
Naval Research Laboratory 
Washington, DC 20375-5320 

Approved for public release; distribution is unlimited.

October 10, 2012

NRL/FR/5303--12-10,227

Irwin D. Olin

Flat-Top Sector Beams Using Only Array 
Element Phase Weighting: A Metaheuristic 
Optimization Approach

Sotera Defense Solutions, Inc.
McLean, Virginia



i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

10-10-2012			 
	

Formal Report

Flat-Top Sector Beams Using Only Array Element Phase Weighting: 
A Metaheuristic Optimization Approach

Irwin D. Olin*

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/FR/5303--12-10,227

Approved for public release; distribution is unlimited. 

Unclassified Unclassified Unclassified
Unlimited     53

James Alter

202-767-3517

               

             

Phase-only beam steering		  Phased array
Optimization			   Excel

Office of Naval Research
1 Liberty Center
875 North Randolph Street
Code 31, Suite 1425
Arlington, VA 22203-1995

  

   

            

    9741

              

  

ONR

*Sotera Defense Solutions, Inc., McLean, VA 22102-5011; Naval Research Laboratory retiree.

 

     The development of wide “flat-top” sector main beams by control of only the excitation phase of phased array elements is described. Pattern pa-
rameters are determined by an optimization approach using Visual Basic macros that control the repetitive application of Microsoft Excel’s Solver 
spreadsheet add-in. By only controlling element phases with maximum equal amplitude signals, maximum integrated beam power is achieved. 
The basic common structure is a linear array of equally spaced elements optimized in a single angular plane. Applied to a square or triangular grid 
array, their parameters are combined to produce beams along two orthogonal principal planes, resulting in a square or rectangular flat-top profile. 
Circularly symmetric beam profiles are developed using a circular grid array. The impact of optimization, element phase precision, sector ripple, 
sidelobe levels, and integrated power are analyzed in some detail. The goal is to provide sufficient documented procedural detail that can then be 
specialized to specific array requirements.
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FLAT-TOP SECTOR BEAMS USING ONLY  
ARRAY ELEMENT PHASE WEIGHTING: 

A METAHEURISTIC OPTIMIZATION APPROACH 
 
 
SUMMARY 
 

The development of wide “flat-top” sector main beams by control of only the excitation phase of 
phased array elements is described. Pattern parameters are determined by an optimization approach using 
Visual Basic (VB) macros that control the repetitive application of Microsoft Excel’s “Solver” 
spreadsheet add-in. By only controlling element phases with maximum equal amplitude signals, 
maximum integrated beam power is achieved. The basic common structure is a linear array of equally 
spaced elements optimized in a single angular plane. Applied to a square or triangular grid array, their 
parameters are combined to produce beams along two orthogonal principal planes, resulting in a square or 
rectangular flat-top profile. Circularly symmetric beam profiles are developed using a circular grid array. 
The impact of optimization, element phase precision, sector ripple, sidelobe levels, and integrated power 
are analyzed in some detail. The goal is to provide sufficient documented procedural detail that can then 
be specialized to specific array requirements. 

 
BASIC CONSIDERATIONS 

 
The far-field beam pattern of an array of elements is a function of the characteristics of the 

individual elements, their spacing within the array, and the element excitation amplitudes and phases. 
With large numbers of elements spaced close enough to avoid the redundant pattern character of grating 
lobes, the numbers of possible shaped beams are almost limitless. But of particular interest in this work 
are the aptly named flat-top beams, the general character of which is illustrated in Fig. 1. The shape is 
characterized by a prescribed main-beam sector region with little ripple, shown in blue, a small angular 
transition region, shown in grey, and a low-amplitude sidelobe region, shown in red. If each element in 
the array is assumed radiating nearly isotropic, the fields from each element combine at every angle. The 
final pattern then results by combining the complex (amplitude and phase) excitation of each of the 
elements. 

 

 
 

Fig. 1 — Angular sectors of the flat-top beam. A constrained-ripple flat-top is shown in blue, a transition region is shown in gray, 
and a sidelobe region in red. 
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Techniques for shaping these patterns, mostly based on inverse Fourier transforms, are well known 
and are extensively used. But their fit to a prescribed pattern profile very much depends on both the 
excitation amplitudes and their phases. Removing the amplitude variability is seen as a means to transmit 
the most power, or receive with the highest gain using an array, but this introduces severe constraints on 
the design process. On transmission, pattern control is then characterized by manipulating only the phases 
of each element drive signal.  

 
Consider the simple linear array of isotropic radiating elements depicted in Fig. 2. The line of sight 

(LOS) at angle θ, projected at the array center, is the normal to a far-range direction in which the 
composite fields from each of the elements must be added to determine the amplitude at just that angle.  

 
 
 

 
 

Fig. 2 — Linear array of equally spaced elements with a representative line of sight (LOS) projected on the coordinate origin 
 
 
 
The distance to the line from each element point, nd , then determines the equivalent electrical phase 

2n nd d    . Clearly nd  is a function of the element’s location in the array, so that the element 
spacing, s, must be included. This is conveniently expressed in terms of the operating wavelength: s = λ/k. 

Typically, 2k  , or as part of an equilateral triangular lattice, 3k  . Then for the general case of N, an 
even number of elements, the corresponding phase for each element, n, is given by 

 
 

  1 2 sinN n
k

   , with 2n N , 

 
 

since the distances are symmetric relative to the array center. Assuming the beam is shaped symmetrically 
about the coordinate origin, N/2 additional phases ( n ) are added to all N array elements. Considering the 
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geometry and the additional excitation phase, adding n  to each of the elements leads to the following 
equation for the sum of all the components, in which N elements spaced λ/k apart are considered: 

 
 

    
2

1

2 cos 1 2 sinn

N
i

n

E N n
k

   


     
 . 

 
 
Each of the phases can be within an interval n       radians, so even with the 12 elements 

illustrated in Fig. 2, the number of possibilities is essentially countless, and that is where the solution in 

this report begins. Except for an additional overall cos  amplitude factor that modifies the omni-
directional character of each element, the preceding equation fully expresses the far-field interactions. An 
objective then is to find the set of element phases that minimize the sidelobes while constraining the 
main-beam ripple to a specific value. Adding a further constraint that the phases are within ±2π, this 
provides a tractable problem for solution. But that too is difficult owing to the periodic nature of the term 
exp(jδn). There will be very many optimized minimum or maximum values, so which one is the best? 
Technically this is a non-convex optimization problem and the answer sought is the global minimum or 
maximum. The short answer to the approach taken is that the end result may not represent a global 
minimum. There is the likely possibility that another set, even though providing sidelobes only a very 
small fractional decibel better, can be found. But the result can be demonstrably close enough, and that is 
sought here. Moreover, the practical granularity in the phase settings means that even finding the 
theoretical global minimum set of phases, they will likely not be used in practice. 

 
OPTIMIZATION 

 
Contemporary optimization alternatives such as genetic algorithms [1–9], simulated annealing [10], 

particle swarm optimization [11], and just random search [12] are all procedures that do not solve the 
complex electromagnetic array problem. (Of these, genetic algorithms currently appear the most favored, 
although using them can involve longer optimization time.) One succinctly phrased comment notes that 
although one may not know how to actually solve a problem, at least a satisfactory answer is 
recognizable. Rather than solve the problem, the defining equations of these optimization techniques 
fulfill objectives and constraints that represent a process from which an acceptable result, independent of 
the underlying theory, is generated. Of course this does not imply that the results of these techniques are 
consistent one with another in detail, as is later illustrated. Basically it all comes down to time, or 
equivalently, the number of iterations before converging to an acceptable result. 

 
Yet another alternative used in this report repetitively calls the Solver add-in function in an Excel 

spreadsheet by a Visual Basic macro. Applied to the array problem, Solver uses a classic gradient search 
technique in which a continuously changing objective of trial values programmed for the minimum 
sidelobe level in the n-dimensional space is gradually approached by the n-dimensioned vector set of 
variables. These may be the phases or the several phase-related weights, next described. Finally, macro 
repetition enables convergence to an acceptable solution. For a linear array with a symmetric beam, only 
N/2 element phases are needed. But for a representative 50-element array, this only helps the 
bookkeeping, since even 25 may be too many to easily handle. 

 
Applied to this specific problem, an especial difficulty is the initial set of element phases. The 

optimization process uses the initial set as a base for ensuing trials to reach an objective fit, along with 
any included constraints. So, common to all solutions using optimization, the issue of where to start must 
be confronted. Without a reasonably good initial set, the result is often that no feasible solution exists, 
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even though the equations describing the pattern are correct. A premium Solver version by Frontline, the 
developer of the Excel add-in, provides a multistart option with optimization proceeding with five 
different starting sets (of their choice) following a determination of the best to define the closest to a 
global optimum, but it too is often poorer than one using a better starting set. 

 
INITIAL VALUES  

 
The initial set selection need not be an exhaustive or a blind process. The familiar “sinX/X” pattern 

results in using the combined fields from a uniformly phase-weighted array of elements. For a symmetric 
linear array of N elements spaced λ/k apart, as cited on p. 3, the resulting equation is 

 
 

    
2

1

2 cos 1 2 sin
N

n

E N n
k

 


     
 .  

 
 
For sector beamwidths little different from that defined by this pattern, Solver defines the initial 

phase set that can then be incrementally changed to accommodate ever-widened beams. If the increments 
are small, the likelihood of missing an acceptable “optimum” solution is low. Subsequent incremental 
widening can be continued until the required beam parameters are met. But for wide beamwidths this may 
not be as useful as a comparatively simple alternative. In a 2004 paper, Marcaccioli, Gatti, and Sorrentino 
[13] proposed phase-only synthesis for a linear array that defined the element phases in terms of just a 
few Chebyschev polynomial weights, of the first kind. The pattern fit is determined by the element phases 
using only the weights of several even-ordered polynomials which are just expansions of these phases. 

