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THROUGHPUT MAXIMIZATION UNDER
QUALITY OF SERVICE CONSTRAINTS:

Determination of Optimal Offered Load in Circuit-Switched
(Wireless or Nonwireless) Communication Networks

1. INTRODUCTION

The throughput that can be supported by a communication network depends on many factors. These
include switching mode (e.g., circuit- vs packet-switched), topology, channel access, routing schemes, and
offered loads. Typically, in network optimization problems, several of these factors are maintained fixed,
while others (either values of network parameters or the choice of network control policies) are varied to
achieve optimal performance. These problems are considerably more difficult when quality-of-service (QoS)
constraints must be satisfied, as they must be in many practical military and commercial applications.

In this report, we focus on determination of the offered load that provides optimal performance, i.e.,
maximum throughput, for the case in which both the routing and admission-control policy are fixed and the
channel-access mechanism is frequency-division multiple access (FDMA). This problem entails determin-
ing the load that each circuit should offer so that overall network throughput is maximized, subject to a
constraint on blocking probability. This problem is of interest for "sizing" the network capability (and
thereby providing a measure of "network capacity") because it is generally difficult to estimate the traffic
loads that a network can support or the resulting throughput. The mathematical formulation is that of a
constrained optimization problem with nonlinear objective and constraint functions. This is a difficult prob-
lem for which the available mathematical theory provides the basic principles for solution but no guarantee
of convergence to the optimal point.

Voice and other connection-oriented services in communication networks are characterized by the re-
quirement that delay be not only short, but also of low variance. This requirement motivates the customary
approach of establishing circuit-switched paths (i.e., either actual or virtual circuits) between communicat-
ing nodes for the duration of each voice call or session. In the present study, we are interested in the case of
networks in which the source and destination nodes are not generally within direct communication range;
thus, relaying over multihop paths may be required. Although all of our examples represent the case of
wireless networks, our formulation is also applicable to wired networks. Furthermore, unlike the case of
commercial cellular communication systems or similar cellular architectures, fixed relays are not available
in the networks studied here. Therefore, we assume that each of the nodes can assume the role of a relay as
well as that of a source or destination. This type of network is sometimes referred to as "ad hoc" or "peer-to-
peer" to distinguish it from the more-common structured fixed-relay systems, such as commercial telephone
networks that are based on cellular architectures.

A principal aspect of network control concerns the admission and establishment of new sessions so that
the network throughput is maximized, subject to satisfaction of various QoS constraints. A comprehensive
approach to network optimization and control would address jointly the highly interdependent issues of
admission control, routing, offered load, and channel access. However, each of these individual problems is
extremely complex, making a complete solution of the joint problem unattainable. Therefore, it is necessary

Manuscript approved July 26, 1999.
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to simplify the problem by addressing these issues separately in a manner that will, hopefully, lead to useful
insights for their joint solution. For example, Refs. 1 and 2 address the use of admission-control policies for
circuit-switched networks with fixed routing schemes and fixed offered loads. The need to address the link-
activation scheduling problem was eliminated by assuming the use of channelization in the frequency do-
main by means of FDMA. Alternatively, one could assume channelization in the time domain (by means of
time-division multiple access-TDMA) or code domain (by means of code-division multiple access-CDMA)
with ensuing differences in analysis and performance.

We do not focus on a detailed description of network traffic [such as ATM (asynchronous transfer
mode)-based QoS characterizations]. Instead, we present a more generic formulation that is amenable to
analysis and optimization. Specifically, we assume a circuit-switched, fixed-route network with indepen-
dent Poisson arrivals of session-establishment requests over each of the fixed routes, and with a fixed admis-
sion-control policy. The objective is to determine the input traffic levels that maximize throughput, subject
to the constraint that blocking probability stays below a given level. We present several versions of an
iterative algorithm for the optimization of offered load, subject to QoS constraints. Our approach is based
on the use of Lagrangian optimization techniques that have been enhanced by means of heuristics that
improve the reliability and quality of convergence. References 3-6 provide preliminary versions of this
algorithm, including several heuristics to improve performance.

Extensive performance results are provided, demonstrating the capability of the various versions of the
algorithm to provide convergence to nearly optimal solutions in almost all cases. Robust performance has
been observed in which the same parameter values work well for a wide variety of network examples. For
improved performance, the algorithm has built-in adaptivity features that permit some parameters to vary.

Two versions of the QoS constraint are considered. In the first, we require that blocking probability of
each circuit does not exceed a specified QoS value. In the second, we require only that the average blocking
probability in the network satisfies such a constraint. We have observed that use of the average form of the
QoS constraint results in dramatically faster convergence than the case in which each individual circuit must
satisfy the constraint. The faster convergence apparently results because (as a function of the individual
input rates) the average blocking probability is much smoother than the maximum blocking probability. We
have also observed that the use of the average QoS constraint seems to provide a good initial condition for a
search based on the satisfaction of hard QoS constraints on all circuits, thus potentially serving as an alterna-
tive (and possibly faster) heuristic for this problem. We hypothesize the conditions under which such an
approach may be appropriate. Of course, the network designer/manager must decide whether the satisfac-
tion of QoS on an average basis is sufficient, or whether each circuit must be guaranteed the specified level
of QoS performance. The interplay between these QoS philosophies is related to issues of pricing of ser-
vices in commercial networks, which have been receiving increased attention lately and that may have a
counterpart in military networks.

1.1 Outline

In Section 2 we discuss the circuit-switched, multihop, wireless network model, including the use of
coordinate-convex admission-control policies and the resulting product-form solution. In Section 3 we
discuss the notion of Erlang capacity, which is the region of offered load that a network can accommodate,
subject to the satisfaction of specific QoS constraints. This discussion leads to the formulation of the con-
strained optimization problem and the basic iterative Lagrangian optimization method in Section 4. In this
formulation, the blocking probability on each circuit is required to satisfy the QoS constraint.

Preliminary studies of the iterative optimization procedure, provided in Section 5, serve as the basis for
the development of heuristic improvements, which are discussed in Section 6. In Section 7, several versions
of stepsize and projection rules are discussed, and 18 candidate versions of the search algorithm are defined.
The primary differences among the versions relate to the choice of stepsize rule and to the use of various
forms of a "projection" technique that guides the search along a favorable trajectory.
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The remainder of the report discusses the testing of the different versions of the algorithm, as well as the
performance improvement that is achieved through their use. In Section 8, we discuss the results of a series
of "core runs," in which the 18 versions of the algorithm were tested on three different networks with
uniform parameter sets. We compare the performance achieved under the various versions of the algorithm,
demonstrating that all versions worked well, but not equally well, i.e., some appeared to be faster and/or
more reliable than others. Further testing of the algorithm is discussed in Section 9, where we discuss the
impact of nonuniform parameter values on algorithm performance.

In Section 10, we discuss an alternative form of the QoS constraint, in which only the average blocking
probability (rather than each individual circuit blocking probability) is constrained. Convergence to the
optimal point is shown to be much faster in this case.

In Section 11, we return to the first form of the QoS constraint (in which the QoS constraint must be
satisfied on each circuit), and address the degree of improvement that can be achieved by means of the
optimization of offered load. We demonstrate that dramatic improvement can, in fact, be achieved, prima-
rily in asymmetrical networks whose topological structure or resource parameters are highly nonuniform.
In Section 12, we discuss miscellaneous performance issues such as fairness, and in Section 13, we discuss
relationships between admission control and the optimization of offered load.

Finally, in Section 14, we present our summary and conclusions from this study.

2. CIRCUIT-SWITCHED NETWORK MODEL

We consider a wireless network in which FDMA is used to provide contention-free channel access to a
multihop circuit over a predetermined path between the source and destination nodes throughout the dura-
tion of each accepted voice call. Network topology can be described in terms of the communication re-
sources available at each node and the connectivities between nodes. We assume that unless voice calls are
accepted for immediate transmission (in practical terms, this may mean within several hundred milliseconds
of their arrival), they are "blocked" and lost from the system; this mode of operation is generally referred to
as "blocked calls cleared." Appropriate performance measures for this mode of operation include blocking
probability and throughput.

The number of nodes in the network is denoted by N, and the number of transceivers at node i is denoted
by T.. We consider J source-destination pairs, each of which is assigned a fixed multihop path (circuit)
through the graph of the network that interconnects them. We refer to J as the "number of circuits" in the
network. The establishment and maintenance of each ongoing call requires the use of one transceiver at
each node along the path;' a call is blocked either if a transceiver is not available at one or more nodes along
the path or if an admission-control policy decision is made to block the call. Transceivers are not assigned
a priori to particular circuits. We let x denote the number of ongoing sessions (e.g., voice-calls) on the jth
such circuit (i.e., on the path between thejth source-destination pair). Since it is assumed that each accepted
voice call consumes a fixed amount of resource (i.e., one transceiver) at each node in its path, our traffic
model is an example of constant bit rate (CBR) traffic sources (using the terminology associated with broad-
band networks). The state of the system is x = (x1, X2, ... , XJ).

To illustrate our problem formulation with a specific example, we consider the simple seven-node star-
network shown in Fig. 1. Nodes 2-7 are each connected only to node 1, thus necessitating the use of node 1
as a relay in all multihop circuits. We consider the three source-destination pairs (2,5), (3,6), and (4,7),

1Other models are certainly possible. For example, if traffic is one way rather than interactive, the source node would not have to
dedicate a receiver to support the call. Similarly, receive-only nodes would not need transmitters. The approach presented here can
be modified straightforwardly to accommodate variations such as these. The implicit assumption that the number of transmitters
and receivers at a node are equal, which lets us describe the node in terms of a single parameter T, is used here because of conve-
nience of notation, and can easily be relaxed.

Throughput Maximization under QoS Constraints_
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Fig. 1 - A simple three-circuit network

which correspond to circuits 1,2, and 3, respectively. The state of the system is the three-dimensional vector
x = (xl, x2, x3). Although this example is simple in that it is small and has a centrally located node that is
connected to all other nodes, this is not a requirement of the model studied in this report. Arbitrary toplogies
can be modeled, such as those shown in Sections 5 and 8; nodes are not designated a priori as base stations
or as relay nodes, and no distinction is made between uplink and downlink channels.

In an uncontrolled system, the system operates in a mode known as "complete sharing" in which a call
is accepted as long as there are sufficient resources at all nodes along the multihop path; if node i has T
transceivers, it can support up to T. simultaneous calls. We refer to the limits imposed by the values of T as
the "capacity constraints." For example, if each of the nodes in the network of Fig. 1 has five transceivers,
the resulting uncontrolled system state space Q is as shown in Fig. 2. Equivalently, the capacity constraints
expressed as inequalities describe the system state space:

xi<5; x2<5; X3 <5;

XI +X2 +X3 <5.

(i.e., no more than five calls may be accepted on any circuit)

(the hub, node 1, can handle no more than five calls).

