NRL Report 6664
NRL Com’putjer:‘”Reference 1

NELIAC-N
The NAREC Version of the
NELIAC Programming Language

JonN W. KALLANDER

’ Research Computation Center
Mathematics and Information Sciences Division

June 6, 1968

‘NAVAL RESEARCH LABORATORY
Washington, D.C.

This document has been approved for public release and sale; its distribution is unl

CONTENTS

Preface
Abstract
Problem Status
Authorization

INTRODUCTION

Characters of the NELIAC Language
General Programming Rules

NELIAC Program Structure -~ General
NELIAC Flowchart

Comments

ALGOL Words

NAMES AND NUMBERS

Definition of Names (Nouns and Verbs)
Numbers

THE DIMENSIONING STATEMENT (NOUN LIST)

Single-Location Variables
One-Dimensional Arrays (Lists)
Two-Dimensional Arrays (Arrays)
Partial-Word Definitions .
Addresses of Names

Absolute Addresses - Dimensioning
Parallel Names - Nouns

PROGRAM LOGIC (LOGIC)

Arithmetic Operations

Transfer of Control

Subscripted Names

Decisions

Loop Control

Partial-Word Notation (Bit Handling)
Functions

Library of Functions

Parallel Names - Verbs
Machine-Language (Crutch) Coding
Output Statements

PROGRAM STRUCTURE

Complete Compilation
Temporary (Local) Names
Prior Definition of Names
Computer Space Limitations
Precompiled Packages

iii
iv
iv
iv

[313K5) IS S VL RN WU I o =

[=>]

CONTENTS — Continued
DIAGNOSTICS AND DUMPS

Compilation Diagnostics and Dumps
Execution Diagnostics and Dumps

APPENDIX A - Summary of the NELIAC Operator Symbols
APPENDIX B - NELIAC-N Dimensioning Statement
APPENDIX C - NELIAC-N Forbidden Names

APPENDIX D - NELIAC-N Coding Sheet

APPENDIX E - NELIAC-N Operator Instruction Sheet

APPENDIX F - Subroutine Call of Compiler

ii

56

57
66

72
74
75
77
79
80

PREFACE

This report describes in detail the final syntax of the NRL
NAREC version of the NELIAC language, namely, NELIAC-N.
This version of the NELIAC compiler was implemented on the
NAREC in 1962-1963 and was the major transition vehicle between
the NAREC and the CDC 3870 installed at NRL in 1966-1968.

This report is both tutorial in nature and definitive of
NELIAC-N. It replaces NRL Report 5976, "NELIAC-N, A Tuto-
rial Report,”" J.W. Kallander and R.M. Thatcher, June 17, 1963,
and a series of 13 memoranda to NELIAC programmers by
John W. Kallander, dated October 16, 1963, through August 25,
1965. Documentation on specific NELIAC-N programs has been
issued as NELIAC bulletins and references by the Research Com-
putation Center.

Dr. Halstead's book '"Machine-Independent Computer Pro-
gramming' (Washington: Spartan, 1962) describes the basic
NELIAC language, provides guidance in developing compiler pro-
grams, and contains much interesting background regarding
NELIAC that could not be included in this description of the
NELIAC language as implemented on a particular computer. It is
desirable, although not necessary, that the user of this report
read through the first three chapters of Dr. Halstead's book be-
fore, or concurrently with, studying this more detailed work.

iii

ABSTRACT

This report contains a tutorial and the final definitive
description of NELIAC-N (the version of the NELIAC lan-
guage implemented onthe NAREC by means of the NELIAC-N
compiler), which furnished the transition vehicle between
the NAREC and the CDC 3870 being installed at NRL.
NELIAC is a problem-oriented, machine-independent pro-
gramming language which enables programmers, scientists,
and engineers to write their programs in a mathematical
language rather than requiring an actual machine language
or an assembly language. NELIAC thus minimizes the
knowledge of the actual computer required by the program-
mer, maximizes the readability of the programsthemselves,
and provides carry-over value of programs from one com-
puter to another.

PROBLEM STATUS

This is an interim report; work on this problem is
continuing.
AUTHORIZATION
NRL Problem B02-03
Project RR 003-09-41-5101

Manuscript submitted Oct. 25, 1967.

iv

NELIAC-N, THE NAREC VERSION OF THE NELIAC
PROGRAMMING LANGUAGE

INTRODUCTION

A NELIAC program is a means of expressing a computer problem in terms much
closer to an algebraic language than the detailed step-by-step instructions of actual ma-
chine language. A program written in the NELIAC language is comprised of statements
and proper punctuation. This language is interpreted and translated by the NELIAC
compiler, which generates the actual machine instructions or object program understood
by a computer. One must, therefore, adhere strictly to the rules of the language since
each statement, set off by proper punctuation, has definite significance to the compiler.

Characters of the NELIAC Language

The NELIAC language is constructed from the following symbols, known as the
NELIAC character set:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

.
LA

O L1{}
+ =% /1
== <>==

un#

Although the uses of the characters are described in detail later in this report, it might
be well to note here the names of the last 26 of them:

, comma
5 semicolon

colon

period
() left and right parentheses
[1 1left and right brackets

{} left and right braces

2 J. W. KALLANDER

+ plus

- minus

* multiply

/ divide

7 exponent sign or up arrow

— arrow or right arrow

| absolute sign

equal

= not equal

< less than

> greater than

= less than or equal to
=

greater than or equal to
U boolean o

n boolean and

hexi sign

Statements, each denoting a specific action, are built from this character set into a
NELIAC program.

General Programming Rules

All computer programs require part of the computer memory for storage of numeri-
cal values pertinent to the problem. These memory locations are used by the program
in the sense that the program obtains values from them to perform indicated operations
on them. These memory locations are set by the program in the sense that the program
stores intermediate and final results of computation into them. Thus, any program can
be broken into two parts: the storage part and the operating, or program logic, part.

When a programmer writes a program in compiler language, he must tell the com-
piler what the storage requirements will be. The compiler automatically handles the
problem of deciding which locations of memory will actually be used for storage. In the
NELIAC language, storage requirements are specified by the programmer by making up
identifiers or names to which the compiler program will automatically assign memory
locations. Throughout a given program, any name, once assigned, will refer to the same
memory location, group of memory locations, part-memory location, or group of part-
memory locations. There are two exceptions to this rule — temporary or local names
and function parameters. The numerical values contained by these memory locations
are then referenced by name in the program-logic part, where dynamic operations are
indicated. Consider the following example:

NRL REPORT 6664 3

Algebraic Equation NELIAC Statement

A+B=C ,A+B —C,

The algebraic equation states that the value of A is added to the value of B. This sum is
equivalent to the value of C. The NELIAC statement is more dynamic in that a certain
action is implied by the right arrow. This right arrow is a store operator; thus, the
value in the memory location referenced by the name A is added to the value referenced
by the name B, and the sum is stored into the memory location named C. That the store
operator is not equivalent to the equal sign can be seen from the following example:

A2 41— A2,

The NELIAC statement says to add one to the value in the location referenced by the
name A2. This sum is to be computed and stored back into the location referenced by
A2, thereby replacing the old value by the new.

NELIAC Program Structure — General

The two parts of a computer program — the storage part and the operating part —are
handled in NELIAC by the dimensioning statement (or noun list) and the program logic
(or body of the program), respectively.

In the dimensioning statement, the programmer specifies storage requirements by
making up names to which the compiler will assign storage locations. Each location so
named is called a variable, since it is possible for the program to change its value. A
group of memory locations to which the programmer assigns only one name is defined
as a list (one-dimensional array) or, in NELIAC-N, an array (two-dimensional array).
Later in this report it will be seen how the programmer may assign a name to part (i.e.,
certain bits) of a memory location, or in the case of a list or an array how he may as-
sign a name to the same part of each location of the table. Each part-memory location
(partial word) so named then becomes a variable. In the dimensioning statement the
programmer also assigns initial values, specifies the mode and number format of each
variable, and indicates output formats for variables whose values are to be printed.

The program logic is the operating part of the program which indicates the sequence
of dynamic operations to be performed. Basic to the structure of the program logic are
the statements of which it is comprised. Comparable to ordinary English, statements of
program logic are set off by five punctuation symbols:

, comma
; semicolon
colon
period
double period
the double period being used only to indicate the end of the program-logic part and,
hence, the end of the flowchart (or subprogram). Following is an example of two state-

ments which might be used to compute the expression

A-B+C
A-B-2C

4 J. W. KALLANDER

and store the result into location G:

L A*B - HH+C)/(H-2*C)—G,
This is not a complete program, however. Only part of the program logic is illustrated
above. Every name used by these statements must be defined beforehand or later in a
dimensioning statement (or in a function definition). A complete flowchart to perform
this simple task for specified values of A, B, and C might be as follows:

NELIAC FLOWCHART NOTES

7 Load number signifying the beginning of the flowchart to
the compiler.

Dimensioning statement: initial values are specified and
names assigned to each memory location. Note that loca-
tions are allocated and given an initial value of zero when
initial values are not specified. A final comma in the

’ dimensioning statement is normally omitted since the
semicolon also functions as this comma.

(I
[T C RS
-

-

~

Qmawp
"

5 The first semicolon indicates the end of dimensioning and,
consequently, the beginning of the operational portion of the
flowchart.

COMPUTE: COMPUTE is the name of this flowchart. This type of
statement is called a definition or label.

A*B —H, Program logic: a strict left to right flow is followed.

H+C)/H-2*C) -G, Spacings, indentations, and blank lines do not alter the
flowchart in any way (except in the case of the ALGOL
words which will be explained later). A final comma in the
program logic is normally omitted since the double period
also functions as this comma (except for subroutine and
function calls).

The double period indicates the end of the flowchart.

NELIAC Flowchart

Although a NELIAC program may consist of a single dimensioning statement fol-
lowed by a single block of program logic and, indeed, short NELIAC programs are writ-
ten in this form, it is very convenient and at times absolutely necessary to be able to
write programs as a series of subprograms called flowcharts, each of these flowcharts
having the form of a NELIAC program, i.e., a dimensioning statement followed by pro-
gram logic. All of the subprograms or flowcharts comprising a single NELIAC program
are compiled together in a single compiler sweep in an order determined by the pro-
grammer just as if the entire program were written as a single unit. Hence, a pro-
grammer may write and check out a long program as several independent units; in fact,
the flowchart concept makes feasible the compilation of long and difficult programs
whose various subprograms have been written and checked out by different program-
mers. In addition, the flowchart concept makes the correction of program units, the
substitution of new units for old units, and even the addition and removal of units a triv-
ial procedure. Finally, the finite memory space of any computer requires that very long
NELIAC programs (more than ten to fifteen double-spaced typed pages in the case of the

NRL REPORT 6664 5

NAREC) be written as two or more separate flowcharts, although, even here, the number,
size, and arrangement of the flowcharts is still entirely up to the programmer's discre-
tion subject solely to the limitation that no flowchart exceeds the maximum length dic-
tated by a computer memory size. :

Inasmuch as the structure of and the language used in each of these subprograms
are identical to the structure and language of a program written as a single NELIAC unit
(or flowchart), the programmer need only consider a program as consisting of a single
unit throughout most of this report. Toward the end of the report, he will see how the
extension of everything he has learned about the NELIAC language and the NELIAC pro-
gram naturally applies to multiple-unit programs.

Comments

It is often helpful to insert comments in English to the NELIAC language to clarify
the meaning of the program to the reader. This capability is provided by NELIAC-N
according to the following rules:

1. Enclose the comment in parentheses.

2. A colon must be placed as the next operator after the left parenthesis. The colon
may be placed immediately after the parenthesis or any expression which does not con-
tain an operator may be inserted between them. The word COMMENT is customarily
inserted here.

3. Any words, numbers, or symbols may be included in the comment with the excep-
tion of the right parenthesis which signals the end of the comment and the double period
(..) which signals the end of the flowchart to the compiler.

4. Comments may be inserted anywhere within the preface or flowchart external to
ALGOL words and the double period (..) ending the preface or flowchart.

5. Normal punctuation should either precede or follow the parentheses.
EXAMPLE:

,A — B, (COMMENT: A — B means to store the current value of location A into
location B.)

Of course, comments are meant to be an aid only to the reader of the program and have
no meaning whatsoever to the compiler.

ALGOL Words

The NELIAC-N language, like most versions of the NELIAC language, allows the use
of the ALGOL words

GO TO
DO

IF

IF NOT,
FOR

6 J. W. KALLANDER

to describe (but not define or specify as in ALGOL) certain procedures in the flowchart.
However, since their use markedly increased the compilation times of most NELIAC
computers, the NELIAC Implementor's Council and Exchange, at its meeting at the Navy
Electronics Laboratory, San Diego, California, January 14-15, 1965, removed them from
the basic NELIAC language. Therefore, the NELIAC-N compiler contains a dual-load
program so that only those flowcharts intended to contain ALGOL words need be com-
piled at the slower rate. The distinction is determined through the load number begin-
ning the flowchart. A load number of 7 indicates that the flowchart contains no ALGOL
words; hence, any intended ALGOL words will be treated in their normal sense rather
than as ALGOL words. A load number of 5 indicates that ALGOL words may be used in
the flowchart. Flowcharts containing the 5 or 7 load numbers may be freely mixed in
any program. The load number 7 will be used throughout this report; however, the pro-
grammer must bear in mind that he must use the load number 5 for any flowcharts con-
taining ALGOL words.

These five words (or word phrases) when written as above, i.e., when following an
operator, when set off by spacing (except IF NOT, which need not be followed by spacing),
and when written with single internal spaces in GO TO and IF NOT, are known in NELIAC
as ALGOL words and have special significance in the flowchart. They are parenthetical
to the compiler; i.e., they are completely ignored by the compiler (except when inserted
within a double period). As such, they may be used to describe certain procedures in the
printed copy of the flowchart. However, just as it is certain operator combinations
which determine (or define) a comment, the word COMMENT having no meaning (if used
at all), it is certain operator combinations (and only these operator combinations) which
determine these procedures, the descriptive ALGOL words having no meaning (if used at
all) to the compiler. The sole function of these words is to improve the readability of
the printed copy of the flowchart. In fact, the compiler will completely ignore these
words no matter where they are used in the program (except within a double period)
when using a 5 load number. The use of the individual parenthetical words will be de-
scribed as the procedures to which they apply are defined.

However, if any of these character combinations are used without the exact sequence
described above in their definitions, the character sequence will be considered not as an
ALGOL word to be ignored but as a bona fide part of the program. Hence, these charac-
ter combinations may be used as portions of names defined by the programmer. It should
be borne in mind that spacings, indentations, and blank lines may alter a NELIAC pro-
gram only in the possible determination of these ALLGOL words when a load number of 5
is used. They may never alter a NELIAC program when any other load numbers are
used.

NAMES AND NUMBERS
Definition of Names (Nouns and Verbs)

Names are the means by which the programmer refers to and manipulates the quan-
tities in which he is interested in NELIAC programs. In particular, each name defined
by the programmer is assigned a cell or location in the computer memory (or part cell
in the case of partial words). NELIAC names are divided into two major classes: nouns
and verbs. Nouns are those names defined in the dimensioning statement of the flow-
chart and the function definition. Verbs are those names defined in the program logic
(excluding the dimensioning statements of function definitions) and, as will be seen later,
are actually labels or names of procedures. The rules of formation of all names,
whether nouns or verbs, are the same and will be given here, although only the definition
and usage of nouns will be discussed. At the time the definition and usage of the various
verbs are discussed, it should be borne in mind that the general rules of formation of
NELIAC names given here apply to verbs also.

NRL REPORT 6664 7

Nouns are the means by which a programmer writing in NELIAC controls the use of
computer memory locations for storage. He assigns a name (specifically, a noun) to
each single memory location, to each group ¢f memory locations, to each part-memory
location (partial word), or to each group of part-memory locations used for storage. The
name itself is left to the imagination of the programmer, limited only in that it must be-
gin with a letter of the alphabet, must contain only letters, spaces, and numbers, and
must be uniquely determined within its first 16 characters, excluding spaces. Capital
and lower-case letters are interchangeable and may, therefore, be used at the discretion
of the writer. Single letters, with the exception of I, J, K, L, M, and N, are permissible
names. These letters—1, J, K, L, M, and N — when standing alone, refer to the six index
registers which are always automatically available as fixed-point, full-word integers
having four hexadecimal digit Input-Output (IO) format and which, consequently, must
never be dimensioned (except as temporary names or as dummy parameters in function
definitions). Although the NAREC does not have physical index registers, these six
names are always assigned addresses in the NAREC memory by the computer. Other
names used by the compiler will be discussed in the appropriate chapters and are listed
in Appendix C.

Examples of legal NELIAC names are:

Q
MA 10

INTEGRAL

12350 HL 543

BEGINNING OF FLOWCHARTS
FORMULA

COMMENT

Numbers

A constant is a value not defined by name in the dimensioning statement but written
explicitly in the program logic. Note the example

A2 +1 — A2

where 1 is the stated constant. A constant is thus distinguished from a variable, the lat-
ter being defined in the dimensioning statement and referenced by name throughout the
program logic. A variable may or may not actually change its value during the operation
of the program.

All numbers in NELIAC may be written in either one of two modes — fixed point
(integer) or floating point. Floating-point numbers differ from fixed-point numbers in
allowing for positive and negative exponents and for decimal fractions as well as integers
and, therefore, give a much greater number range in computation without requiring scal-
ing. These numbers are commonly and easily used in computer problems, since the
alignment of decimal points during computation is handled automatically. Since machine
operations on the two modes, fixed point and floating point, are quite dissimilar, care
must be taken to avoid mixing modes in arithmetic or store operations.

The initial values of variables to be used in a program are set in the dimensioning
statement, and names are chosen to refer to them. Throughout the program logic, vari-
ables are treated either as fixed-point or floating-point numbers according to the method
by which they are defined in the dimensioning statement. Once a variable has been di-
mensioned, there is no way whatsoever of changing its mode or format. In particular,
storing a number or variable into another variable of the opposite mode will place the

8 J. W. KALLANDER

internal representation of this number or variable into the variable but will not change
the mode of the latter variable. Hence, it is strictly forbidden.

With three exceptions, which will be pointed out as they occur, the forms of num-
bers, whether fixed point or floating point, are the same whether used in the dimension-
ing statement or in the programming logic. In all cases, positive numbers are unsigned;
negative numbers begin with minus signs.

Fixed Point (Integer) — Fixed-point or integer-mode numbers are of two forms —
decimal and hexadecimal. With one minor convention for printout only, all fixed-point
numbers are equally valid in dimensioning and logic.

Decimal — Decimal fixed-point integers are merely integers, which are unsigned if
positive and begin with a minus sign if negative. Examples of variables assigned fixed-
point decimal values in dimensioning are:

A=5 B=-107, C=0,
Examples of their use in logic are:
,~10 — A,
,25 - D — C,
,A - 476 - X,
,B/(-5) - ¥,

A dimensioning convention for printout purposes only is allowable in order to furnish
an arbitrary decimal point in output statements. This is accomplished by placing in the
dimensioning statement a plus sign at the position within the integer where a decimal
point is desired during output. For all purposes in logic except for printout, the number
will be considered as an integer just as if the plus sign is not there. An example is:

A =3 + 541,

This number is considered as 3541 in the program logic but is printed during output as
3.541. This form is not valid in logic; i.e., the statement 3 + 541 — A would cause the
integer 3 to be added to the integer 541 and the result 544 stored in the variable A.