Recall that these polynomials can be expressed as:  0 1T x  ,  1T x x , with the recurring relationship, 

     1 12n n nT x xT x T x   . Alternatively, using the normalized distance of each element from the array 

center, defined by   1
1 2 , 1,2,,,

1

n
k n n N

N


   


, the corresponding polynomials are defined by 

 
 

   2
2 2 1,T k k      1cos cosmT k m k . 

 
 
The set of phase weights is then defined by the polynomials and their weights, Wm. Assuming six 

even-ordered polynomials are used, the phase weights are 
 
 

        2 2 4 4 6 6 12 12......n W T k n W T k n W T k n W T k n      . 

 
 
As a result, the number of degrees of freedom is drastically reduced; in fact the numbers of elements 

are not directly involved. The approach even appears independent of the number of elements in the array. 
But since it is the derived phases, rather than the weights, that control solution acceptance, this method 
can be used regardless of the numbers of elements. An additional advantage is gained by only using even-
ordered polynomials, since these polynomials show the even-ordered response familiar in circuit design 
and are well matched to a symmetric array of elements. But, as described in the section “Different 
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Starting Sets: Acceptable Results,” the relationship between the element phases derived from Chebyschev 
polynomials is an approximation, albeit convenient in terms of computation efficiency.  

 
That is then both the advantage and disadvantage of this approach. There are fewer degrees of 

freedom to use, but also there are fewer degrees of freedom to match an objective pattern. The precision 
or resolution of the weights is increasingly important in fulfilling the optimization criteria. But it has been 
found to provide a much better starting weight set, from which a VB macro using a “do-loop” program 
can continuously refine the set to an acceptable result. Of course, even this also requires an initial set. But 

among the specific weights it has been found that the value of 2W  (near end value, rather than center) far 

exceeds and essentially defines the flat-top width. For a half-width flat-top of   (degrees), a good 

empirical starting value is 2 3W  , with the remaining weights each set equal to unity. Since the 
weights define element phases, it is the phases that measure the fit to the optimization objective, along 
with any defined constraints. Optimization is essentially a process that is blind to the underlying 
electromagnetic field relationship depicted by the defining equation, so the phases defined by a good 
weight set can then also be further optimized, if required. 

 
OPTIMIZATION CONVERGENCE 

 
As described in this report, the optimization technique is a metaheuristic process, iteratively 

comparing the current and prior results as illustrated in Fig. 3 by iterations of the Solver function under 
VB control. Three columns of parameters, either the Chebyschev polynomial weights or the element 
phases, are varied and circulated during the optimization decisions. For a specified flat-top width and 
transition width, just one decision is involved, the maximum pattern sidelobe, with a defined and 
constrained main-beam ripple. (Additional constraints confining the element phases within ±π radians 
may be further included when optimizing the phases directly.) The blue column contains the best set of 
weights or phases during the iterations. The values in the green set contain a small random change in each 
of the blue values. Using the Excel RAND() function, this change is made with each loop iteration. The 
red set of phase values is the current set used to calculate the array pattern during each optimization. The 
VB macro changes these values as the equivalent multidimensioned vector of the set is directed to a trial-
optimized result. During each of the iterations, some trial results cannot be met, but eventually one is 
found and the set retained without change. (Note that even a single iteration may involve a large number 
of trial values; several hundred are not unreasonable). If the result is better than found before, it is copied 
to the blue set. 

 
 
 

 
 

Fig. 3 — Lists of all element weights circulating in the Visual Basic macro loop 
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If it is not, then the green set, which is changed, is copied to red and the optimization loop continued. 
The idea is to continue to work only with small randomized changes to the best available set. These 
changes move the next trial result away from the prior result, so a new, possibly better, result will be 
found. A copy of the VB macro used for optimizing initial phase lists that includes the spreadsheet 
references is included in Appendix B. The macro for the Chebyschev weight optimization is similar, with 
the addition of a spreadsheet that defines the phase list from the list of optimized Chebyschev polynomial 
weights.  

 
REPRESENTATIVE ROW ARRAY RESULTS  

 
Although the overall objective of the work described here is the design of two-dimensional arrays 

with specific scanned patterns, the basic structures that are repetitively used are simple one-dimensional 
arrays of equally spaced elements. Regardless of the pattern requirements, the associated element phase 
values are derived solely from these simple arrays.  

 
Assuming a linear array of 50 elements spaced λ/2 apart, parameters for non-scanned flat-top sector 

beams with widths of ±5°, ±10°, ±20°, ±30°, ±40°, and ±50° were each first developed using just the 
Chebyschev weights. The associated optimizations used just the 10 weights, but changes during each of 
the optimization iterations were determined by their impact on the pattern, which was solely a function of 
the element phases. Then the resulting independent 25 phases from each of these were further optimized 
for minimum ripple. The effect of element pattern on each flat-top was represented by a multiplicative 

factor of cos  applied to each of the array E-field values. Copies of the optimized Chebyschev weight 
set and the phase shaping pattern set following further optimization are in Appendix A. The results are 
shown in Figs. 4 through 9; each was assumed satisfactory when many repeated optimizations produced 
little change in the quality of the pattern. Again, this does not confirm that any are globally optimum. But 
global relevance should not be preeminent; the result should be framed in terms of its fulfilling the 
concept objective. As my former supervisor once remarked, is the “best of good enough” sufficient?  

 
 

 
 

Fig. 4 — Angular array patterns for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting. Both 
plots were optimized for a ±5° main beam. Results optimizing just 10 even-ordered Chebyschev weights are shown in red, while 
a further optimization of the derived element phases is shown in blue.  
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Fig. 5 — Angular array pattern for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting 
optimized for a ±10° main beam. The results using just the 10 even-ordered Chebyschev weights were satisfactory. Little 
improvement resulted by further optimization of the corresponding element phases within a ±90° interval. 

 
 
 
 
 

 
 

Fig. 6 — Angular array patterns for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting. Both 
plots were optimized for a ±20° main beam. Results optimizing just 10 even-ordered Chebyschev weights are shown in red, while 
a further optimization of the derived element phases is shown in blue.  
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Fig. 7 — Angular array patterns for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting. Both 
plots were optimized for a ±30° main beam. Results optimizing just 10 even-ordered Chebyschev weights are shown in red, while 
a further optimization of the derived element phases is shown in blue.  

 
 
 
 
 

 
 

Fig. 8 — Angular array patterns for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting. Both 
plots were optimized for a ±40° main beam. Results optimizing just 10 even-ordered Chebyschev weights are shown in red, while 
a further optimization of the derived element phases is shown in blue.  
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Fig. 9 — Angular array patterns for a symmetric linear array of 50 elements spaced λ/2 apart using phase-only weighting. Both 
plots were optimized for a ±50° main beam. Results optimizing just 10 even-ordered Chebyschev weights are shown in red, while 
a further optimization of the derived element phases is shown in blue.  

 
 
 
The variability of the results using optimization is evident by comparing these results. For the 

patterns using just the 10 Chebyschev weights, only a few hundred successive optimizations were 
necessary until very little improved performance was apparent. These results are illustrated in the curves 
plotted in red. However, the 10 degrees of freedom used was double that originally used by the authors in 
Ref. 13. No further attempt was made to explore further increases in the numbers of these weights. In 
general it was found that lower beam ripple is accompanied by higher maximum sidelobes. 

 
DIFFERENT STARTING SETS; ACCEPTABLE RESULTS  

 
The independence, even irrelevance, between the details of the array electromagnetic theory and an 

acceptable solution using any of the optimization methods was noted above. It is also well known that the 
results using optimization are very dependent on the initial parameters. In this report these parameters are 
the initial set of element shape phases which are used in repetitive optimization. Then, since the goal is a 
“satisfactory” rather than a “global optimum” set of weights, otherwise disparate initial sets of these 
parameters may each result in acceptable patterns. An example is shown in Fig. 10(a) in which a set of 25 
phases for a symmetric linear array of 50 elements equally spaced by λ/√3 was required. The objective 
was a ±10° flat-top, ripple equal or less than ±0.5 dB, and maximum sidelobes of −10 dB. The initial 
weight sets differed, and the two independent optimized results, shown in blue and red, appeared very 
different, but since each fulfilled the objective and constraints, both are acceptable. Each set required 
about 200 repetitions; further repetitions differed very little. Clearly, neither phase set can be identified as 
a global optimum, but the difference is an important aspect of the optimization process, regardless of 
method used. The optimized set shown in red is typical of those detailed in Appendix A. The phase of the 
elements at each end is higher than those near the center (element 25) of the array. The corresponding 
array pattern is shown in red in Fig. 10(b). The second optimized phase set, shown in blue in Fig. 10(a), 
varies differently, low at each end and higher in the center. But the corresponding array pattern, in blue in 
Fig. 10(b), confirms that both sets are acceptable, although the source sets appear very different. 
However, there is a demonstrable relationship as shown in the other two phase sets in Fig. 10(a). First, 
plotting the supplement of the phase angles in blue, shown dashed in the figure, reveals the similarity with 
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the red set. Then the angles in that set can be translated by adding a constant value to each angle to 
produce the close match shown in green. Simply adding or subtracting a fixed value to each phase has no 
effect on the result. Equivalently it is just a translation of the LOS that is unrelated to the patterns. Overall 
there is a close similarity, but not an exact equivalence between the two phase sets, since neither set likely 
corresponds to the “global optimum.”  
 