5

3

v' , // 2 - - 1

~~~~, , _,4 7 77 ooX2

X1

Fig. 2- The admissible state space Q for the network of Fig. 1

In general, a vector description of circuitj in terms of the nodes it traverses is given by

C = (, C.2 , C, ... , CN),

4
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where

[1, if circuitj traverses node i

CJi = I

[9, otherwise

and N is the number of nodes in the network. For example, circuit 1 in Fig. 1 is represented by

C = (1, 1,0,0, 1,0,0).

Now we can express the capacity constraints as

J
xcii ": Ti i= ,-N(1

j=l

where J is the number of circuits in the network.

A similar equation can be written for wired networks, in which case c would take on the value of 1 if
and only if circuitj traverses link (rather than node) i. The capacity constraints would again be written in
terms of T, which would now be interpreted as the number of calls that can be supported by link i. The
differences between wireless and wired network operation, and their impact on system operation and perfor-
mance evaluation, are discussed in Refs. 1 and 2. Although we limit our study to examples that represent
wireless networks, the mathematical model and algorithmic approach would apply to wired networks as
well.

In this report we do not address the protocol issues that are associated with call setup, such as the control
messages that must be exchanged to coordinate the transmission, relay, and reception functions. Our focus
is on the development of a mathematical system model that can serve as the basis of performance (in this
case, throughput) optimization by proper choice of offered load, subject to blocking probability QoS con-
straints.

2.1 Control Policy

Our ultimate goal is to achieve optimal network performance. In Refs. 1 and 2 we approached this
problem by exercising an admission-control policy on calls, under the assumption that routes and offered
loads on each of the circuits were fixed. In the present study, we again fix the routes. However, instead of
determining the best admission-control policy for a fixed offered load, we determine the offered load that
maximizes throughput for a fixed admission-control policy, subject to QoS constraints on blocking prob-
ability. In this section, we discuss the nature of the admission-control policies used in our studies, and
describe the mathematical model for system performance.

In Ref. 7, control policies are divided into five classes: complete sharing, complete partitioning, trunk
reservations, coordinate convex, and dynamic programming. Complete sharing (described near the begin-
ning of Section 2) is the simplest form of control because no control is exercised, i.e., a call is accepted as
long as sufficient resources are available at all nodes along the multihop path. Complete partitioning, under
which resources are preallocated exclusively to particular call types (e.g., calls between particular source-
destination pairs), is the most restrictive form of control; it may provide the least efficient use of network
resources, but it easily provides a guaranteed level of service to each call class. Trunk reservations provide
a compromise between complete sharing and complete partitioning; all primary-routed calls are accepted
(provided that resources are available), but alternate-routed calls are accepted only if some threshold level of
resources is available. Both coordinate convex (defined below) and dynamic programming control policies
use a modified form of complete sharing within a state space that is a restriction (subspace) of the uncon-
trolled state space. In our study, coordinate-convex control policies are used because they provide a form of
intelligent resource sharing without the complexity of dynamic programming.

5



A stationary admission-control policy is specified in terms of the set of admissible states Q. A new call
is admitted if the state to be entered is in the admissible region; otherwise, it is blocked and lost from the
system. The capacity constraints limit the state space 2 in which x is allowed to take values. We assume
that the state space is "coordinate convex" [8], i.e., in a system with J circuits, if x is an admissible state (i.e.,
if x E 2) and xŽ > 1, then x' = (xl, x2, ... , x1 -l, ... , X) must also be an admissible state (i.e., x' E ). This
condition implies the very reasonable property that at the completion of a call, the resources it used are
immediately available to serve other calls, and that call durations are independent of the system state. It also
implies that resources are not reassigned in the middle of a call by rerouting that call through an alternative
path. We consider policies that retain the coordinate convexity of the state space. Thus, a coordinate-convex
policy is specified in terms of the set of admissible states in a discrete state space; we use the notation to
refer to either an admission-control policy or the corresponding region in the state space. The control policy
is effectively a further restriction of the (already coordinate-convex) admissible state space defined by the
capacity constraints (Eq. (1)).

Under our assumption of Poisson arrival statistics at rate X. on circuit j, the use of coordinate-convex
policies [8] results in a product-form characterization of the system state [9]. The expected call duration of
a session on circuit j is 11g.2 The product-form solution corresponding to a policy , offered load vector
X = (X1, ... , X) and service rate vector R = (g1, ... , g) provides the equilibrium distribution of the state of the
voice-call process under that policy.

Although the optimal policy is not necessarily a coordinate-convex one, Jordan and Varaiya have pro-
vided examples in which the best coordinate-convex policy performs almost as well as dynamic-program-
ming solutions [7]. The latter (like coordinate-convex policies) are based on a set of admissible states;
however (unlike coordinate-convex policies) certain transitions to some states in the admissible region may
be prohibited. An advantage of coordinate-convex policies is that they are easy to implement. Furthermore,
because their product-form solution is easier to evaluate than a dynamic-programming solution, it is pos-
sible to solve much larger problems if we consider only coordinate-convex policies.

For notational purposes, we subdivide the control policy into a set of "threshold controls" and a set of
"linear-combination controls." Threshold controls restrict the number of calls that will be admitted to the
individual circuits, and can be expressed as

xi< CXi, 1 < j <J, (2)

where X. is the threshold on circuitj.
J

The linear-combination controls are restrictions on the sums of the number of calls on those circuits that
share specific resources (e.g., those that share a common node or a common link), i.e.,

E Xj <YI, (3)
jeS

where S is a subset of the set of all circuits and Y, is the threshold on the sum of calls on circuits that are
members of S,.3 In this study, transceivers are not assigned a priori to circuits; sessions are accepted as long
as the threshold and linear-combination constraints are satisfied. Although not all coordinate-convex poli-
cies can be described by Eqs. (2) and (3), this description is sufficiently rich for our purposes since empiri-
cal evidence has shown that even threshold policies perform almost as well as the best of the coordinate-
convex policies [7]. The optimal policy is determined by evaluating the performance under a large number

2
1t is not necessary to assume that the call duration is exponential. A Poisson arrival process and general service time distribution is

sufficient for the product-form solution to apply [10]; knowledge of the means of the service times provides enough information to
determine the equilibrium distribution. However, in some of our other studies it was necessary to assume that call durations were
exponential to maintain a Markovian state space structure that can be used for dynamic analysis [I 1-13].
3For example, for the network of Fig. 1, all three circuits pass through node 1, which is the only node that supports more than one
circuit. The subsets of circuits passing through this node are: SI = { 1,2}, S2 = { 1,3}, and S3 = {2,3}; it is not necessary to include the
complete set of circuits { 1, 2, 3 }. Additional examples are provided in Ref. 2.

6 Wieselthier, Nguyen, and Ephremides
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of candidate admission-control policies. In Refs. 1 and 2 we developed recursive and descent-search tech-
niques that reduce the complexity of these calculations.

In the present study, we have limited the class of admission-control policies to coordinate-convex poli-
cies with threshold controls only (i.e., we do not consider the use of linear-combination controls).4 No
attempt is made to optimize the admission-control policy; the objective is to determine the offered load that
maximizes throughput, subject to QoS constraints on blocking probability, for a specified admission-control
policy and routing scheme. It is hoped that the methods developed here can be extended to the solution of
the combined problem in which admission control, routing, and offered load are jointly optimized.

2.2 Solution and Performance Measures

We assume that calls on circuitj are characterized by a Poisson arrival process with rate X. and a mean
I

duration of iU; to simplify the problem formulation, we assume that R. = 1, j = 1, 2, ..., J. Thus the
corresponding offered load on circuit j is p. = X./ j = i. Furthermore, control is centralized, and the re-

J J 
sources needed to support a circuit are acquired simultaneously when the call arrives and are released simul-
taneously when the call is completed. Calls are blocked when one or more nodes along the path do not have
a transceiver available or when a decision is made not to accept a call, i.e., to accept the call would bring the
system state outside the region defined by admission-control policy Q.

Under these conditions, in conjunction with the use of coordinate-convex policies, it has been shown [7,
9] that the system state has the product-form stationary distribution. Assuming use of admission-control
policy Q, we have

7Cfl (X) = na °t Pri P (4)
J=1 i

where nt(O) is the normalization constant given by

[ ~~X.
i . 5nil(n) = -I1 (5)

xEu j1 j

The control policy is defined by the specification of the admissible state space Q. For any such state
space, it is straightforward (although time consuming) to evaluate 7r,(O), which in turn permits the evalua-
tion of performance measures such as throughput and blocking probability. In state x, the total number of
active calls is

J
Y(x)= I xi (6)

j=1

We define throughput I(Q) to be simply the expected number of active calls averaged over the system
state:

F(D)= E {Y(X)n (x)}. (7)
xeQ

Our throughput metric is somewhat different from the usual definition, which is the number of completed
calls per unit time. We have found our metric to be useful because it is closely related to the notion of

4 The iterative Lagrangian technique developed in this report (beginning in Section 4) could be applied to any admission-control
policy for which analytical/numerical evaluation of the system's equilibrium distribution is possible. For example, any admission-
control policy for which the product-form solution is satisfied (as discussed in Section 2.2) would be a candidate for our approach.
In particular, any coordinate-convex policy would be appropriate, provided that the offered loads arrive according to independent
Poisson processes.

7
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"residual capacity" [14], which is a measure of the resources available for data in integrated voice/data
networks after voice traffic has claimed its required resources. If calls on all circuits have the same expected
length (as they do in our formulation, since = 1, j = 1, ..., J), or alternatively, if the throughputs of each
circuit are weighted in proportion to their expected length, our definition simply scales (i.e., is proportional
to) the usual definition.

The blocking probability associated with circuitj, designated as P.(Q), is the fraction of calls arriving
on circuitj that are blocked. Since we have a stationary system with Poisson arrivals, we can make use of the
PASTA (Poisson arrivals see time averages) theorem [15, 16] to recognize that P.(92) is simply the probabil-
ity that the system is in a state in which a call on circuitj is blocked. Therefore,

pi 2) = 1 ((xj +1) X Q)Q(X), (8)
XEG0

where 1 () is the indicator function, which is 1 if the argument is true and 0 otherwise, i.e., the probabilities
of the states in which a call on circuitj is blocked are summed. It is important to note that P3(Q) can be quite
large, even when pj = 0. This behavior is a consequence of the fact that traffic on other circuits can put the
system into states in which a call on circuitj would be blocked, should such a call arrive.

The overall (averaged over all circuits) blocking probability Pav(2) is the ratio of the expected number
of blocked calls per unit time (summed over all circuits) to the expected total number of call arrivals per unit
time:

1 
Pav (Q) = X jP (Q) (9)

where j=

A= X
j=1

is the total offered load. In most of this report, each circuit is required to satisfy the QoS constraint, i.e.,
P(Q) < Q = QoS for all j. However, we also consider examples in which it is sufficient for the average
blocking probability to satisfy the constraint, i.e., Pa, < QoS.

The goal of the problem studied in Refs. 1 and 2 was to restrict the admissible state space to a coordi-
nate-convex region such that the desired performance measure is optimized. The direct approach is to
compute 7t0 (O) and the performance index for all possible coordinate-convex regions. We developed a
recursive procedure to accelerate the evaluation of a large number of different admission-control policies
and a descent-search method to minimize the number of policies that must be evaluated in searching for the
optimal one. These techniques are described fully in Refs. 1 and 2.

In the present study, since we fix the admission-control policy and attempt to determine the optimal
offered-load vector X, we can drop the Q in the notation and use the following definitions:

S. = throughput on circuitj = X.(l - P), (10)

S = total throughput = jJ_1 Sj = A(1 - Pav), (11)

and
Pav = overall blocking probability = 1 Pi. (12)

2.3 Computational Issues in Evaluating the Solution

Since the equilibrium distribution 7c,(x) has the product-form, the evaluation of system performance
becomes greatly simplified. Since the distribution is known to within the normalization constant ndO),

Wieselthier, Nguyen, and Ephremides8
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there is no need to solve any balance equations. However, the evaluation of 7t.(O) is computationally inten-

sive because it requires the evaluation and summation of a large number of terms' of the form Ilpx7 / x !.

(Computational issues associated with loss networks are addressed in Ref. 17.) Considerable effort has been

exerted in developing efficient procedures for calculating the normalization constant (see e.g., Ref. 18), but

such methods are generally problem specific and of little help to our problem.

In Refs. 1 and 2, where the goal was to choose the best admission-control policy, it was necessary to

evaluate the normalization constant for a large number of candidate policies. In the present study, since we

assume the use of a fixed admission-control policy, it is not necessary to do so. However, the normalization

constant must now be evaluated for a large number of candidate offered-load vectors within a continuous

region as we search for the offered load vector that maximizes throughput subject to QoS constraints; hence

the new problem is also computationally intensive. This problem is equivalent to the determination of the

"Erlang capacity" of the network. Before addressing the optimization problem in detail, we define the

notion of Erlang capacity.

3. ERLANG CAPACITIES

The "Erlang capacity" [19] of a network with J circuits is defined as the set of input rates X, ..., X} for

which some given QoS criteria can be met. The method of determining optimal admission-control policies

that we used in Refs. 1, 2, 14, and 20 relies on fixing the set of "offered" load vector X, and computing the

throughput (or blocking probability) performance for different admission-control policies. Thus the set of

X's was specified a priori, and the goal was to determine the optimal admission-control policy.

To determine the Erlang capacity of a network, we essentially need to reverse our approach by finding
(for a fixed set of admission-control policies) the X.'s that meet the desired QoS level. Thus it is possible to

determine the Erlang capacity associated with a specified admission-control policy and QoS level. The

specific QoS constraint that we consider is that the maximum circuit blocking probability P ax = max{P,

PJ} does not exceed a given level.

The determination of the Erlang capacity region is a complicated multidimensional problem that re-

quires a huge search to find the set of offered loads that satisfy the QoS requirements. Rather than attempt-
ing to determine this region, we instead focus on the determination of some extremal points in this region

that optimize a performance measure.

4. THE OPTIMIZATION PROBLEM

Our goal is to find the offered load vector = (XI, ..., X) that maximizes the total network throughput S

= S(X) for a fixed coordinate-convex admission-control policy, subject to a circuit blocking probability P.(X)

< Q = QoS constraint for circuitj,6 and X. X l.7 Note that such a vector X is an extremal point of the Erlang
J. J n

capacity region defined in Section 3. The equilibrium state distribution, and therefore throughput and block-

ing probability as well, are determined by means of the product-form solution discussed in Section 2. Hence,

we have a nonlinear optimization problem that includes nonlinear inequality constraints.

Our optimization problem can be written as

max{S(X) } (13)

5For our example of Network 1 (see Section 5) with six transceivers at every node and a threshold of six on the number of calls on

any circuit, the number of possible states (and hence the number of terms) is 303,248 (reducing the thresholds to four while keeping

six transceivers at every node decreases the number of states to 284,115). When the number of transceivers and the threshold values

are eight, the number of states is 2,633,094; reducing the thresholds to six decreases the number of states to 2,585,861).
6
1n Section 10 we discuss the use of an alternative QoS constraint, under which the average circuit-blocking probability (weighted

by the offered load to each circuit) must not exceed a specified value.
7To provide some degree of fairness to all circuits, it may be desirable to specify a nonzero value of X, thereby ensuring that all

circuits are permitted at least this value of offered load.

Throughput Maximization under QoS Constraints 9



Wieselthier, Nguyen, and Ephremides

where the total network throughput S is the sum of the throughputs on each of the J circuits, i.e.,

S = S() = Xj Si(X). (14)

The throughput S(X) is obtained by the product-form solution associated with the particular network (i.e.,
the topology, number of transceivers at the nodes, and choice of circuits), the admission-control policy Q,
and the offered load vector X, as described in Section 2.2. Since an analytical solution cannot be obtained
(except for trivial problems), numerical evaluation is necessary. In particular, we use iterative search tech-
niques. Such techniques start from an initial value of offered load X0, and use gradient information to update
the offered load vector X until convergence to the optimal solution is achieved.

An unconstrained search would proceed along the direction defined by the throughput gradient, namely
the J-dimensional vector

VS = as ... as )(15)

whose component in the direction of the ith circuit is
as _s__ (16)

axi j=l axi

However, the introduction of constraints complicates the solution process considerably. Since our problem
involves a nonlinear objective function and nonlinear constraints, it falls into a class for which there are few
available analytical results. Thus, there is no guarantee of convergence to the optimal solution. Neverthe-
less our experience with Lagrangian techniques, which in some cases are augmented by heuristics, has
shown that good (although not necessarily optimal) solutions can be obtained routinely. We now formulate
the constrained optimization problem.

4.1 The Constrained Optimization Problem and the Basic Lagrangian Optimization Method

Our goal is to choose the offered load vector X such that throughput is maximized, subject to constraints
on blocking probability. This problem can be written as

Constrained Optimization Problem:

max{S(X)}, (17)

subject to: P(X) < Qj,

where P.(X) is the probability that an incoming call to circuitj is blocked.8

Definitions:

* We say that an offered-load vector X is admissible if the constraints on blocking probability are
satisfied.9

* The admissible region contains all offered-load vectors that are admissible.

* Corresponding to each admissible vector X is a value of admissible throughput.

81n most of our examples, it is assumed that Q = ... = Q = QoS, i.e., all circuits are subject to the same value of the QoS constraint;
however, we do consider several examples in which widely different values are used.
9In this report, the term "admissible" is applied to two distinct domains. In Section 2 it is used in the context of the admission-
control policy. Here, and in the rest of this report, it relates to the requirement that the offered load be such that the QoS constraints
are satisfied (for a specified admission-control policy, set of routes, etc.).

10
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The QoS inequality constraints (P) < Q) can be written as "equality" constraints as:

min(PQ(7), Q0) - P.(X) = min(0, Qj - P.(X)) = 0. (18)

A similar equality constraint can be derived for the X. > X constraint, but we have found that doing so
is unnecessary because this constraint is easily enforced by simply not allowing X. to grow smaller than Xmm
as we show below in Eq. (20).

We convert our constrained optimization problem to an unconstrained one by creating a new objective
function that increases with S(k) but is decreased (penalized) when the QoS constraint is violated. If the new
objective function is properly formed and has appropriate parameters, its maxima should coincide with
those of the original problem. For this new objective function, we use the Augmented Lagrangian function
[21] given by

L(, =) + Yi-1 [vyi min{0, Qi - Pi(7)} - 2 Q ()}) 2 ]. (19)

The coefficients y, are Lagrange multipliers. The second term in the summation is a quadratic penalty term
with constant coefficient d/2. This term is the augmentation to the Lagrangian objective function that is
helpful in enforcing the QoS constraint. Note that both terms in the summation contribute nothing to the
objective function whenever the QoS constraint is satisfied, and they contribute negative values when the
constraint is violated.

Our goal is to maximize L(i) over K. To do this, we use the iteration

Xi (k + 1) =maXnmin Xi (k)+e X }
j 1, .J; k = 1, ... , k .; X(°) = X> Xmi ....... (20)

where 0 is a stepsize parameter, and

DL(.,) as > Q) (21
-= + 1(Pi(i) > Qi) [d(Qi - Pi()) - yi (21)

Here, 1(e) is the indicator function. This equation involves the gradients of both throughput and blocking
probability. We use the product-form solution to calculate the equilibrium state occupancy distribution,
from which we can obtain the circuit blocking probabilities P.(X), the circuit throughput values S.(X), and the
partial derivatives DP.(L)/aX. and aS.(X)/aX. In Ref. 9, Jordan and Varaiya have shown that

- j coy-vFA Xi), j
_______ ~~~~~~~~~~~~~~(22)

axi 11 (E~xi}-va(xi))1 i= j

and
aSj(1) J~~-C~(iX (23)

These quantities are evaluated by using the product-form solution [1, 2].
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Thus the search proceeds along the direction of the throughput gradient VS when the QoS constraints
are not violated, and in a direction influenced by both the throughput and blocking probability gradients
when the constraints are violated. The max operation in Eq. (20) enforces the X 2 X constraint.

The search can be performed either for a fixed number of iterations or, alternatively, until convergence
has been obtained. In the latter case, convergence can be defined as a sufficiently small change in S(X) from
one iteration to the next. Stopping rules are discussed in Section 8.3.

4.2 Stepsize Considerations

Stepsize is crucial to the correct and efficient operation of the search. Stepsize must be considered in
both updating the Lagrange multipliers and in updating the offered load parameters. The stepsize rules
discussed below were used in our preliminary studies, which involved the basic optimization model dis-
cussed in this section. Modifications developed in conjunction with our improved search techniques are
discussed in Section 7.2.

Lagrange Multiplier Update

During the iteration, as suggested in Ref. 22, the Lagrange multipliers y are updated according to

c(Qj - P (X))
yj (k + 1) = yj (k) - 1(P (X) > Qj) iterations (24)

where k = 1, ... , k ; c is a positive constant; and yj(O) = y0,j = 1, ... , J. Note that the (Qj - P$(X)) term, which
is negative when the indicator function is 1, is subtracted so that Yj increases to encourage constraint satisfac-
tion when the constraint is violated, but remains unchanged when the constraint is satisfied and the Lagrange
multiplier term is inactive. The increment in yj is proportional to the amount by which P.(X) exceeds Qj (so
that it is increased more on circuits that violate QoS by significant amounts); it is inversely proportional to
the number of iterations thus far (to encourage convergence).

Offered-Load Update

Allowing the stepsize parameter 0 to vary (in particular, to decrease) is effective in damping oscillatory
behavior and in increasing the speed of convergence. The basic 0-update rule we used in our preliminary
studies is

0(k + 1) =max{0min, 0(k)-1(crossing?) anOIn}, (25)

where k = 1, ... , km.; 6(0) = 00; and the argument of the indicator function is true if the blocking probability
value of any circuit has crossed the QoS threshold in either direction in going from iteration k - 1 to iteration
k.Y' The parameters 00 and Omin specify the initial and the minimum 0 values respectively, and the "damping-
rate" parameter r determines the rate at which 0 is decreased.

5. EXAMPLE OF RESULTS BASED ON THE BASIC SEARCH PROCEDURE

In this section, we discuss performance results that are based on the wireless network shown in Fig. 3.
This network has N = 24 nodes and J = 10 circuits. We refer to this network as "Network 1." Additional
networks are studied in Section 8. The purpose of this section is to illustrate the nature of the optimization
problem under study, as well as to motivate the improvements that are discussed in Sections 6 and 7.

10The basis for using the number of threshold crossings in the stepsize update equation is as follows. There may be no need to
decrease Obefore the first threshold crossing because a rapid ascent to the neighborhood of the optimal solution is desired. However,
once the search is in the neighborhood of the optimal point, a decrease of Oreduces the amount of oscillation, thus permitting
convergence to the optimal point. In multidimensional searches such as ours, however, it is less clear that this approach is a good
one. The stepsize rules discussed in Section 7 are based solely on the iteration number.
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Fig. 3 - Network 1 (24 nodes, 10 circuits)

In the example studied in this section, we assume eight transceivers per node (T, = ... = T24 = 8), we limit
the number of calls that can be accepted on any particular circuit to six (thus we are using a threshold-based
coordinate-convex admission-control policy with Xl = ... = X10 = 6, as discussed in Section 2),11 and we
define the QoS requirement to be a maximum acceptable circuit-blocking probability common for all cir-
cuits (i.e., the blocking probability P on circuit must not exceed Qj = QoS = 0.3;j = 1, ..., 10).12 Although
our basic search procedure was able to converge to a good solution, convergence was typically slow. In
Section 5.1 we discuss the application of the basic search procedure to this network, and in Section 6 we
describe an improved search procedure, which makes better use of the available information at each iteration
in the search.

Table 1 summarizes the results of five runs that used the same parameters to search for the set of X. that
J

maximizes throughput in Network 1. The X values (which are the Poisson arrival rates X. at each circuit) are
J

the values found to yield the highest admissible throughput S(X) in the respective search (but were not
necessarily the values at the last iteration). Each iteration was stopped when convergence was achieved, as
determined by sufficiently small changes in the offered-load vector. In most cases, however, convergence
was achieved prematurely, apparently as a result of too rapid a decrease of the stepsize 0. The number of
iterations required to achieve convergence is shown in the last column. The runs differ only in the starting
point, k = (X0X XO,2' *--' ,10). The k values for Run 1 were obtained by scaling up the best results from
searches of the same network with four transceivers per node. Run 2 was started from X = (1.75, ..., 1.75),
which is approximately the largest uniform offered load3 for which the QoS constraint of P < 0.3 ismax
satisfied. Run 3 was started from O = Xfound in Run 2; Run 4 was started from the solution found in Run
3; Run 5 was started from the solution found in Run 4. Thus the concatenation of Runs 2-5 can be viewed as
a single composite run of length 6150 iterations in which the stepsize 0 is varied from its initial (large) value
to its final (small) value four times. Note that both Runs 1 and 5 converged to nearly the same point in
X space. Although the choice of X was critical to the quality of the solution in these examples, the improved
algorithm discussed in Section 6 and thereafter is relatively insensitive to the initial offered load, provided
that a good choice of system parameters is made.

As a result of the stepsize damping, Run 2 converged in 1509 iterations to a throughput of 16.63, a value
relatively far from the apparent14 maximum of S(k) 17. Figure 4(a) shows the evolution of throughput
throughout the concatenation of Runs 2 through 5. Figure 4(b) also shows the throughput, but includes only

11We often use the shorthand notation T = 8 to indicate that each of the N nodes has 8 transceivers. Similarly, the notation Xj = 6
means that the threshold on all J circuits is 6.
12In Section 9.3 we consider networks in which the circuits do not all have the same QoS constraint.
13The term "uniform offered load" refers to an offered load vector in which all of the X's are equal.