In NELIAC-N the range of fixed-point integers which may be explicitly represented
is -(10'* - 1) through (10 '3 - 1) inclusive, although NELIAC-N will handle integers which
arise in calculations up to the range -(2 %% - 1) through (24* - 1) inclusive.

Hexadecimal — A number format conviently used by a programmer in any part of the
program is hexadecimal notation. Hexadecimal numbers in the computer are handled as
fixed-point integers and in NELIAC-N are distinguished from decimal fixed-point inte-
gers by a preceding hexadecimal (hexi) sign. Hence, one defines hexadecimal numbers in
the dimensioning statement as illustrated in the examples below:

HEXADECIMAL NR = #2ab7,

MASK 1 = #7f ffff ff,

HEXI TABLE (3) = #26a8,
#6754,
BEFFE,

NEG HEXI NR = -#3A7,

NRL REPORT 6664 9
Hexadecimal-integer constants are entered directly in the program logic and used in
arithmetic expressions in exactly the same manner as decimal-integer constants:
H#7e3 + B — A,
The hexadecimal notation may be used for fixed-point integers only, never for floating-
point numbers. The hexadecimal integers are signed just as other numbers; i.e., a plus
sign must be suppressed, and the minus sign immediately precedes the hexi sign.

The range of hexadecimal integers, when used as numbers, is -(24% - 1) through
(244 - 1) inclusive. However, NELIAC-N does accept 45 to 48 bit (12-hexadecimal digit)
hexadecimal numbers in the machine-language sense of a NAREC word.

Floating Point — In both dimensioning and logic, there are two valid forms of
floating-point numbers — decimal notation and scientific notation — although each has a

more general valid form in dimensioning than in logic.

One special rule which must be borne in mind is: iz NELIAC-N the constant zevo,
whether fixed or floating point, must be written as a fixed-point zevo in logic.

Decimal Notation — In decimal notation, a floating-point number is written with a
decimal point within the number. In addition a leading decimal point is valid in dimen-
sioning but not in logic; a trailing decimal point is valid in either case. Examples in the
dimensioning statement are:

PI = 3.14159,

ZERO = 0.0,

E = 2.7182818,

FIFTEEN = 15.,

X = .012345,
and in logic are:

,A-1.068 - C,

,1.0-D - X,

,0.0241 — Y,

,-25.0 — Z,

The range of floating-point numbers in the decimal notation is ten digits counting
from the most significant nonzero digit.

Scientific Notation — Floating-point numbers in scientific notation are characterized
by multiplying the number by a power of ten, the ten being only implicitly stated. In the
dimensioning statement the number may or may not contain a decimal point; in the pro-
gram logic it must contain a nonleading decimal point. All forms of floating-point num-
bers given below for dimensioning are valid forms for use in the program logic with the
single exception of the form (number without a decimal point) * (exponent).

For example, the number 500 is written in scientific notation as 5 - 10%. In the
NELIAC dimensioning statement this number might be written as 5 * 2. This number

10 J. W. KALLANDER

may also be written as 50.0 * 1 (implying 50.0 - 10') or as 5000.0 * -1, 5. * 2, 500.,
500.0, etc. Numbers of very small or large magnitudes are thus conveniently written;
e.g., the number 0.00005 is written in scientific notation as 5 - 10~ and in the NELIAC
dimensioning statement as 5 * -5 as an alternate form. A positive exponent may be un-
signed or preceded by a plus sign; a negative exponent is preceded by a minus sign. The
following examples illustrate proper dimensioning of floating-point numbers in scien-
tific notation:

HUNDRED = 100 * 0,
PI = 0.31416 * 1,
OMEGA = 4.25 * -3,
ZERO = 0 * 0,
MILLION = 1 * +6,
Examples in logic are: ‘
,1.0 ¥ -6 — TOLERANCE,
,0.4* 4+ A— B,

If the form (number without a decimal point) * (exponent) is used in logic, it will be
treated as the multiplication of two fixed-point integers.

The range of scientific-notation floating-point numbers in NELIAC-N is 10 23!
through 10 *3°7 with characteristics of 36-bit significance (10 decimal places).

THE DIMENSIONING STATEMENT (NOUN LIST)

The NELIAC flowchart, as described in the Introduction, consists of two major
parts — the dimensioning statement, also known as the noun list, and the program logic,
also known as the logic. The purpose of the dimensioning statement is to define the
nouns and assign modes, initial values, formats (if any), and storage locations to them
for use in the program logic. Hence, the purpose of this section is to define and describe
the various types of nouns allowable in NELIAC-N.

Appendix B is a flowchart illustrating the various forms of nouns available in
NELIAC-N. The forms illustrated are typical dimensioning entries but are, by no
means, exhaustive of the various forms and combinations available.

Single-Location Variables

Each noun is assigned an unalterable fixed-point or floating-point mode at the time
of its definition as a result of the way it is defined. The simplest type of noun is the
full-word single-location noun with no (nonzero) initial value or number format (for out-
put purposes). Such a noun is defined by writing the desired name of the noun and fol-
lowing it with a comma for the fixed-point mode or a period for the floating-point mode.
Examples are:

FIXED POINT, FL PT. FX PT ZERO, FL PT ZERO.

NRL REPORT 6664 11

Such nouns are assigned initial values of zero and are frequently referred to as working
locations.

Such a noun is assigned a nonzero initial value and a number format by writing its
name followed by an equal sign and the desired number, with the entry terminated by a
comma (even in the case of the floating-point mode). The mode and initial value of the
noun will be the mode and initial value of the number, respectively. Examples are:

THREE

3, FL THREE = 3.0,

ZERO = 0, TOL = 1.0 * -6,

One-Dimensional Arrays (Lists)

When defining a one-dimensional array or list of variables, the size of length of this
list also must be indicated. The number in parentheses immediately following a name
indicates the number of entries in the table. Irrespective of the mode associated with
the name, this list length must always be an unsigned fixed-point integer — either deci-
mal or hexadecimal.

If the list is not to be assigned an (nonzero) initial value or format, the fixed-point
and floating-point modes are indicated, respectively, by a comma or period immediately
following the parentheses. Examples are:

PMATRIX (100), T TAB (25).

One-hundred memory locations are thus reserved for 100 fixed-point (integer) values
and 25 memory locations for floating point values, which may be computed and stored
into these locations during operation of the program.

If the various memory locations reserved for a table are to be assigned initial val-
ues and number formats, the parentheses specifying the length of the list is followed by
an equal sign rather than a comma or period, and after the equal sign the values of the
initial entries, separated by commas, are written. Suppose a list is to contain five vari-
ables. Then five memory locations of the computer must be allocated. The following
example defines such a list of fixed-point numbers called TAB X:

TAB X (5) = 5, 45, 8, -3, 8,

As shall be studied in detail later, individual values of the list may be called upon in the
program logic through subscripting of a single name, in this case TAB X. In mathemati-
cal notation a subscript usually is written as a small character below the line, e.g.,
TAB X, to indicate the first entry of the list, in this instance, to reference the location
containing the value 5. TAB X, would refer to the second entry (the value 45), etc. In
the NELIAC language, subscripting is indicated by the use of brackets around the sub-
script in the following manner: TAB X [0], TAB X [1], TAB X [2], etc. Since subscript-
ing in NELIAC begins with zero, not one, TAB X [3] refers to the fourth entry of the list
which (above) contains a value of -3. Since the name TAB X without subscript refer-
ences the first entry of the list, the use of the notation TAB X [0] is redundant, but it is
nonetheless legal.

Note, in the following example, that 25 locations are allocated for a list named
XCOORD, but only five fixed-point initial values of the list are specified:

XCOORD (25) = 10, 5, -8, 3, 2,

12 J. W. KALLANDER

The remaining locations of list XCOORD, since initial values are not explicitly specified,
will contain zero quantities.

A list of floating-point values is defined in a manner similar to a list of fixed-point
values — the defining name followed by the number (in fixed-point notation) of entries in
the table enclosed within parentheses. However, the entries themselves must be written
in floating-point notation:

FLTING TABLE (5) = 5 * 3, 1.23,
0.34, 4.2,
10.8 * -1,

Zeroes may be dimensioned implicitly in any cell of a list by the proper use of
punctuation. Zeroes may be stated explicitly, or as in the example below, by commas:

XMATRIX (9) = 5, 6, 7,
) '3: 4’
y 2’

A list, initially zero, later to be filled by the program with computed floating-point
values, may be defined in the following manner:

T TAB (25) = 0 * 0,
or
T TAB (25) = 0.0,

Because of this definition, any variable referenced in the program logic by the name T
TAB and a subscript (which may be implied for T TAB [0]) will be treated as a floating-
point variable.

In all cases the mode and format assigned to the list name is that of the last number
of the list explicitly stated. Irrespective of the number of entries in the table of initial
values for a list, the actual length of the list will be that specified by the list length in
parentheses immediately after the name. If the number of entries exceeds the list length,
those entries remaining after the list is filled will be lost. However, the mode and for-
mat of the list will be that of the last entry actually specified in the list definition rather
than the last entry actually dimensioned in the object program.

Two-Dimensional Arrays (Arrays)

In addition to lists, NELIAC-N also allows the dimensioning and referencing of two-
dimensional (but no higher) arrays, which will be referred to as arrays for brevity.

An array is defined exactly the same as a list except the parentheses specifying the
list length contains, instead of a single, unsigned NELIAC integer, two unsigned NELIAC
integers separated by a comma. The first integer specifies the number of rows; the
second integer specifies the number of columns (hereinafter referred to as the column
count) in the array. The permissible form of each of these numbers is the same as the
permissible form of a list length. All dimensioning forms permissible for dimensioning
lists (fixed-point working locations, floating-point working locations, initial values, par-
allel names, temporary names, partial words, absolute addresses, etc.) are permissible

NRL REPORT 6464 13

forms for dimensioning arrays and have the identical appearances and meanings. The
sole difference between a list definition and an array definition is the specification of the
length and arrangement; i.e., the former contains a single integer within its defining
parentheses, and the latter contains two integers separated by a comma within its defin-
ing parenthesis.

The elements of an array are specified by rows in the source program and are
stored by rows in the resulting object program. Hence, an m * n matrix.in which the
element in the ith row and jth column (counting from zero) is represented as a;; can
be defined as:

MATRIX (m, n) = @49, 8¢5y ++5 g n-1

Q105 211y +++5 A1 -1,

An-1,09 1,20 0 Ry 101

where m and n (the column count) are unsigned NELIAC-N integers, and the a i 's are
any NELIAC-N numbers-fixed point or floating point, unsigned or negative, As usual,
the exact arrangement of the array on the coding sheet is immaterial, so the individual
programmer may use any convenient arrangement. The compiler merely processes the
elements in succession, the same as it does for a list.

Some typical array definitions are:

(a) FX PT ARRAY (5, 7),

(b) FL PT ARRAY (8, 3).

(c) ARRAY (7,17) =,, 1, -2,, 7, #1000,

Example (a) defines an array named FX PT ARRAY which contains five rows and seven
columns (a total of 35 elements), is of the fixed-point mode, has no format, and has all
of its elements initially of zero value. Example (b) defines an array named FL PT
ARRAY which contains eight rows and three columns (a total of 24 elements), is of the
floating-point mode, has no format, and has all of its elements initially of zero value.
Example (c) defines a square array of order 7 named ARRAY, which is of the fixed-point
mode, has a four-digit hexadecimal format, has the elements of its first row 0, 0, 1, -2,
0, 7, and -#1000, in order, and has its remaining 42 elements all of zero value.

Partial Word Definitions

So far, all storage variables have been discussed in terms of a full 48-bit word or
memory location per variable. In this section it will be seen that any continuous portion
of a memory location (i.e., selected bits*) can be defined as a fixed-point (integer) vari-
able. In the program logic any continuous portion of a variable can be manipulated quite
easily without disturbing the rest of the bits of the memory location to which the variable
is defined.

*Conventionally, the term bit is the name given to each of the 48 flip-flops, which to-
gether comprise a NAREC memory location. This name is derived from binary digit
because it can contain either of the values 0 or 1.

14 J. W. KALLANDER

It will be convenient to use the following bit-number assignments for any 48-bit
memory location:

47 46 45 v 2 1 0 bit number
most least
- significant significant >
bits bits

It is possible, and often convenient, to define a variable as certain bits of another vari-
able. Since these variables reference only part of a 48-bit memory location, they are
called partial words and are considered to be variables themselves. Partial words are
always defined as certain bits of a variable which itself is defined as an ordinary full-
location variable (although this variable need not be explicitly named and dimensioned).
To define a partial-word variable as certain bits of a full-word variable, the name of the
full-word variable is followed by a colon and the partial-word definition enclosed in
braces. Within the braces, the partial word is defined by following its name with the bit
limits enclosed in parentheses — the lower bit limit followed by a right arrow followed by
the upper bit limit. For a single location variable with no initial value or format, the
definition is terminated by a comma. For example, if X is to be bits 39 to 47 of variable
A, one would define this in the dimensioning statement, along with the definition of A, as
follows:

A: {XB9—4n},
The full-word variable need not be defined; e.g.,
{X(39 — 47},

In both of the above examples, reference to X in the program logic affects only the
nine bits 39 — 47 of the memory address where X is assigned.

Partial words may be defined as lists and arrays just as full-word variables are;
e.g.,
B: {Y(5 — 11)} (10),
{Z(17 - 18)} (5, 3),
Any number of partial words may be defined as any consecutive bits of a memory

location by repeated definitions separated by commas within the braces of the partial-
word definition; e.g.,

A: {B(0 —0), C(5 — 11), D(5 — 11), E(0 — 9) },

Obviously, the main advantage in using part-location variables is to pack a number
of variables, whose ranges of values are small, into the same memory location. An
illustration of a typical use of a list of packed partial words follows:

X coordinate (15 bits)

Y coordinate (15 bits)

height in 1000-ft units (6 bits)
status (3 bits)

identity (3 bits)

track number (6 bits)

NRL REPORT 6664 15

This data can be packed into 100 48-bit words of NAREC memory by writing the
dimensioning statement as follows:

AIRCRAFT: {X(0 — 14), Y(15 — 29),
HT(30 — 35), STAT(36 — 38), ID(39 — 41),
TN(42 — 47) } (100),

Note that the initial values of all of these variables are zero. There is no convenient
way to set the partial words to desired initial values, since only entire words may be as-
signed nonzero initial values. Hence, to dimension initial values for this list, X, Y, HT,
STAT, ID, and TN would have to be combined into the full word AIRCRAFT for each
entry in the list. Then, of course, the initial values may be assigned in the normal man-
ner for lists. An alternate solution would be to use the appropriate constants to assign
the desired values in the first part of the program logic, i.e., 3052 — X[0], 20425 — Y[0],
ete.

Note also that each of the partial words in the list AIRCRAFT: X, Y, HT, STAT, ID,
and TN are lists of 100 variables. Thus, to reference the X coordinate of the 10th air-
craft one would write X[9] [or equivalently AIRCRAFT [9](0 — 14)].

Addresses of Names

At times it is convenient for a variable to have as its initial value the address (loca-
tion) of another variable (or, in general, the address of any name). This is handled in
the dimensioning statement by following the name of the variable being defined with an
equal sign and a set of braces enclosing the name whose address is to be the initial value.
Of course, the name which is enclosed by the braces must be defined elsewhere in the
program.

EXAMPLE:

To define the variable ADRC and give to it as its initial value the address of the
name C, the dimensioning statement must contain:

ADRC = {C},
A table of addresses may also be defined in the dimensioning statement; for example,
J TABLE = {P, Q, R, S},

J TABLE [0] contains the address of the routine P, and successive locations con-
tain the addresses of the routines Q through S.

Absolute Addresses — Dimensioning

Although the choice of address assignment for a variable is normally left to the
compiler, one may choose the location of a variable in the following manner:

A = {#3ac5},

As a result of this assignment, the address of variable A becomes #3ac5, but the loca-
tion #3ach is not altered by the compiler; i.e., it is not zeroed and there is no way to.
assign it any initial value via the dimensioning statement. Obviously, A may be treated
as a list consisting of consecutive locations #3ac5, #3ac6, etc. The number assigned as
the address must be either a decimal or hexadecimal integer.

16 J. W, KALLANDER

Although a list length is optional since it is meaningless to the compiler, if an array
is to be assigned an absolute address, the array size must be specified in the normal
manner; e.g.,

A (7, 11) = {#3ac5},

The mode of a variable defined in this manner is determined by placing either a
comma or a period after the right brace, a comma assigning a fixed-point mode to the
variable, and a period assigning a floating-point mode to the variable. The variable A
may be defined in the floating-point mode as follows:

A = {#3ac5}.
Note that a mode, but not a format, may be assigned to such a variable.
Partial words may also be assigned absolute addresses; e.g.,
A: {B(0 — 5), C(6 — 12), D(44 — 44)} = {#1000},

Since the compiler does not take the assignment of absolute addresses into account
in the compilation of the rest of the program, this notation should be used only for as-
signing addresses outside of the range of the compiled object program. In addition, it
should be used for the assignment of absolute address zero, normally only for the pur-
pose of securing a variable of floating-point mode with a zero address, although it also
may be used for accessing absolute address zero in either the fixed-point or floating-
point mode. When defined as absolute address zero, this variable, when appearing in the
program logic, must always be subscripted by some quantity other than an explicit zero.

Parallel Names — Nouns

NELIAC-N provides for the parallel definition of all forms of names which may be
defined either in the dimensioning statement or in the program logic. This means that
whenever a name is defined, any number of additional names may be defined to have the
same meaning, all of the names being completely interchangeable in their use. In all
cases, except in the definition of partial words which inherently contains its own means
of parallel definitions, names are defined in parallel to the initial name by simply insert-
ing immediately after it a colon and the second name. This process of ""colon name'' may
be repeated indefinitely, thereby defining any number of names in parallel (subject to
overall compiler space limitations, of course). Whatever would have followed the single
name now follows the last ""colon name'" in the parallel definition. Examples in the di-
mensioning statement are

A:B:C,
D:E:F:G.
Al : A2 = 57.185,
B1: B2 : B3 (20).
Since any number and arrangement of partial words may be defined in parallel, the

definition of identical partial words in parallel is merely the special case where both bit
designations of two or more partial words are identical; e.g.,

LA:B{C(5—T), D6 —T), E(6 — 18)}.

In this case, the names C and D are interchangeable throughout the program.

NRL REPORT 6664 17

PROGRAM LOGIC (LOGIC)

The second part of the NELIAC flowchart, the program logic, is the executable por-
tion of the program. It is in this part of the program that the solution of any problem is
translated into NELIAC statements, manipulating the nouns defined in the dimensioning
statement. Hence, this section will define and describe the various statements permis-
sible in the NELIAC-N program logic.