 
 

 
 

 
 
Fig. 10 — (a) Two optimized element phase sets for ±10° flat-tops using different initial values shown in blue and red. 
Translating the supplement of the blue phase values (shown in green) reveals the two sets’ close correspondence. (b) Patterns 
using the phase values from the red and blue sets shown in (a). 
 
 
 
OPTIMIZATION SUFFICIENCY 

 
Under control by an Excel Visual Basic macro, there is no limit to how many times (iterations) the 

Solver can be called. Nonetheless the issue of how many is enough must be addressed. Figure 11 is a 
record of the macro iterations, optimized in groups of 25, to optimize the phases (not the Chebyschev 
weights) of the 50 elements equally spaced λ/2 apart. For a flat-top of ±5°, the objective was minimum 
sidelobes and ripple constrained to ±0.5 dB. As noted earlier, optimization is a process that is blind to the 
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inclusive phased array theory. Although the results of any of these are judged based on specification 
fulfillment and implementing the results, further improvement is not precluded. However, these results 
suggest strongly that further iterations are unnecessary. 

 
 
 

 
 

Fig. 11 — VB macro iterations for a 50-element linear array of λ/2 equally spaced elements optimized for a ±5° flat-top beam 
with ripple constrained to ±0.5 db. Gaps reflect iterations resulting in poorer performance (higher sidelobes) than prior best 
results. 

 
 
 
Finding a demonstrable global optimum set of phases may not be feasible, or even applicable, due to 

applicable circuitry precision limitations, but a metric can be related to the beam pattern application. For 
an array transmitting with constant amplitude and phase element drive signals, the pattern is the familiar 
sinX/X pattern shown in Fig. 12. Here, concerns for singular target resolution favor minimum sidelobes. 
Therefore the maximum sidelobe or the integrated sidelobe power is an applicable metric.  

 
 
 

 
 

Fig. 12 — Array pattern of 50 λ/2 spaced elements without amplitude or phase variation of the element signals. The −3 dB 
pattern width is 2° and the first (largest) sidelobe is −13.2 dB from the pattern maximum. 
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Figure 13 illustrates the relationships among component powers for the array shown in Fig. 12. The 
power in the main lobe is defined from beam center to the −3 dB angle; the power in a transition interval, 
defined here as that from the −3 dB angle, that at the first pattern null (2.3°), and the remaining angular 
band through 90°. To maintain the equivalence with phase-only flat-top element tapering, Taylor 
amplitude element tapering was not applied.  

 

 
 

Fig. 13 — Division of integrated power among the three pattern groups for the normal nonwidened array beam shown in Fig. 12. 
Main beam: 73.2%; Transition: 17.3%; Remaining (sidelobes): 9.5%. 

 
 
 

Although the angular selectivity characteristic, sin  , is important, the character of a flat-top beam 
is defined less by its selectivity at the beam’s edges and more by the ripple within the flat-top. Therefore, 
in addition to the same integrated power groups, the additional beam ripple is also important. These are 
included in Fig. 14 for the array plots in Fig. 6. For the wide 40° flat-top width, even the ±0.5 dB 
improvement in the ripple leads to a significant increase in the main beam power. 

 
 

 
 

Fig. 14 — The relationships among integrated powers of the ±20° main beam flat-top (blue), transition (grey), and sidelobes 
(red). Left illustration is from the array pattern shown in red in Fig. 6 with a flat-top ripple of ±1 dB and the right from the pattern 
shown in blue with a flat-top ripple of ±0.5 dB. 
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Tables 1 and 2 show the detailed values used for all the red plots in Figs. 4 through 9. These relied 
on a ripple constraint of ±0.5 dB, which could not always be fulfilled. Nonetheless the advantage of 
limiting the 10 Chebyschev weights to define the 25 different element phases reduces the work 
considerably. As shown next, the number of array elements is nearly independent of the number of these 
weights.  

 
 
 
Table 1 — Component Pattern Areas and Ripple of the Red Plotted Patterns in Figs. 4 Through 9 
 

 ±5° ±10° ±20° ±30° ±40° ±50° 

Flat-Top 59.5 37.2 70.3 94.2 89.9 94.2 
Transition 17.8 7.9 3.0 1.9 3.3 1.4 
Sidelobes 22.8 54.9 26.7 3.9 6.8 4.4 
Ripple ±1 dB ±0.5 dB ±1 dB ±1.5 dB ±1 dB ±2.5 dB 

 
 
 

Table 2 — Component Pattern Areas and Ripple of the Blue Plotted Patterns in Figs. 4 Through 9 
 

 ±5° ±10° ±20° ±30° ±40° ±50° 

Flat-Top 69.0 86.8 77.8 90.1 90.3 83.3 
Transition 9.3 4.5 3.2 2.6 3.7 3.6 
Sidelobes 21.7 8.7 19.0 7.2 6.0 13.1 
Ripple ±0.5 dB ±0.5 dB ±0.5 dB ±0.5 dB ±0.8 dB ±0.8 dB 

 
 
 
LARGE LINEAR ARRAYS 
 

Expressing the array element phases in terms of even-ordered Chebyschev polynomials effectively 
separates the physical size of the array from determining these phases. It is convenient and fast, and alone 
may be sufficient. If not, it provides a good starting set for further optimizing, as described above. 
Consider a linear array of 200 elements spaced λ/2 apart, a very large array; in S-band this represents a 
length of over 30 feet, a possibly unlikely size. With equal phased elements, the −3 dB beamwidth of that 
array would be about 0.25°. To change the phases for a ±5° flat-top with little ripple, the optimization 
objective and constraint were interchanged; minimum ripple with sidelobes (beyond a 2° transition band) 
less than −10 dB. For 200 elements, 100 unique values, element phase values δ1, δ2, , , , δ99, δ100 require 
definition. The 10 Chebyschev weights shown in Table 3 and the corresponding pattern in Fig. 15 
required about 500 iterations of the macro, each using about 50 trial values. It was clear that no 
improvement would result from additional repetitions. Then using these weights, with the corresponding 
element phases defining an initial phase set, further optimization quickly produced the flat-top pattern 
shown in Fig. 15, with ripple about ±0.15 dB about the ±5° beam center. But the result would have been 
the same with many fewer weight optimizations and not many more optimizations of the derived phases. 
The basis equivalence was also tested by attempting a solution of the inverse problem, but with poor 
results.  
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Table 3 — Ten Optimized Chebyschev Weights for the ±5° Flat-Top 200-Element Linear Array 
 

W2 W4 W6 W8 W10 W12 W14 W16 W18 W20 

6.26124 −0.72345 −0.16951 0.62585 0.99692 0.79339 1.35673 1.05067 0.67826 0.64469 

 
 
 
 
 

 
 

 

 
 

Fig. 15 — Patterns for 200 λ/2 spaced elements. Top: Expanded pattern results with and without element shape phase are shown 
in red and blue. Bottom: Patterns in green and red compare patterns using phases from only Chebyschev weights (green) and 
those with additional phase optimization (red). 
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PHASE BITS AND PRECISION 
 
Array patterns have been optimized without regard to the limitations in phase shift precision. 

Although convenient for the analyses, any application must further consider the use of finite-precision 
phase-shifters. Constraints during optimization limited each of the element phase values within ±2π 
radians, which define degree values within the interval 0°→ 360°. For an n-bit phase-shifter, assuming a 
maximum interval of S = 360°, the least significant bit (LSB) is simply given by 

 
 

 
2n

S
LSB  . 

 
 
Therefore the LSB for a 6-bit phase shifter is 5.625°; for 5 and 4 bits these are 11.25° and 22.5°, 

respectively. Successive bits then increase the degree equivalents by these same amounts. The default 
precision of Solver is 14 to 16 places beyond the decimal point, so only the quantization introduced by 
actual phase shifters is significant in terms of the differences within a ±90° angle interval. A comparison 
between the optimized values for a ±10° flat-top and the 4-bit equivalent values is shown in Fig. 16. 
Numerical phase differences actually vary between −6% and +8%, although little difference is evident on 
the scale of this figure. Figure 17 compares the flat-top region using the optimized phase values with 
another using the closest 4-bit values. It has been found that while repeated optimizations were necessary 
to reach an acceptable plateau as shown in Fig. 11, the subsequent 4-bit approximations should be 
adequate based on the three detailed beamwidth regions shown in Table 4. This somewhat surprising 
result is due to a combination of the large numbers of elements and the round-off process which 
effectively introduces additional random phase variations. 

 
 
 

 
 

Fig. 16 — Optimized element phase distribution (red) and the closest 4-bit values (green) for the ±10° flat-top linear array 
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Fig. 17 — Details of the ±10° regions, using the optimized phases (blue) and the closest 4-bit approximations (red), confirm little 
difference in the ripple 

 
 
 
 

Table 4 — Field Divisions for a ±10° Flat-Top Pattern Using Optimized Phases 
 and Their 4-bit Approximations 

 

 Optimized 4-bit Equiv 

Flat-Top 86.8% 87.2% 
Transition 4.5% 4.3% 
Sidelobes 8.7% 8.5% 

 
 
 
 
 

FLAT-TOP BANDWIDTH 
 
So far, all the analyses and the resulting patterns have depicted performance, primarily main-beam 

ripple and maximum sidelobe level, assuming monochromatic signals. Element phases are optimized 
based on a fixed inter-element spacing. However, in a real signal environment, neither of these is static. 
Device phase shifters can be wideband, but still finite, and equivalent shifts using time sequencing, e.g., a 
CORDIC algorithm, are not. In terms of the basic electromagnetic equation on p. 3, element spacing is 
basically a frequency-dependent or wavelength-dependent function. In terms of overall flat-top 
characteristics, the optimized results show that frequency changes can greatly impact the flat-top pattern 
width, with very little impact on the maximum sidelobe level. Figure 18 illustrates the results for the 
nominal ±10° pattern using the same data used for the pattern on Fig. 5.  
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Fig. 18 — ±10° flat-top main-beam characteristics for the linear array of 50 elements spaced λ/2 apart at 10 cm (3000 MHz). 
Element phase shifters are assumed wideband; only equivalent frequency-dependent inter-element spacing is considered. 