14We say the apparent maximum because we have not found a solution that yields a significantly larger throughput, and because
there is no known alternative method for determining the true maximum.
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Table 1 - Results of Searches of Network 1
(Ti=8;Xj=6;QoS=0.3;0O=0.1,m.=2 x 10-6,r= 1500; y = 10,c= 150,d= 100, X =0.05)

Run X0 | I | 2 | 3 |4 | 5 |i6 S7 8 | |10 | (X) Iterations

1 scaled 5.9569 5.871 1.6975 0.0632 1.9498 0.05 6.0318 0.0757 1.5814 0.5339 16.992503 1375

2 1.75 2.7769 2.6434 3.4073 1.1265 3.2968 0.05 4.5016 0.05 3.4065 1.5118 16.638538 1509

3 run 2 3.3295 3.1273 3.2642 0.7831 3.0607 0.05 4.7117 0.05 3.2429 1.1041 16.649440 1513

4 run 3 4.4052 4.3835 2.5763 0.4930 2.3540 0.05 5.4694 0.05 2.3507 0.6470 16.732417 1497

5 run 4 5.9616 5.8808 1.7283 0.0515 1.9600 0.05 6.0203 0.0501 1.6222 0.5160 17.006826 1631

IL. I

r

1000 2000 3000 4000
iterations

(a) Evolution of throughput

5000

mm 17

_7i,~~6.

11 16.7

Pr 0
1 167

- O H16. 9

XX 16.5
6000

;=- ___
rr

r I 
_~ ~~F HI g__ , 

0 1000 2000 3000 4000 5000 6000
iterations

(b) Evolution of admissible throughput

0 1 10 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0
3 A

O 1000 2000 300 400 500 60

iterations

(c) Evolution of offered-load X

Fig. 4- Evolution of throughput and X as the iteration proceeds through the concatenation of Runs 2-5

17

16.9

.C 16.8

0

E- 16.7

16.6

16.5
0 1

I I .

14 Wieselthier, Nguyen, and Ephremides

I



Throughput Maximization under QoS Constraints 15

those points in the search for which the QoS constraints are satisfied; hence the terminology of "admissible
throughput" (throughput values for iterations at which one or more of the QoS constraints are violated are
simply ignored). Figure 4(c) shows the evolution of X, i.e., the values of the offered load values X as the
iterative search progressed. It appears that the damping was helpful in each of these runs, in the sense that it
permitted some progress toward the optimal solution; without damping the oscillation might have continued
indefinitely. Thus, these results seem to suggest that a concatenation of several runs in which 0 s damped
from its maximum to minimum value appears to be more effective than a single run of comparable total
length in which 0 is decreased monotonically. Actually, we demonstrate in Section 8 that such a concatena-
tion is not necessary, provided that the algorithm's parameters are chosen well or that heuristics are incorpo-
rated into the algorithm to direct the search along a better trajectory. We show that reliable convergence can
be obtained from arbitrary initial conditions. Furthermore, the speed of convergence of the improved algo-
rithm is much greater than that shown in these examples.

It is interesting to note that the offered load vector X, after appearing to stabilize, changes rapidly after
iteration 3000. It is also interesting that, despite the dramatic variation in the values of X, the admissible
throughput increases by only about 2.4% after iteration 400. Such behavior appears to be typical in this
optimization problem and has been observed in numerous examples involving a number of markedly differ-
ent networks, as is demonstrated in Section 8. We show that throughput is relatively insensitive to changes
in the offered load vector, and nearly optimal performance (e.g., 98% of the maximum achievable through-
put, while satisfying the QoS constraints) can be obtained over a wide range of offered load values.

Apparently, the starting point for Run 1 is a good one, since the search is able to find an admissible
throughput of nearly 17 in 1375 iterations.' Figure 5 shows the search trajectory of Run 1 projected onto the
(Xi, X3) plane. Also shown are two sets of contours. Those depicting throughput S(X) are self-explanatory.
Those depicting P ma,' which is identical to Pmax, refer to the largest blocking probability among the circuits;
this is an important quantity because the value of P determines whether or not an offered load vector isc-max
admissible.' 6

The contours are based on the use of the values of X2 and X, ... , X10 that were determined at the end of
Run 1, as shown in the first row of Table 1. All of the X.'s actually vary throughout the search, as does the
identity of the dominant circuit (i.e., the circuit with the largest blocking probability); thus, the throughput
and blocking probability contours in any plane (such as the (X,, X3) plane shown here) vary throughout the
search. Therefore, it is not possible to determine whether or not any particular point on the trajectory is
admissible on the basis of this figure alone, and so it is difficult to make definitive conclusions on the basis
of figures of this type. Nevertheless, Fig. 5 does provide crucial insight into the nature of the trajectory.

Figure 5 shows that the search moves rapidly to the neighborhood of the maximum and spends most of
its time searching there. Examination of this figure has permitted us to make the following observations on
the behavior of the search. The throughput gradient VS is virtually constant (in both magnitude and direc-
tion) in the neighborhood of the maximum. Hence, by Eq. (20), X will change by OVS at any admissible
solution in that region, i.e., the step will be approximately 0 times a constant in the (constant) direction of the
throughput gradient. It is very likely that this step will throw the search over the QoS boundary into the
inadmissible region. In the inadmissible region, the activation of the constraint-enforcing terms in Eq. (20)
causes X to move in the direction opposite to the Pc Imax gradient, back toward the admissible region, with a
small move in the direction of the throughput gradient caused by the always-active VS term. Thus, a slowly
changing oscillation can easily occur while slowly "climbing" the QoS boundary toward the maximum. The

15In the early stages of this study, this was considered to be relatively rapid convergence. However, considerably faster convergence
has been obtained using our improved algorithms, which provides reliable convergence from virtually any initial condition; e.g., X.
= 0 has been used in most of our examples.
16In a typical run, the fraction of iterations that produce admissible solutions is difficult to predict; this fraction may be between
about 15% and 50%, depending on the network under study and on the parameters of the algorithm. There seems to be no direct
correlation between the fraction of admissible solutions and the quality of the solution produced by a particular version of the
algorithm.
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Fig. 5- Search trajectory in Xl and X. superimposed on throughput and P
contours; X2, and X4 , ... , X1 0 are fixed at the values shown in Table 1, Run 1

main feature of the improved search technique discussed in Section 6 is a method to guide the search so that
it proceeds essentially parallel to the VP max contour, rather than at a significant angle to it.

6. GUIDED SEARCH TECHNIQUES

The search trajectory shown in Fig. 5 is typical of results obtained using the basic search procedure in
that significant (although nonmonotonic) progress is made in the early stage of the iteration, whereas con-
siderably less-productive oscillatory behavior is observed as the search progresses. A common difficulty in
constrained optimization problems arises because the optimum lies on the search boundary (i.e., one or more
circuit blocking probabilities is at the maximum-permitted QoS value). In unconstrained optimization prob-
lems, gradient search procedures are naturally slowed (smaller steps) by the decreasing gradient as they
approach the optimum. This slowing allows the search to ascend smoothly to the maximum. However,
when the optimum lies on the boundary, as it often does in constrained problems,'7 there is not necessarily a
decrease in the gradient in its neighborhood. In this case, typical gradient search techniques rely on damp-
ing the stepsize Oto slow the search and thereby to facilitate homing in on the optimum. However, an overly
rapid decrease in 0 results in failure to reach the optimal solution; a less rapid decrease in 0 can result in
unacceptably slow convergence.

Constrained optimization problems (especially those such as ours, with many constraints, i.e., one per
circuit) often suffer from the impact of irregularly shaped admissible regions. In particular, the need to
satisfy blocking probability constraints on each individual circuit creates a situation in which the identity of
the dominant circuit can change as a result of small variations in the offered loads. Consequently, it appears
that multimodal behavior (i.e., the presence of local optima, which make it difficult to locate the true optimal
point), may occur. Such effects appear to be present in our problem, but are not severe in the sense that most
versions of the algorithm are usually able to reach an admissible throughput value equal to at least 99% of
the optimum. This issue is discussed in Section 13. The theoretical basis for nonlinearly constrained nonlin-
ear optimization problems is not well developed, and so we have not obtained theoretical support for the
convergence properties of our algorithm.

17We believe that, in our optimization problem, at least one of the circuit blocking probabilities at the optimal point must be at the
maximum permitted value. This conjecture is supported by extensive empirical evidence in a variety of network examples. We have
observed that, typically, between half and all of the circuit blocking probabilities are at the maximum permitted value.
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The degree of progress that can be made at any point in the search depends on which of the following

three conditions apply at that time. When none of the QoS constraints are violated, the search tends to
proceed along the gradient of increasing throughput, as may be seen in Fig. 5. By contrast, when one or
more of the QoS constraints are violated by a significant amount, the constraint terms correct this behavior
by directing the trajectory toward the admissible region. The most interesting, and troublesome, behavior
occurs when the search trajectory passes near the QoS constraint contour. Figure 5 shows that the violation
of a constraint results in oscillatory behavior, with little progress toward the optimal point. The desired
behavior would be for the search to proceed along the contour corresponding to the QoS constraint, rather
than at a significant angle to it.

We have attempted to mitigate the oscillatory behavior of the "basic algorithm" by using our knowledge
of the throughput and blocking probability gradients to guide the search more efficiently. In the following
subsections, we introduce the principle of "guided search," we generalize our approach, and we discuss how
the principles of guided search can be used to develop improved search algorithms. These principles are
used to develop the versions of the algorithm that are described in Section 7 and tested in subsequent sec-
tions.

6.1 Preliminary Approach

To illustrate the principle of guided search, we consider an example in which the blocking probability of
the "dominant circuit" (i.e., the circuit with the largest blocking probability8) is close to (say, to within some
£ of) the specified QoS. We would like to guide the search in a direction of increasing throughput, so that it
tends to follow the QoS contour. To simplify the discussion, let us first consider the case in which exactly
one of the circuit-blocking probabilities (the dominant circuit) is located within e of the QoS constraint, i.e.,
QoS - e < P.( ) < QoS + E, for exactly one value ofj E { 1, 2, ..., J}. Let us call this circuit c. In this case, we
would like the search to proceed along the component of the throughput gradient VS that is orthogonal to the
circuit-blocking probability gradient VPC at our current point in the search. By eliminating the component
parallel to VPc, we discourage increase in the blocking probability of the dominant circuit. The desired
projection can be written as

{Component of VS orthogonal to VP }=VS - VS VPC, (26)

where
VS WC as MC~ a1X 1 i ap% (27)

Vs * VPc = aki. = j=l a?,s axi

and

lll EJ X2
IIxII= J J

is the norm of an arbitrary vector X. Then we introduce a vector D = (D1, D2, ... , D.), which is equal to this
projection when the blocking probability of the dominant circuit is located in a band of width 2e centered
about the QoS contour; otherwise, D is equal to the throughput gradient VS:9

VS - VP VPc, QoS-E < PC < QoS + (
D~~~~j V I C112I (28)

VS, otherwise

18The notion of dominant circuit does not depend on offered load; in fact, the offered load on the dominant circuit may be zero.
19When the blocking probability of the dominant circuit exceeds QoS + E the projection is not used, even though the blocking
probability of one or more of the other circuits may be located in the band of width 2e.
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We modify the Lagrangian objective function of Eq. (21) by inserting Di in place of aSaX, as follows:

= Di+ l(P.(x)>Qj) [d(Q- PiX""))-1 (29)
axi d=1J j kJx (9

Thus, when the search is well within the feasible region, it is guided solely by the throughput gradient.
When it is sufficiently far into the infeasible region, the penalty term has a significant effect. And when the
dominant circuit is within the narrow band centered around the QoS contour, the search is guided by the
projection discussed above (and by the constraint terms as well if PC(X) > QoS).

Other approaches to deciding when to use the projection operation are certainly possible. For example,
we can consider a "one-sided E band" approach in which the projection is applied only when the dominant
circuit violates QoS by not more than c, but not when X is in the admissible region close to the QoS bound-
ary. Alternatively, we have considered its use at all times, regardless of whether or not PC is very close to
QoS. In all of these cases, we discourage the increase of PC, while (hopefully) encouraging the throughput
to increase.

The use of this projection is the basis of the heuristic techniques we have developed for speeding up the
convergence of the algorithm developed in this study. It was certainly not obvious, a priori, that this ap-
proach would be successful. The use of D., rather than VS, in Eq. (29) is equivalent to distorting the shape
of the objective function, i.e., we are now maximizing a function whose gradient is D, rather than the desired
function S (in either case, subject to the same QoS constraints). Important questions include not only the
specification of how the projection is defined (several alternatives are discussed in Sections 6.2 and 7), but
also when (i.e., at what, stage of the search) it is to be applied.

The stepsize updating (damping) rule is an important part of algorithm design here, as it is in most
iterative algorithms. In the early stages of the iteration, 0 must be sufficiently large so that adequate progress
toward the region in which the desired solution is located is made. Eventually, 0 must be decreased so that
convergence is obtained. If 0 is decreased too rapidly, convergence may occur before the neighborhood of
the desired solution is reached, thus resulting in a solution of poor quality (as in Runs 2, 3, and 4 of Section
5). If 0 is decreased too slowly, convergence will be delayed (or prevented, if 0 does not reach a sufficiently
small value). For the early stages of the iteration, we have considered approaches in which 0 is either
maintained at a constant value or decreased relatively slowly, e.g., either linearly or exponentially with a
factor close to 1. Ultimately, 0 is decreased proportionally to either l/n or 1/in. Here, n can be either the
number of iterations, or a function of the number of iterations that takes into account the number of "special
events" that have taken place (e.g., QoS threshold crossings and/or the number of times that the identity of
the dominant circuit has changed).20 In our preliminary studies we used the following 0-damping procedure

0 -eOi
0(n) 00 in n<N{__ ~r

0(n + 1) = m (30)

[ nN' n>N

Thus, Ois decreased linearly when n < N iterations, and subsequently decreased as n -N , where n is the
number of crossings of the QoS threshold plus the number of times there has been a change in the identity of
the circuit that provides the maximum circuit-blocking probability. In Section 7.2 we discuss the techniques
we have used to choose the initial value of 0, as well as several damping rules.

20 The occurrence of such special events suggests that 0 should be decreased because the search is close to the QoS boundary, and
thus horning in toward the desired solution.
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6.2 Generalized Approach

The use of the projection operation described above removes the component of VS that is parallel to
VPC. By doing so, X is updated in a direction that increases throughput without increasing PC. However, the
typical consequence of doing so is that one or more of the other circuits will soon violate QoS. At a typical
point in the search, it is common for several circuits to violate QoS or to be sufficiently close to the QoS
boundary that QoS is in danger of being violated. We have observed behavior in which the chosen circuit for
the projection alternates among two or three of the circuits, resulting in oscillatory behavior in which little
progress is made toward the optimal solution. To mitigate this behavior, we have considered a generalized
form of the projection operation in which several circuits are included in the projection. The inclusion of
several circuits takes into consideration the fact that we are dealing with a number of constraints simulta-
neously. Thus, we would like to update X in a direction that discourages violation of any of the QoS con-
straints.

To incorporate the QoS constraints associated with some or all of the circuits into the search-guiding
mechanism, we introduce the quantity P., which is a function of the circuit-blocking probabilities P, P2,...,
PJ. In this study we have used the following simple, linear form for Pa:

Py. = yiEpi, (31)

where I is a subset of { 1, 2, ..., J}. The vector D, introduced in Eq. (28), is then rewritten as

VS- 1 2 VPT, if VS- 1 VP > |VS| (32)

tVS, otherwise

This expression is identical to thatof Eq. (28), except that P, replaces PC in the dot products and the projec-
tion operation is used only when the resulting value of IIDII is sufficiently large. The reason for using the
projection operation only when it provides a sufficiently large value of IDII is based on our experimental
observation that (in some cases) the trajectory can reach a point at which IDII is quite small. This behavior
results in slow progress toward the optimal point, or even virtually total stopping of the trajectory, resulting
in premature convergence. In fact, the trajectory can converge to a point interior to the admissible region
(thus none of the circuit-blocking probabilities are at the specified value, a condition not characteristic of the
optimal point). This behavior is especially prevalent when the set I is large (e.g., we have considered cases
in which T contains all J circuits). It occurs when the gradients of S and P: are nearly parallel to each other.
Turning off the projection operation (typically for just a single iteration) permits the trajectory to escape
from such undesirable points. We have found that a value of t = 0.1 works well.

The projection vector D specified by Eq. (32) removes the component of VS that is in the direction of
the gradient of the average blocking probability of the circuits included in S. Therefore, X is updated in a
direction that tends to increase throughput without increasing the average blocking probability of the cir-
cuits in X We have found that the use of average blocking probability in this context can be helpful, even
though the problem constraints are expressed in terms of the maximum blocking probability over the set of
circuits.

Several approaches are possible for choosing the circuits that are to be included in S. For example, we
may follow the approach of Eq. (28) and include all circuits for which QoS - E < P.(X) < QoS + £, provided
that the dominant circuit is in the band (i.e., don't apply the projection if the blocking probability of the
dominant circuit exceeds QoS + £). Under this approach, the projection term inhibits movement of I in a
direction that will increase the average blocking probability of the set of circuits that either violate QoS or
are close to violating QoS. By avoiding an increase in the average value of these blocking probabilities, it is

Throughput Maximization under QoS Constraints 19
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hoped that none of the individual blocking probabilities will increase beyond the specified QoS value. How-
ever, if they do, the penalty term in Eq. (29) can take care of the situation. Circuits that are not close to
violating QoS are not included in Z because increasing blocking probability on these circuits is not detri-
mental to system performance.

A straightforward modification of this approach is the use of a single-sided band, i.e., use the same rule,
but apply the projection only to circuits that violate QoS. Other approaches are discussed in Section 7.1.

We have found that the use of the generalized search algorithm discussed in this subsection (with sev-
eral circuits included in the projection) usually provides improved convergence, as compared to the use of
the unguided search (no projection term used) or the preliminary version of the guided search algorithm of
Section 6.1 (which uses at most the dominant circuit in the projection). For example, use of this search
procedure consistently finds the apparent constrained throughput maximum in searches of Network 1, re-
gardless of the search starting point. Table 2 summarizes the results of searches based on the generalized
search algorithm that use the same initial offered load vector as Runs 1 and 2 in Table 1, i.e., the XO values for
Run 1 were obtained by scaling up values obtained from a search of the network with reduced capacity (T. =
4 and X = 3), and O = 1.75 for Run 2. A two-sided E band was used, with e = 0.001. With the improved
search, Run 1 found a solution that gives a slightly larger throughput value (17.002 vs 16.993) in far fewer
iterations (378 vs 1375) than were required in the original run. Recall that with the basic search strategy and
a starting point of k = 1.75, we were only able to find the optimum solution after progressively restarting the
search from the preceding solution, a procedure that required in excess of 6000 iterations. The improved
search strategy found the optimum in only 829 iterations, and with no restarts.

Table 2- Results of Improved Searches of Network 1
(TI=8 ;X.=4 ;QoS=0. 3 ;0=0. 4 ,min =0.2,N =200;Y0 =5,c=10,d= 10,=0.001, Xmin=0.05)

Run l % X X X5 X6 X7 - 8 X, X10 S(l) |Iterations

1 scaled 5.9754 8101 1.6877 0.0549 1.9639 0.05 6.0326 0.05 1.5523 0.6485 17.0023 378

2 1.75 5.9510 5.8674 1.7365 0.0508 1.9616 0.05 6.0172 0.05 1.6259 0.5167 17.0041 829

Figure 6, which should be compared with Fig. 5, shows the trajectory of Table 2, Run 1, projected onto
the (S1, At) plane. Note in Fig. 6(a) that this search more directly ascends the throughput gradient and the
unproductive oscillation, which dominated Fig. 5, is not present. We attribute both of these qualities to the
use of the projection to guide the search along the QoS boundary. The expanded local view shown in Fig.
6(b) shows that the search does ascend the QoS boundary and finds a solution very near the maximum. As
in Fig. 5, because all of the X.'s vary throughout the search, the landscape also varies throughout the search.
The landscape shown in Fig. 6 is again based on the values of and X4, ..., X10 at the last iteration.

The Impact of the Value of eon Performance

We have experimented with the width of the band in which the projection is used and found that £ =
0.001 strikes a balance between speed of convergence and quality of solution. Typically, a smaller e-value
delivers a slightly higher throughput value at the expense of added iterations. For example, we repeated Run
2 of Table 2 with E = 0.0005 and found in 1450 iterations a solution that gives S(k) = 17.0056. A larger a
value appears to hinder both the quality of the solution and the speed with which it is obtained. With a =
0.005, the Table 2, Run 2 search found in 1367 iterations, a solution that gives S(X) = 16.9856.

To explain the impact of the value of eon both the speed of convergence and quality of the solution,
recall our earlier observation that the use of the projection distorts the objective function, thus potentially
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Fig. 6- Search trajectory in XA and X3 superimposed on throughput and P contours;
X2, and X4. .... L are fixed at the values shown in Table 2, Run 1

making it difficult to reach the true (constrained) optimal point. When £ is large, it is more likely that the
blocking probability of the dominant circuit is located within the £ band, particularly at the final stages of the
iteration when O is small. Thus, the distortion is included in the objective function at most, if not all, itera-
tions. By contrast, when e is very small, the distortion is not present at every iteration, thus potentially
permitting the search to converge to a point that is not directly affected by the projection. However, when E
is too small the projection is rarely applied, and thus has little effect in guiding the search toward the optimal
solution.

6.3 On the Development of Improved Iterative Search Algorithms

Based on the results discussed above, as well as on similar results for many other test runs, we have been
able to enhance the iterative search algorithm of Section 6.2. A crucial observation has been that it is best to
turn off the projection term at some point during the iteration. When this term is kept active throughout the
iteration, it is common to see the search approach the neighborhood of the optimal solution, only to proceed
past it, eventually converging to a point relatively far from the optimal. This behavior is especially pro-
nounced when £ is relatively large. However, when the projection is turned off, the final approach to the
optimal solution can be made without the presence of distortion.

However, as suggested by the preliminary results presented in this section, the use of the projection can
be helpful, at least at some point in the iteration. Although £ = 0.001 was a relatively good choice under the
constraint that the projection (with a fixed value of £) is applied throughout the entire search, the option of
turning off the projection before the final approach to the optimal point raises other possibilities as well. For
example, during the early stages of the iteration it may be appropriate to include a potentially large number
of circuits into the projection (either by means of a large value of a or an alternative criterion for including
circuits in the set X). Consequently, application of the projection, which tends to prevent the increase of the
average value of the blocking probability of a large number of circuits, also tends to keep each of the block-
ing probabilities from straying too far into the inadmissible region. (Recall that the penalty term is present
to take care of those circuits that enter the inadmissible region.)

Throughput Maximization under QoS Constraints
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The choice of stepsize (0) damping rule is also critical to the performance of the algorithm. The param-
eter 0 must be large enough at the beginning of the iteration to make significant progress toward the region
of the optimal solution, and must decrease in a manner that permits convergence to the optimal solution. An
excessively fast decrease can cause premature convergence of the algorithm, and hence failure to reach the
optimal solution, whereas an excessively slow decrease can prevent convergence within the desired time
constraints. In fact, we demonstrate in Section 8 that the use of a good stepsize rule can provide reliable
convergence to the optimal solution, even when the projection is not used; the slow convergence of the runs
described in Section 6.1, including the need to restart with a the original stepsize, can be attributed largely to
the use of too small a stepsize. However, we also show that in many examples the use of the projection does
indeed enable the search to reach the neighborhood of the optimal solution considerably faster than is pos-
sible when the projection is not used.

Care must also be taken in the choice of several other parameters used in the algorithm, such as the
choice of c (used in updating the Lagrange multipliers in Eq.(24) and d (which weights the penalty term in
Eq. (21). The use of c = d = 50 worked well for high values of QoS (e.g., Ž 0.2), but not for more realistic
values. The relatively poor performance for low values of QoS was observed because the gradient terms
DP ai were too small to drive the search back into the admissible region at the low offered loads that are
characteristic of low values of QoS. This problem has been mitigated by weighting the constraint-violation
terms by 1 / QoS (while maintaining c = d = 50):

aL(Ky) = Di + at J (pj( > Qj ) Q J (33)

where a is a "kick-up" factor that can be updated (increased from an initial value of 1) as necessary. For
example, acan be increased if too many consecutive inadmissible solutions are observed, or decreased if too
many consecutive admissible solutions are observed (after the inadmissible region has been entered at least
once).

In Section 7 we define 18 versions of our iterative algorithm, which differ in their use of projection and
stepsize rules. Some of these versions use no projection at all, while others use it only during the relatively
early stages of the iteration. We discuss several options for stepsize rules, and indicate how system param-
eters can be chosen to provide robust performance. The 18 versions of the algorithm have been tested
extensively in a series of "core runs" for three different networks and various "uniform" parameter sets;
these runs are described in Section 8. These results demonstrate that some versions are capable of providing
nearly optimal performance (e.g., admissible solutions that provide 98% of the maximum admissible through-
put value) considerably earlier in the iteration process than others. The key to obtaining "good" (although
suboptimal) performance rapidly appears to be the use of the projection with an appropriate rule for the
determination of the set X(of circuits to be included), combined with a good stepsize rule. However, there is
relatively little difference in performance in either the quality of the ultimate solution or the speed with
which it is reached for cases in which a solution that is extremely close to the optimal is required (e.g., one
that provides 99.9% of the optimal throughput value). We have also found a number of examples (typically