Arithmetic Operations

Basic Operations — The basic arithmetic operations in NELIAC are denoted by the
following symbols:

+ addition

- subtraction

* multiplication
/ division

T exponentiation

A mathematical expression may be built up with any combination of these operators, and
algebraic grouping may be as complex as desired. Every series of arithmetic opera-
tions must terminate with the storage of the results in either a named variable or an in-
dex register by the use of a right arrow, must terminate in a comparison, or must ter-
minate by both storage and a comparison. A NELIAC statement is completed in this
manner, and every such statement is terminated by a comma (or its equivalent in special
cases). It must be remembered that the mode of the values used in any one expression
must be consistent; i.e., fixed-point variables and constants may not be mixed with
floating-point variables and constants. X this rule is violated, no diagnostic statement
will occur during compilation; in general, incorrect coding will be generated. For ex-
ample, if a variable LOAD has been defined in the dimensioning statement as a floating-
point variable, the following statement would be illegal.

,LOAD + 5 — LOAD.

Nor should the result of a fixed-point computation be stored into a floating-point vari-
able. For example, if the name RESULT is dimensioned as a floating-point variable and
the name INTEGER references a fixed-point variable, then the following statement would
be illegal:

,INTEGER/5 — RESULT.
Again no diagnostic statement will occur during compilation, but the value in RESULT
will be incorrectly interpreted during subsequent use. The sole exception is the zeroing
of a floating-point location. If the name RESULT is dimensioned as a floating-point vari-
able, the following example would be legal:
,0 » RESULT,

i.e., the representation of a fixed-point zero is used.

18 J. W. KALLANDER

In NELIAC-N a statement may terminate in a sequence of store instructions. In
fact, a store instruction need not in itself terminate the series of arithmetic operations,
since the store instruction and all five of the arithmetic operations listed at the begin-
ning of the chapter are legal immediately after a store instruction. An example is:

A*¥B-Co>D—->E+F—-H-I-J*K->L/M->N*x2T7
-0-P—Q,

Hierachy of Arithmetic Operations — The hierarchy of operations consists, first, of
exponentiation, in sequence from left to right, second, of multiplications and divisions in
sequence from left to right, and, third, additions and subtractions also in sequence from
left to right. Parentheses may be used to alter the sequence of operations as needed.
The only use for the exponentiation symbol is to multiply or divide a fixed-point variable
by a positive power of 2. In fact, B * 2 T 5 — B merely shifts (cycles) arithmetically the
contents of B to the left 5 binary places. On the other hand, division by a positive power
of 2 arithmetically shifts the variable to the right the indicated number of places.

In NELIAC-N the notation B * 1 5 — B results in the full-register (48-bit) shift of
the contents of B to the left 5 binary places. The corresponding division notation is used
for the full-register right shift. In all cases the shift must be specified explicitly as a
fixed-point integer; i.e., 2 name is not permissible.

The following examples illustrate the hierarchy of arithmetic operations (all state-
ments below are legal):

EQUIVALENT NELIAC

NELIAC STATEMENT STATEMENT °
1) A +B/C —D, A + (B/C) - D,

2) A+B/C+D*E —F, A+ (B/C)+(D*E) —>F,
3) A*215/B —Y, (A*215)/B—Y,

4) A/B/C - 2, (A/B)/C — 2,

5 A/B*C —Z, (A/B) *C — Z,

6) A~-B*C+D =P, A-(B*C)+D—P,

7) A/B*D/C - P, ((A/B) * D)/C - P,

Fixed and Floating Point Packages — Since the NAREC is a fractional machine and
does not have wired-in floating-point operations, integer multiplication and division and
the floating-point operations are done interpretively.

Fixed-point multiplication and division are accomplished through return jumps to
the subroutines MULT1PLY and D1V1DE, respectively, these subroutines being in the
fixed-point package which is automatically compiled into any program requiring it.

Likewise, floating-point addition, subtraction, multiplication, and division are ac-
complished through return jumps to F1ADD, F1SUB, FIMUL, and F1D1V, respectively, in
the floating point package which is automatically compiled into any program requiring it.

Hence, use of these names must be avoided by the programmer, since he can never
be sure when either or both of these packages will be called into a program containing
his flowchart. Note that these names all contain "ones' rather than "eyes' and "ells."

NRL REPORT 6664 19

Transfer of Control

This section describes the transfer of control by means of straight jumps to entry
points and return jumps to subroutines.

Entry Points and Straight Jumps — In programming, certain conditions which neces-
sitate skipping over portions of the program to some other point of entry may be met
within the program logic. This would necessitate transfer of control of the program to a
set of statements other than those continuing in natural sequence. It is necessary, there-
fore, to label or define that set of statements to which a jump is to be made. This is ac-
complished by assigning a name (which is thus classed as a verb), preceded by punctua-
tion and followed by a colon, to any portion of the program logic:

LADD: A+B+....

A jump to this segment of the program is specified by the use of a period following the
definitive name. A statement such as

,LADD.

would immediately transfer control, or jump, to that portion of the program so defined,
in this case, A+ B +.... The ALGOL word GO TO described in the Introduction may be
used for descriptive clarity in the flowchart, in which case the above example becomes

, GO TO ADD.

As is the general case with ALGOL words used in NELIAC, the GO TO is completely
parenthetic. The jump is established by the operator combination

(punctuation) NAME.

In the following example, a jump made to MULTIPLY would execute every statement
following, including those labeled COMPUTE. The natural sequence of the program is
followed unless otherwise specified by a jump statement:

,ON: NR PASSES — CT PASSES,
MULTIPLY: A* (B+C)*D — Z,
P*¥XQ-—-Y,
COMPUTE: (G * H)/(Y * Z) — Z0O,

The assignment of meaningful names to such NELIAC paragraphs often gives greater
coherence to a program even though a jump to that name is not specified; this device
then becomes merely a labeling device which in itself does not cause generation of ma-
chine instructions.

Subroutines and Return Jumps — In some cases a return jump is desirable; i.e., a
jump is made to a special segment of the program called a subroutine. After the sub-
routine has been executed, control is to be returned to the point of the program logic
immediately following that from which the jump was made.

The manner by which a subroutine is named is familiar — any unique name which is
thus classed as a verb preceded by punctuation and followed by a colon — however, the
limits of the subroutine must be defined by braces. The subroutine may be as long and
complex as desired as long as the limiting braces surround it. Hence, a subordinate is
easily recognized by the sequence: punctuation, name, colon, left brace, etc.

20 J. W. KALLANDER

An example of a subroutine is:
,GENERATE: {RAND, X *Y — Z}

To execute the statements within the braces, the subroutine must be called in the follow-
ing manner (elsewhere in the program logic):

,GENERATE,

where the definitive name is followed by a comma (except in a special case where the
comma is redundant), indicating a return jump to the subroutine. The ALGOL word DO
may be used here for additional clarity in the printed copy, the word DO, of course, being
parenthetic. In this case the preceding example becomes:

, DO GENERATE,

Notice that within the subroutine GENERATE a call for another subroutine RAND is
made. After execution of the statements which must be defined by RAND elsewhere in
the program, the value of X * Y is stored into the variable Z, and control is transferred
back to the statement following the call for GENERATE.

To avoid having the sequence of the main program logic inadvertently flow into a
subroutine, all subroutines are customarily written at the end of flowcharts. It is neces-
sary to program jumps around such defined subroutines if they are placed in the way. An
example will serve to clarify this point:

,A + B — C, CLEAR, NEXT.
CLEAR: {0 o I>J >K—>L —>M—> N}
NEXT: C + D — E, etc.

In this example, A + B is stored into C, then the six index registers I thru N are
cleared to zero by calling on the CLEAR subroutine. Then to keep the program from
illegally trying to execute the CLEAR subroutine as the next sequence of instructions, it
is necessary to jump around it to location NEXT, where C + D is stored into E, etc.

It must be noted that while any number of subroutines may be called within another
subroutine (except the subroutine itself, of course), no subroutine may be defined within
another subroutine.

Subscripted Names

The individual locations of a list or an array are accessed in the program logic
through the subscript notation.

Lists — Suppose, as an example, it is desired to compute the sum of the squares of
fifty numbers, X, to X,4, and store the result in SUMSQ. Each element in this list of
fifty variables may be called upon by subscripting the name of the list X. Subscripting
is accomplished by the use of brackets [] surrounding the number indexing the individual
element of the table. Remember, in NELIAC, subscripting begins at zero and not one;
thus, X[0] would refer to the first value of the table, while X[49] would refer to the last,
i.e., the fiftieth.

Indexing also may be done via one of the six index registers of the compiler, refer-
enced by the names I, J, K, L, M, and N or by any fixed-point entire-word variable

NRL REPORT 6664 21

dimensioned by the programmer. These registers may be treated in a manner similar to
any fixed-point variable. Within the program logic, therefore, an element in a list may
be referenced by X[I], and the index register I augmented as necessary.

The basic and most efficient form of subscripting in NELIAC-N is

OPERAND [SUBSCRIPT + number]
The exact address or location represented by this expression is obtained as follows:
take the address of the name OPERAND as the base address, add to it the integer cur-
rently contained in the location identified by the name SUBSCRIPT, and add or subtract
(as the case may be) the explicit value of number. The resulting address is the address
of the variable being referenced by the given expression. In the expression, OPERAND
may be any name dimensioned in the program, SUBSCRIPT may be any fixed-point
entire-word noun dimensioned in the program (including the index registers I, J, K, L, .
M, and N, automatically dimensioned for the programmer), and number may be any un-
signed fixed-point integer — decimal or hexadecimal. In this general expression all de-
generate cases formed from the suppression of any one or any two of the three quantities
involved are valid forms having the meanings immediately derivable from the general
form.

With this information, one method of accomplishing the sum-square problem is:

BEGIN:

0 — I — SUMSQ,

COMPUTE SUMSQ:

X[1] * X[I] + SUMSQ — SUMSQ,

I+1 —1I=50: EXIT. COMPUTE SUMSQ.
EXIT:

All subscripting is accomplished by fixed-point variables, including the index regis-
ters and/or fixed-point constants, though, of course, the values in the list being sub-
scripted may be all fixed point or all floating point.

The following list contains examples of legal-subscripted variables:

MAST[2]

X[J]

TNT[K + 2]

Z[J - 3]
W[INDEX]
Y[NAME - #300]
V[-50]

In general, subscripted variables are treated just like ordinary variables. For example,
they may be used in arithmetic expressions, such as:

22 J. W. KALLANDER

A[I + 2] + B[J - 3]/C[10] — D[M]

This basic form of single subscripting is the most general form permissible in out-
put statements. However, the most general form permissible elsewhere in the program
logic allows, in place of the fixed-point noun SUBSCRIPT, the sums and differences of up
to seven such fixed-point nouns. The first noun may be unsigned or preceded by a minus
sign. Hence, the most general form of single subscripting is

AB+C:+D=+E =+ F +G = H + number]
or

A[-B+C+D:+E + F+ G + H + number]

where A may be any noun or jump switch; B, C, D, E, F, G, and H may be any full-
word fixed-point nouns (including index-registers); and "nmumber' may be any fixed-point
integer. All degenerate forms obtained through the suppression of any of the names
and/or the number are valid and have their normal meanings.

The additive subscript is evaluated by determining the value of the expression within
the brackets and modifying the address of the operand A (if present) by this value to se-
cure the true address to be referenced. If the operand A is suppressed, the value of the
expression within the brackets is the actual absolute address to be referenced in the
NAREC.

Examples of valid subscripts in the program logic are:
A[-1]
B[-J + 53]
CD-K-E+I-F-Z-12-#200] (56— 10)
[ADDRA + IJ

Arrays — The individual elements of an array are referenced in logic (except within
output statements) through subscripting, just as the elements of a list are referenced.
The sole difference in notation is that the double subscript for an array contains, within
the subscript brackets, two subscripts separated by a comma. The first subscript is the
row subscript; the second is the column subscript. Both subscripts start from value
zero. Hence, the subscripts of an array of order m * n range from [0, 0] to [m - 1,

n - 1]. The general form of both the row and column subscript is that of the most gen-
eral form of the single subscript as defined in the preceding section, except that the total
number of names appearing within the subscript brackets may be up to six (distributed
in any manner between the row and column subscripts), and each is evaluated exactly as a
single subscript is evaluated. The actual address referenced is then blindly evaluated as
the address of the operandplus the column subscript plus the product of the row subscript
and the operand column count. The rules concerning the usage of double-subscripted
variables in logic (external to output statements) are identical to those for single-
subscripted variables. All degenerative forms obtained from the most general form of
double subscripting are valid and have their usual meaning with the single exception of
degenerate forms with an unspecified operand (the form of absolute addressing in logic).
This form is not allowable, since the value of a double subscript depends on the column
count of the array specified as the operand.

Some examples of double subscripts are:

NRL REPORT 6664 23

A3, 4]

B[L, J]

c[1-1, 2]

DI, J + 7]

E[UI-J +3,L - 2]

F[-Ul+J - UK-3,L-M - UN + #100]
G[-I+A-J+C-K+X - 83,-3]

Note that each double subscript consists of a row subscript followed by a column sub-
script and separated from it by a comma. Each row and column subscript consists of an
operand(s) and a number, one of which may be nonexistent. In the case of additive sub-
scripting, the appropriate addition(s) and/or subtraction(s) are performed and the re-
sult(s) stored in a temporary location(s) immediately prior to the subroutine entry.
Hence, just as the single-subscript subroutine always analyzes a subscript of the general
form OPERAND [SUBSCRIPT OPERAND = subscript number], the double-subscript sub-
routine always analyzes a subscript of the general form OPERAND [ROW OPERAND +
row number, COLUMN OPERAND = column number].

The elements of an array may be accessed through single subscripting as well as
double subscripting. For example, the elements of the array A(7, 5) may be accessed
through a single subscript ranging from A[0] through A[34].

Jump Tables and Subscripted Straight Jumps — One useful feature of the NELIAC
language is that of the jump table, another method of branching within the program logic.
Jump tables are defined within the program logic by punctuation, a unique name (which is
thus a verb), a colon, and a series of jump commands; e.g.,

,JTABLE: JUMPA. JUMPB. JUMPC.
A jump command to an element of this jump table may be written as
,JTABLE [1].

which indicates an unconditional jump to the Ith element (starting with 0, as usual) of _
the jump table which is, in turn, a command to jump to a portion of the program defined
elsewhere. For example, if the value of index I is 0, the above command will cause a
jump to JUMPA, etc.

Subscripting may be applied only to straight jumps, i.e., jumps to entry points, and
may not be applied to return jumps, i.e., subroutine calls and function calls. Obviously,
only single subscripting is applicable to jump tables.

Absolute Addresses-Logic — Another NELIAC feature similar to the absolute ad-
dresses discussed in the section Absolute Addresses — Dimensioning, but applicable to
the program logic rather than the dimensioning statement, refers to the contents of a
particular address rather than the address itself. This is accomplished by using a single
subscript alone, without reference to a named variable. This use of the subscript in the
program logic will then refer directly to the corresponding absolute address in the mem-
ory of the computer itself. The following examples should clarify this point:

24 J. W. KALLANDER

NELIAC Statement Notes

(2] — A, The contents of memory location 2 are stored into the
variable A.

1] — A, The contents of the memory location whose address is in

I are stored into the variable A.

,[B + 10] — A, The contents of the memory location whose address is
10 greater than the address that is in B are stored into
the variable A.

LA — [#705], The value contained by the variable A is stored into
memory location #7b5.

,[B] +[2] — [B + 10], The contents of the memory location whose address is
in B plus the contents of memory location 2 are stored
into the cell whose address is 10 greater than the ad-
dress that is in B. :

J - I+J-K+A-17] -C, The contents of the memory location whose address is
the value of the expression -I +J - K+ A - 7 are stored
into the noun C.

Subscript Packages — In NELIAC-N, single subscripting by name is accomplished
through a return jump to the subroutine SUBSCRI1P and double subscripting through a re-
turn jump to the subroutine SUBSCR2P contained in subscript packages which are auto-
matically compiled into any program requiring them. Hence, these names must not be
used by the programmer.

Decisions

Comparison Statements — Comparison statements are the means by which questions
may be asked regarding relative values of two or more variables or constants. Almost
any meaningful question may be asked in the comparison statement by using the following
comparison operators:

< >S=#= =

Basic comparison statements are illustrated below. Note the colon must end the com-
parison statement:

A < B:
JA > B

ES
n
9]

-

> b b
A

= B:
A = B:

These operators may be joined in the general form

, A<B=C =Detc.:

NRL REPORT 6664 25

where the comparison statement has its usual mathematical meaning. Immediately fol-
lowing the question (comparison statement) two alternatives are written. The first alter-
native will be executed if the answer to the question is true and the second if the answer
is false:

Comparison Statement First Alternative Second Alternative

A = B: TRUE; FALSE;

An alternative may consist of one or more statements, the last of which is terminated by
a semicolon (or a period in a special case), rather than a comma to indicate the end of
the alternative as well as the end of a statement. Unless an alternative itself breaks up
the normal sequence of the program logic by specifying a straight jump to some other
part of the program logic, the statement following the false (second) alternative will be
executed next. Consider the following examples:

C=D:
A*C—E, I+1—1;
B* C — E;
COUNT + 1 — COUNT,

Here a comparison is made: if the value in C is greater than or equal to that in D,
then execute the true alternative which stores the product of the values in A and C into
E and adds 1 to index I. If the value of C is less than that of D, execute the false alter-
native which stores the product of the values in B and C into E. In either case, con-
tinue by executing the statement following the false alternative which adds 1 to COUNT,
etc.

In order to make the NELIAC program easier to read, the ALGOL words IF and IF
NOT, (parenthetic as always) may be added to the comparison-statement complex. For
instance, the last example may be written:

IF C =D:
A*C >E, I+1—1;
IF NOT, B * C — E;
COUNT + 1 — COUNT,

These words do not add any meaning to the program, however, and are ignored by the
compiler during compilation.

Constants and the index registers of the compiler also may be used on either side of -
a comparison statement. Again, however, care must be taken to avoid comparing fixed-
point values with floating-point ones. Algebraic grouping may be as complex as desired
on the left side of a comparison statement, but the right side must consist of a single,
unsigned variable (which may be subscripted and/or bit-handled) or an unsigned constant.
Thus, the following statement is legal:

(A + B)/C >D: TRUE; FALSE;

while a case such as

26 J. W. KALLANDER

(COMMENT: ILLEGAL STATEMENT) D = (A + B)/C: TRUE; FALSE;

is illegal. Note in the case of comparison statements the result of an algebraic expres-
sion is not necessarily stored into a variable, although it may be:

(A + B)/C — X > D: TRUE; FALSE;
Return jumps and unconditional jumps are legal commands within either alternative.
In the case where unconditional jumps are made, the period(s) specifying the jump(s), in-
stead of the semicolon(s), will end the true and/or the false statement, e.g.,
A > B: START. END.
A = B:
C —D, 5.0+ E — F, BEGIN.
RAND, 1 +J — J, FINISH;

Notice how the return jump made to the subroutine FINISH is indicated as FINISH; .
Though FINISH,; is not in error, the comma would be redundant in this case.