 
 
 

FLAT-TOP BEAM SCANNING 
 
Scanning any beam from an array requires adding a phase gradient across the aperture so that the 

signal from each of the elements, in addition to that for the beam shape, is in-phase at the desired LOS 
pattern plane angle. Figure 19 illustrates the association of the phase variations which defines the array 
pattern together with the steering phase gradient. For element spacing λ/k and a flat-top beam steering 
angle γ, the element array steering phases are 

 
 

  2
1 sin ,nd n

k

     

 
 

and the LOS pattern plane phases for N even number of elements is 
 
 

  1 2 sin .nd N n
k

      

 
 
The sum of these and the symmetric flat-top shaping phases, defined by 1N n n    , define the 

pattern of the flat-top beam with its center offset by angle γ.  
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Fig. 19 — Linear element array and phase distances to the array steered angle γ and the LOS antenna pattern plane. Their 
combined phases together with the flat-top shaping phases define the complete steered pattern. 

 
 
 
The resulting patterns for a ±10° flat-top steered to −10°, −20°, and −50° are shown in Fig. 20. 

Without further correction to the shaping phases, the offset beams widen with increased scan due to the 
reduced effective array aperture. Some degradation in the ripple and flat-top slope is also experienced, 
although further steered angle-dependent element phase correction can be applied if needed. 

 
 
 

 
 

Fig. 20 — Patterns for the ±10° flat-top (red) steered to −10°, −20°, and −50° exhibit the effects of reduced effective aperture and 
degradation of the flat-top characteristics 
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PLANAR ARRAY LATTICE GRIDS 
 
Combining flat-top beam parameters of two orthogonally oriented linear arrays effectively 

characterizes the 3D beam performance for an array with a rectangular or triangular grid lattice. As 
viewed in the plane of the two linear arrays, the lattice can take several commonly used forms, as shown 
in Fig. 21. These consist of evenly divided rows and columns or evenly staggered rows of elements.  

 
 
 

 
 

Fig. 21 — Commonly used array lattice grids use equally spaced element rows and equally spaced or staggered columns. (a) 
square lattice; (b) hexagonal or equilateral triangular lattice; (c) isosceles triangular lattice. For a specific aperture size, fewer 
elements fill the aperture using lattice (b), while lattice (c) requires more elements and enables greater radiated power. 

 
 
 
Triangular lattices can form isosceles triangles with corner angles of 30° and 45°, or equilateral 

triangles (sometimes termed hexagonal) with corner angles of 60°. Then the entire array can be aligned 
with the X-Y axes or at an angle of 45°. Element spacing within the lattice often depends on avoiding the 
grating lobes, basically the repetitive nature of the array pattern within the visible angular space of the 
array, and is described in detail by Rudge, Milne, Olver, and Knight [14]. Other selections involve the 
number of elements covering an array surface, since it is possible to reduce these by about 15% using the 
equilateral triangular lattice. Conversely, for a transmit array, tighter packing enables greater radiated 
power. The pattern synthesis using any of these lattices is the same. Each is determined by the phase 
shaping distribution along two orthogonal directions together with the element location within the lattice. 
Although readily visualized, this approach is not essential. Laxpati and Shelton [15] considered 
combining canonical forms of two-dimensional array sets.  

 
ARRAY LINE-OF-SIGHT PLANE 

 
Optimized pattern synthesis is with respect to an array in the X-Y plane of a Cartesian coordinate 

system as illustrated in Fig. 22. The LOS plane is normal to the line OPO defined by the elevation and 
azimuth angles φ and θ, and is at a range R. Its equation is defined by intercepts with the axes, which can 

be determined as illustrated in Fig. 23. The intercepts are then sinXu R  ,  cos sinYu R   , and 

 cos cosZu R   .  

 
 
 

(a) (b) (c) λ/2 

λ/2 

λ/√3 

λ/2 

λ/2 



 
20 Irwin D. Olin 
 

 

 
 

Fig. 22 — Cartesian coordinates defining the line-of-sight (LOS) plane in terms of azimuth (θ) and elevation (φ) angles relative 
to the array in the X-Y plane 

 
 
 
 

 
 

Fig. 23 — Left: the intercepts of the LOS plane with the O-X axis and the Y-Z plane. Right: the intercepts of the LOS plane with 
the Y-Z axes. 
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The general form of the equation of a plane in terms of these intercepts is 
 
 

 1
X Y Z

x y z

u u u
    . 

 
 

The LOS plane in terms of the axes intercepts is then 
 
 

 sin cos sin cos cos 0x y z R        . 
 
 

This is also in another generally used form 0Ax By Cz D    . 
 
The distance from any point , ,n n nx y z  in the array plane to the LOS plane in terms of these A, B, C, 

D parameters is given by the familiar form 
 
 

 
2 2 2

n n n
n

Ax By Cz D
d

A B C

  


  
, 

 
 

in which the radical sign is opposite to that of D. Then for points in the array, with 0nz  ,  
 
 

 sin cos sinn n nd x y R     . 

 
 

Assuming R is much larger than the array, all lines from the array to the LOS plane are parallel. Since the 

phase of the field from every array element in this plane is 
2

n nd d



 , the common phase R  can be 

ignored from the total amplitude which is then just the total of the N complex phase terms:  
 
 

 
1

n

N
j d

n

E 


  . 

 
 

REPRESENTATIVE 3D PATTERNS 
 
The array pattern is a complex sum of three phase groups (or equivalent time delays): the flat-top 

shaping phases, the beam steering phases, and the phases representing the equivalent distance of each 
element to a LOS pattern observation plane, detailed in the previous section. Common to all antennas, the 
projected aperture area when the array is steered off the central array axis (OZ in Fig. 22) is reduced. 
Therefore without specific compensating changes in the shaping phases, the flat-top width will increase 
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but the sidelobes will decrease, a useful characteristic in reducing radar reflected clutter power. Principal 
plane patterns, each without azimuth or elevation steering, are shown here, but a diagonal plane (often 
termed intercardinal) pattern cut readily shows these changes.  

 
Assuming a square grid array lattice illustrated in Fig. 21(a), a 2500-element array using 50 λ/2 

equally spaced elements along the X and Y planes for a ±5° flat-top can each use the same list of 
optimized phases, as shown in Appendix A. Within the array grid, the phase of each element is the sum of 
values according to their row and column location. Figures 24 through 26 show the results. 

 
 
 

 
 

Fig. 24 — Array pattern for a ±5° flat-top array of 2500 elements of 50 equally spaced λ/2 elements along each of the X and Y 
axes illustrated in Fig. 22. The pattern is characteristic of the square grid lattice array. 

 
 
 
The planar view pattern in Fig. 24 retains the expected square profile throughout the angular 

coverage. This is also shown in the single array pattern cuts in Fig. 25. As expected, these two patterns 
are essentially identical. The diagonal cut in Fig. 26, when the azimuth and elevation angles are combined 
along the diagonal, shows the widened flat-top and much lower sidelobes. To take advantage of this 
effect, which is independent of the shaping phase, the entire array has sometimes been simply rotated by 
45° about the central axis OZ shown in Fig. 22. 
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Fig. 25 — Patterns of a 2500-element square grid lattice array with equal λ/2 row and column spacings. Top: Elevation pattern at 

0° azimuth. Bottom: Azimuth pattern at 0° elevation. 
 
 
 

 
 

Fig. 26 — Diagonal (intercardinal) pattern cut of the same array as shown in Fig. 24. For a flat-top, the beam width is increased, 
but the sidelobes are substantially decreased along this direction. 
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Assuming phase-only pattern shaping, the square gridded array lattice always results in a square 
profile about the principal array normal. Several of these, for different flat-top widths using the same 
2500-element lattice, are shown in Figs. 27 through 31, and their parameters listed in Appendix A.  

 
 
 

 
 

Fig. 27 — Patterns of a phase-only 2500-element square lattice array optimized for ±10° pattern with ±0.5 dB ripple. All 
elements are separated by λ/2. 
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Fig. 28 — Same 2500-element array with element phases optimized for a ±20° flat-top. Note the patterns show the coverage over 
the complete ±90° in azimuth and elevation, revealing the effect of aperture reduction at wide angles. The distortion has very 
little effect on the relatively small flat-top. 

 

 
 

Fig. 29 — Element phase shaping of the 2500-element array changed to synthesize a ±30° flat-top. The square pattern is again 
distorted, but the effect is evident in the main flat-top beam as well.  
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Fig. 30 — Element phase shaping changed to synthesize a ±40° flat-top for the 2500-element array. In addition to the distortion 
due to the wide angular coverage, the main-beam ripple is greater.  

 
 

 
 

Fig. 31 — Element phase shaping changed to synthesize a ±50° flat-top for the 2500-element array. In addition to the distortion 
effects, the main-beam ripple is greater and the sidelobe levels significantly higher.  
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The results for arrays with an equilateral triangular grid lattice (vertical element spacings of λ/2 and 
horizontal element spacings of λ/√3) are similar for square profile flat-tops, as shown in Fig. 32 for a ±10° 
flat-top.  