with relatively "extreme" parameter values) for which some versions of the algorithm provide higher through-
put than others; however, this difference is rarely more than 1 %.

7. ALTERNATIVE VERSIONS OF THE ALGORITHM

The preliminary studies described in Section 6 have served as the basis for the development of an
improved algorithm for the determination of optimal offered load. The different versions of the algorithm
are all based on the iterative procedure described by Eq. (33); they differ in their use of the dot-product
projection and in the stepsize update rule. In this section we discuss the various options that we have
considered for the use of the projection and stepsize rules, as well as the interrelationships between these
two critical aspects of algorithm design. We also discuss considerations relating to the choice of other
parameters in the algorithm.
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Specifically, in Section 7.1 we discuss alternative projection rules, i.e., alternative ways to specify the
set IZ of circuits that are to be included in the projection. In Section 7.2 we discuss factors relating to the
stepsize rule, and present four particular stepsize rules that we have used extensively in our tests of the
algorithm. Finally, in Section 7.3 we characterize 18 versions of the algorithm in terms of their stepsize and
projection rules.

In our discussion of projection rules, it is implicitly assumed that Qj = QoS, j = 1, ..., J, (i.e., that all
circuits are subject to the same constraint on maximum blocking probability), although it is certainly pos-
sible to define projection rules that incorporate different QoS values. In Section 9.3 we discuss several
examples in which the circuits are divided into two groups of equal size, which are subject to widely differ-
ing values of the QoS constraint. In those examples, significantly better performance is obtained when the
projection operation is not used. However, the results for many of the examples presented in this report
(with equal QoS values) demonstrate that appropriate use of the projection operation can often provide
improved performance, in terms of speed of convergence and/or quality of solution.

7.1 Projection Rules

The projection rule, as described in Section 6.2, guides the search by removing the component of the
throughput gradient that is parallel to VP,, where Pz = . P., for some subset I of { 1, 2, ..., J}. For conve-
nience, we recall the vector D that was defined as

V S ' V P if VS - 1S V VP > VSJJ
D ~~~VP~~'12 L'YP (34)

{VS, otherwise

where we have used X = 0.1. The effect of the projection is to remove the component of the throughput
gradient that is in the direction of the gradient of the sum of the blocking probabilities (or, equivalently, the
gradient of the average blocking probability2l) of the circuits included in S. By including several circuits in
a, it is possible to discourage (although not necessarily prevent) the blocking probabilities of these circuits
from exceeding the QoS constraint. In addition, the oscillatory behavior that results from the use of a single
circuit (the identity of which typically alternates among a small set of circuits) in the dot product is reduced.
However, it must be acknowledged that the use of the projection is a heuristic approach. In particular, efforts
to avoid increase in the average blocking probability of the circuits in Ydo not take into consideration the
true nature of the capacity constraints, i.e., that the blocking probability on each circuit must not exceed the
QoS constraint; we rely on the penalty term in Eq. (33) to enforce these constraints. Thus, it is hard to
predict a priori whether the use of the projection based on a direction defined by several circuits will be
helpful. The performance results presented in Section 8 demonstrate that, if used judiciously, the projection
can, in fact, be very helpful.

The projection rule is defined by specifying the set E. Several distinct alternatives for choosing I are
discussed below.

No projection:

£ = 0 = the empty set

This is simply the "basic search" procedure that was introduced in Section 4, for which D = VS. Al-
though the performance results presented in Section 5 demonstrated the deficiencies of this approach and

21Here, we do not weight the blocking probabilities by the corresponding offered loads; thus, by average blocking probability we
simply mean the numerical average of the blocking probabilities of the individual circuits, rather than the fraction of calls to the
overall network that are blocked. By contrast, in Section 10 when we study an alternative version of the QoS constraint that is
defined in terms of overall average blocking probability, the individual blocking probabilities are weighted by the corresponding
offered loads, thereby producing the fraction of calls to the overall network that are blocked.



24 Wieselthier Nguyen, and Ephremides~~~~~~~~~~~~~~~~~~~

motivated the use of the projection operation, we have concluded that I = 0 is best during the final approach
to the optimal solution, because use of this approach does not introduce the distortion that is associated with
the dot-product terms. Also, we demonstrate in Section 8 that the use of I = 0 throughout the search can
sometimes result in convergence to the optimal solution, provided that a good stepsize rule is used. How-
ever, convergence to a "good" solution (e.g., one that provides an admissible solution with throughput of
98% of the maximum admissible throughput) is typically much slower than the approaches that do make use
of the projection.

Projection based on the dominant circuit only:

{i:IP=Pmax} ifQoS-<Pmax<•QoS+£

l0, otherwise

where

P = max{PI, P2, *-., P1}
max 1 2 "PI

Here, £ consists of the dominant circuit only,22 provided that its blocking probability is within £ of QoS;
otherwise I is the empty set. This is the approach described in Section 6.1.

An alternative version of this rule is

Y = -U: P.= P Ia } Y= j:P= max

i.e., I consists of the dominant circuit only as above, but differs in that the projection is used regardless of
the value of P . This case is obtained by letting £ = 1. The motivation behind this approach is to turn the
trajectory away from the QoS constraint contour even before it comes close to it.

Projection based on several circuits, with I defined in terms of a fixed band:

{U: QoS- < Pji < QoS + 1, if QOS - < Pmax < QOS + £

l0, otherwise

i.e., I contains all circuits in a band of width 2e, centered about the QoS contour, provided that the dominant
circuit is in this band. The inclusion of several circuits in the dot product discourages the increase of their
average blocking probability. This, in turn, tends to discourage (although not necessarily prevent) violation
of the QoS constraint on these circuits.23 If a large value of £ is used, then most (or perhaps even all) of the
circuits are included. In this case, the trajectory tends to stay within the admissible region most of the time.
Although this approach has been shown to be useful in finding good solutions rapidly, it is ineffective in
finding the optimal solution. In some examples, the offered-load trajectory has approached the vicinity of
the optimal point, only to proceed past it to a solution of lower throughput because of the distortion associ-
ated with the dot-product term, which prevented the search from proceeding in the direction of increasing
throughput gradient.

A slight modification of the above produces:

{j QoS < P < QoS + £}, if QOS < P" < QoS + £

l0, otherwise

2 2
In the event of ties, an arbitrary rule can be used to choose one circuit as the dominant one.

2 3 The constraint-violation terms (i.e., the summation terms in the Augmented Lagrangian function of Eq. (19) and in the partial-

derivative expressions of Eqs. (21, 29, and 33)) become active when the QoS constraints are violated.
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This is the same as the preceding case, except that I contains only the circuits for which the QoS constraint

is violated. Thus, the "basic search" is used inside the admissible region, and the projection with several

circuits is used in the band of width located in the inadmissible region. This approach appears less likely

to result in movement away from the neighborhood of the optimal point, apparently because the distorting

effects of the dot product are not present when the search point is located in the admissible region.

A fixed number of circuits in 1:

I = {the J' circuits with the largest blocking probabilities 1,

where J' is a parameter that represents the number of circuits to be included in the projection. Rather than

use a fixed band to determine which circuits are to be included, this approach selects the J' circuits that have

the largest blocking probability, independently of the distribution of blocking probability values.

Projection based on several circuits, with I defined in terms of relative sizes of blocking probabilities:

Y-j Pi 2 Pin + V(Pma-Pin)1'
where

P = minP 2..,P}

and v E [0, 1].

This approach is similar to the previous one in that it does not depend on a fixed band. However, the

number of circuits to be included is not fixed, but instead depends on both the value of the parameter v and

the distribution of the blocking probabilities over the range from P. to P . For example, if v = 0.5, as manymm 1tsimax
as J -1 circuits (if the next-to-smallest blocking probability is greater than the average of P and max) or as
few as one circuit (if the next-to-largest blocking probability is less than the average of P . and P ) could be

included. As v is decreased, the number of circuits contained in Y tends to increase, e.g., if v = 0, then all

circuits are included.

This approach uses the projection even before the trajectory reaches the vicinity of the QoS constraint
contour, and I includes those circuits whose blocking probability is sufficiently close to P . Thus the

max

projection begins to guide the search at the earliest stages of the iterative process. Our experience has been

that use of this approach with v = 0.2 (which includes a relatively large number of circuits, but not those with

blocking probability very close to P.) often guides the search rapidly to a reasonably good solution. Once

this point is reached, the projection term can be turned off (i.e., set I = 0) for the final approach to the

optimal solution.2 4

7.2 Stepsize Rules

The choice of stepsize () damping rule is critical to the performance of the algorithm, as it is in most

iterative algorithms.' The two basic components of the stepsize rule are the initial stepsize and the decay

rule. The parameter 0 must be large enough at the beginning of the iteration to make significant progress

toward the region of the optimal solution. Typically, we have chosen the initial stepsize 00 on the basis of a

short pilot run in which the projection is not used. It is chosen so that, starting at X. = 0, the trajectory exits

the admissible region for the first time after about five to fifteen iterations. The same value of 00 is used

whether or not the projection is used in the actual search.

We have found that a first exit point of five iterations works well for large values of the QoS constraint,
e.g., 0.3. However, this approach appears to produce an excessively large initial stepsize for small values of

the QoS constraint, e.g., 0.001. Thus, in some of our examples for QoS = 0.001 we have used an initial value

of 0 that is half that produced by using the rule based on exiting the admissible region for the first time at the

fifth iteration. To explain the difference in behavior, consider the terms DS./DX in Eq. (21), which are usually

24 Alternatively, an intermediate phase can be introduced in which a larger value of v is used. Doing so may guide the search to a

point closer to the optimum, at which point the projection term would be turned off.
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significantly larger than the terms DS./aX., when j • i. These "diagonal" terms have a value close to 1 at the
low offered loads that are characteristic of low blocking probability. However, these terms are considerably
smaller at offered loads characteristic of significantly higher blocking probability (typical average values are
approximately 0.3 in many of our examples for QoS = 0.3). Thus the use of smaller stepsizes at low QoS
values compensates for the larger values of throughput gradient at the corresponding offered loads.

Equally important is the rate of decrease of 0. Too fast a decrease can cause premature convergence of
the algorithm, and hence failure to reach the optimal solution, whereas too slow a decrease can prevent
convergence within the desired time constraints.

The following guidelines are often used for choosing stepsize (k at iteration k) in iterative problems:

lim ok =0
k-4-o

and
k

lim X10
k-o=1

For example, 0k proportional to l/k satisfies these conditions. Thus, in an infinitely long search, it would be
appropriate to decrease the stepsize proportionately to l/k in the later stages of the search.25 However, since
we typically limit our search to 1000 iterations, it is necessary to make compromises in the design of stepsize
rules. Therefore, there is no guarantee that the true optimal solution will be found. Furthermore, since
unimodality of the constrained throughput function has not been proven (hence there may be local maxima),
there is no guarantee that any stepsize rule would produce the globally optimal solution. Nevertheless, the
various versions of our algorithm, which use several different stepsize rules, have performed well, as we
demonstrate later in this report.

Figure 7 shows the four stepsize rules used in the set of "core" runs. In each case, the total number of
iterations per run is 1000, and the stepsize is reduced to 0.001 of its original value at that point. The stepsize
rules divide the 1000 iterations into either two phases (Rule 1) or three phases; each such phase is character-
ized by a change in the value and/or rate of decrease of the stepsize. In addition, the projection rule may
change as the stepsize rule enters a new phase. The segments of the curves are either constant or exponen-
tially decaying (hence linear on the log scale shown here). A particular version of the algorithm is character-
ized by the joint specification of the stepsize rule and projection rule. In Section 7.4 we summarize the 18
versions of the algorithm that were used in the core runs.

The motivation behind the use of a constant stepsize during the early part of the iteration is that a large
stepsize is needed to approach the neighborhood of the optimal solution. Also, the use of a constant stepsize
permits us to isolate the effect of the terms )L/aX, on the trajectory of the offered loads, and thus to assess the
impact of particular projection rules and parameter values without having to address the impact of the con-
current decrease in stepsize (Eq. (20)). However, the disadvantage of this approach is that large oscillations
persist until the stepsize is reduced. A slowly decaying stepsize, which gradually decreases the level of
oscillation, was also considered for the first phase (Rule 3); this rule is based on the assumption that the
neighborhood of the optimal solution is reached rather quickly, suggesting that we may be able to increase
the speed of convergence by trying to home in on the optimal point relatively early in the search.

The motivation behind Rule 2, in which the stepsize is cut by 50% when phase 2 is entered, is based on
a comparison of "effective stepsizes" when the projection is used to when it is not. Since IDII < IIVSII, it may
be helpful to decrease the stepsize when the projection operation is turned off to compensate for the increase
in effective stepsize that would result if this is not done.26

25 1t is helpful to keep the stepsize at a relatively large value until the neighborhood of the optimal solution is reached. The rate of

decrease of l/k is often too rapid for small values of k.
26 0ur studies suggest that ID II tends to decrease as more circuits are included in the set X.

26
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Fig. 7 - Normalized stepsize as a function of iteration number

7.3 The Update Equation

Recall from Section 6.3 that the equation used to update the offered-load values is

aL(ky) = D + oxJJ 1(PJ(X) > Q ) aPj [d(Qj - Pj (A)) - yj ]
a =j 1 1P() Q1),]

In most of our production runs we have used the following parameter values:

c = 50 (used in Lagrange multiplier update, Eq. (24));

,y = 5 (initial value of Lagrange multipliers used in Eq. (24));

d = 50 (coefficient in penalty term of Eq. (35)).

ax = "kick-up" factor (initial value = 1; it is doubled whenever 10 consecutive iterations are inad-
missible, and halved whenever five consecutive iterations are admissible).

7.4 Summary of Algorithm Versions Used in the Core Runs

To test the effectiveness of our algorithm, and to determine which versions perform best, we have
extensively tested 18 versions of the algorithm on several network examples. Our basic test consisted of the
"core" runs, described in Section 8, in which each of these versions was tested for three distinct networks
and a variety of parameter values.

The different versions of the algorithm are based on the projection formulations discussed in Section
7.1 and the stepsize rules discussed in Section 7.2. The versions are identified by the notation X.Y, where
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X E {1, 2, 3, 4} specifies the stepsize rule defined in Fig. 7 andY E {O, 1, 2, 3, 4} specifies the projection
rule. Sometimes in our discussion, we consider several versions together in a group. For example, when we
refer to versions of type 1.Y, we mean versions that use Stepsize Rule 1 and any of the projection rules;
similarly, X.O refers to versions that use Projection Rule 0 and any of the stepsize rules.

In particular, the stepsize rules are specified as:

X = 1: Stepsize Rule 1 (Fig. 7(a));

X = 2: Stepsize Rule 2 (Fig. 7(b));

X = 3: Stepsize Rule 3 (Fig. 7(c));

X = 4: Stepsize Rule 4 (Fig. 7(d)).

The projection rules are specified as:

Y = 0: no projection used at any time during the iteration;

Y = 1: the projection based on only the dominant circuit is used throughout the entire iteration;

Y = 2: the projection with v = 0.2 is used during phase 1, and no projection is used during phases 2
and 3;

Y = 3: the projection with v = 0.8 is used during phase 1, and no projection is used during phases 2
and 3;

Y = 4: the projection with v = 0.2 is used during phase 1, v = 0.8 is used during phase 2, and no
projection is used during phase 3.

Thus the projection rules that have been tested cover a wide range that includes the use of no projection
(Y = 0), one circuit only (Y = 1), many circuits (Y = 2), few circuits (Y = 3), and switching from many
circuits initially to few (Y = 4). In all cases except Y = 1, the projection is not used during the final phase(s).
Of the 20 possible X.Y combinations, 18 versions of the algorithm (all except 1.3 and 1.4) were actually
tested (the latter is undefined because Stepsize Rule 1 has only two phases).

8. TESTING THE ALGORITHM: THE CORE RUNS

We have performed extensive testing of our algorithm on three networks, namely Network 1 of Fig. 3
and Networks 2 and 3 shown in Figs. 8 and 9. Network 2, like Network 1, supports 10 circuits, whereas
Network 3 supports eight. Our basic test consisted of the "core" runs, in which the 18 versions of the
algorithm described in Section 7.4 were tested for these three networks and a variety of parameter values.
The core runs are characterized by "uniform" parameter sets, as defined below. Results are presented for
blocking-probability QoS constraints of 0.001 and 0.3, thus illustrating performance evaluation over a wide
range of values of this parameter. In the core runs, all 18 versions of the algorithm provided nearly identical
throughput, although there were significant differences in the speed of convergence.' Additional (noncore)
examples are discussed in Section 9, where it is shown that some versions are more reliable than others in
terms of convergence to the optimal throughput.

8.1 Description of the Core Runs

The "core" runs consist of tests of the 18 versions of the algorithm on Networks 1, 2, and 3 for "uni-
form" network parameters. By uniform we mean that all nodes have the same number of transceivers (T1 =
... = TN), and all circuits have the same threshold (X1 = ... = X) on the permitted number of calls. In our
discussion of particular network examples, the shorthand notation "T = 6" means T = 6, i = 1, 2, ..., N (i.e.,
there are six transceivers at each node). Similarly, "X. = 4" means X. = 4,J = 1, 2, ... , J (i.e., there are at most
four calls on any circuit at any time). The subscript i normally refers to node number, and the subscript]
normally refers to circuit number.
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In addition, in the core runs all circuits must satisfy the same QoS constraint on blocking probability
(i.e., Q, = ... = Q,). Again, we use a shorthand notation; e.g., "Q. = 0.001" indicates that Q = 0.001,j = 1, 2,

J. We have performed core runs for Qj = 0.001 and 0.3. Furthermore, there are no restrictions on the
offered loads; thus, Xb = 0 (which means that the offered load values are not prevented from decreasing to
zero), and no bounds are placed on the maximum values of the offered loads. Finally, the same rule is used
to pick the initial stepsize value 00 in all of the core runs, namely that 00 is chosen so that the first inadmis-
sible solution is obtained at the fifth iteration for the case in which the projection is not used (see Section
7.2); the value of 00 is the same for all 18 versions of the algorithm for each network example (i.e., for a
specified network topology, set of circuits, number of transceivers, admission-control policy, and QoS value),
but different for different network examples.

Throughput Maximization under QoS Constraints
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We have also performed many noncore runs in which one or more of the following conditions apply: not
all nodes have the same number of transceivers, not all of the circuits have the same threshold, not all Qj
values are the same, X,, > 0 (which means that each circuit is guaranteed at least the specified offered load
value Xm)' and/or different rules are used to pick the initial stepsize 00. These cases are discussed in Sec-
tions 9, 11, and 12.

In the core runs, for all three networks we considered examples with T = 6, (i.e., six transceivers at each
node) and X. = 4 (i.e., at most four ongoing calls on any circuit).27 In addition, we also considered Network
1 with T. = 6 and X. = 3 and Network 3 with T. = 8 and X. = 6. In all cases, each of the 18 versions of the

IJ. I J
algorithm was run for 1000 iterations.

The versions have been evaluated based on their ability to find the optimal solution, as well as on their
speed. The results of these tests are summarized in three types of tables, which we refer to as "milestone"
tables, "stopping-rule" tables, and "offered-load" tables. Several examples of these tables are provided in
Sections 8.2 through 8.4; additional tables are provided in Appendix A. Milestone tables show the number
of iterations required to reach various levels of throughput performance (for a total of 1000 iterations in each
run); stopping-rule tables show the performance that is achieved when the runs are stopped when conver-
gence is obtained (for several values of the convergence parameter), rather than for a fixed number of itera-
tions; "offered-load" tables show the offered loads and normalized blocking probabilities produced by the
optimization algorithm. Before discussing the performance of the algorithm over a wide range of scenarios,
we discuss the interpretation of these tables using a particular example.

8.2 Milestone Tables

Table 3 provides (for each of the 18 versions of the algorithm) a summary of the important "milestones"
of each run for Network 1 with T = 6, X. = 4, and Q = 0.001. The initial values of the offered loads are zero
for all circuits. The "benchmark throughput" value (listed in the figure caption) is the highest value of
admissible throughput that was obtained for any of the 18 runs. Table 4 provides similar results for Q = 0.3;
milestone tables for additional core runs are provided in Appendix A. The columns in the table are summa-
rized as follows:

* algo: the version of the algorithm, in X.Y notation;

* adm thruput at first exit: the upper entry indicates the last iteration before the trajectory leaves the
admissible region for the first time; the lower entry shows the percentage of the benchmark
throughput value obtained at this iteration;

* best adm thruput: the iteration at which the highest admissible throughput is found, and the per-
centage of benchmark throughput obtained at this iteration;

* last adm thruput: the last iteration for which the solution is in the admissible region, and the
percentage of benchmark throughput obtained at this iteration;

* 95.0%: the first iteration at which the solution is admissible and equal to at least 95% of the
benchmark throughput value; 28

and similarly for the higher percentage values. 29

2 7 Had we set X, = 6, the resulting system would be an "uncontrolled" network, in which all calls would be accepted as long as
network resources (i.e., transceivers) are available to service them. For the case of QoS = 0.3, there is little difference in throughput;

however, it is more difficult to find the optimal solution. For the case of QoS = 0.001, there is a modest increase in throughput, with

somewhat increased difficulty of finding the optimal solution. The impact of the admission-control policy on achievable throughput
and robustness of the algorithms is discussed in Section 13.
2 8The throughput value (whether admissible or not) does not increase monotonically; thus the throughput can decrease to values less
than the milestone values, as in most iterative algorithms.
29Blanc entries (if any) indicate that the corresponding milestones were not achieved by that particular version of the algorithm.
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Table 3 - Milestone Table for Network 1 with T = 6, X. = 4, and Qj = 0.001
(benchmark throughput: 2.6645)

algo adr thruput best adm last adm 95.0% 98.0% 99.0% 99.5% 99.9%at first exit thruput thruput

1.0 4 986 1000 5 1 3 0 7
67.54% 9999% 51 517 633 707 775

.1 787.13% 976 999 470 569 576 675 778

12 13 993 9981.2 84.77% 99.98% 99.96% 52 570 640 701 821

2.0 67.54% 99 9 9 51 376 468 468 786

2.1 7 986 1000 145 390 461 591 75087.13% 99.99% 99.96%

2.2 13 993 1000 5 3 6 6 2
84.77% 99.99% 9 52 439 563 661 828

2.3 90.91% 986 1000 92 468 554 597 735

24 13 990 999 5 6 7 0 42.4 84.77% 10000% 99.98% 464 479 62 743

3.0 67.39% 856% 9.8 252 361 397 434 508

3.1 7 996 1000 135 368 378 414 534
86.73% 100.00% 99.98% 13363744 54

3.2 13 999 999 55 397 403 429 536
83.80% 99.97% 99.97% 5 9 0 2 3

3.3 9 941 1000 135 389 415 468 56690.24% 99.99% 9935 38 4596856

34 13 959 999 5 5 8 1 4
83.80% 99.99% 99.98% 55 353 389 411 548

40 4 985 9984.0 67.54% 99.99% 99.97 51 191 198 220 571

4.1 7956 1000131723 2358
87.13% 100.00% 99.98% 137 171 233 23 5 87

4.2 84.77% 1900.00% 99.98% 52 193 203 379 626

4.3 %10-0 9.8
4.3 90.91% 100.00% 999 92 208 219 391 648

4.4 13 892 999 52 174 194 288 647
84.77% 99.99% 99.98% 5 7 9 8 4

first column: version of algorithm in X.Y notation
upper entries (columns 2-9): iteration at which milestone is reached
lower entries (columns 2-4): percentage of benchmark throughput at this iteration
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Table 4-Milestone Table for Network 1 with Ti = 6, X. = 4, and Qj = 0.3
(benchmark throughput: 11.5380)

algo adr thruput best adm last adm 95.0% 98.0% 99.0% 99.5% 99.9%
at first exit thruput thruput

1.0 4 930 997 41 467 517 601 833
1. 84.29% 99.92% 99.91%

11 6 984 995 49 496 561 626 914
1.1 84.95% 99.90% 99.90%

31 973 9991. 1 9729 30 78 521 609 770
1. 96.05% 99.96% 99.96%

2.0 4 996 1000 41 186 495 583 864
2. 84.29% 99.91% 99.90%

2.1 6 981 1000 49 339 428 478 638
2.1 84.95% 100.00% 99.99%

31 997 1000
2.2 96.05% 99.93% 99.92% 30 78 419 544 833

2.3 7 980 1000 15 56 540
2.3 87.99% 99.28% 99.28%

2.4 31 942 999 30 78 189 477 657
2. 96.05% 100.00% 99.99%

3.0 4 953 998 45 239 347 386 449
._____ 84.22% 99.98% 99.98%

3.1 6 969 1000 36 302 342 386 434
3.1 84.81% 99.99% 99.99 3

3.2 30 970 998 30 82 345 391 679
. 95.94% 99.91% 99.91% 3

33 7 959 999 16 187 333 395 470
87.82% 100.00% 100.00%

3.4 95.94% 99.75% 1000 30 82 330 383

4.0 84.29% 99.472% 996 41 140 203 454

6 993 999
4.1 84.95% 99.05% 99.05% 49 151 474

4.2 31 929 999 30 78 175 221 564
4. 96.05% 99.94% 99.93%

4.3 7 991 999 15 56 823
87.99% 99.01 99.01%

4.4 31 951 1000 30 78 158 237 524
.______ 96.05% 99.94% 99.93% 31

We first consider Qj = 0.001, as shown in Table 3. Virtually identical throughput values were obtained for all
18 versions of the algorithm summarized in this table. In all cases, the throughput was at least 99.9% of the
benchmark value. For Qj = 0.3, shown in Table 4, all 18 versions provided at least 99% of the benchmark
throughput value, 15 versions provided at least 99.5%, and 13 versions provided at least 99.9%.

Such convergence to nearly optimal solutions is typical behavior over a wide variety of network sce-
narios. This is evident from the milestone tables for the nine other core runs, which are provided in Appen-
dix A. In fact, for nine of the 11 network examples in the core runs, all 18 versions of the algorithm were
able to provide at least 99.9% of the optimal throughput value. For 10 of the 11 network examples, all 18
versions were able to provide at least 99.5% of the optimal throughput value. In all 11 network examples, all
18 versions were able to provide at least 99% of the optimal throughput value.

32 Wieselthier, Nguyen, and Ephremides
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Several important observations, which also apply to the other core runs, can now be made. First, all 18
versions of the algorithm do, in fact, converge. This is evident from the fact that the throughput value at the
last admissible iteration is virtually identical to that at the best iteration.30 In some cases (e.g., Table 3) all
versions converge to virtually the same point, whereas in others (e.g., Table 4) there is greater variation
among the different versions. In Section 8.4 we compare the offered loads (and the resulting blocking
probabilities) obtained by the different versions of the algorithm. Although there is no guarantee that the
benchmark throughput is the true optimal solution, the fact that several versions of the algorithm converged
to nearly the same point (i.e., a virtually identical set of offered loads), by following different trajectories,
suggests that it is.

All of the milestone tables are based on runs of 1000 iterations in duration. The stepsize rules were
designed to achieve the maximum possible throughput in at most 1000 iterations, rather than the fastest