Consider another illustration of the comparison statement: suppose it is desired to
set Y to one of three values according to the following criteria:

Y = 8.72 if0=X<10.9
Y = 16.19 if 10.9 = X < 21.6
Y = 24.07 for any other value of X

Then, the program is to continue by transferring control to MORE. A NELIAC solution
might be:

0 =X < 10.9: ONE, MORE.
10.9 = X <€ 21.6: TWO; THREE; MORE.
ONE: {8.72 — Y}
TWO: {16.19 — Y}
THREE: {24.07 — Y}
The above solution is by way of illustration. A better solution would be:

0=X<10.9:
8.72 — Y;
10.9 = Y < 21.6:
16.19 - Y;
24.07 - Y;;
MORE.

NRL REPORT 6664 27

Note that it is always mandatory to indicate the end of each alternative with either a
period or a semicolon once a comparison statement is written.

If nothing is to be done within a single alternative, a semicolon suffices (and is nec-
essary) to indicate continuation of the sequence of the program; e.g.,

AC: ;X—1%2; Y- H,

In the case that the relationship in the above example is true, no statements are ex-
ecuted and the sequence of the program continues with the value of Y being stored into
H. If any part of the relationship is false, X is stored into Z and the sequence continued
with Y being stored into H. The situation may be reversed and nothing done if the rela-
tionship is false; e.g.,

AC: X—-Z;; Y—H,

In all cases, the termination of each alternative must be indicated by either a semicolon
or a period. The number of statements used in either alternative is unrestricted.

Nested Decisions — Decisions may be nested within other decisions. Note the fol-
lowing example

,LOLIMIT < XCOORD:
RAND, X = MSW PROB:
5 — MINETABLE:
-1 - MINETABLE;;
NULL — MINETABLE;

Begin with the comparison LOLIMIT < XCOORD. If the relationship is true, the
statements of lines 2, 3, and 4 will be executed; if false, the statement of line 5 will be
executed. Within the first true alternative is a return jump to the subroutine RAND and
another decision. The true and false alternatives for this second comparison are also
distinguished by semicolons. With nested decisions, care must be taken to insure that a
second comparison is completed within a single alternative of the first comparison.

To improve readability in writing comparisons, the convention that successive com-
parisons will be indented by multiples of three spaces has been adopted. Furthermore,
true and false alternatives are not placed on the same line (unless one is nonexistent).
Although immaterial to the compiler, it is recommended that this convention be rigidly
adhered to in all nested comparisons and in all but the simplest single comparisons.
Examples are:

A = B:

C = D:

28 J. W. KALLANDER

5 — F;
6 — F;;
7T—F;
A -4 -1 SUBROUTINE;
A <B:
A — B;
-B — B;;

NELIAC-N permits the use of 8 to 16 active (i.e., started but not yet completed)
nested comparisons at any one time.

Boolean Operators — The Boolean operators and (N) and o» (U) may be used to string
a number of these comparisons in a statement, as long as only one type of Boolean oper-
ator is used in such a statement. Note the following examples:

DIMENSION FLAG = 0:
NEXT OPERATOR = COLON N
LEFT BRACKET < CURRENT OPERATOR < RIGHT ARROW:
SET OPERAND.
TEST FOR PASS COMMAND;;;
A<BUCKDUF = K: TRUE; FALSE;
Note that a statement of the form
A<B<C = D: TRUE; FALSE;
is really a series of and statements; namely,
A<BNB<KCnNC = D: TRUE; FALSE;

Hence, compound statements of this type may only be linked with a series of Boolean and
comparisons and not with a series of Boolean o» comparisons.

In a group of nested comparisons, though, the form of each individual comparison
statement is independent of the forms of all the other comparison statements.

A string of and comparisons may contain up to 16 individual comparisons; a string
of or comparisons may contain up to 15 individual comparisons. Since there are differ-
ent restrictions on the permissible forms of the left and right sides of a comparison
statement, they must be defined for Boolean strings. The exact definition is that a right

NRL -REPORT 6664 29

side begins immediately after one of the six relational operators and is terminated by the
next colon, Boolean and, or Boolean o7. In the case of a Boolean and or Boolean o7, a
new left side then begins. In the case of a statement like A < B = C < D: the right side
restrictions apply to all quantities except A.

Loop Control

Perhaps one of the most useful features of today's high-speed computers is the ca-
pability of repeating certain operations; i.e., the procedure remains the same, but the
variables used are different. This objective may be accomplished in NELIAC by the use
of loop control, a method of indicating the procedure to be followed and the specific
number of times it is to be executed. The use of loop control, along with that of sub-
scripted variables, provides a powerful tool in computation. Consider the following
example:

,J = 0 (1) 24{P[J] + Q[J] — TAB[J]}

The procedure to be repeated is enclosed within braces, with the loop control preceding.
Conventionally, one of the index registers (I, J, K, L, M, and N) is used for loop control
and subscripting, although any other full-word integer variable may be used just as effi-
ciently. The statement above reads that the index register J is set to zero and the pro-
cedure executed for the first time; thus, the first value of the table P, P[0], is added to
the first value of the table Q, Q[0], and the sum is stored into the first cell of the table,
TAB[0]. The index register J is incremented by 1 and the loop repeated this time using
variables P[1], Q[1], and TAB[1], etc., until 25 values (corresponding to the subscripts
0 to 24) are added and stored into the 25 locations of table TAB. Optionally, the paren-
thetic ALGOL word FOR may be used for clarity in the printed copy. In that event the
above example becomes

, FORA J =0 (1) 24 {P[J] + Q[J] — TAB[J]}

Let us look closer at the basic format of the loop control:

FOR ALPHA = BETA (GAMMA) DELTA {PROCEDURE}
ALGOL The Lower Incrementing Upper
Word Controlling Limit or Limit

Word of Decrementing of

or Loop Steps Loop

Loop '

Parameter

Because of its importance, this basic format will be explained in considerable detail:

1. The ALGOL word FOR in the loop control is optional and is used only for added
readability. It is actually ignored by the compiler.

2. ALPHA is the controlling word of the loop control. It is conventionally an index
register, though a fixed-point full-word variable may be used just as efficiently. Note
that the value of ALPHA may (although not necessary) be used as a subscript within and/
or as a value within the procedure. In the event ALPHA does not appear within the pro-
cedure, it then serves merely as a counter.

3. BETA contains, or indicates, the first value of the controlling word. It may be a
fixed-point integer, a fixed-point full-word-variable name, index register, or any one of
these + another, ad infinitum; i.e., BETA consists of a theoretically unlimited string of
sums and differences of unsigned, unsubscripted, and unbit-handled fixed-point variables
and unsigned integer constants.

30 J. W. KALLANDER

4. GAMMA, the incrementing or decrementing steps to be taken, may be a fixed-
point integer or a fixed-point unsubscripted, unbit-handled variable containing a positive
integer; the latter may be accompanied by a negatlve sign. The full meaning of this item
should be clarified. It is legal to decrement in the following manner:

I= A(-1)0

using the explicit value of -1. However, it is illegal for GAMMA to be a variable that
contains an integer equal to or less than zero. Hence, if the value in DEC is -1, then

I = A(DEC)0
is illegal. On the other hand, if DEC were to contain +1, then the following is legal:
I = A(-DEC)0.
5. DELTA, the upper limit of the loop, may take any of the forms of BETA.

6. The procedure itself may be any legal set of statements ordinarily used within
the program logic, including return jumps to subroutines, comparisons, additional loops
with different loop parameters, etc.

From these rules, it can be seen that all of the following formats of loop control are
legal:

J=A+B(-1)0{...}

K = I(5) COUNT{...}

,M = NUMBER + 10 (-2) K+ 1{...}
,NOUN = 5 (NN) FINISH -1{...}
,I=1()END{...}

The number of executions of a loop will never continue beyond the limit of DELTA. A
simple example will serve to illustrate this point:

=0@5{ }

Obviously, the count will never be 5; one might expect the execution of the loop to con-
tinue indefinitely. However, this is nof the case. The loop will be executed, and when-
ever incrementation by 2 will cause the count to be greater than 5, the loop control will
be terminated. Thus, the preceding loop will be executed three times; i.e., for I=10, 2,
and 4. After the completion of any loop, a normal exit will occur and the next sequence
of instructions will be executed. Similarly, if the loop control is being decremented, the
program will never be executed for a count less than DELTA.

In NELIAC, considering the general loop-control statement given in this section, the
loop increment GAMMA and the upper limit DELTA are variable; i.e., if either or both
are altered by the procedure within the loop braces, the new value(s) of the loop incre-
ment and/or upper limit will be used until altered again. The same condition exists with
respect to the loop parameter ALPHA; i.e., it is this altered value of ALPHA which will
be used throughout the remainder of this repetition of the loop and which, furthermore,
will be incremented or decremented at the end of the repetition. Finally, although alter-
ation of the lower limit BETA by the procedure within the loop braces will not affect the
further repetitions of the procedure during this execution of the loop-control statement,

NRL REPORT 6664 31

if at a later time control is again transferred to the loop-control statement, the new
value of BETA will be the value then considered as the lower limit of the loop parameter
(assuming BETA has not been changed again elsewhere in the program).

The value of the loop parameter ALPHA upon exiting from the loop is its value dur-
ing the last execution of the procedure within the loop braces (assuming the procedure
does not alter it), or in the event the procedure is not executed even once during the exe-
cution of the loop, the value of the loop parameter is the lower limit BETA.

The program logic of the previous example to compute the sum of the squares of 50
values of X, to X 49, assuming that the number of variables in table X has been defined
in the dimensioning statement NR VALUES = 50, may be written as:

COMPUTE SUM SQUARES:
0 — SUMSQ, K=0 (1) NR VALUES - 1

{X [K] * X [K] + SUMSQ — SUMSQ} ..

Partial-Word Notation (Bit Handling)

In addition to defining partial words as described in the section Partial-Word Defi-
nitions, it is also possible to manipulate in the program logic any continuous bits of a
full-word variable without affecting the other bits of the variable. This is accomplished
through a partial-word notation similar to that used in partial-word definitions.

If the programmer wishes to manipulate only selected bits of a full 48-bit fixed-
point-integer variable, he specifies the name of the variable and indicates which group of
bits of that variable he wishes to treat as a positive fixed-point integer® by writing the
first (lowest) bit number and last (highest) bit number using parentheses and the right
arrow as illustrated:

A0 — 14)

In this example only bits 0 through 14 of the variable A are referenced. To call for
a single bit, say the least significant, or bit zero, one would write:

A0 —0)

If the variable is part of a list of variables and requires a subscript for its refer-
ence, the subscript notation (the brackets) is written first; e.g.,

Al1](6 — 32)

It should be noted that the values of partial words of less than 45 bits are treated as
positive fixed-point integers, whereas full 48-bit variables may contain either positive
or negative integers. In the case of part words of 45 to 48 bits, whether the part word is
considered positive or negative depends on the setting of the sign bit — bit 44 in the
NAREC — after the part word is downshifted so it begins at bit 0. For example, suppose
variable A contains the following array of bits:

7 6 5 4 3 2 1 ¢

AlO O ... 0 1 1 0 1 0 1 1

*The integer is necessarily positive only when referring to 44 bits or less.

32 J. W. KALLANDER

One immediately recognizes this as the integer +6b (hexadecimal) or +107 (decimal).
However, the 4-bit operand A(2 — 5) which contains the binary array 1010 is considered
to contain the number a (hexadecimal) or 10 (decimal).

In other words, if one were to write the following program (assuming A is defined
as above):

LA(2 — 5) = #a: 1+1—I;; STOP.

the result would be that the program would add 1 to I. Of course, an equivalent state-
ment would be

LA —5) = 10: T+1— I;; STOP.

from which the compiler would generate the same program. It is worth reiterating that
even though the uppermost bit of A(2 — 5) (bit 5 of variable A) isa 1, the partial oper-
and is not considered to be a negative integer. The only possibility of the partial word
being considered a negative integer in NELIAC-N is if it contains more than 44 bits.

All arithmetic operations previously described for fixed-point operands are legal
with partial words. However, the responsibility for arranging adequate storage capacity
is left to the programmer. For example, the programmer may legally write

,TABLE[I](19 — 25) * A(3 — 6) — Z(1 — 5),
However, the programmer should realize that a 7-bit operand times a 4-bit operand may
require as many as 11 bits to store the answer. In the above case, only the lower 5 bits
of the answer would be stored into Z(1 — 5), and the upper 6 bits would be lost.

The index registers, I, J, K, L, M, and N, automatically dimensioned by the com-
piler, may be bit-handled exactly the same as any full-word noun dimensioned in a di~
mensioning statement. Thus:

,] - T(13 — 18),

,Z(41 — 46) — K,

,M(5 — 10)/2 — L (24 — 31),

Further operations involving bit-handling are illustrated below:

LA(25 — 34) — B,
,A(39 — 47) + B(0 — 14) - C,
,A(12 — 24) < B(2 — 14): TRUE; FALSE;
,A[T](30 — 36) — B[J](31 — 35) — C[K](0 — 14),
,A(44 — 44) = 0: TRUE; FALSE;

Using the final examples of the section Partial-Word Definitions, it is well to illus-
trate a technique that often makes the program logic easier to read. Suppose the pro-
grammer wishes to distinguish between four identities — FRIENDLY, HOSTILE, FAKER,
and UNKNOWN. The programmer might arbitrarily assign values 0, 1, 2, and 3 for these

four identities, respectively, and then in the program logic if the program wishes to find
out if a certain track has an identity of FRIENDLY, the program might read:

NRL REPORT 6664 33

,ID[I] = 0: YES. NO.

However, a preferred method is to define variables FRIENDLY = 0, HOSTILE = 1,
ete., in the dimensioning statement, and then the same program could read:

,ID[1] = FRIENDLY: YES. NO.

Functions

Function Definitions — In the section Loop Control the method of indexing lists and
arrays of values for computation in similar operations was illustrated. Other instances,
-however, may call for an operation to be performed several times with different param-
eters but at individual points in the program; e.g., a common routine to compute square
roots may be necessary. In cases such as this, the NELIAC function notation may be
used. This functional notation enables the programmer to execute a particular proce-
dure with any desired input parameters necessary to determine the value(s) of the func-
tion with the result(s) being placed into any desired output parameter(s). Though the
function is defined but once, it may be executed at any point of the program logic (except
within itself, of course). With the exception of its parameters, a function is written and
executed in a manner similar to a subroutine.

An example of the format of the functional definition is:
PROCEDURE X (W. Y. Z.):
{(W*xW->Y*W 27}

The function name is any unique name followed by its associated dummy parameters en-
closed within parentheses. As with a subroutine, a colon precedes the computational
logic, which must be enclosed within braces. This computational logic may contain all
computational procedures which are valid in the main program except (a) subroutine and
function definitions and (b) calls for itself, though calls for any other subroutine or func-
tion are valid (taking care to avoid recursive calls).

A function written in proper notation must indicate the mode of both input and output
parameters, although the distinction between input and output parameters need not be in-
dicated here. In fact, in the function definition this distinction can be indicated to the
reader only, not the compiler, since the distinction is actually made only in function
calls. The arguments within the parentheses serve the same purpose as the dimension-
ing statement of a program (or flowchart); thus, any definitions legal within a dimension-
ing statement (except absolute addressing, see the section Absolute Addresses — Dimen-
sioning) is legal within the parentheses. As usual, a comma after a fixed-point variable
or a period after a floating-point variable suffices. The variables (within the parenthe-
ses) in a function definition are merely dummy names and, therefore, names local to the
function subprogram; thus, the same names may be used elsewhere in the program with-
out harm, although this is usually inadvisable since it complicates debugging, under-
standing, and altering the program. The instructions within the braces are equivalent to
the program logic. In fact, the function may be considered as a miniature flowchart ac-
cessible only through its name.

Function Calls — Again, as with a subroutine definition, the function definition does
not cause computation to take place. Execution occurs when the function is called within
the program logic by writing the function name and specifying the actual arguments (pa-
rameters) to be used. Tt is here, and here alone, that the compiler is told which param-
eters are to be treated as input and which as output. Note the following example which
executes (i.e., calls) the function PROCEDURE X previously illustrated:

34 J. W. KALLANDER

,PROCEDURE X (ARG; ANSWER, ANSWER [1]),
The parameters supplied must agree exactly in mode, order, and number as anticipated
by the function definition. Commas separate the parameters, since indication as to mode
is unnecessary (in fact, meaningless) in the calling of a function; the manner in which
these variables are treated is completely determined in the function definition. A semi-
colon separates the input arguments from the variables specified for the output of the
function. In this case the comma normally used after a parameter must be replaced by
the semicolon, since its usage here in addition to the semicolon would not be redundant
but would have a special meaning as will be seen later.

The arguments thus supplied as input parameters are substituted for the corre-
sponding dummy variables in the definition, the program logic of the function is executed,
and the values of the dummy variables in the definition are inserted into the correspond-
ing arguments supplied as output parameters. As a result of the above call for PROCE-~
DURE X, ANSWER will be expected to contain the value of ARG squared, ANSWER [1] the
value of ARG cubed.

As an illustration of legal parameters which may be used in a function call, note the
following example:

FUNCTION Y (A, B[I], C[4]; D[K + 2], E[F - #300] (16 — 19)),

An example of the definition of dummy variables which may be used when writing a func-
tion follows:

XFNCT (X

0*0, Y(25), D. A = {B}, C: D: {E(24 — 31), F(24 —47)},

G

17.578): {Program Logic}

As has been stated, functions are merely subprograms in which the variables within
the parentheses are equivalent to the dimensioning statement and the program logic is
contained within the braces. There is no limit to the number of input parameters which
may be entered in a function definition, nor is there a limit to the number of output val-
ues which may be computed. However, every function must have at least one input pa-
rameter, though it need have no output parameters. Functions, just as subroutines,
should be defined at the end of a program or its flowcharts, or necessary jumps must be
made over the function segments of the program. In the following part a method whereby
functions and subroutines may be written as separate flowcharis, virtually independent
of the main program, will be introduced.

In a function call the most general forms of the input parameter are (a) the unsigned
or negative general subscripted, bit-handled noun, (b) any unsigned or negative legal
form of a constant in program logic, and (c) any unsigned, unsubscripted, unbit-handled
name enclosed within braces. The most general form of the output parameter is the
unsigned form (a) and the form (c) of the input parameter.

While forms (a) and (b) designate the transfer of contents of names or values of
numbers, form (c) is a conventional notation designating the transfer of addresses of
names, rather than their contents. Although this form may be used both as an input and
an output parameter, its meaning is slightly different in the two cases.

When used as an input parameter, form (c) designates the address (rather than the
contents) of the specified name as the input parameter. Hence, in the execution of a
function call, the input parameter {NAME} causes the compiler-assigned NAREC ad-
dress of NAME to be inserted into the corresponding dummy parameter of the function -

NRL REPORT 6664 35

before execution of the function. In a sense, it may be thought of as "the address of
NAME to the dummy parameter."