 
 
 

 
 

Fig. 32 — Principal plane cuts for a ±10° flat-top using a hexagonal grid array. “X” and “Y” element spacings: λ/2 and λ/√3, 
respectively. With azimuth at 0° the elevation is shown in red; with elevation at 0° the azimuth is shown in blue. 

 
 
 
Rectangular profile flat-top patterns can also use the same method as the square profile flat-top 

beams. Figure 33 illustrates the results for a rectangular array of 2500 elements arranged in an equilateral 
(hexagonal) array matrix. For a profile ±10° azimuth and ±5° elevation, the phase of each element, using 
the optimized single row element values, is the sum of these values in row-column order.  
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Fig. 33 — Rectangular profile patterns for a 2500-element rectangular array using an equiangular triangular grid. Elements are 
spaced λ/2 apart vertically and λ/√3 horizontally. Ripple is constrained to ±0.5 dB. 

 
 
 
However, there is a trade-off in the optimization process between the maximum beam sidelobes and 

the flat-top ripple. The result is clearly shown in Fig. 34. Although each profile may be acceptable, the 
normalization of the combined profile parameters results in a distinguishable amplitude difference in their 
maximum flat-top levels. 

 
 
 

 
 

Fig. 34 — Principal elevation and azimuth plane pattern cuts for the rectangular profile flat-top pattern in Fig. 33. The ripple 
within each flat-top is about ±0.5 dB. The difference in average amplitude in each plane is due to the difference between the two 
pattern widths.  
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CIRCULAR FLAT-TOP PATTERNS 
 
The array lattices illustrated in Fig. 21 are essentially rectangular, albeit some triangular with 

displacement of alternative rows. Using only element phasing, it is then not surprising that the patterns 
result in the square or rectangular profiles shown in the previous section. Other profiles also need to be 
developed. For example, Fig. 20 illustrates the effect of angularly scanning an otherwise square flat-top 
beam. During scanning, the effective array aperture is progressively decreased, resulting in differential 
amplitude changes that effectively tilt the beam top. Here, except for some reduction in the width of the 
flat-top, correcting this amplitude slope can be accomplished with a change in the element phase 
distribution within the array lattice. However, another issue remains concerning the actual profile of the 
beam. Can circular or other non-rectangular flat-top profiles also be generated? The short answer is “no,” 
primarily due to the geometry of the array grid lattice.  

 
Simply applying the same linear single row phase shape profiles to both orthogonal axes results in a 

square profile flat-top. A circular profile can be synthesized, but ideally requires a radial and circularly 
symmetric phase shape profile. The difficulty that must be overcome is the element pattern grid. Compare 
the two illustrations in Figs. 21(a) and (b). Each use the same square and triangular grids as illustrated in 
Figs. 35(a) and (b), but with an added suggested isophase ring structure. Ring phases can then be derived 
in the same manner as the linear element phases.  

 
Clearly, radial symmetry is not possible with either grid, although the element locations as shown in 

Fig. 35(a) could be considered similar to a concentric circular ring structure, so using flat-top optimized 
linear array values, either calculated, extrapolated, or even further optimized, is reasonable.  

 
 
 

 
 

Fig. 35 — (a) One quadrant of a 2500-element square grid array with elements spaced λ/2 apart. Twenty-five concentric square 
“rings” can define element phase shaping. (b) One quadrant of a 1027-element array with elements spaced λ/2 and λ/√3 apart 
forming an equal angular (hexagonal) grid. Eighteen concentric hexagonal “rings” can define element phase shaping. 

 
 
 

(a) (b)



 
30 Irwin D. Olin 
 

 

Unfortunately the results are patterns similar to the one shown in Fig. 36. Optimizing phase tapering 
based on an approximated circular ring structure or the actual array radial distances does enable a 
widened circular beam profile, but is an obviously unacceptable flat-top. 

 
 
 

 
 

Fig. 36 — Optimized ±10° flat-top pattern using element phases from a square or rectangular grid lattice. The widened pattern 
retains a central ring similar to one with equal element phasing. 

 
 
 
Recently, McPhail, Coleman, and Scholnik [16], using primarily an analytic approach rather than the 

total optimization approach, show similar results, although the goal was not a flat-top pattern. An 
alternative, choosing extrapolated phases based on the actual radial location of each element in the array, 
rather than approximated circular concentric rings, produces the same result. 

 
Using a triangular or hexagonal grid lattice offers another possibility, implied by the array lattice 

shown in Fig. 35(b), again with a suggested isophase ring structure of concentric inscribed λ/2 spaced 
rings. Obviously, elements in the outer array corners must be excluded, but each of the others can be 
associated with a closest ring. Identifying the 25 concentric rings of a 25 × 25 square element array 
matrix, and using appropriate shaping phases, the result applied to a ±10° flat-top are shown in Fig. 37, 
again unacceptable. 
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Fig. 37 — Optimized ±10° flat-top pattern using the hexagonal grid of Fig. 35(b). The widened pattern retains structure that 
includes a central ring. 

 
 
 
Another alternative uses the same radial element phase shaping, but with a concentric circular grid 

lattice rather than a rectangular or hexagonal grid. A quadrant of this array grid using 20 concentric rings 
is shown in Fig. 38. Rings are spaced λ/2 apart, as are elements within each ring. Although inconvenient 
using contemporary element feed structure, its application here is readily shown. This array matrix grid 
has been suggested before and is described in some detail by Elliott [17]. But applied to phase-only flat-
top pattern development, equal radial element phase shaping assures a circularly symmetric pattern, and 
using a concentric ring array removes the nonuniformity noted before.  

 
 
 

 
 

Fig. 38 — One quadrant of a concentric array grid. Elements are located in circular rings λ/2 apart and approximately λ/2 apart 
within each ring. 1299 elements fill a 20-ring array. 

 
 



 
32 Irwin D. Olin 
 

 

Consider a group of n concentric rings of elements spaced λ/2 apart. The circumference of the nth 
ring from the array center is nc n . Assume all the elements in that ring are spaced at least λ/2 from all 
those in an adjacent ring. Next consider the number of elements within a ring; assume they too should be 
at least λ/2 apart. This implies a total of 2nπ elements in the nth ring. Since only an integer number of 
elements in a ring are possible, this number must be rounded down to an integer value. The parameters for 
a 20-element circular grid ring array are shown in Table 5. 

 
 
 

Table 5 — Parameters for a 20-Element Circular Ring Array 
 

Ring Radius (λ) Number/ring Spacing (deg) Spacing (λ) 

1 0.5 6 60.00 0.52 
2 1.0 12 30.00 0.52 
3 1.5 18 20.00 0.52 
4 2.0 24 15.00 0.52 
5 2.5 30 12.00 0.52 
6 3.0 36 10.00 0.52 
7 3.5 42 8.57 0.52 
8 4.0 50 7.20 0.50 
9 4.5 56 6.42 0.50 
10 5.0 62 5.80 0.50 
11 5.5 68 5.29 0.50 
12 6.0 74 4.86 0.50 
13 6.5 80 4.50 0.51 
14 7.0 86 4.18 0.51 
15 7.5 94 3.82 0.50 
16 8.0 100 3.60 0.50 
17 8.5 106 3.39 0.50 
18 9.0 112 3.21 0.50 
19 9.5 118 3.05 0.50 
20 10.0 124 2.90 0.50 

 
 
 
Adding a center element, the total number of elements in the complete array is 1299, each of which 

is separated by at least one-half wavelength. With all element signal phases set equally, the pattern is 
essentially the familiar sinX/X pattern shown in Fig. 39. Regardless of the actual phase distribution 
among the rings, the pattern will always be circular. Both element distance phases to the LOS plane and 
the element shape phases are circularly symmetric, which effectively removes the central ring structure 
that appears in Fig. 36. Control of the flat-top width is then the same as for the square flat-tops.  
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Fig 39 — Pattern using the circular concentric array, with equal phases and amplitudes of all 1299 elements, of the array 
illustrated in Fig. 38. Beam width and first sidelobe are similar to values of a square matrix gridded array. 

 
 
 
Optimizing the 21 independent element phases to produce an acceptable pattern for the 41-element 

linear array row of λ/2 spaced elements is shown in Fig. 40. Optimization was for a pattern width of ±10° 
with sidelobes less than −10 dB and ripple constrained to less than ±0.5 dB.  

 
 
 

 
 

Fig. 40 — Pattern of the 41-element linear array of λ/2 spaced elements. Element phases defined those of the 20 concentric rings.  
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Using the element phase set that defined this pattern of the single row array to define the phases of 
the concentric rings, as illustrated in Fig 38, the resulting circular flat-top patterns shown in Fig. 41 
fulfilled the same optimization parameters as those used for the linear array. A corresponding angular 
detailed plot is shown in Fig. 42. Since only 21 phase values applied to just the 20 rings and the center 
element of the array are involved, the association between individual elements and the shape phases is 
simpler than the row-column association necessary for the square flat-tops. However, this is offset 
analytically by the need to identify each of the circular array elements with a single one of the concentric 
array rings.  

 

 
 
Fig. 41 — Circular flat-top using 1299 elements, nominally spaced λ/2 apart. Pattern is flat within ±0.5 dB over ±10°.  
 