convergence to a "good" solution that provides 98% or 99% of the true optimal performance. Thus reliable
convergence to the best solution within 1000 iterations is the primary goal. Had the goal been to determine
the best possible throughput in a smaller number of iterations, different stepsize rules would have been used.
The four stepsize rules tend to be conservative 3 ' in the sense that the stepsize is kept at a relatively large value
long enough to ensure that the neighborhood of the optimal solution is approached. If the durations of the
phases are shortened (either in the same proportion or otherwise), it is expected that better solutions will
typically be found faster, although with an increased risk of convergence to a suboptimal solution.

The purpose of the "adm thruput at first exit" column is to indicate the percentage of the benchmark
throughput that is achieved prior to exiting the admissible region for the first time. This can be viewed as a
measure of how well the algorithm behaves in the early stages in the sense of the directness of the approach
to the optimal solution. Generally, versions of the algorithm that do not use the projection (i.e., X.0) exit the
admissible region sooner than the versions that do use the projection when the same stepsize is used. One
reason for this behavior is that, since IDII < IIVSII , the offered loads (and hence the resulting throughput)
typically change by a smaller amount at each iteration than for examples in which the projection is not
used.3 2 We refer to this effect as that of a smaller "effective stepsize" resulting from the use of the same value
of e. Another (related) reason is that, when the projection is not used, the trajectory is not affected by the
QoS constraint until the admissible region is exited for the first time. By contrast, Versions X.1, X.2, X.3,
and X.4, which do use the projection, are affected by the QoS constraint throughout the iterative search, and
therefore may turn away from the QoS contour before crossing it.

Moreover, in most cases, the percentage of the benchmark throughput that is achieved just prior to
exiting the admissible region for the first time is generally considerably higher for the versions that use the
projection with a large number of circuits. For example, when Q = 0.3, the X.2 and X.4 versions of the
algorithm provide about 96% of the benchmark throughput prior to exiting the admissible region for the first
time. By contrast, the X.1 and X.3 versions provide only about 85% to 88% of the benchmark throughput.
These versions are similar to each other in that they use one circuit (X.1) and a small number of circuits
(X.3) in the projection. It thus appears that the versions of the algorithm that use a large number of circuits
in the projection provide a more-direct ascent to an early "good" solution (in which the offered loads still
may be far from the optimal solution). The results for Qj = 0.001 shown in Table 3 are not as conclusive,
although it is clear that the X.0 versions provide the lowest percentage of benchmark throughput prior to the
first exit of the admissible region. Table A3 in Appendix A shows the results for the same case shown in
Table 3, except that the initial stepsize has been reduced by 50%. Table A3 demonstrates that use of Versions
X.2 and X.4 with the reduced stepsize for this problem consistently provides between 93% and 94% of the
benchmark throughput prior to exiting the admissible region for the first time, whereas the Versions X.0,

30 We noted in Section 7.1 that the use of the projection throughout the entire search often resulted in movement away from the
optimal point.
3 1"Conservative" is a relative term. For some problems (perhaps for problems with a larger number of circuits or a severely con-
strained search space), even the most conservative of these stepsize rules may be overly aggressive.
32 We have observed that IID II can be considerably smaller than IIVSII, especially when many circuits are included in the set .
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which do not use the projection, provide only about 78% of the benchmark throughput. The behavior of the
various versions of the algorithm prior to the first exit of the admissible region is discussed in greater detail
in Section 8.5. Explanations that suggest the reasons for the benefit of the use of a smaller stepsize for low
values of Q. are discussed in Section 8.5.

We now address the question of speed of convergence. It is of interest to see how fast the different
versions of the algorithm can produce "good" solutions. This is the purpose of the columns denoted by 95%,
98%, 99%, 99.5%, and 99.9% in the milestone tables. These columns indicate the iteration at which an
admissible solution with throughput equal to the corresponding percentage of the benchmark throughput is
obtained for the first time. Of course, it is impossible to know in real time when these milestones have been
reached because they are based on knowledge of the benchmark throughput value, which is not known until
the completion of the 1000 iterations for all 18 versions of the algorithm.

8.3 Stopping-Rule Tables

The milestone tables presented in Section 8.2 are based on running the different versions of the algo-
rithm for a fixed number of iterations, in this case 1000. However, in most applications, iterative algorithms
such as those developed in this report would be terminated when a suitable convergence criterion is satisfied.
The use of appropriate stopping rules can save considerable computational time if convergence is obtained
early; on the other hand, failure to converge indicates that additional iterations are needed.

We now consider the possibility of stopping the iteration when convergence has been achieved, instead
of using a fixed number of iterations. A complete specification of the algorithm must now also include the
particular stopping rule that is being used. The effectiveness of algorithms with particular stopping rules can
be evaluated in terms of speed (number of iterations until convergence is declared) and quality of the result-
ing solution (in our case, percentage of the benchmark throughput that is obtained when the algorithm is
stopped).

To evaluate the stopping rules, we did not perform additional runs; instead we examined data from the
runs with duration equal to 1000 iterations and determined the outcome that would have occurred had these
stopping rules been used. The convergence criterion used in our studies is

'Sk+ -Ski <, k = m,m + 1,...,m + 4 for some m, (36)
max{Sk,Sk+1}

i.e., that five consecutive throughput values (whether or not they are admissible) should not differ from the
previous throughput value by more than a specified fraction, which we denote by 6. Table 5 shows the effect
of using different stopping rules for the determination of convergence for the same example for which the
milestone table was just discussed, i.e., for T. = 6, X. = 4, and Qj = 0.001; Table 6 shows similar results for
Qj = 0.3. For example, three columns are headed by "max it = 300" and show the effect of stopping the run
when convergence to the specified tolerance (8 = 0.1, 0.01, or 0.001) has been achieved, or at iteration 300
if convergence to the specified tolerance is not achieved. Results are also shown for a maximum of 600 and
1000 iterations.

When the iterative search is stopped (either because the convergence criterion is satisfied, or because
the specified number of iterations has been reached), the solution to the problem is declared to be the set of
offered loads that has provided the highest admissible throughput thus far during the course of the run. The
best solution is not necessarily the offered load at the stopping point because of the nonmonotonic nature of
the algorithm. Specifically, consider the case of Version 1.2 in Table 5. The entry of 38 in the column
headed by max it = 300 and 0.1 indicates that convergence to within a tolerance of 6= 0.1 is obtained at
iteration number 38. The entry of 94.205 under the 38 indicates that use of this stopping criterion provides
94.205% of the benchmark throughput (2.6645), i.e., the best admissible throughput observed thus far (not
necessarily at this iteration-it may have occurred earlier) is 94.205% of the benchmark throughput. Simi-
larly the entries in the next column indicate that convergence to within 0.01 is not obtained during the first
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Table 5- Stopping-Rule Table for Network 1 with T = 6, X. = 4, and Qj = 0.001
(benchmark throughput: 2.6645)

max it = 300 max it = 600 max it = 1000
algo = 0.1 0.01 0.001 0.1 0.01 0.001 0.01 0.001 0.0001

1.0 300 300 300 462 591 600 591 852 1000
1.0 96.713 96.713 96.713 96.713 98.512 98.512 98.512 99.933 99.989

1.1 300 300 300 470 600 600 634 833 953
1.1 94.032 94.032 94.032 95.487 99.279 99.279 99.279 99.949 99.987

1.2 38 300 300 38 600 600 678 864 1000
94.205 95.293 95.293 94.205 98.346 98.346 99.217 99.924 99.981

148 300 300 148 600 600 605 803 1000
2.0 96.713 96.713 96.713 96.713 99.791 99.791 99.791 99.903 99.994

2.1 110 300 300 110 537 600 537 783 1000
2.1 93.636 96.739 96.739 93.636 99.366 99.551 99.366 99.973 99.991

2.2 38 300 300 38 600 600 600 698 1000
194.205 97.088 97.088 94.205 99.099 99.099 99.099 99.703 99.988

2.3 108 300 300 108 586 600 586 796 1000
2.3 95.083 95.215 95.215 95.083 99.370 99.508 99.370 99.938 99.988

2.4 38 300 300 38 521 600 521 840 1000
94.205 97.409 97.409 94.205 99.062 99.334 99.062 99.971 99.996

3.0 300 300 300 315 436 564 436 564 1000
96.295 96.295 96.295 96.295 99.789 99.920 99.789 99.920 99.987

3.1 191 300 300 191 390 576 390 576 1000
3.1 96.188 97.154 97.154 96.188 99.019 99.934 99.019 99.934 100.00

3.2 36 300 300 36 412 600 412 634 1000
90.756 97.543 97.543 90.756 99.088 99.942 99.088 99.942 99.973

3.3 92 300 300 92 454 600 454 686 1000
92.781 97.776 97.776 92.781 99.489 99.902 99.489 99.938 99.985

3.4 36 300 300 36 402 445 402 445 475
90.756 97.543 97.543 90.756 99.251 99.808 99.251 99.808 99.835

147 300 300 147 343 511 343 511 1000
4.0 96.713 99.541 99.541 96.713 99.712 99.848 99.712 99.848 99.992

4.1 132 292 300 132 292 600 292 690 1000
4.1 93.636 99.742 99.742 93.636 99.742 99.922 99.742 99.964 99.998

4.2 38 240 300 38 240 600 240 604 100094.205 99.200 99.358 94.205 99.200 99.884 99.200 99.884 99.996

135 283 300 135 283 600 283 636 1000
4.3 95.083 99.102 99.374 95.083 99.102 99.871 99.102 99.871 100.00

38 260 300 38 260 600 260 719 1000
4.4 94.205 99.481 99.565 94.205 99.481 99.886 99.481 99.926 99.993

max it = maximum number of iterations (= 300, 600, or 1000)

5 = tolerance level used in stopping rule (= 0.1, 0.01, 0.001, or 0.0001)
upper entries: point at which iteration is stopped (either because convergence criterion is satisfied, or

because maximum number of iterations has been reached)
lower entries: percentage of benchmark throughput at stopping point

Throughput Maximization under QoS Constraints
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Table 6- Stopping-Rule Table for Network 1 with T = 6, X. = 4, and Qj = 0.3
(benchmark throughput: 11.5380)

max it = 300 max it = 600 max it = 1000
algo 5 = 0.1 0.01 0.001 0.1 0.01 0.001 0.01 0.001 0.0001

1.0 14 300 300 14 551 600 551 737 937
.______ 90.155 96.349 96.349 90.155 99.142 99.497 99.142 99.830 99.916

1.1 10 300 300 10 517 600 517 724 922
92.348 96.223 96.223 92.348 98.665 99.492 98.665 99.790 99.901

1.2 13 29 300 13 29 600 29 738 907
.______ 79.572 94.112 98.088 79.572 94.112 99.363 94.112 99.868 99.943

2.0 14 300 300 14 462 600 462 699 940
2.0 90.155 98.468 98.468 90.155 98.869 99.584 98.869 99.807 99.910

2.1 10 300 300 10 355 600 355 641 880
2.1 92.348 97.768 97.768 92.348 98.283 99.869 98.283 99.905 99.992

2.2 13 29 300 13 29 600 29 674 933
79.572 94.112 98.088 79.572 94.112 99.685 94.112 99.822 99.932

2.3 10 132 300 10 132 559 132 559 744
87.987 98.263 98.263 87.987 98.263 99.101 98.263 99.101 99.262

2.4 13 29 300 13 29 600 29 622 917
2.4____ 79.572 94.112 99.181 79.572 94.112 99.815 94.112 99.839 99.990

12 300 300 12 330 467 330 467 773
3.0 89.292 98.350 98.350 89.292 98.402 99.916 98.402 99.916 99.980

3.1 10 300 300 10 338 458 338 458 767
92.220 97.786 97.786 92.220 98.842 99.902 98.842 99.902 99.989

3.2 13 81 293 13 81 293 81 293 823
.2 79.197 97.707 98.762 79.197 97.707 98.762 97.707 98.762 99.906

3.3 10 16 300 10 16 408 16 408 840
87.817 95.586 98.509 87.817 95.586 99.768 95.586 99.768 99.993

34 13 81 293 13 81 293 81 293 499
3_._ 7_ 9 79.197 97.707 98.762 79. 197 97.707 98.762 97.707 98.762 99.659

4.0 14 183 300 14 183 384 183 384 781
4.0____ 90.155 98.799 99.216 90.155 98.799 99.374 98.799 99.374 99.694

4.1 10 152 300 10 152 387 152 387 781
92.348 98.003 98.85 1 92.348 98.003 98.953 98.003 98.953 99.048

4.2 13 29 300 13 29 402 29 402 793
79.572 94.112 99.690 79.572 94.112 99.815 94.112 99.815 99.931

10 129 242 10 129 242 129 242 640
4.3 87.987 98.263 98.809 87.987 98.263 98.809 98.263 98.809 98.988

4.4 13 29 215 13 29 215 29 215 877
.______ 79.572 94.112 99.380 79.572 94.112 99.380 94.112 99.380 99.932

300 iterations, and that the best solution in the first 300 iterations provides 95.293% of the benchmark
throughput. The criterion of = 0.01 is not satisfied until iteration 678, at which point 99.217% of the
benchmark throughput is obtained. The criterion of 3 = 0.001 is satisfied at iteration 864, where 99.924% of
the benchmark throughput is obtained.

There is no way to know a priori the quality of the solution that will be determined by a particular level
of convergence. For the network example of Table 5, when comparing all 18 versions of the algorithm, we
see that a convergence criterion of 3 = 0.1 (see the column for 600 iterations) provides a solution with
throughput that is somewhere between 90.7% and 96.7% of the benchmark value. A criterion of 6 = 0.01
(see the column for 1000 iterations) provides a solution between 98.5% and 99.8% of the benchmark value.
Finally, a convergence criterion of = 0.001 (see the column for 1000 iterations) provides a solution that is
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better than 99.7% of the benchmark value in all cases. These numbers vary significantly for the different
network examples we have considered.

Let us now consider Table 6, the stopping-rule table for the same example as that of Table 5, but with
Qj = 0.3. In this example, a convergence criterion of - 0.01 (in the column for 600 iterations) provides only
94.1% of the benchmark throughput for five versions of the algorithm (i.e., 1.2, 2.2, 2.4, 4.2, and 4.4) and
95.6% for one version (3.3); all other versions provide at least 97.7%. A common feature of the six versions
that provided less than 96% of the benchmark throughput is that the convergence criterion was satisfied very
early in the search. For example, the five versions that reached only 94.1% at convergence, actually con-
verged (at iteration 29) prior to the first exit from the admissible region. Version 3.3 (which had already
exited the admissible region) converged at iteration 16. This overly rapid convergence has suggested that we
modify the stopping rule so that the test for convergence is not performed before the 50th iteration. This
additional requirement, coupled with the convergence criterion of 3 = 0.01, produces solutions that provide
at least 97.3% of the benchmark throughput for this network example.

Several factors affect the rate of convergence. For example, small stepsizes result in small changes in
the offered load (and hence throughput). Thus a rule that reduces stepsize rapidly would result in rapid
satisfaction of the convergence condition, although not necessarily convergence to the optimal point. Also,
we have observed that use of the projection operation with a large number of circuits tends to result in a
smoother trajectory (not only a more-direct path, but also a smaller "effective stepsize" for a given 0 than the
use of no projection), and thus the increased possibility of declaring convergence prematurely. In particular,
premature convergence was observed for Versions 1.2, 2.2, 2.4, 4.2, and 4.4 (all of which are identical during
the first 100 iterations) in the example of Table 6. The additional requirement of at least a minimum speci-
fied number of iterations appears to be helpful here, as discussed in the previous paragraph.

8.4 Comparison of the Solutions Produced by the Different Versions of the Algorithm

Our primary conclusion, obtained by examining the data in the tables presented earlier in this section
and in Appendix A, is that almost all versions of the algorithm perform well, based on the criterion of
providing optimal (or nearly optimal) throughput within 1000 iterations. In this subsection we compare the
solutions that we have obtained by using the 18 different versions of the algorithm. Although we limit our
discussion to six particular network examples (Networks 1, 2, and 3, with two Q. = 0.001 and 0.3 for each),
the qualitative observations made here apply to the other core runs as well.

One characteristic property of the optimal solution in constrained optimization problems such as ours is
that at least one of the circuit blocking probabilities must be at the maximum permissible value of Qj. To
measure how close the individual circuits approach this value, we introduce the normalized circuit blocking
probabilities

P.= PQ, = 1, ..., J.
J J J

Thus P. = 1 when P. = Qj.33
J J J

Table 7, which we refer to as an "offered-load" table, summarizes the solutions obtained for Networks
1, 2, and 3 with T. = 6, X. = 4, and Qj = 0.001 and 0.3.34 For each of these six cases, two solutions are listed,

£ J

namely the "best" (highest admissible throughput) and "worst" (lowest admissible throughput) solutions
obtained among the 18 versions of the algorithm. (For Network 1 with Q = 0.3, we also include a third
solution, for reasons discussed below.) The entries shown are the offered load values ('s), the correspond-
ing normalized circuit blocking probabilities (P 's), and the throughput (S) at the best point obtained for
each run. The 10 columns, with double entries in each cell, show the offered loads and normalized circuit
blocking probabilities. For example, consider the top row, which shows the best solution obtained for

33In most examples in this report, we consider the case for which Q = QoS, j = 1, ... J, i.e., the QoS constraint is the same for all
circuits; however, in Section 9.3 we study examples for which the circuits are divided into two groups with significantly different
QoS values.
34 0ffered-load tables for the other core runs are provided in Appendix A.
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Table 7- Offered-Load Table for Networks 1, 2, and 3 with T = 6, X. = 4;
"Best" and "Worst" Results Shown for Qj = 0.001 and 0.3

AI X3 4 56 78 9 10S
P1 P 2 P 3 P 4 P5 P6 P7 P 8 PA9 P 10

Network 1; Qj = 0.001

best 0.2546 0.3262 0.3095 0.2353 0.3417 0.1512 0.3949 0.0123 0.3399 0.3016 2.6645
1.0000 1.0000 1.0000 0.9990 1.0000 0.9780 1.0000 0.9140 1.0000 1.0000

t 0.2553 0.3224 0.3094 0.2359 0.3444 0.1444 0.3960 0.0254 0.3359 0.2974 2.6638
worst 0.9980 0.9990 0.9990 0.9980 0.9990 0.9570 1.0000 0.9380 1.0000 0.9990 99.97%

Network 1; Qj = 0.3

best 3.3160 3.5230 1.9599 0.0009 2.0194 0.0008 3.3179 0.0005 1.9675 0.0036 11.5380
be 0.9997 0.9999 0.8975 0.8862 0.7656 0.9999 1.0000 1.0000 0.9011 0.7542

4th 3.1770 3.2602 1.8929 0.1036 2.0215 0.0001 3.3605 0.0001 1.7802 0.3478 11.5057
worst 0.9648 0.9749 0.9105 0.8509 0.7819 0.9999 0.9999 1.0000 0.8551 0.7919 99.72%

2.0459 2.0080 2.4057 0.4387 2.5897 0.0004 2.9367 0.0003 2.4056 0.9052 11.4239
worst 0.8016 0.8136 0.9998 0.7946 0.8666 0.9998 0.9997 0.9999 0.9998 0.8405 99.01%

Network 2; Qj =0.001

es 010.2326 0.3724 0.3129 03571 0.2460 0.2819 0.2941 0.3546 0.3856 0.2357 3.0700
bet 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000____

t 0.2323 0.3723 0.3129 0.3570 0.2458 0.2818 0.2942 0.3548 0.3856 0.2355 3.0693
worst 0.9970 0.9990 0.9990 0.9980 0.9970 0.9970 0.9990 1.0000 11.0000 1 0.9970 99.98%

Network 2; Qj = 0.3

10.0002 3.2507 1.1397 2.0615 2.3653 1.3159 1.2968 2.5453 3.4367 1.7296 13.4129
best l I 0.9999 0.9999 0.9999 1.0000 0.9819 1.0000 0.9999 0.9999 0.9999 0.9989 

worst |0.0298 3.2340 1.1582 2.0825 2.3093 1.3500 1.2961 2.5239 3.4291 1.7127 13.4050
worst 0.9998 11.0000 10.9998 10.9999 0.9761 11.0000 10.9997 0.9999 10.9999 10.9998 199.94%

Network 3; Q; = 0.001

best | 0.2481 0.2529 0.2852 0.3242 0.2808 0.2777 0.3122 0.2646 2.2436
0.9990 1.0000 1.0000 1.0000 1.0000 11.0000 1.0000 1.0000 _ _ _

t 0.2479 0.2527 0.2851 0.3243 0.2809 f0.2778 0.3123 0.2646 2.2434

worst 0.9980 10.9990 11.0000 11.0000 11.0000 11.0000 11.0000 10.9990 I 1 199.99%

Network 3; Qj = 0.3

11.1174 1.2697 1.5078 2.2527 1.6666 1.7254 2.1911 1.7158 9.4128
best |ooo1.0000 0.9998 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999 

11.1127 1.2428 1.5010 2.2480 1.6754 1.7293 2.2056 1.7274 9.4116
worst 0.9998 1 0.9959 1.0000 | 0.9999 1 0.9997 1 0.9999 1.0000 0.9999 _ _ 1 99.99%

best: offered load that provides highest admissible throughput among 18 versions of algorithm

worst: offered load that provides lowest admissible throughput among 18 versions of algorithm

upper entries:

lower entries: P (normalized blocking probability)
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Network 1 with Q. = 0.001. The cell in the {X, P1 } column, with entries 0.2546 and 1.0000, indicates that
A = 0. 2546 and P =1.0000 at the best result for that run. The column at the far right shows the throughput
achieved for that run, which is the same as the benchmark throughput in Table 3. The second row contains
the offered loads and normalized blocking probabilities at the best point in the worst run for Network 1 with
Qj = 0.001. The lower entry in the far-right column of 99.97% indicates that the worst version of the
algorithm provides 99.97% of the best (benchmark) throughput.

With the exception of Network 1 with Qj = 0.3, there is little difference in the offered loads found by the
different versions of the algorithm. First, let us consider Network 1 with Qj = 0.001. In the best solution,
eight of the circuits have normalized blocking probabilities of at least 0.9990; on the two remaining circuits,
we have P6 = 0.9780 and P = 0.9140. In the worst solution, eight of the circuits have normalized blocking
probabilities of at least 0.9980; on the two remaining circuits, we have P6 = 0.9570 and P8 = 0.9380.35 The
fact that all of the circuit blocking probabilities are close to the maximum permitted value suggests strongly
(although does not prove) that our solution is, indeed, close to the true optimal point. Furthermore, the fact
that the solutions produced by the 18 versions of the algorithm are very similar to each other, despite the fact
that the 18 versions produced very different trajectories, offers further support for this conclusion.

For Qj = 0.3 there is a considerably wider variation in the solutions, both in terms of the offered loads
(and the resulting normalized blocking probabilities) and in the throughput. For this case we also include
results for the solution provided by the fourth worst version of the algorithm (which provides 99.72% of the
benchmark throughput); the solutions produced by the 14 best-performing versions for this example are
similar to each other. Typically, the normalized blocking probability is 0.999 or greater on at most five of the
10 circuits (although not always on the same set of five circuits); on the other circuits it is significantly lower
than the maximum permitted QoS value (as low as 0.7542). This behavior is in marked contrast to that for
Qj = 0.001, in which all circuits were close to the maximum permitted QoS value.

The fact that not all blocking probabilities are near the specified QoS level when Qj = 0.3 is not surpris-
ing. It is not a failure of the algorithm, but rather reflects the fact that the level of interaction among the
circuits increases as offered load increases. Thus, a set of offered-load values does not exist for which all
blocking probabilities are at the maximum permitted QoS value when that value is relatively high (e.g., 0.3).
Note that the best solution for this example includes two normalized blocking probability values that are
lower than any of the values in the worst'and fourth worst solutions. Thus, we see that in examples where a
solution does not exist for which the QoS value is reached on all circuits, the best solution may include some
relatively extreme (i.e., small) values of normalized circuit blocking probability.

Although there is certainly interaction among the circuits at offered loads characteristic of blocking
probabilities of the order of 0.001, the level of interaction increases as the offered loads are increased. In
particular, the values of the partial derivatives (P./DXk) used in the update equations increase as offered load
increases.

The optimal solutions for Networks 2 and 3 are quite different from that of Network 1 in the sense that
all of the blocking probabilities are extremely close to the QoS constraint value, even when Q. = 0.3. In all
cases, the solutions produced by all versions of the algorithm (i.e., the offered load values) were virtually
identical. For Network 2 with Qj = 0.3, in the benchmark solution the lowest value of normalized blocking
probability is P5 = 0.9819; all of the others are 0.9989 or greater. In the worst case, the lowest value of the
normalized blocking probability is P = 0.9761; all of the others are 0.9997 or greater. Similarly, for Net-
work 3 with Q. = 0.3, in the benchmark solution the lowest value of normalized blocking probability is
P2 = 0.9998. In the worst case, the lowest value of the normalized blocking probability is P2 = 0.9959.

On the basis of these observations, it appears that whenever the optimal solution lies very close to the
QoS contour in all dimensions, there is very little difference in the quality of the solutions produced by the
various versions of the algorithm. Also, it appears that our algorithm is more robust in such cases. Often,

35 The solutions produced by the other 16 versions of the algorithm were similar to the two shown here.
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fewer iterations are needed, and more-aggressive stepsize rules (resulting in faster achievement of mile-
stones) are usually successful. Furthermore, we believe that one can have more confidence in the quality of
the solution if the blocking probabilities are all close to the QoS constraint value. 6 However, it is difficult to
assess, before running the optimization algorithm, whether or not the optimal solution for a particular prob-
lem has this property. For example, in Section 13 we consider an example in which Network 1 operates in
an "uncontrolled" manner, i.e., calls are admitted as long as transceivers are available at all nodes along the
path (in particular, X. = T. = 6). In this case, even when Q. = 0.001, there is no solution for which all of the
circuit blocking probabilities are close to the QoS constraint contour, and there is significant variation among
the solutions produced by the various versions of the algorithm.

8.5 Search Trajectory

To better understand the effects of stepsize and the projection operation on the optimization algorithm,
we have studied the evolution of the offered load vector and admissible throughput under the 18 versions of
the algorithm. In this subsection we again look at Network 1 with T = 6, X. = 4, and two values of , namely
0.001 and 0.3. We examine several versions of the algorithm in detail and plot the evolution of admissible
throughput and offered load (i.e., the values of the X's) throughout the iterative process. The understanding
developed here is expected to facilitate the choice of the appropriate version of the algorithm, as well as
specific parameter values for specific network applications.

In all cases, the initial value of the offered load is X. = 0, j = 1, ..., 10. In most cases, the initial stepsize
00 is chosen so that the trajectory leaves the admissible region for the first time at iteration 5 when the
projection is not used (see Section 7.2); exceptions are noted as appropriate. In particular, for Network 1
with T. = 6 and X. = 4, when Qj = 0.001 we use 00 = 0.06, and when Qj = 0.3 we use e0 = 0.5. Other parameter
values are c = d= 50 andy(l) = 5.

Version 1.0

Figure 10 shows the evolution of the admissible throughput and offered load for Version 1.0 for Q=
0.001. (Note that although throughput values are plotted only for admissible solutions, the offered loads are
plotted at all iterations.) Milestone points (e.g., the first iteration at which an admissible solution that pro-
vides 95% of the benchmark throughput is obtained) are indicated. The first 100 iterations are rather cha-
otic, with large variations in the offered loads (the Xs's, which are denoted as "arrival rates" in the graph) and
admissible throughput. Although the 95% milestone is reached at iteration 51 (which is relatively early in
the iteration), this level of performance is not maintained. Between iteration 100 and 400, the admissible
throughput is approximately 75% of the benchmark value. For much of this period, it alternates between
two values.37 Also, during much of this period, each of the offered loads alternates among four distinct, and
widely separated, values. No further progress is made toward a better solution until the stepsize is decreased
significantly. Ultimately, a point that provides more than 99.9% of the benchmark throughput is, in fact,
reached; little variation in the offered load values is seen after this point.

Figure 11 shows the trajectories for Version 1.0 with Qj = 0.3. Like the case for Qj = 0.001, the 95%
milestone is met early (at iteration 41), but (again as for Qj = 0.001) the later milestones are not met until the
stepsize is reduced. Although the offered loads and admissible throughput do not alternate among several
levels as they did for Qj = 0.001, little progress is made until the stepsize is reduced significantly.

On the basis of these observations, it is clear that Version 1.0 is overly conservative for these network
examples. Tables 3 and 4 show that most of the milestones are achieved relatively late for Versions 1 Y, i.e.,
for all versions of the algorithm that use Stepsize Rule 1. Similarly, the milestone tables in Appendix A
indicate that that this observation applies to our other network examples as well.

36
In some cases (particularly when several of the blocking probabilities are far from the QoS boundary), the network designer/

manager might want to run several versions of the algorithm to be sure that the true optimal solution has been found.
37The throughput actually alternates among four distinct levels, two of which are admissible and two are not; the inadmissible
throughput values are 2.52 and 2.58.
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Fig. 11 - Evolution of admissible throughput, offered load, and normalized
stepsize for Network 1 with T = 6, X. = 4, and Qj = 0.3: Version 1.0

Version 2.0

Stepsize Rule 2 is less conservative than Rule 1. The stepsize is cut in half at iteration 100, and the