When used as an output parameter, form (c) designates the address (rather than the
contents) of the corresponding dummy parameter. Hence, in the execution of a function
call, the output parameter { NAME } causes the compiler-assigned NAREC address of the
corresponding dummy parameter of the function to be inserted into NAME after execu-
tion of the function. In a sense, it may be thought of as "the address of the dummy pa-
rameter to NAME." It thus must be kept in mind that as an output parameter, { NAME}
does not refer to "the address of NAME" but "the address of the corresponding dummy
parameter."

The one basic concept which must be grasped in functional notation is that the cor-
respondence between the arguments used as parameters in a function call and the formal
parameters dimensioned in the function definition is solely on the basis of their respec-
tive ordering, starting with the first parameter in each case. If a parameter is defined
in a function definition and it is desired not to use this parameter (i.e., to leave it un-
changed if an input parameter, or not to transfer it if an output parameter) in a particu-
lar function call, this fact must be indicated to the compiler by leaving a blank between
the commas (one of which might be the semicolon instead of a comma) where the argu-
ment corresponding to this formal parameter would normally be placed (unless no fur-
ther parameters in the ordering are to be used). Suppose a function is defined as follows:

,FUNCTION (U, V. W. X. Y. Z): {Program Logic },
Then, the function call
,FUNCTION (7, -6.341, A[J - 4]; B, C[D], E[2]),

will result in the input parameters 7, -6.341, and A[J - 4] being placed into the formal
parameters U, V, and W, respectively, before execution of the procedure defined as
FUNCTION, and the formal parameters X, Y, and Z being placed into B, C[D], and E[2],
respectively, after execution of the function. However, if it is desired to call the func-
tion leaving the formal parameters U and W unchanged and only securing, as output, the
value of the formal parameter Y, the function call may be written as

,FUNCTION (, 1.0 * 6, ; , F),

Comparing this function call to the function definition, the reader will easily see, solely
on a basis of ordering, that the parameter U will be unchanged, a floating point one mil-
lion (1.0 * 6) will be placed in parameter V, parameter W will be unchanged, the proce-
dure defined as FUNCTION will be executed for these values of U, V, and W, then the
value calculated and placed in X will be ignored, the value calculated and placed in Y will
be placed in F for use in the main program, and the values calculated and placed in the
remaining parameters, namely, Z, will be ignored.

Form (c) of the input and output parameters is of value since in some cases, notably
functions dealing with lists of data, it is necessary to transfer the addresses of parame-
ters to the dummy parameters of the function definition, and vice versa. This necessity
arises since it is obviously not practical to transfer the individual entries of lists of
more than a few items by means of individual parameters in function calls. An example
of the usage of this form is the function call

,FF(A, {B}, -C[J - 3], 15.0, {E}; G, {H}),

36 J. W. KALLANDER

of the function definition

FF(AA, BB, CC. DD. EE, GG, HH (100).): {...}

The execution of this function call will cause the contents of the name A to be inserted
into dummy parameter AA, the address of name B to be inserted into dummy parameter
BB, the negative of the contents of C[J - 3] to be inserted into dummy parameter CC,
the constant 15.0 to be inserted into dummy parameter DD, the address of E to be in-
serted into dummy parameter EE, the function FF to be executed, the contents of dummy
parameter GG to be inserted into G, and the address of dummy parameter HH (i.e., the
first address of the floating-point list of 100 entries) to be inserted into H.

Library of Functions

In scientific computation any but the simplest problems usually require the ready
availability of mathematical functions, such as trigonometric, inverse trigonometric,
logarithmic, exponential. NELIAC-N provides these functions through its library of
functions, which contains the following 17 functions (the first 13 are generally used):

ARCCOS SIN

ARCSIN SPLIT
ARCTAN SQRT

COs TAN

EXP COMCOS

FL TO FX COMSIN

FX TO FL FL TO FX FR
LN FX FR TO FL
LOG

The function library, whenever one or more functions are called in a program, will
automatically be compiled as a separate flowchart labeled LIBRARY PACKAGE at the
end of compilation.

The L1IBRARY PACKAGE will contain only those functions which are called in the
program (and any additional functions which may be called by these functions) and not the
entire function library (unless all of the library functions are called).

The library-function names are not forbidden names. These names may be defined
and used in any program. Any library-function name which is defined in a program will
be used as that definition. However, if a library-function name is used but not defined

NRL REPORT 6664 37

prior to end of compilation, this function will be compiled from the library at the end of
compilation.

All functions (except FX TO FL, FL TO FX, FX FR TO FL, and FL. TO FX FR) are
floating-point functions. The entry in all cases is of the form,FUNCTION (A;B), except
for SPLIT which is,SPLIT (A;B,C), and FX FR TO FL which is ,FX FR TO FL (A,B;C),.
All arguments are floating point except the input arguments to ¥X TO FL and FX FR TO
FL and the output arguments to FL. TO FX and FL TO FX FR. FX TO FL converts a
fixed-point argument to its corresponding floating-point value, while FL. TO FX converts
a floating-point argument to its corresponding rounded fixed-point value. FX FR TO FL
converts NAREC fixed fraction, with or without a scaler, to NELIAC floating point, while
FL TO FX FR converts NELIAC floating point to NAREC fixed fraction. SPLIT converts
a floating-point argument into its floating-point integral and fractional parts (the output
arguments appearing in that order). COMSIN and COMCOS are functions used by SIN and
COS for their actual computations. The input parameters of the trigonometric functions
and the output parameters of the inverse trigonometric functions are in radians, and the
latter are the principal values of the particular functions. The uses of all other functions
should be evident from their names.

As an example of the use of the library, suppose that it is required to calculate the
value Y, where

Y = 1/sin2(e 2x - cosX) + In(z2+3) + 16.74

Dimensioning TS and TS 1 as temporary floating-point working locations, a solution using
the library of functions is:

,2.0 * X — TS, EXP(TS; TS), COS(X; TS 1), TS - TS 1 — TS,
SIN(TS; TS), TS * TS — TS, Z * 7 + 3.0 > TS 1, LN(TS 1; TS 1),
TS + TS 1 — TS, SQRT(TS; TS), TS + 16.74 — Y,

The general exponential X = AB, where A and B are any calculable expressions,
can be solved since AB= eB~InA; therefore,

,LN(A; TS), B * TS — TS, EXP(TS; X),
would yield the NELIAC-N solution.

Library Package — Although library-function names are not forbidden names, it is
good practice to avoid using them except as library calls, since their use for other pur-
poses may complicate understanding of the program and may interfere with its integra-
tion with other flowcharts or programs. The usage of these names is further complicated
by the fact that some library functions themselves call other library functions. Hence,
when the programmer uses a library-function name for some other purpose, trouble may
result even though he does not call that particular library function, since some library
function he does call may do so. Furthermore, the name of the function library,
L1BRARY PACKAGE, should not be used. The library names with the other library
functions they call indicated beneath them are:

L1BRARY PACKAGE
ARCCOS

ARCTAN

SQRT

J. W. KALLANDER

ARCSIN
ARCTAN
SQRT

ARCTAN

COos
COMCOS
COMSIN
FL TO FX FR
FX FR TO FL
SPLIT

FL TO FX

FL TO FX FR

FX FR TO FL

FX TO FL

EXP
SPLIT

LN

LOG
LN

SIN
COMCOS
COMSIN
FL TO FX FR
FX FR TO FL
SPLIT

SPLIT

SQRT

TAN
SPLIT

COMCOS

COMSIN

NRL REPORT 6664 39

Parallel Names — Verbs

The section Parallel Names — Nouns described the method of defining nouns in par-
allel. The verbs defined in the program logic may be defined in parallel in the same fash-
ion of "name colon name colon,'" etc. Verbs which are defined in parallel with each other
may be used interchangeably. Examples of parallel definitions in the program logic are:

,CALCULATION: REENTRY: A + B — C, etc.

,SUBR: SUBR1: SUBR2: {0 - D—E — F}

Machine-Language (Crutch) Coding™

The NELIAC compiler provides for the insertion of actual machine-language in-
structions between conventional NELIAC statements by means of machine-language cod-
ing, also known as "crutch coding." Each instruction consists of an address — either an
unsigned decimal or hexadecimal integer or a name (which may be subscripted including
the absolute-address notation but which may not be bit-handled), followed by the hexi sign
and a two-digit hexadecimal order (actually any unsigned one-digit or two-digit hexadeci-
mal number). Each such instruction (or half instruction in the case of double-length
orders) is considered a statement and must be set off by commas (or their equivalent).
Some examples are:

Instruction Notes
H#17a#50, Load accumulator with contents of location #£7a.
,0#54, Add contents of location 0.
,[#2000 42, Store result in address (#2000 plus contents of

index register I)

Names of locations containing variables may be referenced as well as actual ad-
dresses; e.g.,

Instruction Notes

,NUMBER #50, Load accumulator with contents of the location
referenced by the name NUMBER.

,LALPHA #54, Add to the accumulator the contents of the loca-
tion referenced by ALPHA.

,RESULT[I}#42, Store accumulator in the location referenced by
RESULT augmented by index register I.

Constants may appear as address portions of many instructions. If a constant is to
be treated as a hexadecimal integer, a hexi sign must precede the number.

Any statement may be labeled by the familiar method of punctuation, unique name
and colon. This causes the next instruction to be compiled into a left (upper) half-word
position with an appropriate right (lower) half-word pass instruction being compiled into
the preceding program step if necessary. Note in the following example the conditional

*This section may be skipped if not applicable.

40 J. W. KALLANDER

jump in the statement to the instruction tagged as ROUTINE and the method of handling
the double-length order ih the line labeled ROUTINE.

,ALPHA [INDEX - #300}#50, [K + 7}#55,
MASK #26, 0#40,
[LOCATION - 2}#42, ROUTINE #12,
ROUTINE[4}#11,

ROUTINE: LOCATION #83, #1000#20,

There is a one-to-one correspondence between NELIAC machine-language instruc-
tions and the actual machine-language ‘instructions in the resulting object program (al-
lowing for "passes'’ caused by verbal definitions) except in the c:.se of any instruction
whose address portion contains subscripting by name.

In the pure NELIAC language the programmer need not concern himself with the
contents of the computer registers since he has no direct access to them. The compiler
itself keeps track of the registers it uses, thereby preventing difficulties from arising in
the compiled object program due to erroneous use of the registers. However, in machine-
language coding the programmer now has direct access to the NAREC registers; there-
fore, he must be careful to keep track of their contents himself. To be able to success-
fully keep track of the A and U registers of the NAREC during machine-language coding,
he must realize which NELIAC-N statements may destroy the register contents and avoid
using any of these NELIAC statements at a time when he is interested in the contents of a
NAREC register. These NELIAC-N statements include (a) subroutine and function calls,
(b) subscripting by name (destroys U register only), (c) the entry or recycle test in loop
control (destroys A register only), (d) comparison statements (but not the alternatives
themselves), (c) output statements, (f) partial-word or bit-handling (whether explicitly in
the program logic or through dimensioned partial words), and (g) NELIAC arithmetic
statements.

Examples of illegal machine~language coding are:

(COMMENT: ILLEGAL USE OF REGISTERS IN MACHINE LANGUAGE CODING.)

NOUN #50, SUBROUTINE, HOLD #42

LIST #24, STORE[E-T}#43,

PW(5 — 10)#24, 0#90,

A#50, B - C — D, E #42

The programmer must be particularly careful to precede the order by a hexi sign in
all cases. #3000#10, not #300010, compiles as an unconditional transfer to the left in-
struction of location #3000.
Output Statements

The NELIAC-N compiler converts NELIAC output statements into print programs
that are compatible with the on-line printer system or with the off-line NELIAC-N Flex-
owriter (through the output punch).

NRL REPORT 6664 41

In general, each NELIAC output statement controls the printing of a single line of
print of up to 132 or 160 characters for the line printer or 86, 116, or 160 for the Flexo-
writers, Output statements are also used to specify line spacing, paging, and termination
of output.

Two types of printed output control are required by the programmer: first, he must
have the ability to specify the format of the data he desires to have printed, and, second,
he must have a method of printing literals, i.e., any words or symbols verbatim to serve
as headings, labels, or lines of text.

‘The information a programmer must supply pertaining to his printed data consists,
first, of specifications about the data itself:

1. Which variables are involved, and in what order are they to be printed?

2. Are the numbers to be printed fixed-point or floating-point variables. If they are
fixed point, should they be printed in decimal or hexadecimal notation, or if they are
floating point, should they be printed in scientific or decimal notation.

3. How many digits to the right of the decimal point are required for floating-point
variables ?

Second, indication as to the arrangement of such data upon the printed page must be
made:

1. How many spaces are needed between each piece of data on a single line ?

2. Is anything additional to be printed on the line?

3. Are blank lines needed?

4, Are new pages needed?

5. When is the output terminated?

6. What is the output mode?

Print Variables — The term print variable will be used here to mean a variable
whose value is to be printed through the use of an output statement. Only full 48-bit
variables can be used as print variables. The basic format of an output statement as it

is written within the program logic will now be examined. In this section, only the con-
trol of print variables, i.e., data printout, will be considered.

The essential elements of a print statement are a comma and a left brace, the
names of the print variables enclosed by the less than and greater than signs, and the
vight brace indicating the completion of the statement. Such an output statement will
print one line only. Consider the example below in which the two variables, referenced
by name as DATA1 and DATAZ2, are printed on a single line:

,{PRINTER < DATAL1 | DATA2 >},
The name PRINTER is one of four names which may appear immediately after the

left brace in order to provide programmer control of the output mode and code through-
out the output statement. These names are:

42 J. W. KALLANDER

Name Mode Code
PUNCH Punch only NELIAC~N Flexowriter
PRINTER Printer only NELIAC-N line printer
BOTH Punch and Printer NELIAC-N Flexowriter
PUNCH NAREC Punch only NELIAC-N Flexowriter

with NAREC 1 as an "ell"

No name or Operator control NELIAC-N line printer
meaningless name

The mode and code will remain the same for all output due to this output statement,
i.e., until the right brace ending the output statement is reached. Usually, this position
is left blank providing operator control (normally the line printer). Spaces between data
words are indicated by the absolute sign |, the Boolean or sign U, and the Boolean and
sign N. The absolute sign indicates one space, the ov sign indicates five spaces, and the
and sign indicates no spaces. Thus, three spaces are indicated by | |'l, and 11 spaces
may be indicated by a combination of the two symbols, such as UUl, luy, or Ul U. A
Boolean and sign N is necessary if no spacing is required between print variables.

It is seen that the output statement serves only to indicate the output mode and code
(if desired), the print variables, the spacing between printed values, and, by its position
in the program logic, when the line is to be printed. All other control over the printed
message is indicated by the programmer in the dimensioning statement. Thus, for each
print variable the programmer must indicate in the dimensioning statement the desired
printed-number format (scientific or fixed point), the number system to be used (hexa-
decimal or decimal), and the number of digits to be printed (all of which control the total
number of print spaces used every time the variable is printed).

The number of digits to be printed is the same as the number of digits in the initial
value (with the exception of certain conventions); i.e., A = 50, would specify two printed
digits. The number of spaces required would be three, however, as a space is always
reserved for the sign of all print variables except for a full 12-digit hexadecimal word;
e.g., B = #00, specifies a printing of the sign, the hexi sign, and the least two significant
hexadecimal digits (after complementation if the word is negative), thus requiring four
print spaces. The sign of a value is actually printed only if the value is negative. Pro-
vision is made for printing an arbitrary decimal point in a fixed-point-decimal integer;
e.g., A= 0 + 000, provides for the printing of the sign (or blank) and four digits, with a
decimal point between the first and second digits, a total of six spaces.

Floating-point-print variables require an additional space for a decimal point and in
scientific (true floating point) format five additional spaces for an exponent. If necessary,
the floating-point values printed are rounded values, although this does not affect the ac-
tual values contained in the variables.

Floating-point-print variables can be printed in either scientific or true decimal-
point format. Scientific format is always printed with a fraction part X, where 1/10 =
X < 1, and a signed power of 10 expressed as a plus or minus three-digit integer. To
indicate scientific format in the dimensioning statement, an initial value is written with-
out a decimal point. For example, if A is defined as

A = 0000 * 0,

NRL REPORT 6664 43

then if the floating-point number 23.14 were stored in A and printed, the resulting output
would read as

.2314 +002
and thus would use a total of 11 spaces on the printed output page.

True decimal-point format for floating-point variables is always printed with an ap-
propriately placed decimal point. Thus, if B is defined as

B = 0000.,
then if B contains a floating-point value of 269.733, the printed result would read as
270.
In all cases the dedimal point is printed.

All values printed from a table of variables will be printed with the same format
control. This control will be determined by the last specified initial value of the table.
For example, a table may be defined in the dimensioning statement as

A(3) = 295, 23, 48

Since the last value in this table is 48, only two digits have been specified for any print
variable in the entire table. Any output statement calling for the printing of variable A
(the first value of the table in this example, 295) will print only asterisks, since the
value of A is too large for the dimensioned format of A. Hence, if the program logic
were to read

A<A>}
the printed result would be

* % ok

It is good practice to format a variable larger than its greatest expected value to
allow for any miscalculation. Neither fixed-point-print variables nor floating-point-print
variables, when larger than the specified format, will be printed. The appropriate num-
ber of asterisks is printed instead of the number.

As another example, if a table is already defined in the dimensioning statement as
PMATRIX (9) = 13.21, 2.32 1.00
,-0.98 0.75
, ,00.34
and if it is desired to print this table as it stands, two zeroes must precede the decimal
point of the last value (00.34) to enable the printout of the first value (13.21). The table
may then be printed in the following manner:
J = 0(3)6{,{ < PMATRIX [J] |
PMATRIX [J + 1] | PMATRIX [J + 2] >} }

As an example, suppose a table has been formatted in the following manner:

44 J. W. KALLANDER

TABLE (4) = 0000.00,

and floating-point variables are computed and stored into this formatted table. Output
statements may be enclosed in loop-control statements so that an instruction in the pro-
gram logic may read:

JI=01)3{,{<TABLE [1]>}}
The printed-out table may appear as

2.01
-14.32

-3.75
sokokkokdokok

The value of the last variable was too large for the allotted format, i.e., over the value
9999.99 after round-off, therefore, the asterisks.

More than one line of print may be specified in an output statement. The following
example illustrates an output statement indicating three lines of print, two variables per
line:

,{<AIB><CID><EIF>},

Output format is that of the operand, not necessarily that of the location printed out of;
i.e., in

A =0.00, B=0%*0;
,{ <A[1] >}, the format is that of A even though the number is in B.
On the next page, the foregoing discussion is illustrated by indicating sample dimen-

sioning statements, the number contained in each print variable when the output state-
ments were executed, and the resulting NELIAC printouts.