 
 

 
 

Fig. 42 — Array pattern at any angular cut of the 20-ring array patterns shown in Fig. 41 
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CONCLUSIONS 
 
Array patterns with good flat-top beam characteristics that only require adjustment of the individual 

element phases can be readily designed. The equations are simple, but the number of variables favors an 
iterative optimization approach for solution. Non-iterative methods, such as those described by Laxpati 
and Shelton [17], while promising, do not address the requirements specific to the sector patterns 
described here. A wide range of iterative methods are available, many of preeminence in the current 
literature. Nearly all are effectively independent of the array technical details, since an acceptable solution 
can be defined in terms of a basic objective parameter within some defined constraints and is always 
recognizable. Sometimes the differences are in the convergence speed, sometimes in the precision. In this 
report, the results use the reduced gradient optimization technique readily available in Excel’s Solver. 
Optimization goals were primarily minimum sidelobes within a constrained amount of flat-top ripple, 
although the converse was also shown. Repetitive optimization using a Visual Basic macro enabled 
comparison of possible new sets with candidate sets for acceptance within the defined limits. Working 
with large array structures is facilitated by initially optimizing a comparatively small set of Chebyschev 
weights with the element phases as a function of the arguments. If necessary the resulting phase set can 
then be further optimized starting with those phases.  

 
Since the optimization process is essentially blind to the underlying electromagnetic array theory, the 

results are very much dependent on the starting phase set. As a result, different initial sets can result in 
differing optimized sets, any of which can be equally acceptable. When the results from different initial 
sets produce closely similar patterns, it may be possible, although not necessary, to demonstrate their 
equivalence. The relationship between the optimum shape phases and their representation in terms of the 
Chebyschev polynomials basis set, while appropriate to the approach described, is not very precise. 

 
The organization of the array grid materially impacts the ripple of the flat-top beam. Those 

organized in a square or triangular grid are suited to beams with square or rectangular beam profiles, 
while an array with a concentric circular grid is required for beams with good circular flat-top circular 
profiles. 

 
ACKNOWLEDGMENTS 

 
Phase-only array pattern design using a variety of techniques is scattered throughout the literature. 

Work described here started in connection with the Naval Research Laboratory Radar Division’s EEDAR 
(Every-Element Digital Array Radar) project, presently renamed FlexDAR (Flexible Digital Array 
Radar). Much of the basic work fulfilled the initial requirements in terms of pattern width, flatness, and 
sidelobe level. However, questions posed by Jim Alter concerning the more general character of flat-top 
patterns, especially those with truly circular profiles, although outside the immediate project 
requirements, offered a significantly greater challenge and an opportunity. Later, informal discussions 
with Dr. Merrill Skolnik, my former supervisor as a government employee, posed the likelihood of 
deleterious frequency effects. Addressing both of these made this a better, more general treatment of the 
subject. The author prepared this report while under contract with the Naval Research Laboratory, 
Washington, D.C.  

 
 

  



 
36 Irwin D. Olin 
 

 

REFERENCES CITED 
 
1. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 

1975). 
2. R.L. Haupt, “Phase-Only Adaptive Nulling with a Genetic Algorithm,” IEEE Trans. Antennas 

Propag. 45(6), 1009–1015 (June 1997). 
3. R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 

2004). 
4. G.K. Mahanti, A. Chakraborty, and S. Das, “Floating-point Genetic Algorithm for Design of a 

Reconfigurable Antenna Arrays by Phase-Only Control,” APMC2005 Proceedings. 
5. L. Ying, G. Shuxi, S. Zongzhen, and X. Liangyong, “Design of a Shaped Beam Base Station Antenna 

Using Genetic Algorithm,” Journal of Electronics 20(1), 78–80 (2003). 
6. D. Marcano, F. Duran, and O. Chang, “Synthesis of Multiple Beam Linear Antenna Arrays Using 

Genetic Algorithms,” Antennas and Propagation Society International Symposium 2005, AP-S 
Digest, Vol. 2, pp. 938–941 (2005). 

7. J. Jin, H.L. Wang, W.M. Zhu, and Y.Z. Liu, “Array Patterns Synthesizing Using Genetic Algorithm,” 
Progress in Electromagnetic Research Symposium 2006, March 26–29. 

8. F.J. Ares-Pena, J.A. Rodriguez-Gonzalez, E. Villanueva-Lopez, and S.R. Rengarajan, “Genetic 
Algorithms in the Design and Optimization of Antenna Array Patterns,” IEEE Trans. Antennas 
Propag. 47(3), 506–510 (1999). 

9. R. Abdolee, M.T. Ali, and T.A. Rahman, “Decimal Genetics Algorithms for Null Steering and 
Sidelobe Cancellation in Switch Beam Smart Antenna System,” International Journal of Computer 
Science and Security 1(3), 19–26 (2007). 

10. J.A. Rodriduez, F. Ares, and E. Moreno, “Linear Array Pattern Synthesis Optimizing Using the 
Simulated Annealing Technique,” Microwave and Optical Technology Letters 23(4), 224–226 
(November 1999). 

11. W.T. Li and X.W. Shi, “An Improved Particle Swarm Optimization Algorithm for Pattern Synthesis 
of Phased Arrays,” Progress in Electromagnetics Research, PIER 82, 319–332 (2008).  

12. S.J. Blank and M.F. Hutt, “Antenna Array Synthesis Using Derivative, Non-Derivative and Random 
Search Optimization,” IEEE Sarnoff Symposium, Princeton, NJ, April 28–30, 2008, 
doi:10.1109/SARNOF.2008.4520115. 

13. L. Marcaccioli, R.V. Gatti, and R. Sorrentino, “Series Expansion Method for Phase-Only Shaped 
Beam Synthesis and Adaptive Nulling,” URSI (International Union of Radio Science) EMTS 
International Symposium on Electromagnetic Theory, 23–27 May 2004, Pisa, Italy, pp. 676–678; 
available at http://www.ee.bgu.ac.il/~specmeth/EMT04/pdf/session_3/3_02_05.pdf. (A more 
comprehensive text is in Italian.) 

14. A.W. Rudge, K. Milne, A.D. Olver, and P. Knight, The Handbook of Antenna Design, Vol. 2, IEE 
Electromagnetic Waves Series 16 (Peter Peregrinus, Ltd., London, 1983). 

15. S.R. Laxpati and J.R. Shelton, “Theory of Null Synthesis of Planar Arrays,” IEEE Antennas and 
Propagation Society International Symposium 1981, Vol. 19, pp. 41–43 (1981), 
doi:10.1109/APS.1981.1148592. 

16. K.R. McPhail, J.O. Coleman, and D.P. Scholnik, “Experiments in Weight Design for a Sombrero 
Array Pattern,” NRL/MR/5320—10-9232, Naval Research Laboratory, Washington, DC, June 25, 
2010. 

17. R.S. Elliott, Antenna Theory and Design, Rev. Ed., Section 6.7, “Sampling Generalized Taylor 
Distributions: Circular Grid Arrays,” pp. 230–233  (IEEE Press, Wiley-Interscience, Hoboken, NJ, 
2003). 

 
 
  



 
Flat-Top Sector Beams 37 
 

 

BIBLIOGRAPHY 
 
Akdagli, A., and K. Guney, “Shaped-Beam Pattern Synthesis of Equally and Unequally Spaced Linear 
Antenna Arrays Using a Modified Tabu Search Algorithm,” Microwave and Optical Technology Letters 
36(1), 16–20 (2003). 
 
Branner, G.R., and B.P. Kumar, “Improved Array Sectoral Patterns by Unequal Element Spacing,” 1998 
IEEE Antennas and Propagation Society International Symposium, Digest Vol. 2, pp. 764–767, 
doi:10.1109/APS.1998.702051. 
 
Brown, G.C., J.C. Kerce, and M.A. Mitchell, “Extreme Beam Broadening Using Phase Only Pattern 
Synthesis,” Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006, pp. 36–39, 
doi:10.1109/SAM.2006.1706079. 
 
Bucci, O.M., and G. D’Elia, “Power Synthesis of Reconfigurable Conformal Arrays with Phase-Only 
Control,” IEE Proc.-Microw. Antennas Propag. 145(1), 131–136 (February 1998). 
 
Bucci, O.M., G. D’Elia, G. Mazzarella, and G. Panariello, “Antenna Pattern Synthesis: A New General 
Approach,” Proc. IEEE 82(3), 358–371 (March 1994). 
 
Casimiro, A.M.E.S., and J.A.R. Azevedo, “A Unification Procedure to the Analysis and Synthesis of 
Antenna Arrays,” J. of Electromagn. Waves and Appl. 19(14), 1881–1896 (2005). 
 
Chakraborty, A., B.N. Das, and G.S. Sanyal, “Determination of Phase Functions for a Desired One-
Dimensional Pattern,” IEEE Trans. Antennas Propag. AP-29(3), 502–506 (May 1981). 
 
Chakraborty, A., B.N. Das, and G.S. Sanyal, “Beam Shaping Using Nonlinear Phase Distribution in a 
Uniformly Spaced Array,” IEEE Trans. Antennas Propag. AP-30(5), 1031–1034 (Sept. 1982). 
 
Chen, S., and R. Iwata, “Mutual Coupling Effects in Microstrip Patch Phased Array Antenna,” 1998 IEEE 
Antennas and Propagation Society International Symposium, Vol. 2, pp. 1028–1031 (1998), 
doi:10.1109/APS.1998.702125. 
 
Cheston, T.C., and J. Frank, “Phased Array Radar Antennas,” Ch. 7 in Radar Handbook, 2nd ed., M.I. 
Skolnik, ed. (McGraw-Hill, New York, 1990). 
 
Coleman, J.O., D.P. Scholnik, and K.R. McPhail, “Phase-Only Tapers for Regular Planar Arrays, a 
Heuristic Nonlinear-FM Approach,” 2010 IEEE International Symposium on Phased Array Systems and 
Technology (ARRAY), pp. 113–120, doi:10.1109/ARRAY.2010.5613383. 
 