exponential descent begins at iteration 300, rather than 400. Figures 12 and 13 show the trajectories for
Version 2.0 for Q values of 0.001 and 0.3, respectively.38 The trajectory during the first 100 iterations is
identical to that of Version 1.0. As a result of the use of a smaller stepsize after this point, the amount of
oscillation in admissible throughput and offered load values is considerably smaller than that which was
observed for Version 1.0. For example, for Qj = 0.001 the offered loads and throughput no longer alternate
periodically among a small set of distinct values. Also, most of the milestones are obtained earlier than in
the case of Version 1.0.

38In Fig. 12 no milestone is shown for 99% because the 99.5% milestone was reached at the same time. Similar behavior is observed
in several of the examples presented in this report.
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Version 3.0

The three phases of Stepsize Rule 3 are all characterized by an exponential decrease in stepsize. Al-
though the normalized stepsize value is 0.5 for both Rules 2 and 3 at iteration 300, the decrease between
iterations 300 and 500 is much faster for Rule 3 (see Fig. 7 for details). Figures 14 and 15 show the trajec-
tories for Version 3.0 for Qj = 0.001 and 0.3, respectively. The rapid decrease during the second phase
apparently results in faster attainment of the higher milestone values and faster convergence to the final
values of offered load.

Version 4.0

Stepsize Rule 4 is the most aggressive, in the sense that the rapid decrease in stepsize begins at iteration
100. Figures 16 and 17 show the trajectories for Version 4.0, for Qj = 0.001 and 0.3, respectively. These
figures show that the offered loads reach the neighborhood of their final values quite rapidly. However,
failure to reach the 99.9% milestone when Qj = 0.3 suggests that the rapid decline in stepsize may have been
too extreme in this case.

Versions that Use the Projection

The versions of the optimization algorithm discussed in the previous subsections did not use the projec-
tion formulation. In this subsection we discuss the performance obtained through the use of the four projec-
tion rules in conjunction with Stepsize Rule 4 (shown in Fig. 17). For these examples, we consider only the
admissible throughput, because the behavior of the offered loads does not provide further insight beyond
that already discussed for the cases without the projection operation.

Figure 18 shows the admissible throughput for Q = 0.001 for Versions 4.1, 4.2, 4.3, and 4.4, and for an
initial stepsize value of 00 = 0.06 (which was determined based on Version 4.0's leaving the admissible
region at iteration 5). Figure 19 shows similar results for 00 = 0.03 (half of that value). Use of the smaller
initial stepsize permits a smoother ascent to relatively high throughput values, and results in considerably
less oscillation about the optimal point (see Section 7.2). Furthermore, in this example most of the mile-
stones are achieved faster when the smaller value of 00 is used. All four 4.Y versions of the algorithm
provide comparable performance in the example of Fig. 18, in terms of both the throughput value obtained
and the speed with which the milestones are reached. However, based on the plots in Fig. 19, Versions 4.2
and 4.4 are somewhat better behaved in that the magnitude of the oscillation of admissible throughput is less
for these versions than for Versions 4.1 and 4.3.

Figure 20 shows admissible throughput for Qj = 0.3. The differences among the 4.Y versions are
more apparent for this example. Most evident is the fact that Versions 4.1 and 4.3 do not reach the 99.5%
milestone. Some insight into the behavior of these versions can be obtained by examining their basic char-
acteristics.

Version 4.1 uses the projection operation with only the dominant circuit throughout the entire search.
During the first 100 iterations, large swings in admissible throughput are observed, and little progress is
made. This behavior can be attributed, at least in part, to the fact that the identity of the dominant circuit
changes frequently throughout the search. In addition, we have observed that the effective stepsize for
Versions X. 1 (i.e., only a single circuit is used in the projection) is comparable to that of Versions X.0 (i.e.,
versions of the algorithm that do not use the projection).

The behavior of Version 4.3, which includes only a few circuits in the projection operation (because
v = 0.8) during phase 1, is similar to that of Version 4.1. When the projection operation is turned off at
iteration 100, the stepsize is decreased too rapidly for the trajectory to move to the optimal point in this
example.
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Versions 4.2 and 4.4 reach the milestones relatively rapidly. The evolution of admissible throughput
shows that these two versions are characterized by nearly monotonically increasing throughput until the
admissible region is exited for the first time. In fact, at the last admissible throughput prior to leaving the
admissible throughput for the first time, the throughput reaches 96.05% of the benchmark value for these
two versions for Qj = 0.3 (see Table 4). When Qj = 0.001 and the smaller initial stepsize is used, these two
versions provide 93.21% of the benchmark value prior to the first exit (Fig. 19); however, only 84.77% of
the benchmark throughput is obtained prior to the first exit when the larger initial stepsize is used (Fig. 18
and Table 3).

8.6 Observations Based on Core Runs

Based on the core runs discussed in this section, as well as those summarized in Appendix A, we are
able to make a number of observations on both the sensitivity of the throughput to offered load and on the
performance of the various versions of the algorithm that are designed to find that load.

Properties of the Solution

We have observed that throughput, when the blocking probability on each circuit is constrained to the
QoS value, is a relatively flat function of the offered load in the region of the optimal solution. Thus, rather
large deviations in several of the X values may be observed as the throughput increases from the 95% to the
98% and higher milestone values.

We noted in Section 6 that, at the optimal solution to our problem, at least one of the circuit blocking
probabilities is at the maximum permitted QoS value. We have examined the best solutions found for
several network examples to see how close the circuit blocking probabilities (the PR's) are to the specified
QoS value. Although there is not necessarily a correlation between the circuit blocking probabilities and the
quality of the solution (the best admissible throughput value), we feel that some insight can be obtained by
studying this property.

For Network 1 with Ti = 6 and X. = 4, there is significant difference in the behavior of the normalized
circuit blocking probabilities between the cases of low and high values of the QoS constraint. For low
values of Qj (e.g., 0.001), most of the circuit blocking probabilities are very close to the specified QoS value.
However, for high values of Qj (e.g., 0.3), several (in our example, about half) of the P.'s are significantly
lower than the QoS value. For this problem a set of offered load values does not exist for which all blocking
probabilities are at the maximum permissible value. This is not a failure of the algorithm, but rather is a
property of the particular network example. In Section 8.4 we attributed this behavior to the increased
interaction among the circuits at higher values of offered load. Nevertheless, we demonstrate in Section 13
that the requirement of a low value of Qj does not ensure the existence of a solution in which all blocking
probabilities are close to the QoS constraint value.

The behavior of our algorithm was more robust for examples involving Networks 2 and 3 than those for
Network 1, based on the criterion of consistency of solutions produced by the various versions of the algo-
rithm (i.e., all versions converge to essentially the same point) and speed with which the milestones were
reached. Networks 2 and 3 were different from Network 1 based on another criterion as well, namely that
for Networks 2 and 3, all of the P's were very close to the QoS value for both values of the QoS constraint.

We hypothesize that our algorithm is more robust (i.e., all versions are able to reach the optimal point)
when the condition of all blocking probabilities in the optimal solution being close to the specified QoS
value is satisfied. Since the blocking probability on all circuits can approach the QoS value simultaneously,
there appears to be less conflict among the circuits, and hence an easier ascent to the optimal point. In such
cases, aggressive stepsize rules are capable of reaching the optimal solution rapidly. However, we have not
discovered a method to determine a priori whether or not this condition will be satisfied.
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Properties of the Algorithm

Based on the examples discussed in this section as well as those summarized in Appendix A, one of our
principal conclusions is that all versions perform well in the sense of providing nearly optimal throughput.
However, there are some differences in performance, both in terms of the speed of achieving "good" (al-
though not necessarily optimal) solutions and in terms of reaching the optimal point.

The difference in the ultimate performance of the different versions of the algorithm (i.e., the best
solution they find in a run of 1000 iterations) has been very small in most of the core runs. For example, we
remarked in Section 8.2 that for nine of the 11 network examples (which represent three distinct networks,
i.e., Networks 1, 2, and 3) in the core runs, all 18 versions of the algorithm were able to provide at least
99.9% of the optimal throughput value. For 10 of the 11 network examples, all 18 versions were able to
provide at least 99.5% of the optimal throughput value. In all 11 network examples, all 18 versions were
able to provide at least 99% of the optimal throughput value. Although we later discuss some examples in
which some versions of the algorithm provided somewhat less than 98% of the benchmark throughput
values, our basic conclusion remains valid, namely that all versions perform well when performed for a
limited number of iterations (1000 in most of our examples).

We discovered in our early studies that the use of the projection operation often prevents convergence to
the optimal solution, especially when a relatively large number of circuits are included in the projection, as
is discussed in Section 7.1. The only versions of the algorithm studied in the core runs that use the projection
operation throughout the entire iteration are the X.1 versions, which use only the dominant circuit in the
projection. In the X.2 and X.3 versions, the projection term is turned off (i.e., set X = 0) at the beginning of
phase 2, and in the X.4 versions it is turned off at the beginning of phase 3. We may view the use of the
projection term in the first phase(s) as the determination of an "initial condition" for the "undistorted"
version of the algorithm (i.e., the version without the projection term). Thus, as long as the trajectory is
brought sufficiently close to the neighborhood of the optimal solution in the early phase(s), the undistorted
version of the algorithm should bring the solution close to the optimal point before the end of the allotted
1000 iterations.

Even for network examples in which all versions converge to nearly the same point, the use of the
projection operation can have a profound impact on the behavior of the algorithm. For example, when a
large number of circuits are included in the projection set E (e.g., by using a relatively small value of v such
as 0.2, as in Versions X.2), a relatively smooth (although perhaps somewhat slow) trajectory is observed in
which the throughput increases monotonically to a large percentage of the benchmark throughput value
before exiting the admissible region for the first time. By contrast, when the projection operation is not
used, the trajectory is much rougher, with considerably larger deviations in offered load and throughput
from one iteration to the next. Although it is indeed possible to achieve some of the high milestone values
relatively early in the run when the projection is not used, it may be a matter of "luck" as to whether or not
such points are indeed found early. Even if they are found, the trajectory will often move far from these
points because of the large stepsize.

Among the stepsize rules we have used, Rule 4 is the most aggressive, thereby providing the possibility
of rapid convergence but with greater risk of not reaching the optimal point than the more-conservative
stepsize rules. In the core runs discussed in this section and in Appendix A, it appears that the smoothing
effect of the projection operation with v= 0.2 permits the effective use of such an aggressive stepsize rule.
However, in Section 13 we provide examples in which the use of more-conservative stepsize rules provides
higher admissible throughput values.

9. FURTHER TESTING OF THE ALGORITHM

In addition to the core runs of Section 8, we have extensively tested our algorithm to address a number
of interesting cases. In particular, we study the impact of nonzero values of Xmin a nonuniform number of
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transceivers at the network's nodes, and nonuniform QoS constraints. We are interested in not only the
throughput that is achievable in such cases, but also in the ability of our algorithm to handle such cases.

9.1 Nonzero Values of .

It is evident from the results presented in Section 8 that the values of offered load at the optimal solution
are often quite different from one circuit to another. In some cases, some of them are close to zero, while
others are significantly higher than the average value. This high variance among the offered loads suggests
that it may be advisable, in some cases, to impose a "fairness" mechanism that guarantees that each circuit
is permitted at least a nominal offered-load value, even if doing so would decrease the total throughput.

We now address the impact of guaranteed offered-load levels on the performance of our algorithm, and
show that when Xm is relatively large, the iteration is more likely to converge to a suboptimal solution than
when Xmi = 0. In Section 12 we address the impact of fairness considerations on the achievable throughput.

Recall that the offered-load values are updated as follows (see Eq. (20)):

X1(k +1) = max{Xmin Xj(k) +k aJ}

Thus the offered-load values are constrained at every iteration from decreasing below X .

Based on the core runs discussed in Section 8, we have concluded that an especially good candidate for
testing the impact of nonzero values of Xti is that of Network 1 with T = 6, X. = 4, and Q. = 0.3. This
example is characterized by a highly asymmetrical solution in which the optimal offered load vector in-
cludes circuits with nearly zero offered load. We consider a circuit to be "underloaded" if its offered load is
less than 1% of the average offered load among the J circuits in the network. In particular, the optimal
offered load for this example with no constraint on the X.'s is characterized by three or four underloaded
circuits.39 Thus, the imposition of the requirement that all circuits have a significant value of offered load is
expected to have a greater impact on this example than on examples in which the solution is less asymmetri-
cal. Also, the fact that the normalized blocking probability of only five (out of ten) of the circuits is close to
the QoS constraint value is another characteristic of asymmetry. Table B 1 in Appendix B provides milestone
and stopping-rule tables for this example with Xm. = 0.5. One consequence of imposing this constraint on
Xt.mis that the benchmark throughput is lowered from 11.5380 to 11.2368, a decrease of 2.6%. In this
section, we are primarily interested in the impact of X . on the properties of the optimization algorithm.
When using nonzero values of X. , we have used the same initial stepsize 0 as that used when X = 0.

Only five of the 18 versions of the algorithm provided 99.5% or greater of the benchmark throughput
for this example; all of these actually reached the 99.9% milestone (see Table B 1). By contrast, when Xmi =
0 (see Table 4), 15 of the 18 versions provided at least 99.5% of the benchmark throughput, and 13 reached
the 99.9% milestone. Imposing a relatively large value of Xm makes convergence to the optimal solution
more difficult by denying the trajectory the opportunity to pass through the region in which one or more of
the X's are less than Xmin- Of the five versions that did provide at least 99.9% of the benchmark throughput,
all used the projection formulation with a large number of circuits in at least phase 1. Thus, it appears that
use of the projection facilitated the guiding of the trajectory around the inadmissible region of low values of
X.. By contrast, when the projection was not used the trajectory seemed to be unable to escape from a region
constrained by the requirement that X X for large values of Xm. Based on the various versions of the
algorithm studied, it appears that the performance depends strongly on the characteristics of the algorithm
during phase 1. It is especially helpful during this phase to use a large number of circuits in the projection,
and to keep the stepsize at a relatively large value.

39 0f the 13 versions of the algorithm that provided at least 99.9% of the benchmark throughput, one had four underloaded circuits
and the others had three.
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The case of Network 2 with the same parameters (Qj = 0.3 and XBi = 0.5) is summarized in Table B3.
The imposition of the constraint XBn = 0.5 reduces the benchmark throughput from 13.4129 to 13.2950, a
decrease of less than 1%. In this case, all 18 versions of the algorithm reached the 99.9% milestone. An
examination of the solution for the case of Xm ni = 0 (see Table 7) may provide some insight into why this
network example is "easier" to solve than that of Network 1 with the same values of Q. and X . In particu-
lar, there was only one underloaded circuit in the optimal solution for Network 2 with X,,. = 0; all of the
other X.'s were 1.1 or greater. Thus, the imposition of the constraint Xmi = 0.5 has a smaller impact than for
the case of Network 1. Additionally, as we commented in Section 8.4, our algorithm is more robust for
Network 2 (with Xmin = 0) than Network 1 because all of the blocking probabilities are close to the QoS value
at the optimal point (see Table 7). For the present case of B i = 0.5, all except one of the normalized
blocking probabilities are greater than 0.99, and the smallest is 0.9144. Thus this property is present for the
case of Xin = 0.5 as well.

9.2 Nonuniform Admission-Control Thresholds or Distribution of Transceivers

In all examples discussed thus far, the admission-control thresholds have been the same for each circuit,
and the number of transceivers has been the same at each node. We now address several examples in which
one of these conditions does not apply, and demonstrate how these examples provide added insight to the
optimization problem under study.

Nonuniform Admission-Control Thresholds

We examined the effect of nonuniform admission-control thresholds by considering Networks 1 and 2
with T = 6 (i.e., six transceivers at each node), but X. = 2 for half of the circuits (I = 1, 3, 5, 7, and 9) and
X. = 4 for the remaining circuits (j =2, 4, 6, 8, 10). Searches were performed for Qj= 0.001 and 0.3. In all
four of these examples, all 18 versions of the algorithm reached at least the 99.9% throughput milestone. It
is interesting to compare these results to those obtained for examples in which X. = 4 for all 10 circuits. Of
the four corresponding examples considered (i.e., two networks and two QoS values for each) for X. = 4 on
all circuits, three produced results in which all 18 versions reached at least the 99.9% milestone and one did
not (the case for Network 1 with Qj = 0.3, which was illustrated in Table 4). Thus, it appears that in the
example with nonuniform thresholds (half with thresholds of 4 and half with thresholds of 2) our algorithm
is more robust than for the case in which all thresholds are equal to 4 (in the sense that all versions of the
algorithm produce virtually the same solution, and that aggressive stepsize rules can reach the high mile-
stones quickly).

Table 8 is an offered-load table for these four examples with nonuniform thresholds. We are most
interested in the case of Network 1 with Qj = 0.3 because this case seemed to offer the most resistance to our
algorithm for examples with a uniform threshold of four on each circuit. In the best solution for this case, all
of the normalized blocking probabilities except P8 are at least equal to 0.9998; in the worst solution, all
except P8 reach the value 0.9989. By contrast, four of the normalized blocking probabilities are typically
less than 0.9 when X. = 4 on all circuits. Similar results are observed for the other three examples as well.
Thus, these examples provide further support to our hypothesis that our algorithm is more robust for prob-
lems for which all of the circuit blocking probabilities at the optimal solution are close to the QoS value (see
Section 8.4).

The above discussion raises the question of why the examples with reduced thresholds on some circuits
permit solutions in which the blocking probabilities are close to the specified QoS values on a larger number
of circuits. It appears that reducing the threshold on some circuits reduces the competition for transceivers,
thus reducing the interaction among circuits and hence permitting more of them to approach the maximum
permitted QoS value. Also, the smaller threshold values reduce the size of the search space, thus facilitating
the search process.
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Table 8-Offered-Load Table for Networks 1 and 2 with T = 6,
X =X3 =X 5 =X 7 =Xg=2; X2 =X 4 =X 6 =X 8 =Xrn= 4 ;

"Best" and "Worst" Results Shown for Qj = 0.001 and 0.3

I2 3 | AI I6 X | A | P. || P.|A. A 9 | P ° S

Pi P2 P3 P4 P5 P 6 P7 F 9 P10

Network 1; Qj = 0.001

0.0361 0.3462 0.0221 0.4008 0.0400 0.4130 0.0457 0.3198 0.0257 0.3462 1.9937
best 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000

t 0.0362 0.3483 0.0131 0.4019 0.0399 0.4142 0.0456 0.3221 0.0248 0.3483 1.9922
worst 0.9950 1.0000 0.8300 1.0000 0.9970 1.0000 0.9970 1.0000 0.9990 1.0000 99.92%

Network 1; Q. =0.3

best 0.4803 2.5860 0.6257 2.5336 0.9132 2.1888 1.4205 0.0007 0.9613 2.5860 10.0075
0.9999 0.9999 0.9999 1.0000 0.9999 0.9998 1.0000 0.9574 1.0000 0.9999

t 0.4645 2.5318 0.6053 2.5164 0.9059 2.2301 1.4190 0.1465 0.9323 2.5318 10.0003
worst 0.9989 0.9999 0.9998 0.9999 1.0000 0.9998 0.9999 0.9722 0.9999 0.9999 99.93%

Network 2; Qj = 0.001

best 0.0437 0.4187 0.0456 0.4153 0.0437 0.3383 0.0428 0.3642 0.0457 0.3307 2.0864
bet 1.0000 1.0000 0.9970 1.0000 0.9990 1.0000 0.9950 1.0000 0.9990 1.0000

0.0437 0.4187 0.0454 0.4153 0.0437 0.3383 0.0427 0.3641 0.0455 0.3307 2.0859
worst 0.9990 1.0000 0.9910 1.0000 0.9990 0.9990 0.9910 0.9990 0.9920 0.9990 99.98%

Network 2; Qj = 0.3

11.1203 2.9031 1.1536 2.9785 1.1174 2.1149 1.1862 3.0568 1.2783 0.7333 12.3549
best | 1.0000 1.0000 1.0000 0.9999 0.9998 1.0000 0.9996 0.9999 0.9997 0.9786 

1.1162 2.9185 1.1544 2.9606 1.1201 2.0767 1.1783 3.0482 1.2805 0.7892 12.3537
worst 0.9992 0.9999 0.9999 0.9999 0.9997 | 0.9996 0.9996 0.9997 0.9998 0.9894 99.99%

Nonuniform Number of Transceivers

We considered examples involving Network 1 with X. = 4, in which seven
i

each (nodes 4, 5, 6, 7, 13, 14, and 15)40 and the rest have six transceivers each.
nodes have eight transceivers
QoS values of Q. = 0.001 and

0.3 were studied. Thus these examples differ from those of Tables 3 and 4 in that seven of the nodes have
two additional transceivers. All 18 versions converged to at least the 99.9% throughput milestone for both
QoS values. Table 9 shows that the normalized blocking probabilities are all close to 1.0, once again sup-
porting our hypothesis that our algorithm is highly robust when addressing problems for which a solution
exists in which all normalized blocking probabilities are close to 1.

It is intuitively satisfying that our algorithm becomes more robust as the number of transceivers at
several nodes increases (as long as the admission-control thresholds are maintained at the same value).
Similar to the case of reduced thresholds (Section 9.2.1), the availability of additional transceivers reduces
the competition for transceivers among circuits (provided that the additional transceivers are located at
heavily congested nodes).

40 These particular nodes were chosen to receive the additional transceivers because they support a large number of circuits.
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Table 9- Offered-Load Table for Network 1 with X. = 4;
J

T=6, except T4 =T5 =T6=T7 =T 3 = T14=T1, =8;
"Best" and "Worst" Results Shown for Qj = 0.001 and 0.3

xi J2 J X3 4 X, A X A7 x8 X, 10 S

A_ P2 I P3 P4 P5 P6 P7 P8 P9 P_

Qj= 0.001

best 0.3814 0.4074 0.3774 0.3700 0.4098 0.3981 0.3902 0.3771 0.3851 0.3822 3.8746
1.0000 0.9990 0.9980 0.9990 0.9990 1.0000 1.0000 0.9990 0.9980 0.9980

worst 0.3815 0.4073 0.3768 0.3702 0.4091 0.3977 0.3898 0.3770 0.3852 0.3824 3.8731
1.0000 0.9980 0.9940 0.9990 0.9940 0.9970 0.9970 0.9980 0.9980 0.9990 99.96%

Qj= 0.3

V 2.5607 3.0795 2.2498 1.3882 3.0375 1.4456 3.0161 1.0810 2.3402 1.6936 15.3515
best 0.9999 1.0000 0.9999 0.9998 1.0000 0.9487 0.9999 0.9872 0.9998 0.9999 

orst 2.5658 3.0669 2.2472 1.3546 3.0367 1.4684 3.0166 1.1238 2.3332 1.6788 15.3506
1.0000 0.9999 0.9999 0.9950 0.9999 0.9506 0.9999 0.9949 0.9998 0.9996 99.99%

9.3 Nonuniform QoS Requirements

In all examples discussed thus far, the QoS requirement was the same for all circuits, i.e., Q, = ... = QJ.
We now address the more general case, in which some circuits have more-stringent QoS requirements than
others. In studying such examples, we demonstrate not only the capability of wireless networks to support
such disparate QoS requirements, but also the capability of our algorithm to find good (and hopefully opti-
mal) solutions in these more-difficult cases.

We consider examples in which the circuits must satisfy one of the following:

Q1 = = Qj =0.001; QJ+1 = -=Qj = 03 (37)

2 2

Thus, half the circuits must satisfy the more stringent constraint (QoS = 0.001), while the other half must
satisfy the looser one (QoS = 0.3).

As in the other examples we have studied, we have attempted to solve this problem by using versions of
the algorithm that use the projection, as well as those that do not. To accommodate the vastly different
values of the QoS parameter, membership in the projection set Y is based on the normalized value of block-
ing probability. Thus, when using the projection rule based on the parameter v, the decision on which
circuits to include in Y is made separately for the QoS = 0.001 group and separately for the QoS = 0.3 group.
However, consistently poor results were obtained when any version of the projection was used; the best
throughput values were approximately 5% less than those obtained without using the projection operation.41

Apparently, as a result of the vast difference in QoS requirements for the different circuits, there is no well-
defined contour that can be tracked by the projection vector D. In particular, small changes in some of the
offered loads that have only minor impact on the contours of constant blocking probability for circuits in the
QoS = 0.3 group can substantially alter the shape of the contours of constant blocking probability for the
QoS = 0.001 group.42 Consequently, these small changes can have a significant impact on the set of circuits
from the QoS = 0.001 group that are included in ;.

41Because of the high degree of consistency in throughput obtained among all runs for different versions of the algorithm for the
many examples considered in this report, as well as the flatness of the throughput over a wide range of offered load, a difference in
throughput of 5% is quite large.
42Small changes in one or more of the X,'s can have a significant impact on the contours of constant blocking probability, even when
the QoS requirements are the same for all circuits.
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We therefore use the algorithm with I = 0 to solve our problem. However, we have observed that it is

necessary to use a larger stepsize for the circuits that are characterized by the larger value of QoS. This is

consistent with the fact that the initial stepsize used for core run examples with Qj = 0.3 is much larger than

that used for examples with =0.001. Our approach for the choice of initial stepsize is quite similar to that

used for the case of uniform QoS values. We perform a short pilot run in which the stepsizes are the same for

all circuits, and find a stepsize value for which the inadmissible region is entered for the first time at about

the fifth iteration. In the actual run, this stepsize value is used for the circuits for which QoS = 0.001; a

stepsize value five times this size is used for the circuits for which QoS = 0.3.

Sample Runs

We have studied Networks 1, 2, and 3 with T. = 6 and X. = 4. For each network we have considered the

QoS requirements defined by Eqs. (37) and (38); thus six examples were studied. Figure 21 shows the

evolution of admissible throughput and arrival rates for the example of Network 1 with QoS requirements

defined by Eq. (37), i.e., the first five circuits have the more-stringent QoS requirement. Figure 22 shows a

similar example for Network 2. In consideration of the disparate QoS requirements of the two groups and

the anticipated resulting difficulty in achieving the optimal solution, a conservative stepsize rule was used.

It appears, though, that this stepsize rule may have been overly conservative because little change occurs

between iterations 200 and 400.

The milestones shown in Figs. 21 and 22 are based on achieving the indicated percentage of the best

throughput value in each particular run. No benchmark of maximum achievable throughput is available for

these examples because only a single run was performed for each. In each of the six examples we have

investigated (three networks and two sets of QoS circuit groupings for each network), the 99% milestone

was achieved before iteration 1100.

Table 10 summarizes the offered loads and corresponding normalized circuit blocking probabilities for

the six runs. In many cases, the blocking probabilities of the circuits for which QoS = 0.001 are close to the

maximum permissible values. However, only a small number of circuits in the QoS = 0.3 group (typically

about 2, but in one case none) have blocking probabilities close to the QoS value. The achievable throughput

can depend strongly on which circuits are in the two QoS groups and is difficult to predict. For example, the

difference for the two examples involving Network 1 are modest, while that for Network 2 is significant, and