45

NRL REPORT 6664

€00+ T3Tlg"-
€00+ T2Tle’
100+ 0000T’ -
100+ 0000T"

‘0 x 00000 = £r

SOFIFIIIIFIIIH
PF¥L00000000#
29T000000000#

»#"U

€00+ 00000T23T.E" -
€00+ 00000T2T.LE"
100+ 000000000T" -
100+ 000000000T1°

‘0x0=1II
12°1le-
2°Tle
00°T-
00°T

‘00000 = DO
oT000#~ *un
pII¥lof# w
D9TO0# ey
‘000004 = 4 ‘o =

€00+ 2Tle" - €00+ Llg° -
€00+ 2Tle" goo0+ Lg°
TOO+ 000T° - 100+ 0T -
T00+ 000T° T00+ OT"
200+ #1ee” oo+ G2°

nojurrd oeIeN

‘2~ * $1€¢ = HH ‘T x 6% =DH
‘Jjuouraje)g SuruoIsULWII(

NOILVION JIJIINAIDS

2 -
P *R*
0°1- 1=
0°'1 T

mojurag oereN

“0'0 = €4 “0 = VvV
‘Juswaje)s SutuorsuswII(

INIOd TVRIDHd INUL
INIOd ONILVYO1d

og- oe- %
g9l2e >R »%
cét * %% *e

MOJULIg OBI[ON

" ‘00000=2D ‘00=9d ‘0=V
‘JuUsMISYeIS SUTUOTSUSWI(

INIOd gaXId

1 1LE~
127148
‘-

T
JoquInN

12°1LE-
12 1LE
‘-
T
J9quInN

0g¢-
§9.ce

4ij%
JoqUInN

46 J. W. KALLANDER

Literal Printout — It is often necessary to print headings, labels, and lines of text
along with program results. The printing of such literals is much the same as the print-
ing of computed variables except that any information to be printed verbatim is enclosed
within double less-than and greater-than signs. Example of literals are:

,{<< THIS | IS| A | LINE | OF | TEXT >>},

All NELIAC-N characters except the absolute sign, the Boolean o7, the Boolean and,
and the greater-than sign can be printed literally. The absolute sign | and ov sign U are
again the necessary symbols used to indicate any spacing between words, while the and
sign N means no spacing. Text and variables may be intermingled within a line of print
as long as care is taken to enclose the text material within the necessary double-print
signs. Consider the following example:

,{ << MAXIMUM | VALUE | IS | EQUAL | TO > | MAXG >},
The variable is MAXG and is, therefore, not enclosed by the double-print signs,
while the literal MAXIMUM VALUE IS EQUAL TO is surrounded by the double-print

signs.

Now suppose the variable must appear somewhere in the middle of a line of text.
The following format is then necessary:

,{<<USING| >Z <|MINES ANDI| >X < MINESWEEPERS >>},

Z and X are the variables and are distinguished from the literals by breaking the sense
of the double-print symbols.

Provisions are made to indicate the beginning of new pages, blank lines, nontermina-
tion of print lines, and completion of output. These are indicated by the use of the fol-
lowing punctuation within a print statement but external to either single (< >) or double
quotes (<< >>):

; start new page
, insert blank line

: do not terminate print line

. end of file

A statement simply to indicate carriage return (CR) and top of form (i.e., new page
on line printer or eight additional CR's on output punch) would be:

<>5)

Commas indicate blank lines. A statement of four blank lines is written as
A<>0 1
In the statement
,{<<PROBLEMI NR > X >,,},
the literal PROBLEM NR and the variable X are printed followed by two blank lines.

Whenever single or double quotes are closed, the preceding print line will be termi-
nated unless a colon immediately follows the closing greater-than sign; e.g.,

NRL. REPORT 6664 47

A<KA =1 >A>:}

will cause the printing of the statement without a carriage return. Hence, unless there
is an intervening blank line or top of form, the next print line will begin on the same line.

After all results are printed (actually at any time within an output statement but out-
side quotes), an end of file (ignored in line-printer code, a stop code in punch or Flexo-
writer code) may be indicated.

A single line of print for line-printer output should not exceed 132 characters (160
characters if specified on the ‘Operator Instruction Sheet). If this number is exceeded,
the entire statement will be printed on as many lines as necessary.

It must be remembered that the double period (..) is reserved to indicate the end of
the flowchart and may be used only for that purpose. Hence, it is impossible to place
successive periods within literals, since they would signify the end of the flowchart to
the compiler. However, successive periods may be printed literally by inserting ALGOL
words (for 5 load flowcharts) or comments between them. The ALGOL words or com-
ments will prevent the compiler from detecting a double period signifying the end of the
flowchart, but they will be removed from the output statement leaving only the successive
periods prior to or when the output statement is compiled.

Complete Output Statements — Although the three distinct modes of outputting — page
formatting, data printout, and literal printout — have been discussed separately, the abil-
ity to mix them freely in output statements is necessary before the programmer can
print out exactly what he wants to print out. For this purpose it is necessary not only to
understand the details of each individual type of output but to have an overall picture of
their usage.

In general, an output statement in the program logic is enclosed by braces, with the
left brace being preceded by a comma, namely,

, { 10 STATEMENT }

It is necessary to think of the existence of three levels within the output statement, these
three levels corresponding to the three modes of outputting discussed above. For conven-
ience, these three modes are called levels 0, 1, and 2, corresponding to page formatting,
data printout, and literal printout, respectively. Entrance to an output statement through
the ,{ is always at level 0. Within the output statement each < raises the level by 1 while
each > lowers the level by 1, subject to the proviso that the level can never fall below 0
nor rise above 2.- Exit from the output statement must be at level 0. Hence, in a typical
output statement the levels may vary as shown:

o <<oo>nn <> <>)
[0 2 1 2 101 2 0 |

It is immediately apparent that page formatting occurs at level 0 (although output mode
specification but no page formatting is allowed immediately upon entrance to an I0 State-
ment), data printout at level 1, and literal printout at level 2, with the appropriate rules
as given on the preceding pages applying at each level.

To properly arrange his output lines on the page, the programmer need only keep in
mind one simple rule: within the output statement, each time the level is increased from
0, a new line of printout is started, all oscillations between levels 1 and 2 merely change
the type of printout on this line, and when the level is decreased again to level 0, this
line, followed by a carriage return, (unless explicitly suppressed by a colon) will be
printed. Hence, the above example calls for two lines of printout.

48 J. W. KALLANDER

The programmer who has a thorough knowledge of the language used within the three
modes of output should be able to output whatever he desires by simple application of the
above rule.

Literal Definitions — One form of nouns which is used for compiling service flow-
charts into the compiler but which may also be used as a data item for literal printout is
called a literal. Such a definition (in the dimensioning statement, of course) consists of
the name of the literal followed by an.equal sign, two less-than signs, the literal (or
flowchart), a period, two greater-than signs, and a comma. The literal statement will
contain eight characters per location with two periods added at its end, the necessary
number of locations automatically being provided by the compiler. All characters will
print literally with no provision for spacing; i.e., |, U, and N occur as themselves rather
than as spacing conventions. If more than eight characters are to be printed, the appro-
priate number of locations must be specified in the print statement. Each location of a
literal definition will always contain eight characters with blank-fill on the right of the
last location, if necessary. For the definition

A = << CARBON DIOXIDE . >>,
the execution of the print statement
,{<ANnA[1]>}
will cause the printout
CARBONDIOXIDE .. (blank)

10 Package — NELIAC-N output is printed through return jumps to the subroutines
PRINT OUT, TOP OF FORM, DOWNLINE, and END OF F1LE contained in the I0
PACKAGE which is automatically compiled as a separate flowchart at the end of any
program which has one or more output statements. Hence, these five names should
not be used by the programmer.

This section is ended with a sample program and resulting printed output to illus-
trate the rules covering output statements discussed. The reader will observe that the
result of this program was used to generate the full-page output statement illustration
ending the section Print Variables.

NRL REPORT 6664 49

7
OUTPUT EXAMPLE,,..

7
A=0, B= 00, C= 00000, E = #0, F = #00000, G = #,
AA=0., BE = 0.0, CC = 000,00, GG = 25%2,

HE = 2314%.2, II = 0*0, JJ = 00000*0;

[

START: , {<>; << FIXED | POINT >>,} FIVE BLANK LINES
492 » A, PRINT 1, 32765 » A, PRINT 1, -30 > A, PRINT 1,
BLANK LINE, BLANK LINE,
f<< FLOATING | POINT >>, << (y TRUE | DECIMAL | POINT >>,}
FIVE BLANK LINES, 1,0 > AA, PRINT 2,
(COMMENT: WHAT IS WRONG WITH THE STATEMENT:
1l > AA, PRINT 2,)
-1.,0 > AA, PRINT 2, 371,21 - AA, PRINT 2,
-371.21 > AA, PRINT 2, BLANK LINE, BLANK LINE,
f<< U SCIENTIFIC | NOTATION >>,} FIVE BLANK LINES,
f< |] 66 y]| BHE >,} 1.0 > GG, PRINT 3, -1,0 > GG, PRINT 3,
371.21 > GG, PRINT 3, -371.21 - GG, PRINT 3, STOP,
PRINT 1: {A>B ~>C>E >F > G,
<l ag I By | au |1 By 1] Ry 1] G >
PRINT 2: {AA > BB >CC, { <y AA y [] BB |] cC> i,
BLANK LINE: |, <>}
FIVE BLANK LINES: { I = 1 (1) 5 {BLANK LINE}|}
PRINT 3: {GG - HH » II » JJ,
[<lley || By || 1Ty |] 35>
STOP: ,| <; .1..

T..

50 J. W. KALLANDER

FIXED POINT
* % * % ¥ h92
*% *x® 32765
*% -30 -30

FLOATING POINT
TRUE DECIMAL POINT

1. 1.0
-1, -1.0
*Hn XX
PE L

SCIENTIFIC NOTATION

.25 +004 .2314 +002
.10 +001 .1000 +001
-.10 001 -~.1000 +001
.37 +003 .3712 4003

~.37 +003 -.3712 +003

% % %
¥* %%
* %%

#00lec
#or7££d
-#0001e

1,00
-1.00
371.21
~-371.21

.1000000000 +001
-.1000000000 +001
.3712100000 +003
-.3712100000 +003

0000000001ec
000000007££d
#HELELEL LT £ P2

.10000 +001
~.10000 +001
.37121 +003
-.37121 +003

NRL REPORT 6664 51

PROGRAM STRUCTURE
Complete Compilation
So far, NELIAC programs have been described in terms of a single load number,

dimensioning statement, semicolon, program logic, and double period. Actually, complex
programs often consist of several such subprograms called flowcharts. Each separate
flowchart must follow this format headed by leader, i.e., several inches of tape feeds,
and followed by leader:

(Leader)

7

DIMENSIONING STATEMENT

5

PROGRAM LOGIC

(Leader)

One or several flowcharts to a maximum of 63 (preceded by a preface and followed
by an ending) comprise a program. The preface consists of

(Leader)

7

Program or Programmer's Name,
Object Program First Address, Bias ..
(Leader)

Either the Object Program First Address or the Bias or both may be left blank, in
which case standard addresses will be used for the blanks, the standard Object Program
First Address being #2700.

The ending consists of

(Leader)
7..
(Leader)

As noted in the section ALGOL Words, any flowcharts containing ALGOL words
must be headed by a load number of 5 rather than 7.

A NELIAC program tape consisting of four flowcharts may be represented schemati-
cally (without any attempt at relative scaling) as:

52 J. W. KALLANDER

PREFACE

!
|
|

FLOWCHART 1

FLOWCHART 2

i
|
|

FLOWCHART 3

FLOWCHART 4

Temporary (Local) Names

Obviously, the ability to write programs as separate flowcharts allows one to elim-
inate the necessity of having to bypass subroutines and functions within the main program
logic. However, an even more important reason for this structure is to permit the name
purge feature. This feature provides a solution to many of the problems encountered
when several programmers are engaged in writing different parts of the same lengthy
program.

Suppose a programmer wishes to use a subroutine which already has been written by
someone else at some other time. Obviously, a problem may arise in the duplication of
names, because the programmer must avoid defining any names already defined in the
subroutine. In NELIAC this problem is greatly diminished, since the writer of the ‘sub-
routine can purge names that have no significance outside the flowchart containing the
subroutine. Names thus purged may be used for other purposes in the remaining flow-
charts. For example, a square-root subroutine would have virtually all names purged.
The only names not purged would be the ones necessary to communicate with the main
program in a separate flowchart. In fact, the use of functional notation, rather than sub-
routine notation, completely eliminates the need for even these names.

Purging or temporizing is accomplished by inserting an absolute sign | anywhere
within the first 16 characters of the name as it is being defined (but not inserted when
the name is used), although conventionally it is placed after the first character of the
name. These names are then called temporary or local names. Examples of temporary
names within the dimensioning statement are

NRL REPORT 6664 53

I | INDEX = 6,
T I 1,
X 1=0%*0,

Examples of temporary names within the program logic are
,CIONT : A—B,
,CILEAR : {0 -I1—-J - K}

To reiterate, these names, known as temporary or local names, will have meaning
only in the flowchart where the above definitions occur. Those names not defined with
the name-purge feature are known as permanent or global names.

Compilation difficulties require one special rule: a function may not be defined lo-
cally with the name of a previously defined global name.

Prior Definition of Names

Now that it is possible for a program to consist of more than one flowchart, it also
becomes possible for a dimensioning statement to follow part of the program logic of the
program. This possibility necessitates the following programming rule:

Each floating-point, partial-word, absolute-address, two-dimensional array,
and output statement format and subscript variable must be defined in a dimension-
ing statement (or function definition) before it is used in the program.

This rule is necessary because the NELIAC compiler must distinguish between the two
number modes, floating point and fixed point, when inserting instructions pertaining to a
variable in the program logic. Corresponding necessities arise in the case of dimen-

sioned partial words, in absolute addressing, in double subscripting, and in the case of
format and subscript words referred to in output statements.

For example, suppose a programmer wishes to write his main program as the first
flowchart and include a random-number-generator subroutine (called RAND) as the sec-
ond flowchart. The pattern is illustrated below:

(Leader)
D.S. 1 DIMENSIONING STATEMENT FOR MAIN PROGRAM
5

MAIN PROGRAM LOGIC

(Leader)

7

54 J. W. KALLANDER

D.S. 2 DIMENSIONING STATEMENT FOR THE RANDOM NUMBER GENERATOR
SUBROUTINE

)

RAND: { PROGRAM LOGIC FOR RANDOM NUMBER GENERATOR SUB-
ROUTINE }

(Leader)

Suppose the random-number generator stores its random number in floating point in
location X just before exiting. Since the main program is going to use X, X itself must
be defined as a floating-point variable in D.S. 1. It would be illegal to define X as float-
ing point in D.S. 2, because in that case the main program would be compiled before the
compiler was able to sense that X was to be floating point. Of course, the way to get
around this problem is to write RAND as a function, defining the output with a dummy-
output-floating-point name as follows:

(Leader)
7

DIMENSIONING STATEMENT FOR RAND FUNCTION
)

RAND (Y.DUMMY.):{ (generate a random number) —» DUMMY}

(Leader)

Then with the above RAND function as the second flowchart the following call in the
main program logic will generate a random number in location X (where X must be de-
fined as floating point in D.S. 1):

RAND (;X),

The dummy input parameter Y is used simply because every function must have at least
one input parameter.

Computer Space Limitations™®

Although the NELIAC language itself places no limitations on such features as num-
ber and size of flowcharts, number of names, number of undefined calls, length of object
program, etc., the version of the language implemented for a particular computer must,
of course, be limited by the space limitations of that computer's memory. Most of the
limitations, such as names being uniquely defined in their first 16 characters, the limi-
tations on nested comparisons, and strings of Boolean or and Boolean and statements,
etc., which have already been described, are due to hardware limitations rather than

*This section is primarily of interest to those programmers studying NELIAC-N for use
on the NAREC.

NRL REPORT 6664 55

NELIAC language limitations. In addition, the NAREC imposes limitations on 2 overall
characteristics of NELIAC-N just as every computer does to the version of NZI.IAC im-
plemented on it.

NELIAC-N allows the compilation of up to 63 flowcharts in a single sweep. How-
ever, there is an I0 Package and a library package which may be compiled individually
(in that order) as separate flowcharts at the end of the programs requiring them. Since
either or both of these flowcharts may be added to a program, the programmer's flow-
charts may actually be limited to 61 or 62. The fixed-point, floating-point, and two sub-
script packages are each compiled individually at the end of the first flowcharts requir-
ing the particular packages but as parts of those flowcharts. Thus, they impose no such
limitation on the source program.

Immediately upon reading, the NELIAC-N flowchart is converted to a symbol string
containing, in order, the NELIAC characters of the flowchart converted to an internal
code in which there is a one-to-one correspondence between the NELIAC characters of
the flowchart and the symbols of the symbol string. In this symbol string, all spaces and
all ALGOL words have been eliminated, but comments have been retained. The storage
area allocated to this symbol string limits the length of each flowchart when reduced to
its symbol string to 5600 characters. This normally allows from 5 to 15 flowchart
pages, depending upon the character density of the pages. In the event that this limita-
tion is exceeded, the computer will stop with a Flowchart Area Overflow fault printout.
However, from many other standpoints — understanding, debugging, correcting, changing,
combining, etc., of flowcharts — it is advisable to write flowcharts of individual length
far below this overall limitation.

The NELIAC-N compiler contains a list of 512 entries in which all names, constants
and masks used in logic, and output statement entries are recorded. Temporary names
are recorded in the list but are purged from the list at the end of their flowchart, thus
making their space available for reuse. If the list is filled, numbers and masks are
purged as long as possible; finally, if the list is overflowed, a Name List Overflow fault
printout will result.

The NELIAC-N compiler contains a list of 300 locations for recording the names,
constants, masks, and output statement literals as yet undefined. Since each location can
record two entries for the same name, number, mask, or literal, 300-600 undefined calls
are permitted at any one time. Whenever a name, number, mask, or literal is defined,
all undefined calls for it are filled in the object program and purged from this list, thus
making available this. space for reuse. Since constants and masks are defined at the end
of the flowcharts where they are first used, they will be undefined throughout the first
flowchart where used but defined throughout the remainder of the program. Since sub-
scripting by name, fixed-point multiplication and division, and floating-point addition,
subtraction, multiplication, and division are performed through return jumps to subrou-
tines in packages compiled at the ends of the flowcharts where first required, these op-
erations will set up undefined calls in the first flowcharts where these operations are
used. Hence, this procedure provides another reason for writing NELIAC programs in
relatively short flowcharts. In the event that this list is overflowed, an Undefined Name
Overflow fault printout will occur.

Finally, since the compiler itself occupies memory locations #0000 to #26FF in the
NAREC, this leaves the area #2700 to #3FFF available for storage of the resulting object
program as the NELIAC program is being compiled. Hence, normal compilation allows
for object programs up to #1900 or 6400 locations. However, the "reset-the-bias' fea~
ture allows the compilation of larger programs (such as the compiler itself which occu-
pies 9984 locations) in a single sweep. To use this feature, the first flowchart in the
program must contain only initially zero nouns, i.e., no nouns which are not initially
zero and no program logic. The programmer must specify "'reset the bias' on the

56 J. W. KALLANDER

NELIAC-N Operator Instruction Sheet, Appendix E. When the program is compiled, this
first flowchart will be dimensioned exactly as during a normal compilation, but the re-
sulting portion of the object program will not be retained in memory, making this addi-
tional space available to the remainder of the program. The programmer must explicitly
zero, in the program logic, any of these nouns which the program will assume are ini-
tially zero.