Corey, L.E., “A Graphical Technique for Determining Optimal Array Antenna Geometry,” IEEE Trans. 
Antennas Propag. AP-33(7), 719–726 (July 1985). 
 
Davis, R.M., “Phase-Only LMS and Perturbation Adaptive Algorithms,” IEEE Trans. Aerosp. Electron. 
Syst. 34(1), 169–178 (January 1998). 
 
DeFord, J.F., and O.P. Gandhi, “Phase-Only Synthesis of Minimum Peak Sidelobe Patterns for Linear 
and Planar Arrays,” IEEE Trans. Antennas Propag. 36(2), 191–201 (February 1988). 
 
DuFort, E.C., “Pattern Synthesis Based on Adaptive Array Theory,” IEEE Trans. Antennas Propag. 
37(8), 1011–1018 (August 1989). 



 
38 Irwin D. Olin 
 

 

 
Elliott, R.S., and G.J. Stern, “A New Technique for Shaped Beam Synthesis of Equispaced Arrays,” IEEE 
Trans. Antennas Propag. AP-32(10), 1129–1133 (October 1984). 
 
Evans, R.J., and T.E. Fortmann, “Design of Optimal Line-Source Antennas,” IEEE Trans. Antennas 
Propag. AP-23(3), 342–347 (May 1975). 
 
Guenad, B., S.M. Meriah, and F.T. Bendimerad, “Multibeam Antennas Array Pattern Synthesis Using a 
Variational Method,” Radioengineering 16(2) 28–33 (June 2007). 
 
Law, D.C., S.A. McLaughlin, M.J. Post, B.L. Weber, D.C. Welsh, and D.E. Wolfe, “An Electronically 
Stabilized Phased Array System for Shipborne Atmospheric Wind Profiling,” Journal of Atmospheric and 
Ocean Technology 19(6), 924–933 (June 2002). 
 
Levine, D., “Maximum Antenna Gain of Shaped Beams,” Technical Report AFTR-6505, Wright-
Patterson AF Base, Ohio, March, 1951. 
 
Lewis, G.M., “Radiating Element Design for a Multi-Octave Phased Array Aperture,” 5th EMRS DTC 
Technical Conference, Edinburgh, 2008; available at 
http://emrsdtc.com/conferences/2008/downloads/conference_papers/A3.pdf. 
 
Liang, C.-H., L. Li, and X.-J. Dang, “Inequality Condition for Grating Lobes of Planar Phased Array,” 
Progress In Electromagnetics Research B 4, 101–113 (2008).  
 
Mahanti, G.K., A. Chakrabarty, and S. Das, “Phase-Only and Amplitude-Phase Synthesis of Dual-Pattern 
Linear Antenna Arrays Using Floating-Point Genetic Algorithms,” Progress in Electromagnetics 
Research, PIER 68, 247–259 (2007). 
 
Mahanti, G.K., S. Das, and A. Chakraborty, “Design of Phase-Differentiated Reconfigurable Array 
Antennas with Minimum Dynamic Range Ratio,” IEEE Antennas Wireless Propag. Lett. 5, 262–264 
(2006). 
 
Mailloux, R.J., Phased Array Antenna Handbook, 2nd ed., Ch. 1, “Phased Arrays in Radar and 
Communication Systems” (Artech House, Boston, 2005). 
 
Olin, I.D., and G.V. Trunk, “Phase Only Aperture Control,” Tri-Service Radar Symposium, 2001. 
 
Shavit, R., and S. Levy, “A New Approach to the Orchard–Elliott Pattern Synthesis Algorithm Using 
LMS and Pseudoinverse Techniques,” Microwave and Optical Technology Letters 30(1), 12–15 (July 
2001). 
 
Tonn, D.A., and R. Bansal, “Reduction of Sidelobe Levels in Interrupted Phased Array Antennas by 
Means of a Genetic Algorithm,” International Journal of RF and Microwave Computer-Aided 
Engineering 17(2), 134–141 (March 2007). 
 
Torrealba, R., D.H. Covarrubias, and M. Panduro, “Analysis of Robustness for Convex Optimization 
Applied to Array Antenna Pattern Synthesis,” Journal of Computer Science 4(12), 1036–1041 (2008). 
 
Trastoy, A., and F. Ares, “Phase-Only Synthesis of Continuous Linear Aperture Distribution Patterns 
with Asymmetric Side Lobes,” Electronics Letters 34(20), 1916–1917 (October 1998). 
 



 
Flat-Top Sector Beams 39 
 

 

Trastoy, A., and F. Ares, “Phase-Only Control of Antenna Sum Patterns,” Progress in Electromagnetics 
Research, PIER 30, 47–57 (2001). 
 
Vaskelainen, L.I., “Phase Synthesis of Conformal Array Antennas,” IEEE Trans. Antennas Propag. 
48(6), 987–991 (June 2000). 
 
Voges, R.C., and J.K. Butler, “Phase Optimization of Antenna Array Gain with Constrained Amplitude 
Excitation,” IEEE Trans. Antennas Propag. AP-20(4), 432–436 (July 1972). 
 
Von Aulock, W.H., “Properties of Phased Arrays,” Proc IRE, October 1960, pp. 1715–1727. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page  
intentionally  

left blank 

 
  



 

 
41 

 
 
 
 
 

Appendix A 
 

OPTIMIZED WEIGHTS AND PHASES 
 
 
The Chebyschev weights and phases optimized for cited flat-top pattern widths described in the 

report section on “Representative Results” are detailed in Table A1 and Table A2. These are for 50-
element linear arrays. Each of the six weight sets of ten Chebyschev polynomial weights defined the 25 
independent array phase weights for 50-element linear arrays that were then further optimized. The one 
set of phases without the source Chebyschev weight set is for a 50-element linear array of λ/√3 spaced 
elements used for the rectangular profile pattern shown in Fig. 33. Like all results from optimization 
procedures, these values cannot be verified to be “globally optimum”; however, the results using the basic 
array structure equations fulfilled the array pattern specifications, as acceptable. Tables A3 and A4 relate 
to weights and phases for a 200-element linear array of elements spaced λ/2 apart. 

 
 
 

Table A1 — Optimized Chebyschev Weights for a Linear Array of 50 Elements Spaced λ/2 Apart  
 

 ±5° ±10° ±20° ±30° ±40° ±50° 

W2 3.03183 4.15328 16.52190 11.13650 15.02533 16.09508 

W4 −0.34280 0.48531 2.71907 0.79457 1.05451 1.40637 

W6 −0.25127 0.50599 0.37137 0.67058 0.95711 0.78676 

W8 0.12125 0.80705 1.31209 0.90702 0.80954 0.78898 

W10 −0.04840 0.37223 1.25486 0.95151 0.73612 0.75018 

W12 0.04558 0.60845 0.34321 0.71754 0.64657 0.53617 

W14 −0.02459 0.54914 −0.89402 0.06230 0.29734 0.18835 

W16 −0.01851 0.80964 −0.04263 0.47155 −0.02809 −0.23551 

W18 −0.01806 0.24622 0.21245 0.00355 0.15825 0.46523 

W20 0.00500 0.20249 0.26844 −0.08284 −0.11005 −0.01485 
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Table A2 — Further Optimization of Element Radian Phases from Those Using the Weights in Table A1 

 

 ±5°, λ/2 ±10°, λ/2 ±10°, λ/√3 ±20°, λ/2 ±30°, λ/2 ±40°, λ/2 ±50°, λ/2 

δ1 1.75894 2.45661 −5.35392 −0.13036 3.110529 0.295202 1.504236 

δ2 −0.03526 1.96483 −1.91285 1.17403 0.983487 −1.77344 −0.35928 

δ3 −2.73606 2.82983 −3.97537 1.85285 −0.2446 2.460292 −2.76351 

δ4 1.42541 1.60430 −2.0012 2.71354 −1.30714 0.60362 1.376001 

δ5 0.70362 0.63931 −1.67667 −3.00815 −2.34787 −1.55022 −0.27107 

δ6 0.29308 0.47104 −1.89887 −2.10321 2.583561 2.810866 −1.76132 

δ7 0.19792 0.52108 −0.89628 −1.60981 1.555644 1.478017 2.753894 

δ8 −0.68591 0.37465 −0.62598 −0.82905 0.06707 −0.1481 −0.47459 

δ9 −0.77529 −0.03001 −0.17091 0.03040 −1.55586 −2.11324 −2.83548 

δ10 −1.09184 −0.60081 0.138777 0.97294 −3.04415 2.614836 1.11037 

δ11 −1.14164 −1.22505 0.087195 1.89394 1.90852 1.577126 0.240071 

δ12 −1.32302 −1.79956 0.410125 2.58715 1.054808 0.212817 −0.80698 

δ13 −1.35031 −2.24336 1.34662 2.54755 0.406455 −0.78468 −1.30891 

δ14 −1.44593 −2.52765 2.524568 −2.31091 0.612065 −1.40042 −2.88035 

δ15 −1.56345 −2.69743 2.876612 1.80480 −0.58316 −2.62649 2.024124 

δ16 −1.79180 −2.85221 2.912761 −2.73313 −0.77987 1.997893 0.443118 

δ17 −1.87218 −3.08731 2.775308 2.79711 −2.05492 1.121805 −1.33611 

δ18 −1.94617 2.85271 3.097377 −2.74453 −2.38656 0.495214 −0.00779 

δ19 −1.95523 2.46798 4.002032 −2.03553 3.141593 0.064955 −1.95179 

δ20 −2.48889 2.17319 4.47216 −1.77273 1.873828 −0.32198 −0.28513 

δ21 −2.95497 2.09414 4.361704 −0.53219 2.155837 −1.22725 −1.64146 

δ22 −3.03519 2.27750 4.128928 −2.69325 1.908178 −1.11184 −1.7038 

δ23 −3.11892 2.65531 3.666619 −1.23949 2.056258 −1.69202 2.655202 

δ24 −3.02355 3.06759 3.478114 −0.94091 1.802566 −1.83539 −3.08601 

δ25 −3.20867 −2.95018 3.611831 −0.92814 2.846404 −2.37612 −3.07736 

 
 

