and that, of course, is the purpose of making the correction. In this case, the size of ry
was so great that we were at the limit of solvability. The final corrected average values
of KIc are, therefore, 305 ksi Yi; and 345 ksi i. for the J-1 and J-2 steels independent
of bar size. Granted that the number of such tests must be increased, it is tentatively pro-
posed, however, that valid K10 numbers were obtained in Table 2, and that, for bend bars,
the limit of validity is the same as the limit of solvability by the graphical method.

Table 2
Examples of KIC Values Obtained With and Without

Graphical Plasticity Corrections. Data are for 12%/o-Ni Maraging-Steel Plates
Using Three-Point Loading Bend-Bar Test Specimens

Having 5% Side Notches

Bar Specimen
Specimen a Depth Thickness KI* r1 c K I K1c r a31 ~ ~ ~~~~I y IC i ly 0

No. (i) W B (ksi i (in.) (ksi in) (ksi YE.) (in.) (in.)

J-1 179.0 2.1 2.3 244.2 0.099 284.4 292.1 0.141 0.50
2.1 1.1 250.7 0.104 288.9 298.4 0.147 0.47
1.0 2.3 202.3 0.068 245.6 277.2 0.127 0.23

J-2 178.2 2.1 2.3 261.7 0.114 302.3 332.6 0.185 0.48
1.5 1.5 239.0 0.095 286.4 313.8 0.165 0.33

*Uncorrected for plasticity (based on ultimate load).
t rj~, = KIC /67rTa, based on uncorrected KIc
K1c calculated using rry + a,, = a (plasticity correction).

¶Graphical plasticity solution complete.
Note: If or Aa = K 2 /5 5 a2 , the graphical solutions are

average K for specimen J-1 = 305 ksi i-n.
and, average K1C for specimen J-2 = 345 ksi i-n.
where the K10 values are independent of the bar (specimen) size, but are at the
limits of solvability and, thus, of validity.

Note: The above values of KIC include the multiplying factor (B/Bnet) 1/2 to compensate
for side grooves.

12
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CENTRALLY NOTCHED SPECMEN

Irwin (13) has described

Ed= 2 W tan ( W-+ 2W o (5

as a graphical solution for K in the formula where a = a + r In Irwin's report the inter-
est was on plane stress fracturing in "thin" sheet metal. For present purposes Eq. (25)
is written for the case of plane strain in which the load and the nominal stress a are deter-
mined at pop-in of the crack. Accordingly, for ry = Kj2/677 2 we have

y s

K2(1 _v2) = 2W tanL (a + 2)] (26)

or

2 2I = tan g_+ IL = f( +_) (27)
U2w \W 6Wo,2s/ W W

from which

f -a +_Y4 A) 2_
S = W W = 6(1-v2)(Ys) . (28)77 a1W a2 "S)(8

If a straight line with slope S is drawn through 77aoW on the 77a/W axis, the intersection
with the curve tan(f7a/w) plotted against a/W provides value of tan [(ra0 /W) + ( a/W)] to
be used in computing the value of K2 (1- v 2)/a 2W corrected for plasticity as stated in
'Eq. (27). This also gives the plasticity correction directly as 77Aa/W, as shown in Fig. 7.
For an initial starting crack of length 2ao such that 2ao/W = 0.2, the limit of solvability is
at aays = 1.67, and if the average net section stress is stated as anet, the limiting value
of (a/net)lim for this case is

(a ° ) = 2.09 (29)
°nt1im

or about the same as for the bend test.

From the same construction in Fig. 7, one obtains the estimate that for plane stress,
or Aa ry = K2/277 2 ,with'the factor (. v2) omitted,

(° = 0.984

and

(°et = ) .2 (30)

and

2a 0 /W = 0. 2

In the extreme case for solvability represented by Eq. (29), one may note that from
Fig. 7

(KI)corrected = 1.9

(KI)un co r rec t ed
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and
Aa 0.576

=_ __ = 1.84.
a. 0.314

This goes far beyond the limits of validity as suggested by Irwin (13) when he proposed
limiting the net section stress (anet as in Eq. (30)) to

anet < ay,12 (31)

CENTRALLY NOTCHED PLATE

K,2 (VV
2

) A T Te i
1.2 - TAN TAN ( +

S = TAN (7ra + p Ira

1.0 

S (1I-v) 6 ( CS)

0.8

0.6-

0.4 TAN (7 w > 

0.4

0
0 0.2 0.4 ,,a 0.6 0.8 1.0

Fig. 7 - Centrally notched plate specimens for which
tan(ff a/W) f[(7ra./W) + (rTAa/W)] is plotted vs 7ra/W . A
line drawn through 7ra./W and just tangent to the curve
for tan(7ra/W) gives the maximum value of K 2 for which
a solution can be obtained for the equation K2 (1_ V2)
a 2W = tan(ra/W).