Precompiled Packages

The NELIAC-N compiler compiles into NELIAC programs, as needed, a number of
packages — sublibrary (single-subscript double-~subscript, fixed-point, floating-point, and
error packages), I0 PACKAGE, and L1BRARY PACKAGE. Each time a program is com-
piled (whether the compilation is successful or not), all of the packages required by that
program will be compiled into it, and in many cases the compilation time of these com-
piler packages exceeds that of the programmer's flowcharts themselves.

To avoid the continual recompilation of these packages, the following two steps have
been taken: (a) the packages have been compiled and dumped as tape family B4567 and
(b) flowchart family F4567, defining all of the package names as the proper absolute ad-
dresses, has been written. Two versions of the resulting routine are available: one at
the beginning of the memory and the other at the end of the memory, just below the
bioctal load program 4561A-3f7a.

The selection of an F4567 flowchart is completely under programmer control and is
accomplished through the load number of the preface to any program. A load number of
0 for a preface will cause the 0000 version of F4567 to be compiled as the first flowchart
of the program, a load number of 1 will cause the 3600 (end of memory) version of F4567
to be compiled as the first flowchart of the program, and a load number of 5 or 7 will
cause normal compilation without an F4567 flowchart. The load numbers 0 and 1 are to
be used only for prefaces; all flowcharts and endings use load numbers 5 and 7. A load
number of 0 or 1 will cause the preface to be loaded via the 7 load program; hence, no
ALGOL words are permissible in prefaces with load numbers 0 or 1.

The compiler will then insert the proper F4567 flowchart as the first flowchart in
the program (since NELIAC-N requires that absolute addresses be defined prior to
usage). All subroutine and function jumps to the compiler packages in his program will
be directed to these addresses external to the program, and the compiler will not com-
pile any of its packages into the main program. In the case of an unsuccessful compila-
tion, the program is terminated, as before; in the case of a successful compilation, the
corresponding B4567 program containing all of the compiler packages must be called into
the NAREC memory prior to execution of the program.

The programmer who uses the 0 or 1 load number for a preface must specify, prior
to execution of his program, the loading of B4567-0-0000-04 or B4567-0-3600-04, re-
spectively. These two programs are in the NAREC magnetic-tape library and are called
into the NAREC memory from magnetic tape. These programs occupy the following
NAREC memory locations:

B4567-0-0000-04 (0000-0944)
B4567-0-3600-04 (3600-3144)

DIAGNOSTICS AND DUMPS

An effective aid for program checkout is provided by the NELIAC-N diagnostics and
dumps. This part will describe, in the case of the NAREC, the diagnostics and dumps

NRL REPORT 6664 57

available during compilation, both error-free and erroneous, and those available during
execution of compiled object programs. NELIAC implemented on other computers, such
as the CDC 3870 at NRL, generally furnish similar, or at least equivalent, diagnostics.

Compilation Diagnostics and Dumps

With the aid of the following flowchart and printout from its compilation and execu-
tion, the diagnostics and dumps which are available during the compilation phase will be
described. The program name "NAREC TEST 74" from the preface is printed as the
heading of each different dump. Flowchart 2 is a function written to determine the roots
of the general quadratic equation with real coefficients and to output the coefficients and
the roots. Flowchart 1 is a program designed to call on this function to determine the
roots of 13 such equations, whose coefficients are tabulated in the flowchart.

58

J. W. KALLANDER

7
NAREC TEST 74,,..

7

(COMMENT: THIS PROGRAM IS THE NELIAC-N TRANSLATION

OF THE SOLUTION OF THE QUADRATIC EQUATION GIVEN AS THE
EXAMPLE IN SECTION 1.3 OF MCCRACKEN, A GUIDE TO

A1GOL PROGRAMMING, FLOWCHART 2 CONTAINS THE

TRANSLATION OF THE ALGORITHM OF FIGURE 1,5, AND

FLOWCHART.1 IS THE PROGRAM WHICH GENERATES

THE TABLE OF FIGURE 1.6 BY USING THIS ALGORITHM.)

A(13) = 1,0, 1.0, 6,0, 1,0, 1,0, 1,0, 4,0, 100.0, 0,0, 1.0, 4,129,
-1,016, 0.0, B(13) = -2, 0, -7.0, -9. 0, 0, o 0.0, -2.0, 2k, o
200.0, ’63.9, -4,0, -1k, 811 0.499, 568. 981 c(13) = 1,0, 10, o,
-6,0, -1.0, 1,0, 2 0, 20,0, 100,0, -221,3, 8,739, -61, ooz
_49.573, _lioo.652;

NAREC TEST T74:

s [<Oi<< UJULU | NAREC | TEST | 74 >>,,,<< FIGURE | 1.6 |
OF | MCCRACKE A | GUIDE | TO | ALGOL | PROGRAMMING: >>,, |
PRINT HEADING

I = 0(1) 12 {QUAD EQUAT SOLUTION (A[1], B[I], c[1]),

[<,, << FINIS >> ; |
STOP TEST 73 ’,,

T
(COMMENT: ALGORITHM OF FIGURE 1,5 FOR THE SOLUTION
OF THE QUADRATIC EQUATION AND PRINT OUT OF THE
RESULTS IN THE FORM OF FIGURE 1.6 OF MCCRACKEN,
A GUIDE TO ALGOIL PROGRAMMING.);
QUAD EQUAT SOLUTION (A = 000,000, B = 000,000, C = 000,000,
XIREAL = 0,000, X1IMAG = 0,000, X2REAL = 0,000, X2IMAG = 0,000,
?oors = 0, DISC, SQROOT, MINUS DISC,):
A= O
1 > ROOTS, - C/B - X1REAL, O -» X2REAL, ZEROS.;
2 > ROOTS, B*B .4,0 #* A * C > DISC < O:
~ B/(2,0*A) - X1REAL - X2REAL, - DISC - MINUS DISC,
SQRT (MINUS DISC; SQ ROOT), SQ ROOT/(2.0%*A) - X1IMAG,
- X1IMAG - X2IMAG, OUTPUT,
SQRT (DISC; SQ ROOT), (-B + SQ ROOT)/(2.0 * A) - X1 REAL,
(-B-SQ ROOT)/(2.0 * A) - X2REAL,
Z|EROS: 0 ~» XlIMAG > X2IMAG,

olurpuT: , <A || B l[c [| X1REAL || X1IMAG ||
X2REAL |] X21MAG || R
PRINT HEADING: {, ¥<<UAU Mitsu 11 c |1l

X1REAL || X1IMAG
X2REAL || X2IMAG || ROOTS >> ,ll..

700

NRL REPORT 6664

NARECTESTT4

NELIAC-N COMPILER NOD 6.0 10 AUGUST 1965
NR ROUTINE NAME FIRST 1AST

01 NARECTEST74 2700 2807

02 QUADEQUATSOLUTIO 2808 2956

03 IOPACKAGE 2057 2cdc

04 L1BRARYPACKAGE 2cdd 2d2e
NARECTESTTY

NAME LIST DUMP

A 271b
B 2728
c 2735
DOWNL1NE 2a2f
D1V1DE 2cby
ENDOFF1LE 2a96
ERROR 27b7
F1ADD 2881
F1D1lV 28ad
F1MU1L 2895
F1SUB 288b
I . 2701
TOPACKAGE 29d0
J 2702
K 2703
L 2704
L1BRARYPACKAGE 2cdd
M 2705
MULT1PLY 2c9b
N 2706
NARECTEST74 2742
PRINTHEADING 2856
PR1NTOUT 29d5
QUADEQUATSOLUTIO 2808
SQRT 2cde
STOPTESTTA4 277b
SUBSCR1P 278b

TOPOFFORM 2a9b

60

FIGURE 1.6 OF MCCRACKEN, A GUIDE TO ALGOL PROGRAMMING:

A

1.000
1.000
6.000
1.000
1.000
1.000
4,000
100,000
.000
1,000
4,129
-1,016
.000

B

-2,000
-7.000
-9.000

.000
.000
-2.000
24,000

200,000
63.900
-4.000

-14,811

.499

568,981

J. W. KALLANDER

NAREC TEST T4

c

1.000
10,000
-6.000
~1.000
1,000
2,000
20,000
100,000
-221,300
8.739
~-61,002
-49.573

-490,652

X1REAL X1IMAG

1.000 .000
5,000 .000
2,000 .000
1.000 .000
.000 1.000
1,000 1.000
-1.000 .000
-1.,000 .000
3.463 .000
2,000 2,177
6.035 ° ,000
L2Uu6 -6,981
.862 .000

FINIS

X2REAL X2IMAG

1,000
2,000
-.500
-1,000
.000
1.000
-5.000
-1.,000
.000
2.000
-2.448
-216
.000

.000
.000
.000
.000
-1.000
~1.000
.000
.000
.000
-2.177
.000
6.981
.000

ROOTS

NN

[AVINCE VR Sl VEVE VR VIV V]

NRL REPORT 6664 61

Run Information — The first result of the compilation is the Run Information, which
is automatically outputted after all compilations. This dump lists for each flcwchart the
flowchart name and the first and last addresses of the part of the object program result-
ing from that flowchart. The name of the flowchart is the first global verb explicitly de-
fined in the flowchart; if none, the first global noun defined in the flowchart; if none, the
name is blank. In the example, note flowcharts 3 and 4, which are automatically com-
piled as part of the program by the comipiler itself.

Name-List Dump — The Name-List Dump, which is optional, must be requested on
the NELIAC-N Operator Instruction Sheet, Appendix E. It is a partially alphabetized list
of all global names in the program and the locations in the resultant object program as-
signed to each.

Object Program Dump — As an aid to debugging, a nonreloadable hexadecimal ma-
chine language Object Program Dump, either single or four-column, is available as an
option on the NELIAC-N Operator Instruction Sheet. However, debugging should be done
at the source program level and only as a last resort at the object program level.

Hexadecimal Dump — Also available, as an option on the NELIAC-~N Operator In-
struction Sheet, is a single or four-column hexadecimal-machine-language dump of any
portions of the NAREC core memory.

Reloadable Dumps — NELIAC-N furnishes two reloadable dumps — a bioctal dump
and a standard NAREC dump. Inasmuch as the bioctal dump is approximately 40 percent
as long as the NAREC dump, is comparison-loaded for correctness as soon as it is
punched out, and on reading automatically sets its own first and last addresses and check
sums itself, it is the preferred reloadable dump. These dumps are listed as options on
the NELIAC-N Operator Instruction Sheet.

Symbol String Dump — NELIAC-N provides, as an option on the NELIAC-N Operator
Instruction Sheet, a Symbol-String Dump of the symbol string into which each flowchart
is translated for compilation.

The compiler also has a provision for loading individual flowcharts without compil-
ation in order to secure their Symbol String Dumps.

NELJIAC-N Listing Program — A program to list on the NAREC in flowchart form
any NELIAC program or flowcharts is described in NAREC Bulletin 91 (NELIAC Bulletin
32), "NELIAC-N Listing Program," available through the Research Computation Center.

Error Diagnostics and Dumps — NELIAC-N furnishes an extensive set of diagnostics
and dumps whenever errors are detected in the source program during compilation.

The following example consists of the flowcharts of a program containing a number
of compiler-detected errors and the printout of the results of the compilation of this
program:

62

J. W. KALLANDER

0
NELIAC PROGRAM IO WITH ERRORS,,..

7

(COMMENTS: THIS FLOWCHART IS THE IO STATEMENT

WHICH RECORDS THE INFORMATION CALCULATED IN

THE NELIAC CLASS PROGRAM FLOWCHART OF 25 FEBRUARY

1963 AND MUST BE COMPILED WITH THAT FLOWCHART,)

BUFFER 3 (2) = 000, BUFFER 4 = 0000,

BUFFER 5 = 00000,BUFFER 6 = 000000;

10 STATEMENT:'

,]<>; << Uy NELIAC|CLASS|PROGRAM >> << ;| |25| FEBRUARY|1963>>,,, |
INTEGER SUM - BUFFER 4,

{<<(1)y THE |SUM|OF |THE |FIRST |100 [POSITIVE | INTEGERS | ISDBUFFER 4n<.>>,,
<<(2) y THE |SQUARES |OF |THE |FIRST |100 | INTEGERS |ARE:>>,

<<INTEGER SQUARE)), }

BUFFER 3 = 1 (1) 200 |{INTEGER SQUARED [BUFFER 3-1] - BUFFER 5,
|<|BUFFER 3 ||y BUFFER 5 >}}

INTEGER SQUARED SUM - BUFER 6,

f<>, << (3) THE |SUM|OF |THE |SQUARES |OF |THE
FIRST|100 |POSITIVE | INTEGERS |[IS >><BUFFER 6
<<(4) y THE |SUMS |OF |THE | SQUARES |OF | THE |
CORRESPONDING | INTEGERS | IN | THE>>
<<GIVEN|TABLES; |1, |E., |A[SQUARED |+ |B|SQUARED| = |C, |ARE:>>,
<||]ay|| BIUC>,>:

I = 0(1)9]A[I] » BUFFER 3, B[I] -» BUFFER 3[1],C[I] - BUFFER 5,
[<BUFFER 3 BUFFER 3 [1] () BUFFER 5 >{}, [<>,,<<FINIS>>|..

I
n<o >>’ 3

7

INTEGER SUM,

INTEGER SQUARED (100),

INTEGER SQUARED SUM,

A (10) = 1, 7, 15, -300, 20,,, 8, -6, -27,
B (10) = .16. , 57, -118,,16,4,-7,

C (10) TS (2);

NELIAC CLASS PROGRAM:

SUM 100 INTEGERS:

O -+ INTEGER SUM,

I = 1(1)100 {I + INTEGER SUM -» INTEGER SUM!}

SQUARE INTEGERS:

J = 1(1)100 {SQUARE FUNCTION (J; INTEGER SQUARED [J-11)}

SUM 100 SQUARED INTEGERS:

0 -+ INTEGER SQUARED SUM, K = 1(1)100

[INTEGER SQUARED [K-1) + INTEGER SQUARED SUM -
INTEGER SQUARED SUM}

SUM SQUARES OF TABLE:

1L = 9(-1)0 {SQUARE FUNCTION (A[L]: TS),

SQUARE FUNCTION (B{r]; TS [1]), TS + TS (1] -» c[r]}

EXIT,

SQUARE FUNCTION: (INTEGER; INTEGER SQ):

!}NTEGER * INTEGER - INTEGER SQ

E|XT:..

Te.

NRL REPORT 6664 63

NELIACPROGRAMIOW
NELIAC-N COMPILER MOD 6.0 10 AUGUST 1965

02 INPUT/OUTPUT FAULT
+|B|SQUARED |= |C, |ARE: >>,<<|[[&J[|I&JgC),},fI=O(l)9{A[I]»EUFFER“ B[I]+BUF

03 DIMENSIONING ERROR) TS (
,B(10)=-16,,,57,—118,,16,4,-7,C(lO)TS(2);NELIACCLASSPROGRAM:SUMlOOINTEGE

03 SUBSCRIPT FAULT INTEGERSQUARED
SQUAREDSUM, K=1(1)100iINTEGERSQUARED[KAI)+INTEGERSQUAREDSUM»INTEGERSQUARE

03 CO/OPERAND/NO FAULT [QUARED +
UM, K=1(1)100 | INTEGERSQUARED[K-1)+ INTEGERSQUAREDSUM-INTEGERSQUAREDS Uk { SUM

03 FUNCTION FAULT SUBSCR1P (
FTABLE:L=9(-1)O}SQUAREFUNCTION(AtL] :TS), SQUAREFUNCTION(B[1L];TS[1]), TS+TS

03 CO/OPERAND/NO FAULT TS)
FTABLE:1=9(- l)O{SQUAREFUNCTION(A[L] TS), SQUAREFUNCTION(B[L];TS[1]), TS+TS

03 CO/OPERAND/NO FAULT
FTABLE:I=9(- l)O{SQUAREFUNCTION(A[L] TS), SQUAREFUNCTION(B[L] TS[1]), TS+TS

03 CO/OPERAND/NO FAULT (
SQUAREFUNCTION(B[L];TS[1]), TS+TS(1]»C[L]}EXIT SQUAREFUNCTION(INTEGER; INT

03 CO/OPERAND/NO FAULT (1 A]
SQUAREFUNCTION(B[L];TS[1]1),TS+TS(1]»C[L]}EXIT.SQUAREFUNCTION(INTEGER; INT

03 CO/OPERAND/NO FAULT] A >
SQUAREFUNCTION(B[1];TS[1]),TS+TS(1]-C[L]}EXIT.SQUAREFUNCTION(INTEGER; INT
03 UNCLOSED SUBROUTINE 100 A9

{ INTEGER* INTEGER-INTEGERSQE |XT: . . ;. .E |SUM|OF |THE | SQUARES |OF |
NR ROUTINE NAME FIRST LAST

01 FU5670000004 2700 271b

02 IOSTATEMENT 27lc 27el

03 NELIACCLASSPROGR 27e5 28ab

UNDEFINED NAME LIST DUMP

BUFER6 2761 r 284150000042
EXIT 28a2 r 28a211000010
o 286¢c 2 00005027e642
BUFFER3BUFFER3 27a3 2 0001 £££e0000
100 2756 ¢ 000050271d55

64

J. W. KALLANDER

NELIACPROGRAMIOW
NAME LIST DUMP
A 28lc
ARCCOS 07dd
ARCSIN 0766
ARCTAN 0807
B 2856
BUFER6 UNDEFINED
BUFFER3 271d
BUFFER3BUFFER3 UNDEFINED
BUFFER4 271¢f
BUFFERS 2720
BUFFER6 2721
(o] 2860
COMCOS 06e8
COMSIN 065d
cos 0612
DOWNL1NE 01bo
D1V1DE 051d
ENDCFF1lLE 0217
ERROR 0069
EXIT UNDEF INED
~ EXP 0596
FLTOFX 08ad
FLTOFXFR 06ba
FXFRTOFL o744
FXTOFL 0790
F1ADD oles
F1D1lV o451
F1MUL 0439
F1SUB olzf
F45670000004 271b
I 2701
INTEGER 28a5
INTEGERSQUAREDSU 284b
INTEGERSUM 27e6
INTEGERSQ 28a6
INTEGERSQUARED 27e7
IOPACKAGE 0151
TOSTATEMENT 2722
J 2702
K 2703
L egou
LN 08el
1LOG 07cb
.00 UNDEFINED
M 2705
MULT1PLY 0504
N 2706
NELIACCLASSPROGR 286¢
(o} UNDEFINED
PRINTOUT Cc156
SIN 0702
SPLIT 0676
SQRT 085d
SQUAREFUNCTION 28al
SQUARE INTEGERS 2877
SUBSCR1P 00bce
SUBSCR2P 0035
SUMSQUARESOFTABL 288f
SUMLO0INTEGERS 286¢
SUMLOOSQUAREDINT 2884
TAN 0547
TS 286a
TOPOFFORM 021c

NRL REPORT 6664 65

Compiler-Detected Faults — In the preceding example the compiler has cutputted, in
the order of detection, a' number of faults with detailed information about each fault de-
tected being printed out in a two-line entry. The first line gives, in order, tte flowchart
number, the type of fault, the current operator, the operand, and the next operator, all at
the time of detection of the fault. (The NAME DEFINED TWICE fault appends the loca-
tion of the prior definition to this line.) The second line gives the 72 successive charac-
ters in the symbol string in memory, centered on the area where the compiler is com-
piling at the detection of the fault. This enables the programmer to quickly locate the
pertinent point in his program and tells him exactly what is actually in the computer
memory at this point. Next occurs the Run Information, which gives the same informa-
tion as for an error-free compilation.