that for Network 3 is dramatic. An extreme case is that of Network 3 for which the first four circuits must

satisfy the 0.001 QoS constraint. In this case, the maximum circuit blocking probability among the QoS =

0.3 group is less than 1% of the permissible value. Thus, the requirement to satisfy the more-stringent QoS

constraint on half of the circuits severely limits the offered loads of the remaining circuits as well. The

throughput of 2.3459 in this example is only 4.5% greater than that for the case in which all the circuits must

satisfy the 0.001 constraint (see Table 7).

In Section 8.4 we commented that it is not surprising that, for the case of Network 1 with large QoS

values (such as 0.3), not all blocking probabilities were close to the maximum permitted value. We attrib-

uted this behavior to the higher level of interaction among the circuits that is characteristic of higher offered

loads. In the current example in which half of the circuits are required to satisfy significantly more-stringent

QoS requirements, it is therefore expected that even fewer of the circuits with less stringent QoS require-

ments will be able to support offered loads for which their blocking probabilities are at the maximum per-

mitted values. As demonstrated here, such behavior does, in fact, occur. Thus, the circuits with less-strin-

gent QoS requirements are often strongly affected by the circuits with more-stringent QoS requirements.

4 3 This simple rule appears to work well for these QoS values in the examples we have studied; certainly no claim of optimality is

made. The relative values of stepsizes for the two classes of traffic should depend on the values of QoS of the more- and less-

stringent groups.
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Table 10- Offered Loads and Normalized Circuit Blocking Probabilities for
Examples with Two Different QoS Values (0.001 and 0.3); 1 = 6, X = 4

J

Al A
2

A
3

A~~
4

A
5 6

A 
8 9

l S

i | 2 | 3 | 4 | 5 | 6 | 7 1 8 P 9 P 10

Network 1 0.4315 0.0001 0.0763 0.1185 0.0059 0.1170 3.1244 0.0003 0.0981 3.1253 5.2216
(10-3, 0.3) 1.0000 0.9980 0.8290 0.9990 0.9980 0.0035 1.0000 0.0034 0.0042 1.0000

Network 1 0.0295 3.8904 0.0609 0.0295 3.8904 0.0000 0.0587 0.0001 0.0563 0.0001 5.6815
(0.3, 10-3) 0.0017 1.0000 0.0018 0.0017 1.0000 0.9990 0.4990 0.9990 0.4620 0.9990

Network 2 0.0001 0.1245 0.4221 0.4239 0.0001 3.0926 0.1134 3.0930 0.1251 0.0681 5.5894
(10-3, 0.3) 0.9990 1.0000 1.0000 1.0000 0.9990 1.0000 0.0028 1.0000 0.0032 0.8055

Network 2 0.0195 3.5919 0.0445 2.2958 3.5678 0.0002 0.0422 0.4221 0.4222 0.0687 7.6293
(0.3, 10-3) 0.0035 1.0000 0.6044 1.0000 1.0000 0.9980 0.9990 1.0000 1.0000 1.0000

Network 3 0.1646 0.0000 0.1737 0.3026 0.3931 0.3674 0.5576 0.3908 2.3459
(10-3, 0.3) 1.0000 1.0000 1.0000 1.0000 0.0049 0.0050 0.0097 0.0050

Network 3 0.0333 3.8903 0.0653 3.8903 0.0036 0.0297 0.0278 0.0001 5.6060
(0.3, 10-3) 0.0036 1.0000 0.0037 1.0000 0.9990 0.9980 0.9970 0.9990

column 1: (10-3, 0.3) means that Q,
columns 2 - 11: upper entries: X

lower entries: P.

10. AN ALTERNATIVE QOS CONSTRAINT: AVERAGE BLOCKING PROBABILITY

Thus far, we have required that each circuit satisfy the QoS constraint on blocking probability. In this
section, we consider an alternative version of the QoS constraint in which we require only that the average
blocking probability in the network satisfy this constraint. Whether the QoS constraint should be applied to
the average blocking probability or to each individual circuit is a decision to be made by the network de-
signer/administrator. We demonstrate in this section that relaxing the QoS constraint in this manner results
not only in higher throughput values, but also in considerably faster convergence. To distinguish these two
forms of the QoS constraint, we henceforth refer to them as P and P constraints, respectively. In addition,
we demonstrate that in some cases the use of a QoS constraint based on the average blocking probability can
provide a good initial point for a search based on the satisfaction of the QoS constraint on each individual
circuit.

10.1 Mathematical Model

Recall that in Eq. (9) the overall (average) blocking probability Pv (i.e., the fraction of calls arriving to
the network that are blocked, regardless of the circuit to which they arrive) was defined as the ratio of the
expected number of blocked calls per unit time (summed over all circuits) to the expected total number of
call arrivals per unit time:

1 J
(39)

where A = X1 + ... + Xj. Thus, some circuits may be permitted relatively large blocking probabilities pro-
vided that the overall blocking probability satisfies the QoS constraint,44 i.e., that P < Q = QoS.

4Circuits with very small offered loads do not affect Pa, significantly, even when their blocking probabilities are high, because each
value of PJ is weighted by the corresponding .
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Following the approach of Section 4.1, the augmented Lagrangian function can now be written as

L = S - max (O, Pav - Q) -2 [max(,Pav- Q)] (40)

Note that this expression has the same form as Eq. (19), except that there is a single constraint on P ratherav
than individual constraints on each of the J blocking probabilities P. The resulting partial derivatives are

J

DL DS [ Y+d(Pv-Q)l JDlav (Pav>Q) (41)

where

(XI.. +.%(X1+ Y+ XX.P

= AII +{A Pi} (42)

2~~~~~~~~~~~~~(2
A~

The iterative algorithm proceeds in the same manner as for the case in which the QoS constraint must be
satisfied on each individual circuit.

We again consider the use of the projection to guide the search. However, since only the average
blocking probability P is of interest (and not the individual values of the PJ's), we use P instead of P. in theav a
definition of D:

D= -VS . V 1v2 7 if VS - VJ2a VPa > 1VS1 (43)

VS, otherwise

where we have again used r = 0.1. Thus, the effect of the projection operation is to discourage the increase
of the average blocking probability by removing the component of aS/ak that results in an increase in P

10.2 Performance Results

We tested this formulation on Networks 1, 2, and 3, and obtained rapid convergence to optimal solu-
tions. Typically, the speed of convergence was similar, whether or not the projection was used. The figures
shown in this section are for examples that do not use the projection (i.e., X = 0). Figures 23 and 24 show
the evolution of admissible throughput and offered load for Network 1 with T = 6 and X. = 4, for the cases of
Q = 0.001 and 0.3, respectively.

Table 11 shows the optimal offered loads, the corresponding normalized blocking probabilities, and the
throughput for Network 1 with T = 6 andX. = 4, for QoS values of 0.001 and 0.3. Results are shown for both

IJ

forms of the QoS constraint, namely the average (P and maximum individual circuit (m:) cases. The
results for the P case are based on the use of no projection operation (results using the projection are
virtually identical). The results for the P case are based on the best run among the 18 versions of themax
algorithm (i.e., the one that provided the highest throughput). For Q = 0.001, the relaxation of the QoS
constraint has had a negligible impact on overall throughput, which has increased from 2.6645 to 2.6674.

Throughput Maximization under QoS Constraints
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Table 11 - Offered Loads and Normalized Circuit Blocking Probabilities for Network 1 under
Both P and Pmax Forms of the QoS Constraint on Average Blocking Probability; 7i =6, X. = 4

av ma

QoS form of x k 3 3 x X7 ?~ 9 Xo
constr P1 P2 P P4 P5 P6 P7 P8 P9 P10

0.2557 0.3248 0.3126 0.2255 0.3530 0.1360 0.4087 0.0289 0.3385 0.2863
Average 0.9530 0.9990 0.9850 0.9410 1.0260 0.9280 1.0990 0.9260 1.0070 0.9670 2.6674

0.001
0.2527 0.3230 0.3083 0.2337 0.3413 0.1545 0.3947 0.0231 0.3374 0.2984

Max 1.0000 1.0000 1.0000 1.0000 1.0000 0.9790 1.0000 0.9300 1.0000 1.0000 2.6645

2.7669 2.8347 2.0771 0.5338 2.5085 0.0000 3.2890 0.0000 2.0771 0.8449
03 Average 1.0131 0.9921 1.0014 0.9823 0.9669 1.1590 1.0353 1.1484 1.0014 0.9486 11.8524

0.3
Max 3.3160 3.5230 1.9599 0.0009 2.0194 0.0008 3.3179 0.0005 1.9675 0.0036

0.9997 0.9999 0.8975 0.8862 0.7656 0.9999 1.0000 1.0000 0.9011 0.7542 11.5380

column 2: form of constraint indicates whether the Pav or Pa case applies to the following columns
columns 3 - 12: x, shows offered load to circuitj at best solution

P. shows normalized circuit blocking probability at best solution

The individual offered loads and the corresponding normalized blocking probabilities are also only slightly
changed from the values obtained for the P case (only two of the blocking probabilities exceed 0.001, themax
larger by 2.6%). For Q = 0.3, the use of the average QoS constraint results in significant changes in some of
the offered load values, as well as an increase in throughput from 11.5380 to 11.8524 (an increase of 2.7%).
The normalized blocking probabilities of circuits 6 and 8 are about 1.15, i.e., these blocking probabilities are
about 15% greater than the specified QoS value.

Table 12 shows similar results for Network 2. When the constraint is relaxed to the average form, the
impact on throughput is again negligible when QoS = 0.001. For QoS = 0.3, the offered loads change more
than in the QoS = 0.001 case, but significantly less than for the case of Network 1 with QoS = 0.3. The
increase in throughput is only 0.18%, which is considerably less than that observed for Network 1. It is also
noteworthy that the maximum normalized circuit blocking probability for the P case is 1.048, as comparedav

to 1.159 for Network 1.

Finally, Table 13 shows similar results for Network 3, for which the differences between the P and P
av max

cases are even smaller. The maximum normalized circuit blocking probability for the P case is 1.0094 for
av

QoS = 0.3 and 1.0360 for QoS = 0.001.

Table 12- Offered Loads and Normalized Circuit Blocking Probabilities for Network 2 under
Both P and P Forms of the QoS Constraint on Average Blocking Probability; 1 = 6, X. = 4

av max

form of ~ ? ~ 6 ?7~QoS f orr o 3 9, 'Ak3 B7A 10 S
constr p P P P P P PI P. P P9P10

Average 0.2153 0.3839 0.3061 0.3658 0.2439 0.2869 0.2858 0.3601 0.4001 0.2279 3.0726
Average 0.9280 1.0580 0.9720 1.0300 0.9390 0.9620 0.9570 1.0280 1.0840 0.9330

0.001
Max 0.2326 0.3724 0.3129 0.3571 0.2460 0.2819 0.2941 0.3546 0.3856 0.2357 3.0700

ax 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000

Average 0.0000 3.4830 0.9704 1.9350 2.5908 1.1287 1.2356 2.4761 3.5499 1.8258 13.4366
A3 verage1.0482 1.0385 0.9528 0.9765 1.0008 0.9865 0.9619 0.9713 1.0300 0.9901

0.3 _ _ _

Max 0.0002 3.2507 1.1397 2.0615 2.3653 1.3159 1.2968 2.5453 3.4367 1.7296 13.4129
0.9999 0.9999 0.9999 1.0000 0.9819 1.0000 0.9999 0.9999 0.9999 0.9989
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Table 13 - Offered Loads and Normalized Circuit Blocking Probabilities for Network 3 under
Both Pv and Pmax Forms of the QoS Constraint on Average Blocking Probability; T. =6, X. =4

QoS form of 
constr P1 P2 P3 P4 P5 P6 P7 P8

Average 0.2390 0.2473 0.2835 0.3332 0.2790 0.2783 0.3204 0.2655 2.2441
Averae 10.9730 0.9820 0.9940 1.0360 0.9930 0.9940 1.0240 0.9880

0.001
Mx 0.2481 0.2529 0.2852 0.3242 0.2808 0.2777 0.3122 0.2646 2.2436

0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Aeae1.0953 1.2371 1.4422 2.2493 1.6959 1.7494 2.2185 17606 9.4138
Averae 30.9961 1.0069 0.9809 0.9979 0.9998 1.0045 1.0017 1.0094

0.3 0 0 1 0 . . .
Mx 1.1174 1.2697 1.5078 2.2527 1.6666 1.7254 2.1911 1.7158 9.4128
Mx 1.0000 0.9998 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999

A potentially useful technique that exploits the similarity between the P and P solutions is discussed
in the next subsection.

10.3 Combined Use of Average and Individual QoS Constraints

The results of Section 10.2 indicate that the use of the average blocking probability as the QoS con-
straint typically provides a solution that is "similar" to that obtained using the individual blocking probabili-
ties, especially for small QoS values (i.e., 0.001). Thus, it brings us close to the neighborhood of the optimal
solution of our original problem. This similarity has led us to consider the use of an alternative approach
during phase 1 of the algorithm. Instead of using the projection in conjunction with QoS constraints on each
individual circuit, we have considered using the QoS constraint on the average blocking probability without
use of the projection operation. Then, at the beginning of phase 2 the QoS constraint is applied to each
individual circuit as in the original formulation. Thus, the formulation based on the average blocking prob-
ability is used to determine an initial condition for the problem in which the QoS constraint must be satisfied
on every circuit.

Figure 25 shows the evolution of admissible throughput, offered load, and stepsize for the example of
Network 1 with T. = 6, X. = 4, and QoS = 0.001. The average form of the QoS constraint is used for 100
iterations; after this point, the QoS constraint must be satisfied on each individual circuit. Note that the
definition of admissibility changes at iteration 100. Solutions classified as admissible during the first phase
are typically not admissible when the P criterion is applied, and few admissible solutions (that satisfy Pmax)maxma
are observed during the first phase. The admissible solutions and milestones shown on the graph are based
only on solutions that are admissible under the P criterion. The first admissible solution (based on Pmax) is
at the 98% milestone level (based on the benchmark throughput achieved for this network example, as
discussed in Section 8.2), which occurs at iteration 112. The 99% and 99.5% milestones are reached shortly
thereafter (at iterations 127 and 149, respectively).

Figure 26 shows curves for the same network example, but for QoS = 0.3. Again, the 98% milestone is
achieved rapidly; however, the higher milestones are not reached. Apparently, at iteration 100 (when the
performance criterion changes to Pmax) the stepsize is too small to make sufficient progress toward the opti-
mal point in this example because the P and P solutions are relatively far apart. Some experimentationav max
with larger stepsizes when the criterion changes to Pmax (e.g., increasing it from 0.05 to 0.2 at iteration 100,
and then letting it decrease exponentially) have produced solutions that reach the 99% milestone relatively
rapidly. However, the need to use a more-conservative stepsize rule when switching between P and P forav max

some network examples may make it difficult to reach the higher milestones rapidly. In such cases, the
combined P IP method may not provide faster convergence to good solutions than those that use the P

av max max
criterion throughout.

Throughput Maximization under QoS Constraints
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Figures 27 and 28 show curves for Network 2 with the same parameters, for QoS = 0.001 and 0.3,

respectively. In both cases, convergence to the 99.5% milestone is extremely fast, and convergence to the
99.9% milestone is also among the fastest observed for these network examples (see Tables A4 and A5).

Comments on the Effectiveness of the Combined PvPmax Approach

For three of the four examples shown here, the performance obtained by using the combined approach
is comparable to that of the better versions that are based on the use of the projection in one or more phases.
We hypothesize that this approach would be most effective when the solution based on the Pv QoS criterion
is most similar to that based on the P . QoS criterion. Of course, it is not possible to determine with
certainty that the solutions are similar without solving both problems. However, the circuit blocking prob-
abilities shown in Tables 11-13 may provide a helpful clue. For example, Table 11 shows that, for Q = 0.001,
the maximum normalized blocking probability is 1.099, and the minimum is 0.926. Thus, little has to be
done to coax the offered load values to a point that maximizes throughput while satisfying the Pmax QoS
criterion. Comparing the offered loads under the P and Pmax QoS constraints shows little difference between

av ma
these two cases; admissible throughput under the Pat and Pmax QoS constraints shows that they differ by 0. 1%.
By contrast, the same table shows that, for Q = 0.3, two of the normalized blocking probabilities are approxi-

mately 1.15. Thus, a significant change in the offered load vector is required to satisfy the Pmax QoS con-
straint. In this example, a comparison of the offered loads under the P and P . QoS constraints shows that

a, ma
there is significant difference; furthermore, the throughput for the P case is 2.7% greater than for the Pmax
case.

Table 12 shows similar results for Network 2. Results for Q = 0.001 are comparable to those for
Network 1. However, results for Q = 0.3 show that the maximum normalized circuit blocking probability
associated with the solution based on the P QoS constraint is 1.0482 (the deviation from 0.3 is thus about
one third of that observed for Network 1). Thus, it is expected that the solutions for the P and P casesmax av

would be more similar than those for Network 1. In fact, the difference in throughput between the P and
P cases is 0.18% (considerably less than the 2.7% forNetwork 1), and although the offered load values for

max 
the P case are not as close to the P case as they were for QoS = 0.001, they are considerably closer

max av
(percentagewise) than they were for Network 1.

Similar observations apply to the case of Network 3 (see Table 13).

Thus, we feel that the combined use of the P and P constraints may provide an efficient method for
determining optimal offered loads for some problems. We hypothesize that this method will work well
when none of the individual circuit blocking probabilities in the P solution exceeds the QoS constraint

av

value by a "significant" amount, although we have not quantified the tolerable amount by which QoS can be
exceeded. It appears that an aggressive stepsize rule works well when this condition is satisfied, and that a
more conservative stepsize rule is appropriate when there is more asymmetry in the values of the blocking
probabilities.

In Section 8.4 we commented that the algorithm provides more-robust performance for Networks 2 and
3 than for Network 1 under the P constraint. We hypothesized that one reason for this might be that for
these two cases there seems to be relatively little interaction among the circuits. This is suggested by the fact
that all of the circuit blocking probabilities are very close to the QoS value. Perhaps the fact that the Pv
solution is so close to the P . solution is another example of little interaction. However, further research is
needed to establish any definite conclusions on this matter.

We now summarize our tentative conclusions on the combined P IP approach. When the normalized
av max

blocking probabilities based on the P form of the QoS constraint are all close to 1.0, it appears that the P I
av av

Pnax approach provides rapid convergence to nearly optimal solutions, i.e., to the 99.5% milestone. Another
advantage of this approach is that experimentation is not needed to determine a good set I to be included in
the projection operation (or equivalently the value of the parameter v) since this method appears to work
well whether or not the projection is used. However, further testing is needed to determine with more
certainty the class of problems for which the combined P IP ax approach works well.
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11. THROUGHPUT GAIN FROM NETWORK OPTIMIZATION

Thus far, we have focused our attention on the convergence properties of our optimization algorithm.

However, from the perspective of the network user/manager, a more important issue is the degree of perfor-

mance improvement that can be obtained when the offered loads are optimized. In particular, in this section

we compare the performance obtained by using our algorithm to that obtained under "uniform loading,"

under which the X.'s are all equal. In the latter case, the search for the optimal solution is a simple one-

dimensional search.

We first consider examples based on our core runs, and show that the degree of improvement is rather

modest for these cases. We then consider some examples for which considerable increase in throughput is,

in fact, possible by means of our optimization techniques.

11.1 Core Runs

To assess the benefits achievable through optimal loading, we first consider Networks 1, 2, and 3 with

six transceivers at each node (T. = 6, i = 1, ... , N) and at most four calls on any circuit (X. = 4, j = 1, ... , J).

Figure 29 shows throughput in Network 1 as a function of Q. (i.e., of the maximum permitted blocking

probability on any individual circuit) for both uniform and optimal loading. The "optimal loading" curve

represents the higher throughput obtained by our optimization algorithm, and demonstrates the degree of

improvement that has been achieved by our multidimensional search. For Qj = 0.001, the improvement

achieved by optimizing the offered load is 14.3%. The improvement is greatest at about Q. = 0.1, where it is

19.6%. At very large values of Qj the improvement decreases significantly; it is 8.9% at Q = 0.9 and 3.5%

at Qj = 0.99. Similarly, Figs. 30 and 31 show the performance achievable for Networks 2 and 3 as Q is

increased to a maximum value of 0.6. Results for Network 2 show that the degree of improvement achiev-

able by using the optimization technique is similar to that achieved for Network 1. However, little improve-

ment is obtained for Network 3, apparently because the offered loads at the optimal point are more nearly

symmetrical than they were for the other two network examples.

In view of the highly asymmetrical nature of the optimal offered load (particularly for Network 1), it is

perhaps surprising that only "modest" increase in throughput was obtained by the optimization process. The

inability to produce more substantial gains can be explained, at least in part, by the highly coupled nature of

the circuits in the network. We can view this as a form of "balanced coupling," in which a relatively large

region of the offered-load space produces similar values of throughput.

The characteristics of these networks that produce the high degree of insensitivity to loading appear to

include:

* interaction (i.e., contention for resources) among many circuits,
* equal QoS requirements for each circuit, and
* equal number of transceivers at each node.

We now explore some network examples that do not possess all of these characteristics, and demonstrate the

capability of our optimization techniques to provide significant increase in throughput.

11.2 Networks 1, 2, and 3 with Different QoS Values

The results of Section 11.1 indicated that only modest increase in throughput is achievable for Net-

works 1, 2, and 3 for examples in which the number of transceivers is the same at all nodes and the QoS

constraint is the same for all circuits. We now look at examples in which the blocking probability of half of

the circuits must satisfy a QoS constraint of 0.001 and half must satisfy 0.3.4 In all cases, T = 6 and X. = 4.

Two examples were considered for each case, as summarized below:

(a) Network 1: Q= ... = Q5 =0.001; Q6 = Q1 = 0.3
(b) Network 1: Q= ... = Q = 0.3; Q6 = Q 1 = 0.001

4 5 The convergence properties of our algorithm for examples of this type were discussed in Section 9.3.
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(c) Network 2: Q 1 = .. =Q 5 = 0.001; Q6 = Q1 = 0.3
(d) Network 2: Q1 = .. =Q 5 = 0.3; Q6= Q 1 = 0.001
(e) Network 3: Q1= .. =Q 4 = 0.001; Q5 =...=Q 8 = 0.3
(f) Network 3: Q = .. =Q 4 = 0.3; Q5 =..= Q8 = 0.001.

Table 14 summarizes the results of these examples. The columns a through f refer to the six network
examples listed above. The first row shows the maximum throughput that can be obtained when all of the
X.'s are constrained to be equal. We also considered an alternative form of loading in which all of the circuits
in the QoS = 0.001 group are constrained to have the same offered load value (call it X00), and all those in
the QoS = 0.3 group are constrained to have the same offered load value (call it X03). The throughput
associated with the best values of XO001 and 03 that we found are shown in the second row. Little improve-
ment over the case of uniform offered load is observed. Apparently, this is because even small increases of
the offered load on some circuits in the QoS = 0.3 group (above the optimum uniform value) result in the
violation of the QoS constraint on one or more circuits in the QoS = 0.001 group. The third row shows the
throughput achieved using our optimization algorithm. The fourth row shows the improvement when the
throughput under optimal loading is compared to that under uniform loading.46 The degree of improvement
ranges from modest to dramatic, and depends strongly on network characteristics and on which circuits are
in the two QoS groups.

Table 14 - Throughput Improvement Achieved by Optimization
of Offered Load in Network Examples with Different Values of the
QoS Constraint Qj(T. = 6, and X. = 4)

J

Network example a b c d e f

(allXghpequal) 2.34 2.34 2.63 2.63 2.17 2.17

Throughput 2.45 2.36 2.70 2.78 2.17 2.25
(2 equal groups)

Throughput 5.22 5.68 5.59 7.63 2.35 5.61
(optimal load)

Improvement 123% 142% 1 12% 190% 8% 158

11.3 Unequal Number of Transceivers

We examined the degree of improvement that can be achieved in networks in which the number of
transceivers is not the same at all nodes. In particular, we considered Network 1 with T1 = T2 = ... = T12 = 3
and T13 = T14 = ... = '24 = 6. We considered an uncontrolled system, i.e., one with X. = 6. Table 15 shows the
throughput achieved using uniform and optimal loading for this example, for Qj = 0.001, 0.3, and 0.9. A
significant degree of improvement is achieved, except for very high values of QoS.

11.4 The Multicross Network

We now consider a totally different network topology, which we first studied in Refs. 1 and 2, namely
the "multicross network" (Fig. 32). This network has the property that the horizontal circuit cointersects
each of the remaining N circuits, c1, ... , CN. However, circuits c1 through CN are mutually disjoint and share

46The results presented here and in the following two subsections are each based on a single run of 2000 iterations. Thus, further
improvement over the throughput values shown for the optimal load may be possible. The values shown for the degree of improve-

ment that is achieved through the optimization of offered load are therefore conservative.

Throughput Maximization under QoS Constraints
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Table 15 - Throughput Improvement Achieved by
Optimization of Offered Load in Example with Non-
uniform Number of Transceivers; Network 1 (T1 = T2

= ... =T12 =3,T 3 =T 4= ... =T24= 6,andX.=6 )

Q. = 0.001 Q. = 0.3 Q. = 0.9

Throughput 03 .2 78
(all X,'s equal)0.37 3.82 7.88

Throughput 0.51 4.92 8.52
(optimal load)

Improvement 37.8% 28.8% 8.1%

co I I I ... I
C1 C2 C3 CN

Fig. 32- Example of a multicross network

resources only with circuit co. In Refs. 1 and 2 this class of networks was investigated from the perspective
of optimal admission control. The goal was to determine the admission-control policy that minimizes the
overall blocking probability for a specified offered load vector. It was shown that at high offered loads or at
high values of N (the number of mutually disjoint circuits intersecting circuit co), optimal admission control
restricts the number of calls allowed on circuit co, ultimately not admitting any calls on this circuit. How-
ever, calls on the cross circuits (c1, ... , cN) are never blocked if resources are available.

In the present study we used our optimization algorithm to determine the optimal offered load for a
multicross circuit with N = 5 (i.e., there are five nodes, five cross circuits, and one horizontal circuit). The
number of transceivers at each node is T. = 6, and the circuit threshold is X. = 6. Since X. = T., this example

J J I
corresponds to an uncontrolled mode of operation, in which calls are admitted as long as resources are
available. Table 16 shows that significant increase in admissible throughput is achieved when the offered
load is optimized. The improvement is greatest at low values of Qj

11.5 Discussion

We have demonstrated that significant and often dramatic performance improvement can be obtained
by using the optimization algorithm developed in this study. The degree of improvement appears to be
greatest in examples that have inherent asymmetry. Several forms of such asymmetry have been identified.
For example, in the multicross network, the cross circuits do not share any resources with each other (al-
though they do share resources with a common circuit). Similarly, examples in which either the QoS value
or the number of transceivers is not uniform can benefit greatly from the optimization of offered load.

12. MISCELLANEOUS PERFORMANCE CONSIDERATIONS

Thus far, when assessing the performance improvement achieved by means of the optimization of of-
fered load, our only performance index has been the total throughput (subject, of course, to the QoS con-
straints). In this section we take a more detailed look at performance by examining the offered load permit-
ted to each individual circuit. In particular, we observe that the presence of "underloaded circuits" (defined
in Section 9.1) can reduce overall throughput, even though they offer negligible load to the network. In
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Table 16- Throughput Improvement Achieved by
Optimization of Offered Load in Multicross Network
Example (N = 5, T = 6, and X = 6)

Q = 0.001 Qj=0. 3 Qj=O. 9

Throughput
(all X.'sequal) 2.55 10.69 21.50

Throughput 41 53 40
(optimal load) 4.16 15.30 24.7

Improvement 63.1% 43.1% 12.0%

addition, we address the issue of fairness, which is implemented in two ways, namely by either guaranteeing
each circuit at least a specified level of offered load or by limiting the maximum value of offered load
permitted to any circuit.

12.1 The Impact of "Underutilized Circuits" on Performance

In several of our examples, the optimal offered-load vector contains one or more entries that are either
zero or close to it. We refer to circuits whose offered load at the optimal point is less than 1% of the average
offered load as "underloaded circuits." For example, consider Network 1 with T. = 6, X. = 4, X = 0, and Qj
= 0.3. The optimal throughput value for this network is 11.538. It is interesting to note that this value was
achieved when three of the offered load values (X4, X6, and X8) were approximately equal to zero (see Table
7). To assess the impact of these underloaded circuits on overall network performance, the algorithm was
rerun by setting X4 = k6= X8 = 0, and ignoring the requirement that these underloaded circuits satisfy the QoS
constraint.47 The resulting optimal throughput value increased to 11.83. Thus, a modest (2.5%) increase in