  



 
Flat-Top Sector Beams 43 
 

 

 
Table A3 — Optimized Chebyschev Polynomial Weights for a Linear Array of 200 Elements Spaced λ/2 

Apart 
 

W2 W4 W6 W8 W10 W12 W14 W16 W18 W20 

6.26124 −0.72345 −0.16951 0.62585 0.99692 0.79339 1.35673 1.05067 0.67826 0.64469

 
 
 

Table A4 — Optimized Radian Phases for the Same 200-Element Array Used for Table A3 
 

δ1 11.16711 δ26 1.865863 δ51 −3.44613 δ76 −5.33906 

δ2 2.84354 δ27 1.604648 δ52 −3.69609 δ77 −5.45635 

δ3 0.768589 δ28 1.354173 δ53 −3.94227 δ78 −5.57484 

δ4 1.065749 δ29 1.136642 δ54 −4.14872 δ79 −5.6792 

δ5 2.13032 δ30 0.944992 δ55 −4.29219 δ80 −5.76697 

δ6 3.786219 δ31 0.763292 δ56 −4.37799 δ81 −5.84564 

δ7 5.338698 δ32 0.583714 δ57 −4.43427 δ82 −5.92056 

δ8 6.3447 δ33 0.400327 δ58 −4.51031 δ83 −5.99399 

δ9 6.614527 δ34 0.205545 δ59 −4.63646 δ84 −6.07042 

δ10 6.165517 δ35 −0.00763 δ60 −4.84826 δ85 −6.16338 

δ11 5.325213 δ36 −0.23176 δ61 −5.11769 δ86 −6.31823 

δ12 4.648897 δ37 −0.44287 δ62 −5.35626 δ87 −6.59043 

δ13 4.235666 δ38 −0.62135 δ63 −5.38781 δ88 −6.94848 

δ14 4.033099 δ39 −0.78337 δ64 −5.09268 δ89 −7.26011 

δ15 3.960763 δ40 −0.96071 δ65 −4.52695 δ90 −7.41443 

δ16 3.882654 δ41 −1.1871 δ66 −3.98989 δ91 −7.415 

δ17 3.683036 δ42 −1.44949 δ67 −3.82633 δ92 −7.30211 

δ18 3.360766 δ43 −1.7421 δ68 −4.22115 δ93 −7.15102 

δ19 3.386698 δ44 −2.07549 δ69 −4.93342 δ94 −7.02049 

δ20 2.763489 δ45 −2.31971 δ70 −5.52442 δ95 −6.94335 

δ21 2.600962 δ46 −2.53792 δ71 −5.75941 δ96 −6.89895 

δ22 2.491291 δ47 −2.70152 δ72 −5.67392 δ97 −6.84309 

δ23 2.391478 δ48 −2.84222 δ73 −5.44795 δ98 −6.75383 

δ24 2.268009 δ49 −3.00597 δ74 −5.28841 δ99 −6.63973 

δ25 2.096114 δ50 −3.21223 δ75 −5.26368 δ100 −6.53462 
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Appendix B 
 

LINEAR ARRAY ELEMENT PHASE OPTIMIZER 
 
 
VISUAL BASIC MACRO OPERATING CONCEPT 
 

The following Visual Basic (VB) macro was used for optimizing the phases of the linear array of 
elements described in this report. Although a spreadsheet is not shown, sufficient non-executable 
comments are included within the program on row, column, and cell contents and locations, that the 
complete spreadsheet can be designed and the macro used directly. Although this macro is based on 
optimizing an initial list of phases, straightforward modification would enable instead the optimization of 
Chebyschev weights, as long as the optimization criteria use the corresponding phases, as noted in the 
report sections on “Optimization” and “Optimization Convergence.” 
 
 
Sub Phaseoptimizer() 
' 
' Phaseoptimizer Macro 
' Iterative repetitions of Solver using phase list columns: red, green, blue 
' Red column (F11:F35), Current operating phase list 
' Blue column (H11:H35), Best list during iterations 
' Green column (G11:G35), Random update of Blue copied to red 
' Random control: H11+$G$9*(RAND()-0.5) 
' Phase change limits: Cells(9,4)=+2*pi(); Cells(10,4)=-2*pi() 
' Current flat-top ripple: Cells(I8) 
' Flat-top ripple constraint: Cells(9,9) 
 
For I = 1 To 50 
' Number of times Solver is repeated 
' 
Cells(5, 2) = I 
' 
' Cells(2,9) current maximum sidelobe 
' Cells(2,14) prior better sidelobe 
 
If Cells(2, 9) < Cells(2, 14) Then 
' 
' A new better and lower maximum sidelobe has been found 
' Copy the new value into N2, then the red column into blue 
' Then green column into red and optimize again 
 
Cells(2, 9).Select 
Selection.Copy 
Cells(2, 14).Select 
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Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
Range("F11:F35").Select 
Selection.Copy 
Range("H11").Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
 
Range("G11:G35").Select 
Application.CutCopyMode = False 
Selection.Copy 
Range("F11").Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
' 
' Current maximum sidelobe during optimization in $I$2 
' 
SolverOk SetCell:="$I$2", MaxMinVal:=2, ValueOf:="0", ByChange:="$F$11:$F$35" 
SolverAdd CellRef:=Range("F11:F35"), Relation:=1, FormulaText:=Cells(9, 4) 
SolverAdd CellRef:=Range("F11:F35"), Relation:=3, FormulaText:=Cells(10, 4) 
SolverAdd CellRef:=Range("$I$8"), Relation:=3, FormulaText:=Cells(9, 9) 
SolverSolve UserFinish:=True 
SolverFinish KeepFinal:=1 
 
Else 
 
' The current optimized sidelobe level in cell I2 is poorer than the best saved in N2 
' Just copy the green column to the red column and optimize again 
 
Range("G11:G35").Select 
Selection.Copy 
Range("F11").Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
SolverOk SetCell:="$I$2", MaxMinVal:=2, ValueOf:="0", ByChange:="$F$11:$F$35" 
SolverAdd CellRef:=Range("F11:F35"), Relation:=1, FormulaText:=Cells(9, 4) 
SolverAdd CellRef:=Range("F11:F35"), Relation:=3, FormulaText:=Cells(10, 4) 
SolverAdd CellRef:=Range("$I$8"), Relation:=3, FormulaText:=Cells(9, 9) 
SolverSolve UserFinish:=True 
SolverFinish KeepFinal:=1 
 
 
End If 
Next I 
 
End Sub 
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3D PATTERN CALCULATION 
 

This Excel macro enables pattern calculation using the pattern shape phases that are first copied into 
cells in one of two spreadsheets “Angcalc.” Another spreadsheet, “Results,” lists a column of elevation 
values used in the calculation and a row of azimuth values used in the calculation. The macro first scans 
pairwise entries of each azimuth and elevation, and copies them to “Angcalc.” Calculation using Excel’s 
complex functions is fast and provides pattern field amplitude, termed “Sumvolts,” that is then copied 
into the corresponding azimuth, elevation cell in “Results.” The macro is started from the “Results” 
spreadsheet and cycles with the “Angcalc” until all the elevation-azimuth combinations are completed. 
This provides the complete field amplitude pattern from which the decibel values can be calculated and 
applied to the pattern plotting program. In the work described here, a current version of SigmaPlot was 
used. 
 
 
 
Sub macro3D() 
' 
' macro3D Macro 
' A total volume within plus/minus 30 degrees, Az and El in 0.5 degree steps is spanned 
‘ Elevation angles are in cells (C5:C125) 
‘ Azimuth values Are in cells (D4:DT4) 
‘ Other intervals can be specified, as required 
' Macro is started from the worksheet "Results" 
' Macro first selects phi (elevation), then cycles through all theta (azimuth) values. 
' Then a new phi value is selected and the azimuth cycle repeated 
' Successively calculated sumvolts results are entered into the Results spreadsheet 
' 
Dim J As Integer 
Dim I As Integer 
' J equals phi values 
' I equals theta values 
 
For J = 5 To 125 
 Cells(J, 3).Select 
 Selection.Copy 
 Sheets("Angcalc").Select 
 Range("B6").Select 
 ActiveSheet.Paste 
' Phi value selected and entered in Angcalc, cell B6 
 
For I = 4 To 124 
 Sheets("Results").Select 
 Cells(4, I).Select 
 Application.CutCopyMode = False 
 Selection.Copy 
 Sheets("Angcalc").Select 
 Range("B7").Select 
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
  :=False, Transpose:=False 
' Theta value selected and entered in Angcalc, cell B7 
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Range("C11").Select 
Application.CutCopyMode = False 
Selection.Copy 
Sheets("results").Select 
Cells(J, I).Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
' Sumvolts value in C11 in "Angcalc" copied into corresponding 
' azimuth/elevation cell in worksheet "results" 
 
Next I 
' Select another theta azimuth and repeat until the -30 to +30 theta interval is complete 
 
Next J 
' Select another phi elevation and cycle through all theta values 
 
End Sub 
 

 
 
 