For a typical test we let a./W = 0.1 and 7ra./W = 0.314, as selected, for example, in
Fig. 7. If we draw a line with slope S = (1 - v2) 6(a / )2 , and if, since a = 0.8 anet for
the case chosen, we let a = 0.4 ay. as the extreme case suggested by Irwin, then S = 34.0.
By construction rAa/W= 0.012, and Aa/a 9 1.04 as an upper limit to validity. For tough
materials, this may impose inconvenient restrictions on the use of fracture mechanics
because test specimens of sufficient size may not be available. If, instead of solving
tq. (26), we were to neglect the extreme plasticity correction (as per the Irwin limita-
tion), we would underestimate K?2 by only 4%; if we were to compute a corrected K by

2 ). 2 
adding Aa = (KIc)correct /6 7 to a, we would be within 1% of the K,2 obtained by the
graphical solution of Eq. (26). Such an error, i.e., an error of 0.5% in K1c, would not be
significant for most purposes since the coefficient of variation in KIc is usually about
10% in any test due to the combination of all sources of error and nonuniformity in mate-
rials. The answer to what provides validity is not a simple one. Typical plane strain
plastic zone corrections rly are shown in Table 1 along with minimum plate thicknesses
required for validity. In Table 1 the thickness bmin is specified without allowance for the
possibility of correcting KIc according to Eq. (14). If that possibility is considered, then
the Bmin values would be about one-half those shown. In order to satisfy the Irwin rule
that the net average stress anet be 0.4 ay, or less, and for 2a,/W = 0.2, for plane strain

we have

2 0Ic = 0.04

i Tsys OA
maJc
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or

(32)(K I cO ) ) = 0. 04\677 .Y S (O . )W/ma

Minimum w values computed from Eq. (32) are also listed in Table 3 for centrally notched
plates.

Table 3
Typical Plastic Zone Corrections and Validity

Restrictions for Centrally Notched Plates
Assumed Assumed ha =- = Bin 13.5 ,Y Win * for

KI C UYS K2 /6'2 (in.) anet = 0. 4 ays
(ksi i.) (ksi) (in.) (Krafft, Ref. 8) (in.)

100 200 0.0132 0.174 3.3
100 100 0.0528 0.713 13.2
100 50 0.2112 2.86 53.0

200 200 0.0528 0.713 13.2
200 100 0.2112 2.86 53.0
200 50 0.8448 11.4 212.0

*Wmin/Bmin 
sugge stion)
a3y, = 1.0,

18.5 (constant). The restriction anet = 0.4 aY (Irwin's
should probably be relaxed to anet = 0.8 ay, or agross/

In testing, it is usually desirable to allow anet, the net section stress, to approach
ao8 in order to accommodate tough materials. If this condition is assumed and 2a, = 0.2W,
then a = 0.8 aoy since a = 0.8 net . For the construction of Fig. 7, we have

S= (1 - v) 6( 2 ) = 8.52

and

1 a 0.04 ,

from which

riy a = 0 . 0 4 -=- 0.01272 W.

Since a = 0.1 W, we then have

Aa 0.1272.
aO

If Bmin = 13.5 r = 13.5 Aa, then

Bmin =5.8 Bi
13.5(0.01272)

This is a substantial relaxation on the width requirement for the centrally notched
specimens, but we are assuming that a plasticity correction is required to obtain a valid

1 5
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K 1 . According to the construction in which irAa/W is measured at 0.04 for S = 8.52, we
have

tan (7r a/W) + (? rAaW) 0.3693 1.136
tan (i7 a/W) 0.3249

Therefore,

(KIC) corrected = 1.065
(K Ic)ncorrected

Based on experience, this seems to be a modest correction not too large for validity.
Therefore, for plane strain pop-in, it is recommended that K10 be considered valid if
7net < ays and B > 13.5 (KI2c/6,7 ,2.) for centrally notched plates. The establishment of
the validity of K10 for tests in which 0 be t >,,7 should be based on the constancy of K10

and should be a matter of experiments for the future.

SUMMARY AND CONCLUSIONS

1. The areas of applicability of fracture mechanics were defined in terms of defect
sizes and material toughness. At present we are dealing with defects at least 1000 times
the size of atomic spacings. The most serious defects are a result of the manufacturing
process.

2. The role of nondestructive testing is an important one and without it we cannot
estimate initial defect size and, therefore, cannot estimate the strength even though the
critical stress intensity factor K1c is known.

3. Several test specimens were examined with respect to their size requirements
to achieve valid Kjc measurements. Procedures for making plasticity corrections were
given for single-edge-notch (SEN), three- and four-point loaded beam, and centrally
notched plate specimens.

4. Data showing typical K1c numbers for some maraging steels were presented espe-
cially with the purpose of demonstrating the method and the limitations on making valid
plasticity corrections for very tough materials. For this demonstration, notched bend
tests were used for convenience. Values of K1c as high as 350 ksi Yi. in 2-in.-deep
beams were considered valid to within 10%. The usual coefficient of variation has been
10% in previous similar work.

5. This report is concerned entirely with procedures for making the Irwin type of
plasticity correction. Another graphical procedure, based on strain rather than stress,
has been published by Stonesifer and Smith (14).
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