throughput was achieved by ignoring the requirement to satisfy the QoS constraint on circuits that make a
negligible impact on the total network throughput. One way to view this situation is to say that the
nonunderloaded circuits are being penalized by the need to satisfy the QoS constraint on underloaded cir-
cuits. They are forced to reduce their offered load to accommodate the QoS requirements of unlikely events
(the occurrence of arrivals on underloaded circuits).

The issue of whether the QoS constraint should be guaranteed for all circuits, or for only those with
significant offered loads, is a topic for future study. There are implications on pricing, e.g., whether the
underloaded circuits should be required to pay more than nonunderloaded circuits to receive QoS guaran-
tees. Here, the requirement that the QoS constraint be satisfied by the underloaded circuits has a greater
deleterious impact on the other circuits in the network than does the blocking caused by the underloaded
circuits (which is negligible).

12.2 Fairness Considerations: A Guaranteed Offered Load on Each Circuit

Another way to address the issue of underloaded circuits is to prevent their occurrence by guaranteeing
a nonnegligible offered load X to all circuits. The goal here is to provide some degree of fairness to all
users. Of course, to maintain satisfaction of the QoS constraint, some of the offered load values will have to
be decreased, resulting in decreased overall throughput. We again consider the same network example of
Network 1 with T = 6, X. = 4, X = 0, and Qj = 0.001 and 0.3 (and return to our original requirement that the
QoS constraint must be satisfied on all circuits, including the underloaded ones). Figure 33 shows that the
optimal admissible throughput decreases when k . increases, as is certainly expected.

47The blocking probability of a circuit can be high (relative to the specified QoS constraint value) even when the offered load to it is
zero. The blocking probability for circuitj is the probability that the network is in a state in which a call to circuitj would be blocked,
should it arrive.
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Fig. 33- Maximum throughput achievable on Networks 1, 2, and 3

when each circuit is guaranteed an offered load of at least )~,

For example, consider first the case of Qj = 0.001. Beginning at about Xmi = 0.1, Network 1 at first
experiences a gradual perceptible decrease in admissible throughput as X . is increased. However, at =

0.23 the decrease in throughput becomes precipitous, and the largest value of Xm. for which an admissible
solution can be found is about 0.234; the curve stops at this point. This value of X . is equal to the value
obtained by assuming that all of the X. are equal, and solving for the largest value of X. that provides an
admissible solution. Network 2 is not perceptibly affected by the X constraint until X = 0.23; similarly,
Network 3 is not affected until X. = 0.25. The relative insensitivity of Networks 2 and 3 to X is a
consequence of the more nearly symmetrical nature of these networks, as is evidenced by the more nearly
equal values of the XK's at the optimal point.

Results are qualitatively similar when Qj = 0.3, although the effects of X,,. are felt at values of X . that
are a smaller fraction of the maximum value it can take on. For example, when each of the circuits is
guaranteed an offered load of at least X = 0.5, the new optimal throughput value decreases, from its
previous optimal value of 11.538 (when Xi =0) to 11.24.48 Whether or not the decrease in overall through-
put, for the sake of providing each of the users a guaranteed level of offered load, is an acceptable tradeoff is,
of course, the decision of the network designer/manager.

4 8 The largest value of Xn for which the QoS constraint can be satisfied is 1.268.
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12.3 An Upper-Bounded Offered Load on Each Circuit

Alternatively, fairness can be implemented by imposing an upper limit Xmax on the offered load permit-
ted to each circuit. By doing so, individual circuits are prevented from grabbing an excessive amount of
system resources. Figure 34 shows the effect on throughput of imposing this constraint for the same ex-
amples considered in Section 12.2. When X is sufficiently large, its imposition has no impact on through-
put.

When the value of Xmax is lowered, the overall throughput is decreased. However, the impact on fairness
is more difficult to assess, because individual circuits are not guaranteed a specified level of offered load.
Figure 35 shows the smallest value of the X.'s that results from the imposition of the m, constraint for Qj =
0.001 and 0.3. When X is large, the smallest value of X. is the same as that for the case in which no bounds
are placed on any of the offered loads. As X decreases, the smallest value of X. increases, thus providing
a more-equitable distribution of offered load to the circuits. However, because use of the Xmax constraint has
only an indirect effect on the offered loads of the "deprived" circuits, it is felt that use of the X . criterion ofS e c t i o n 1 2 . 2 i s a b e t t e c hm m
Section 12.2 is a better choice.
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13. RELATIONSHIPS BETWEEN ADMISSION CONTROL AND
OPTIMIZATION OF OFFERED LOAD

We pointed out in Section 1 that network performance depends strongly on the highly interdependent
issues of admission control, routing, offered load, and channel access. We have focused on the optimization
of offered load under fixed admission control and routing schemes. In this section we address the impact of
admission control on achievable throughput as well as on the performance of our optimization algorithm.

Most of our examples have addressed the case of T. = 6 (i.e., six transceivers at each node) and X. = 4
(i.e., at most four active calls permitted on any circuit). Had we set X. = T. = 6, the resulting system would be
an "uncontrolled" network, in which all calls would be accepted as long as network resources (i.e., trans-
ceivers) are available to service them; this form of admission control is often referred to as complete sharing
(see Section 2.1). As X. is lowered further, the admission-control policy approaches that of complete parti-
tioning.

We first address the impact of the imposition of admission control (i.e., setting X. < T) on achievable
throughput. Table 17 shows the benchmark throughput values for Network 1 with T. = 6 for X. = 3, 4, and 6.
Results for Qj = 0.001 and 0.3 are shown. For Qj = 0.3, there is little difference in benchmark throughput as
X. is varied from 3 to 6 (an increase of only 2.4% as it is increased from 3 to 4, and only 0.66% as it is
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Table 17- Benchmark Throughput
Values for Network 1 with T. = 6

Qj= 0.001 Qj=0. 3

X.= 3 1.8391 11.2686

X. = 4 2.6645 11.5380

X.=6 2.9095 11.6147

increased from 4 to 6). However, the increase is much more substantial for Q = 0.001 (where the increases
are 44.9% and 9.2%, respectively).

Next, we address the convergence properties of the 18 versions of our optimization algorithm. A mile-
stone table for the case of X. = 6 and Q. = 0.001 is shown in Table 18, and an offered-load table is shown in
Table 19. The most striking feature of the milestone table is that there is a great deal more variation in
performance than for the case of X. = 4. For example, only seven versions of the algorithm reached the
99.9% milestone, in contrast to all 18 when X. = 4. In fact, three versions failed to reach even the 98%

J
milestone. It is apparent from Table 18 that Stepsize Rule 4 is too aggressive for this example. The differ-
ences in achieved throughput among the other stepsize rules are not as dramatic.

Tables 20 and 21 provide results for the same network example, but with Q. = 0.3. Again, there is a great
deal more variation in performance than for the cases of X. = 4 and X. = 3; e.g., only Version 2.4 reached the
99.9% milestone, and only eight versions reached the 99% milestone. In fact, the throughput found by only
seven of the 18 versions was as high as the benchmark throughput level for the case of X. = 4. By contrast,
for the same problem with X. = 4 (see Table 4) 13 versions of the algorithm reached the 99.9% milestone.
For X. = 3, all 18 versions reached the 99.9% milestone.

3

A comparison of the performance of the algorithm for different values of X. raises the question of why
the uncontrolled system typically seems to offer more resistance to our algorithm than a controlled one.49

Some insight into this question is provided by Table 19, which shows the offered loads and normalized
blocking probabilities for the versions of the algorithm that provide the highest and lowest throughput for
Network 1 with X. = T = 6 and Qj = 0.001. These results should be compared with those shown in Table 7 for
the case of X. = 4 and T = 6. Perhaps the most striking observation from Table 19 is that the optimal set of
offered loads is much more asymmetrical than in the case of X. = 4. For example, two of the offered-load
values in the best solution are more than twice the value of the maximum offered load for the best solution
when X. = 4. The presence of these high values of offered load naturally forces some of the other offered
loads to decrease significantly. In fact, the best solution for the uncontrolled system includes four underloaded
circuits, whereas the minimum offered-load value in the best solution for X. = 4 is 0.0123 and all other loads
are much higher (see Table 7).

Apparently, the use of higher values of X. results in a larger Erlang capacity region (see Section 3), and
hence the possibility of more-extreme values for the offered loads. Note that two of the normalized blocking
probabilities in the best solution are significantly lower than any of those observed for X. = 4. Thus the
solution is also more extreme by this criterion as well. To perform a reliable search of this larger region, the
use of conservative stepsize rules appears to be appropriate.

4 9 Similar results were observed for the case of Network 1 with Xj = T = 4 for QoS = 0.3; e.g., only two versions reached the 99.9%

milestone, four reached the 99.5% milestone, eight reached the 99% milestone, and all 18 reached at least 98.6% of the benchmark
throughput. For QoS = 0.001, eight reached the 99% milestone, 12 reached the 98% milestone, and all provided at least 96.75% of

the benchmark throughput.
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Table 18- Milestone Table for Network 1 with T = 6, X. = 6,
and Qj = 0.001 (benchmark throughput: 2.9095)

algo adm thruput best adm last adm 95.0% 98.0% 99.0% 99.5% 99.9%
at first exit thruput thruput

1.0 4 990 997 450 521 638 672 820
61.86% 99.99% 99.98%

1.1 8 988 1000 380 499 595 654 739
. 76.13% 100.00% 99.99%

1.2 15 980 1000 148 233 614 694 783
89.84% 100.00% 99.98%

2.0 4 995 999 165 375 565 631
61.86% 99.89% 99.88%

2.1 8 974 1000 250 408 509 543 752
76.13% 99.99% 99.98%

2.2 15 966 1000 292 418 541 605 876
89.84% 99.97% 99.96%

2.3 9 957 999 210 459 519 738
80.97% 99.69% 99.68%

2.4 15 997 1000 174 393 484 563 815
89.84% 99.99% 99.98%

3.0 4 991 1000 279 347 407 473 793

61.71% 99.96% 99.96%

3.1 8 991 999 219 357 412 470
75.68% 99.64% 99.64%

3.2 15 945 998 109 300 394 440
88.49% 99.85% 99.84%

3.3 9 999 999 224 345 580
80.38% 99.11% 99.11%

3.4 15 995 1000 109 300 367 538
88.49% 99.81% 99.80%

4.0 4 995 999 148
61.86% 97.54% 97.53%

4.1 8 982 999 165
76.13% 97.50% 97.49%

15 978 1000 144 729
4.2 89.84% 98.03% 98.02%

9 936 999 173
80.97% 97.32% 97.32%

4.4 15 995 1000 127 570

89.84% 98.15% 98.14% ___

Table 19 - Offered-Load Table for Network 1 with T = 6, X. = 6,
and Qj = 0.001 (benchmark throughput: 2.9095)

X, X2. X X4 p6 X X3 X9 Xl S
______ P1 P2 P 3 P4 P 5 P6 P., P 8 P 9 P10 ___

0.7484 0.9218 0.0001 0.1269 0.1269 0.0001 0.8835 0.0000 0.0001 0.1038 2.9095
best 0.5160 0.5800 1.0000 1.0000 1.0000 1.0000 0.9500 1.0000 0.9990 0.9990

0.5227 0.5955 0.2602 0.1088 0.3148 0.0001 0.6645 0.0001 0.2458 0.1214 2.8315
worst 0.7650 0.7430 0.9980 0.8610 0.7850 1.0000 1.0000 1.0000 0.9180 0.8570 97.32%
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Table 20-Milestone Table for Network 1 with T = 6, X. = 6, and = 0.3

(benchmark throughput: 11.6147)

adm thruput best adm last adm 95.0% 98.0% 99.0% 99.5% 99.9%
algo at first exit thruput thruput
1.0 4 985 1000 217 562 677

83.77% 99.15% 99.15%
1.1 6 971 998 414 729

84.18% 98.09% 98.09%
1.2 57 969 1000 51 510 564 696

96.36% 99.81% 99.80%

2.0 4 979 1000 110 409
83.77% 98.92% 98.91%

2.1 6 983 997 105 463
84.18% 98.34% 98.34%

2.2 57 974 1000 51 429 570
96.36% 99.47% 99.46%

2.3 7 998 1000 48 463
86.76% 98.51% 98.50%

2.4 57 987 999 51 145 501 532 719
96.36% 100.00% 100.00%

3.0 4 982 999 45 354
83.70% 98.72% 98.72%

3.1 6 997 1000 66 392
84.04% 98.37% 98.37%

3.2 61 981 1000 54 294 376 446
96.27% 99.81% 99.80% .

3.3 7 996 1000 34 382
86.59% 98.35% 98.34%

3.4 61 978 1000 54 294 358 488
96.27% 99.78% 99.78%

4.0 4 999 999 105 348
83.77% 98.18% 98.18%

4.1 6 985 999
_____ 84.18% 98.05% 98.04% 125 517

4.2 57 998 1000 51 203 658
96.36% 99.06% 99.06%

4.3 7 980 998 48 361
86.76% 99.09% 98.09%

4.4 57 986 1000 51 140 343

______ 96.36% 99.47% 99.46% _____

Table 21 - Offered-Load Table for Network 1
and Qj = 0.3 (benchmark throughput:

with Ti = 6, X. = 6,
11.6147)

A
1

A
2

A
3

4 A
5

A
6 7

A
8

A
9

A1
0

S

'_____ P, P2 P3 P4 P 5 P6 P7 P 8 P9 P10 _

3.5162 4.1701 0.4680 0.6934 0.8057 0.0008 4.9307 0.0004 0.3725 0.6030 11.6147
best 0.6788 0.7253 0.9993 0.9999 0.8812 0.9998 0.9999 0.9999 0.9068 0.9993

worst 1.9072 1.9925 2.2631 0.8009 2.2658 0.0002 3.1314 0.0000 2.2627 0.9671 11.3879
0.8124 0.7604 0.9998 0.8599 0.7872 1.0000 1.0000 0.9999 0.9996 0.8450 98.05%

Throughput Maximization under QoS Constraints 83



84 Wieselthier Nguyen, and Ephremides- 

Another complicating factor is the irregular nature of the QoS constraint contours (since the blocking
probability is a complicated function of all the offered load values). It appears that, for some network
examples, the admissible throughput may be a multimodal function of the offered load values; thus, the
solution may be trapped in one of several local maxima that arise because of the QoS constraints. However,
the depth of these local maxima (if they do, indeed, exist) does not appear to be great because little differ-
ence is typically observed among the various versions of the optimization algorithm. Another possible
explanation for the inability of some versions to converge to the optimal solution is that for some problem
instances5' our algorithm may not be robust with respect to the choice of system parameters. This could
possibly result in failure to converge to the optimal point even when the throughput is a unimodal function of
the offered loads. Because of the limited number of iterations (1000 in most of our examples), as well as the
large number of dimensions (8 or 10 offered load values), it is not surprising that the true optimal point is not
always reached.

13.1 Discussion

We have observed that, for large values of the QoS constraint parameter, there is little difference in
throughput between uncontrolled systems (i.e., systems for which calls are admitted as long as resources are
available) and only "slightly" controlled systems (i.e., systems in which X. is only slightly smaller than T).
At lower QoS values, by contrast, the degree of improvement in throughput achievable by using an uncon-
trolled system can be significant.

We have also observed that our algorithm tends to be less robust for uncontrolled systems than for
controlled systems, in the sense that the choice of stepsize rule and projection rule are more critical in such
cases. Apparently, the reason for this reduced robustness is the more-extreme nature of the optimal solution,
which results in a larger Erlang capacity region, and hence in a larger space to search. Thus, the optimal
solution can take on more-extreme values, and it is more likely to include blocking probabilities that are
substantially smaller than the maximum permitted value (i.e., the QoS constraint value).

Despite the added difficulties associated with uncontrolled systems, the algorithm continues to perform
well. However, some guidelines emerge from the observations made in this section. Perhaps our most
important recommendation, based primarily on the case of Qj = 0.001, is that the use of relatively conserva-
tive stepsize rules is to be preferred for uncontrolled systems. The particular projection rule makes relatively
little difference for this QoS value; Version 3.3 is the only version among the first three stepsize rules that
failed to reach the 99.5% milestone. For Q = 0.3, we observed that all of the X.2 and X.4 versions reached
at least the 99% milestone, 5 ' indicating a high level of robustness for these versions. Taking into consider-
ation the results presented in this section for the two QoS values, it appears that use of a conservative
stepsize rule (any of the first three would be acceptable, although Rule 1 may be overly conservative),
coupled with Projection Rules 2 or 4, would be appropriate for most applications.

Although in the X. = 6, T = 6 case it has not been possible to achieve the uniformly high level of
performance achieved for the X = 4, T. = 6 case, we consider our results to be quite acceptable, considering
the difficulty of the problem. In both cases, a search of limited duration (in our case, a self-imposed limita-
tion of 1000 iterations) must be performed over 10 highly dependent variables, subject to 10 nonlinear
constraints. When X. is increased from 4 to 6, the admissible search space (the Erlang capacity region) in the

J.
offered-load domain increases significantly even though the admissible state space (in the domain of active
calls) increases by only 6.7% (from 284,115 to 303,248). We believe that it should be possible to develop
stepsize rules (possibly requiring a larger number of iterations) that, when used with Projection Rules 2
and/or 4 (or similar), would result in more-reliable convergence to possibly higher values of admissible
throughput. However, it is questionable as to whether the additional effort required would be worth the
expected small increase in throughput.

5 0Such as those in which not all blocking probabilities are close to the QoS value.
5 1This was also true for the case of X = T. = 4 for QoS = 0.3.
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We observed above that the solutions for X. = T = 6 (see Tables 19 and 21) include some values of
offered load that are considerably higher than those for the X. = 4, T = 6 case (see Table 7). A consequence
of the higher offered load values is a decrease in the level of fairness, which was discussed in Section 12. In
particular, in Section 12.3 we discussed the impact of placing an upper bound on the offered-load values.
The effect of reducing X. from 6 to 4 appears to be similar to that of setting a maximum permitted value on

J
the offered loads.

14. SUMMARY AND CONCLUSIONS

In this study, we have investigated the optimization of offered load in multihop, circuit-switched net-
works. The goal here has been to provide the maximum possible throughput, subject to constraints on
blocking probability. Although the examples in this report are based on wireless networks, our techniques
are equally applicable to "wired" networks. In addition to providing improved performance, the techniques
presented in this report are useful for "sizing" a network's capability, and thereby providing a measure of
"network capacity." Our techniques provide a valuable new network evaluation tool because it is generally
difficult to estimate the traffic loads (or the resulting throughput) that a network can support.

The problem we have investigated is characterized by a nonlinear objective function and nonlinear
constraints. In most of our examples we have sought the optimization of offered load on eight or 10 circuits,
subject to the same number of constraints on circuit blocking probabilities. Thus, we have addressed a
difficult multidimensional optimization problem. In problems such as these, the available mathematical
theory provides the basic principles for solution, but no guarantee of convergence to the optimal point.

In product-form circuit-switched networks, it appears that throughput is a reasonably well-behaved
function of offered load, and is thus amenable to Lagrangian optimization techniques. The circuit blocking
probability, however, (in examples where the QoS constraint is based on the maximum blocking probability
among the individual circuits in the network, which is the case considered in most of this report) is charac-
terized by irregularly shaped contours of the admissible region.52 Thus, the Lagrangian methods require
modifications that permit them to bypass sharp edges during the search.53 It is well known that constrained
optimization problems can be challenging, and that the convergence of iterative algorithms to an optimal
solution in such problems can be slow unless the algorithm's parameters (most importantly, stepsize) are
chosen carefully. As in many studies of optimization problems, we have observed that a relatively large
stepsize is useful at the early stages of the search so that sufficient progress is made toward the optimal
solution, and that damping is useful to reduce the incidence of oscillations as the optimal solution is ap-
proached. Furthermore, we have developed a heuristic "projection" technique that guides the search more
directly toward the optimal solution, thereby resulting in faster and more-reliable convergence. This tech-
nique is based on gradient information that is available at each step of the search.

A high degree of robustness with respect to parameter values has been observed, in the sense that little
experimentation with parameter values was needed for network examples with widely differing characteris-
tics. Good results were obtained when using the same parameter values in a variety of applications. The
algorithm incorporates a mechanism to choose the initial stepsize and to adjust the relative weights of the
throughput-gradient term and the constraint-violation terms, thus permitting adaptability at the time of ex-
ecution. It would be useful to develop a mechanism to adaptively choose the stepsize damping rule and
projection rule (perhaps based on artificial-intelligence- or neural-network-based techniques) with the goal
of speeding up convergence while further increasing the reliability of achieving the optimal solution, but this
is beyond the scope of the present effort.

52These irregularly shaped contours result from the dependence of the blocking probability of any individual circuit on several
(possibly all) of the offered loads, and the fact that the identity of the circuit with the largest offered load changes as the offered load
varies.
53When the QoS constraint is based on the average blocking probability, blocking probability is well behaved, and such difficulties
are not encountered.
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We have observed that throughput is generally a "flat" function of the offered loads near the optimal
point, in the sense that the region of offered-load vectors that produce nearly optimal throughput (e.g., 95%,
98%, or even 99% of the benchmark throughput value) can be large. Thus, offered-load vectors that differ
greatly from each other can often provide nearly identical overall throughput. Therefore, nearly optimal
performance can be obtained even when the offered loads are not close to their optimal values.

The problem becomes considerably simpler when an alternative form of the QoS constraint is used, in
which the average blocking probability Pa, (rather than the largest individual circuit blocking probability
Pmax) must not exceed a specified value. We have shown that convergence to the optimal solution is rapid and
robust under the P form of the QoS constraint. Furthermore, in some cases, the solution based on the Pav av
form of the QoS constraint is similar to that based on the P form of the constraint.54 In such cases, the P

max av
solution can provide a good initial condition for the original problem based on the P form of the QoSmax
constraint. The choice of the form of the QoS constraint (i.e., P . vs P ) to be used in practical applicationsma av)

would be made by the network manager.

The significance of the problem we have studied and the value of our solution method lie in the need to
assess the network's ability to provide high throughput under strict QoS constraints. A quick overall estima-
tion of the network's capability is usually referred to as "sizing," and is of crucial importance for trading off
communication volume against quality. It provides a useful benchmark for making further studies into
questions of fairness with respect to the different customer classes (i.e., the different circuits) and into ques-
tions of "pricing" the offered services. In commercial networks it is important for the service provider to
know the maximum achievable network throughput subject to QoS constraints in order to "price" the service
to the customer classes sensibly and profitably. In military networks the same is true, except that the notion
of pricing should be interpreted as a tool for prioritizing service in relation to the needs of the application and
to the general operations doctrine.

Our method permits the network designer or network operator to quickly make a fairly accurate sizing
estimate. As the stopping rule tables in Section 8.3 and Appendixes A and B indicate, it is only necessary to
set a predetermined acceptable value to the maximum number of iterations (which follows from the avail-
able computing power and the available time limitations) and to what constitutes satisfactory indication of
convergence (the value of 3 in Section 8.3). Thus the algorithm is armed with a flexible stopping criterion,
and permits routine experimentation with different QoS values.

In conclusion, we consider this work to have led to the development and evaluation of a useful tool for
addressing some subtle aspects of overall network design.
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Appendix A

TABLES FOR THE CORE RUNS

Tables summarizing the behavior of several of the core runs were included in the body of this report.
This appendix contains tables for the others. These tables provide a great deal of insight into the behavior of
the various versions of the optimization algorithm. Three types of tables are shown.

"Milestone" tables (described in Section 8.2) indicate the number of iterations required by each version
of the algorithm to reach specified percentages of the benchmark throughput value for each network example.
Other useful information in the milestone tables includes the percentage of benchmark throughput obtained
before exiting the admissible region for the first time and the percentage of the benchmark throughput
obtained at the best point of each run.

"Offered-load" tables (described in Section 8.4) show the offered loads and normalized blocking
probabilities for the best version of the algorithm (i.e., the version that provides the highest throughput) and
the worst version (the version that provides the lowest throughput). These tables show the variation among
the offered loads in the best and worst solutions, as well as the closeness with which the blocking probabilities
on each circuit approach the maximum permitted QoS value. The rightmost column shows the throughput
achieved by the best and worst versions of the algorithm, along with the percentage of benchmark throughput
achieved by the worst solution.

"Stopping-rule" tables (described in Section 8.3) show the percentage of benchmark throughput that
would be achieved under the 18 versions of the algorithm when the search is stopped based on the satisfaction
of a convergence criterion, rather than after a fixed number (in our case 1000) of iterations.
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Throughput Maximization under QoS Constraints
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APPENDIX B

Tables for Runs with > 0

This appendix consists of milestone tables, offered-load tables, and stopping-rule tables for three ex-
amples in which each of the circuits is guaranteed an offered-load of at least Xmm* These tables are discussed
in Section 9.1.

99



_ _ ~ 00 C' 00 vl N R0 S N CA '0 __C Y In n _ _ 00
o~~~~~~~r w "I W cr8 A oo oco )o>o o yu oXo oc oo oc o

-c CA g N C" - C N CA % N , N C 0 M 
01 m m.voo-o mo N a, ao (3., .FN.m m M4 m o i a, " m,, m. a, m a, w m

1 00 5C N ' Cw a, w o a a m C a o a o a N c Co a oa - v c so

o o - oono N o s o a > N~o N- n - WI a, '. In 0 In
0l ' N o N 00 N - o oo N 0 00 0 N 0%

%0 00 N 00 C" 00 t '.0 '.0 0000 _.0 00 C. 00000000000 I ° N 0 I -N 01 - 00 N 00 00

_A _% C _ _% _ _% - _% oo t -I0 %- %e.0 e". -I -I -I N1 0-%%0-%C%-

o c" :o a; o m S t., , o. 0 a n Z N 0o qlo- a a. a, N a, 5 o o a18 0 r- a, r -m OC'a 0a , CO CS It o , t 'IT In Cl a, N 9 ;31 ' 1.O 100 |

No -rrs N1 - N1 N -I -1 N1 '.0 CAl 0o oCl Nl N1 o1z1

10 Ino soo 0l - N - 00 N '.0 - '.0 - - N

N- 6t1o 1 o o1ot1 o10NN1- -OO -NN-o cl -ONOOONNl m> C0N00N- >I- o!

% 1n C" , CA C" Ci w. 00 ". ° N C". 1e 1

1 10 1 1q.6M.1" 10 0 . 1O W 1 1 1 1 1 1 w'z = w w 
00 o . 0 '0 0000 I N 0000000000 0 0 N 0 N 000000000 o I 0 I N' I 000 0%

0 N I - C N 1 C '1 N I n 0 I N I InI

1'^ |t 1t l> 1^ 16 0> 1'° 1> |^ 1^ |~~~~~- ":- c- i- i>t' 

0t 1t 0% N> Nt Ne -> C". CA 0oq 00 0 N 0% C' -1

0 0 0 0 C 01 SMSa ,' ," C.0 0000000a,0 0000T N a N00 0000N0N a, N 0a, a

I 4 tl- - 0 N -

'.0 cn N l ' 0 r- I a,0 I f 0% C . r - N

I w Elcr (So 1 7 °' o n I 1 t l n w l wl Io n o Is ao 11 2'In 't 1 s "Iso N 1 °- 1

0 a 1 1 't1 a, a1 1 Ia a, a, a, I1 a,

I$90 - N1 19 - C". t° < 1 N, C'1 '0 101 > 1 -C IC" 1 °1 ^ 
CO s I- J..C ° - '1 jN l N 'l [N o C 'l. C 'l. j' l C". 6 CC'. jCCC C". '° 01 j ' >

0% CA 00 0%~~~~~~~~~~~~e 00 N-
0% N ~~~ ~ ~~~ ~~' Ca,

C ~~~~~-N

I ol I I I I~~~~al I r- I II 0- I ;I I 10 Cl I I 1 I r- I I I 0
I% 0% N N 00 CA '.0 II- 0 00 00% 00 In 0 '. - 1

I 0% 0- I- 0 -- 0% '.0 -e 1'.0 I

00 CA 0 0 '0 wCD A C DwC 00 '0 CD %0 CDC N, '.0 '.0 D C N C". CD.0 0% '.

C' 0 NT CA 0 N N N C 

CO a, ' IT 0 n n0 00 0 a,~0 o C".0

CO "'. N 0 w~ w '. 00 -00 -C C". N N N0! 0% 0% 00 00

0% 0% 0% 0% 0% 0% 0%0% 0% 0% - 0% 0% % 00 0% 0%0 %0 %0 0 %0 %0 % %0 %0 %0

EICO IC'? ~~~~~ ~~. ~~ ~ ~~'. "~o a, C' 0% C'q a,' F~ ro: a,

COC a,0N0 %'''00N0 %N0 %~0 0N0 NalNl ~ 0N0 % ' %-0

0

009 -~~~~~ N 9 -~~~0 aC' - 9 . C 9 Nc ".o
CO - - N N~~~~~~~c N n N "nC' C. CC. C" 

100 Wieselthier, Nguyen, and Ephremides

4!
Cu

Cl

E*

.2

0t
C)

00
110

M

c)

-o

Z.;

Ts

c1,

to

0

I
6

Il

'0
n

3
II0

C-~

0.
11

CH
P<'<

Z<<<

,Zc0

>C0Z

_V< 92,

BZg<<

-C0

s C0N

N00

e.

> N

CN

00 ~

0% N

C 0

l-0
N 00

n a,

00

0 CA

n 0

- 0

a o
-

IN0
I C" 05 
0% 0

- N
- o0

NN

CD. 

cqa,

-0

N 0%

0

r- 0%

C 0%

0 -

a 0%

CD

N 

C" 0

NN

00
Ns0
000
0 0
'CC,

Ns 0

-0c

N N
-0

0o

.)
.0

C)
E-

Cu

0Cl)
C)

Cu

C)

.0
CZ

0

I0

0
.0



Throughput Maximization under QoS Constraints
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