Undefined Name=List Dump — Immediately following the Run Information is the Un-
defined Name-List Dump, which occurs whenever any names are used but not defined in
the program. This dump lists each undefined name, each location in the object program
where it is required, whether in the left or right half-word, and the contents of that
location.)

Finally, the compilation output terminates with a Name-List Dump. Whether re-
quested or not, a Name-List Dump is always outputted whenever there is an undefined
Name-List Dump.

Execution Diagnostics and Dumps

In addition to errors detected by the compiler during compilation, the NELIAC-N
compiler inserts routines into the object program to detect errors during execution of
the object program. In addition, snapshots and postmortem dumps for use with NELIAC
object programs are available in the NAREC library.

NELIAC Error Stops — The NELIAC-N subroutines which are compiled into the ob-
ject program to carry out fixed-point multiplication and division, floating~point addition,
subtraction, multiplication, and division, single and double subscripting, and some of the
functions in the LIBRARY PACKAGE have error printouts and stops when during the ex-
ecution of the object program, the subroutines or functions are entered with illegal pa-
rameters or illegal results are obtained.

The fault printouts consist of a single line of the form
NELIAC ERROR STOP C DEADS8227B9F2 A 081C765A3902 U 000000000002

The words NELIAC ERROR STOP are followed by three 12-digit hexadecimal words la-
beled C, A, and U (since the information was at one time placed in the C, A, and U
registers of the NAREC instead of being printed out prior to the error stop). The left
instruction of C (control register) contains the error stop DEAD 82. This is considered
an error stop (similar to a BAD82) by the NAREC operator, but he does not fill out an
error sheet since all information is printed out immediately before the NAREC comes to
the DEADS82 stop. The right address is the address in the object program of the return
jump to the NELIAC subroutine or function. The right order identifies the subroutine or
function according to the table given below. The words identified as A and U are the
internal representations of the input parameters to the subroutine or function. In
NELIAC-N, floating-point operations U + A and A - U and both fixed-point and floating-
point operations U * A and A/U are performed by entering A into the A register and
U into the U register of the NAREC and then executing a return jump to the proper sub-
routine. In these cases, A and U label these input parameters, respectively. In the
case of the SUBSCR1P subroutine for single subscripting, A is the address obtained and
U is the parameter line. In the case of the SUBSCR2P subroutine for double subscripting,

66 J. W. KALLANDER

A and U are the parameter lines, and an additional data item labeled ADDR is the cal-
culated address. In the case of functions with single input parameters, the parameter is
labeled as A, and U is zero. In the case of functions with two input parameters, they
are labeled A and U in order.

_ The subroutines and functions labeled by the right order (last two hexadecimal digits)
of the DEADS82 error stop are:

D1 fixed-pt multiplication product larger in absolute value than 2%* - 1

D2 f{ixed-pt division division by zero

F1 floating-pt addition 1 at least one input parameter is not in adjusted

NELIAC floating-point form; i.e., bit 35 is 0

F2 floating-pt subtraction (after complementation in case of a negative
>~ parameter) except for 0, or the result exceeds

F3 floating-pt multiplication 103°7 in absolute value

F4 floating-pt division)

00 ARCCOS | input parameter | > 1

01 EXP output parameter > 103%7

02 ARCSIN | input parameter | > 1

03 SQRT input parameter <0

04 LN input parameter =0

05 FL TO FX FR | input parameter | = 1

06 FL TO FX | input parameter | > 2% - 1

07 LOG input parameter = 0

08 single subscripting address < 0 or > #4000

09 double subscripting address < 0 or > #4000

Hence, the fault printout given above is due to a floating-point subtraction at #27B9,
where U is not in adjusted floating-point form.

The following example entitled NELIAC ERROR gives a sample program, its com-
pilation information, and an error stop — the latter during execution of the program. A
study of the example will show that the error stop is due to a floating-point multiplication
at location #2722 in which the multiplier B contains a fixed-point number.

NRL REPORT 6664

0
NELIAC ERROR,,..

7

A =50, B, C.;

START: 15 > B, A * B » C,
END:..

T..

67

J. W. KALLANDER

NELIACERROR,,..

NELIACERROR
NELIAC-N COMPILER MOD 6.0 10 AUGUST 1965

A=5,0,B.C,;START:15->B,A*B>C,END:, .

NR ROUTINE NAME FIRST 1AST
01 F45670000004 2700 271b
02 START 27lc 2725
NELIACERROR

NAME LIST DUMP

A 271d
ARCCOS 07dd
ARCSIN 0766
ARCTAN 0807
B- 271e
c 2711
COMCOS 06e8
COMSIN 065d
cos 0612
DOWNL1NE 01bo
D1V1DE 0514
END 2724
ENDOFF11E 0217
ERROR 0069
EXP 0596
FLTOFX 08ad
FLTOFXFR 06ba
FXFRTOFL oTu4l
FXTOFL 0790
F1ADD ohes
F1D1V o451
F1MUL o439
F1SUB oh2f
FA5670000004 271b
1 2701
IOPACKAGE 0151
J 2702
K 2703
L 2704
LN 08elt
LOG 07cb
M 270

MULTL1PLY 050

N 2706
PRLINTOUT 0156
SIN 0702
SPLIT 0676
SQRT 0854
START 2720
SUBSCR1P 00bc
SUBSCR2P 0035
TAN o547

TOPOFFORM 02lc

NELIACERROR

OBJECT PROGRAM DUMP

2700 271b
271b 271c
271lc 2720
271d 083a
2720 2725
2721 271e
2722 2722
2723 271¢
2724 271c
2725 0000
-45670000004

NELIAC ERROR STOP

10

2701

2700
271d
0000

2T71e
271d
o439
2724
2725
0000

NRL REPORT 6664 69

10

82
10
00

42
24
10
10
1o
of

C DEAD822722F3 A C0000000COCF U 0832800000000

70 J. W. KALLANDER

NELIAC Memory Dump — A postmortem dump, which furnishes hexadecimal
machine-language words of all locations specified, decimal notations of fixed-point in-
tegers, and scientific notation of floating~point numbers is described in NAREC Bulletin
65 (NELIAC Bulletin 4), "NELIAC Memory Dump,' available through the Research Com-
putation Center.

NELIAC-N Snapshot — A snapshot which furnishes register and location dumps in the
format of the NELIAC Memory Dump of the preceding section is described in NAREC
Bulletin 45A (NELIAC Bulletin 20), "NELIAC-N Snapshot,'" available through the Re-
search Computation Center.

Appendix A

SUMMARY OF THE NELIAC OPERATOR SYMBOLS

PUNCTUATION

A comma, in general, is used to separate names and numbers in the dimension-
ing statement and to separate statements that are to be performed consecutively
in the program logic. The comma is also used to indicate return jumps to sub-
routines, to separate the dimensions in two-dimensional array definitions and
subscripts, to separate the parameters in a function call, and to indicate blank
lines in output statements.

A colon is used in the dimensioning statement when defining partial words in
parallel with full-location variables. In the program logic it is used to define
entry points, subroutines, and functions and is used in comparison statements.
It is used to define parallel names and, with parentheses, to define comments in
both the dimensioning statement and the program logic. It is also used in output
statements to suppress the termination of a print line.

A semicolon is used to separate the dimensioning statement from the flowchart
logic. The semicolon can also be used to end the true or false alternative of a
comparison. In a function call a semicolon separates the input parameters from
the output parameters, and, in output statements, it indicates a top of form.

A period is used to indicate straight jumps; if within a comparison alternative,
it also ends the alternative. This same symbol is used as a decimal point in
numbers and to define floating-point working locations. It is also used to indi-
cate an end of file in oufput statements.

A double period indicates the end of the flowchart logic and, consequently, the
end of the flowchart.

ARITHMETIC OPERATORS

<+

Plus sign (also used to indicate an arbitrary decimal point for output purposes
in a fixed-point number definition)

Minus sign
Multiplication sign
Division sign

Exponent sign or up arrow, which indicates, in connection with a multiplication
or division sign, an exponential operation, to base 2.

71

72

J. W. KALLANDER

COMPARISON SYMBOLS

Equal (also used in dimensioning statements and in loop control)

” Not equal

< Less than (also used in output statements and literal definitions)

> Greater than (also used in output statements and literal definitions)
= Less than or equal to

= Greater than or equal to

MISCELLANEOUS

0

[]

{1

<>

<L >>

Parentheses are used in list and array definitions in the dimensioning state-
ment. In both the dimensioning statement and the program logic, parentheses
enclose the bit specifications of partial words. In the definition or call of a
function, parentheses enclose the parameters to be used. Parentheses enclose
comments when used with the colon. They also enclose loop increments and
decrements and furnish algebraic grouping in the program logic.

Brackets are used for subscripting, including absolute addressing, in the pro-
gram logic.

Braces in the dimensioning statement enclose the name whose address is to be
the initial value of the noun preceding the braces or enclose the number which
is to be the absolute address of the name preceding the braces. They also en-
close definitions of partial words. In the program logic, braces indicate loops
and enclose subroutines, functions, and output statements.

A right arrow indicates a store operation in the program logic; in both the dimen-
sioning statement and the program logic, it is used to help specify bit operands.

An absolute sign is used in the dimensioning statement and the program logic to
define temporary names, in output statements to indicate one space, and in the
program logic to indicate absolute values.

A Boolean or sign is used in the program logic to separate parts of a compound
decision and in output statements to indicate five spaces.

A Boolean and sign is used in the program logic to separate parts of a com-
pound decision and in output statements to indicate no spacing.

Less than and greater than signs are used in output statements for printout of
variables.

Double less than and greater than signs are used in output statements for print-
out of literals and in the dimensioning statement for literal definitions.

Appendix B

NELIAC-N DIMENSIONING. STATEMENT

7
(COMMENT: THIS FLOWCHART DATED 28 NOVEMEER 1966

IS A DIMENSIONING STATEMENT ILLUSTRATING
THE VARIOUS FORMS OF NOUNS IN NELIAC-N.)

A, B(6), C(#20), D=5, E = -5, F = #300, G = -#£3c,

H(3) = 1, 2, 3, P(#20) = 7, 6, 5,4,

Q(27) = , , 6, -8, #17, , 57, -#6,

R: S: T, U: V: W: X = _58, Y: Z: AA (50) = 16, -#27, , -8, #lo0,

AB: {AC (0-23), AD (24-47)} (26) = #1234 56 789a be, , 5;

{AE (0-0), AF (0-7), AG (8-23), AH (0-23), AI (24-31), AJ (32-47),
AK (24-47), AL (24-47), AM (24-47), AN (6-6), AP (15-35){,

AQ: AR: AS: [AT (5»10), AU (5-10), AV (7-14)},

AW = {#2000}, ADDR A = {A}, ADDR SWITCH = {A, B, C, D, E, F},

T|EMP, T|EMP 1: AX: [AY (5-10), T|EMP 2 (23-23)} (#10) = 7, -18,

FA, FB (6). FC (#20). FD = 5%0, FE = -5%0, FF = 278.,

FG = -768,00*0, FH (3) = 1,0, 2,0, 3.0,

FP (#20) = -12%0, -12,0, -12,, -1,2%1, .12000* -3, -12,0%0, -1,2%1,

FQ (27) = , , 6%0, -8.*0, 25,0, 5700%-2, , , _6.,

FR: FS: FT. FU: FV: FW: FX = _58,0,

FY: FZ: FAA (50) = 6.0, -39*0, , -8., 16.0,

FAW = [#3000}. ADDR FA = [FA},

FADDR SWITCH = {FA, FB, FC, FD, FE, FF},

F|TEMP, F|TEMP l: FAX (#10) = 7,0, -18.0,

Al = 362+57, A2 = << HELIUM,>>;

NO LOGIC:..

73

Appendix C
NELJIAC-N FORBIDDEN NAMES
NELIAC-N places the following restrictions on the programmer's otherwise unlim-
ited choice of names which he may define and use:
(1) The five ALGOL words
GO TO
DO
IF
IF NOT,
FOR
must not be used as names or parts of names in a flowchart having a load number of 5.
However, if any of the spacing requirements are violated or if a 0, 1, or 7 load number
is used, the same sequence of NELIAC characters is no longer con51dered as an ALGOL

word and may be freely used.

(2) Each name must be uniqﬁely determined within its first 16 characters (excluding
spacing, comments, and ALGOL words).

(3) The single letters I, J, K, L, M, and N must never be defined globally.

(4) The following names are defined globally in the various packages automatically
compiled into programs by the compiler as needed by the programs. In many programs,
some or all of them must not be used, but in any event good programming practice dic-
tates that they never be used (except for the library-function names and these only for
bona fide library-function calls): (Note that many of the names contain "ones' and "zeros"
rather than "eyes' and '"ohs".

SUBSCRI1P
SUBSCR2P
MULT1PLY
D1V1DE
F1ADD
F1SUB
F1IMUL

F1DIV

T4

NRL REPORT 6664

ERROR

10 PACKAGE
PRINTOUT
TOP OF FORM
DOWNLINE
END OF FILE
L1BRARY PACKAGE
ARCCOS
ARCSIN
ARCTAN

Ccos

EXP

FL TO FX
FL TO FX FR
FX FR TO FL
FX TO FL
LN

LOG

SIN

SPLIT

SQRT

TAN
COMCOS

COMSIN

75

Appendix D

NELIAC-N CODING SHEET

76

i

NRL REPORT 6664

ITLIL

31vo

YIWWYID0dd

*133HS ONITO0D N-JVITaN

3 obeq:)

Appendix E

NELIAC-N OPERATOR INSTRUCTION SHEET

NELIAC-N Operator Instruction Sheet (6/16/64)

RCC Problem Number

Problem Title

Sweep

Date

NRL Account Number

Programmer

Telephone

Printer only (except reloadable dumps) unless otherwise specified.

Symbol String Dump: LO cOe before compilation.

1. Compile 5-load T-load
Flowchart Tapes:
(1) F- (3) F-
(2) F- (4) F-

Normal Compilation: L0 c00 (Name List Dump)

Reset the Bias: L0 c01 (Name List Dump)

mixed-load

(5) F-
(6) F-
RO c00 (no Name List Dump)

RO c01 (no Name List Dump)

Stop on bad compilation unless otherwise specified. CIRCLE DUMPS DESIRED.

2. Name List Dump LO c05.

3. OP Dump L0 c09 (4-column)

Dump Location (if desired);

5. Bioctal Dump and Comparison Load
1.0 c06, Load Tape, LO c07.

6. NAREC Dump
L0 c08.

7. Other Information:

Run Information Extra Copy LO c0d

RO c09 (single-column)

1.0 cOa (r-column) or RO cOa
(single-column) (if needed)

Box and Transfer.

Remove Sym. Str. Dump: LO cOf.

Printer Code LO cOb. Punch Code L0 cOc. Load Flowchart: LO cl0.
8. Special Instructions:
Circle one if needed: B4567-0000 B4567-3680

78

Appendix F

SUBROUTINE CALL OF COMPILER

It is possible to call the compiler as a subroutine from another program. The sub-
routine entries to the compilers are:

NIAME: NAME #11, #C14#10,
(error return) (normal return)
and
NIAME: NAME #11, #C15#10,
(error return) (normal return)

The entry to #C14 does not give the Name-List Dump, while the entry to #C15 gives the
Name-List Dump after compilation. The only requirement is that the subroutine call
must occur in a right instruction. Hence, the artifical manner of "forcing'' the call into
a right instruction illustrated above need not be used if the programmer is certain the
subroutine call will occur in a right instruction. In either case, control is transferred to
the compiler which will read in and compile in the normal fashion the next NELIAC pro-
gram (preface, flowcharts, and ending) on the reader, will print out any detected compil-
ation faults, the Run information, an Undefined Name-List Dump, if any undefined names
occur, and the Name-List Dump, if desired, and will then return control to the next loca-
tion in the main program. Return is to the left of this location (the error return) if the
compilation is unsuccessful and to the right of the location (the normal return) if the
compilation is successful. Hence, the programmer has the ability to program in what he
desires to do in case of erroneous compilation of any program while using the compiler
as a subroutine. It should be noted that the subroutine calls do not call the compiler into
memory; it must be in place before execution of the main program.

79

Security Classification

DOCUMENT CONTROL DATA-R & D

_ (Security classification of title, body of abstract and indexing annotation must be entered when the overall repcrt is classified)

1. ORIGINATING ACTIVITY (Corporate author) Za. REFORT SECURITY crirosrcaTion
Naval Research Laboratory Unclassified
Washington, D.C. 20390 2b. GROUP

3. REPORT TITLE

NELIAC-N, THE NAREC VERSION OF THE NELIAC PROGRAMMING LANGUAGE

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

An interim report; work is continuing.

5. AUTHORI(S) (First name, middle initial, last name)

John W. Kallander

€. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
June 6, 1968
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
NRL Problem B02-03
b. PROJECT NO. NRL Report 6664
RR003-09-41-5101
c. 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)
d NRIL Computer Reference 1

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy (Office of Naval
Research), Washington, D. C. 20360

13. ABSTRACT

This report contains a tutorial and the final definitive description of NELIAC-N
(the version of the NELIAC language implemented on the NAREC by means of the
NELIAC-N compiler), which furnished the transition vehicle between the NAREC and
the CDC 3870 being installed at NRL. NELIAC is a problem-oriented, machine-
independent programming language which enables programmers, scientists, and
engineers to write their programs in a mathematical language rather than requiring
an actual machine language or an assembly language. NELIAC thus minimizes the
knowledge of the actual computer required by the programmer, maximizes the read-
ability of the programs themselves, and provides carry-over value of programs
from one computer to another.

DD &V..1473 (Pace 1)

S/N 0101-.807-6801 81 Security Classification

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE

wT ROLE wT

ROLE wWT

Programming (computers)
Flowchart
Dimensioning statement
Program logic
Diagnostics

Dumps

ALGOL words

Partial words
Bit-handling

Lists

Library package

Fixed point

Floating point
Subroutines

Jump tables

NELIAC

DD /Z*..1473 (o

(PAGE 2}

82

Security Classification ‘

