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POLARIZATION CHARACTERISTICS OF COHERENT WAVES 
 
 

1. VISUALIZATION AND REPRESENTATION 

Every polarized wave – linear, circular, or elliptical – can be visualized as combinations of two 
constant E-field amplitudes, one rotating clockwise, the other counter-clockwise. Each rotates at a 
constant angular velocity f) and propagates at the speed of light within its medium. If the 
amplitude of one is zero, then the “combined” polarization is defined by IEEE convention as right circular 
if it rotates clockwise wave when propagating away from an observer and left circular if propagating 
toward an observer. Combinations of unequal rotating pairs each with a constant phase difference  or 
time difference (=) then defines all possible polarization states. In this context, circularly and linearly 
polarized waves are special cases of elliptically polarized waves that are defined by three independent, 
physically measurable parameters: axial ratio, direction of rotation and major (or minor) axis orientation. 
Implicit in this characterization is a reference coordinate system, typically Cartesian coordinates using a 
right-hand rectilinear system. Then the E-field vector for a vertically polarized wave can be in the X-O-Z 
plane as illustrated in Fig. 1(a), assuming OX is the vertical direction. Using the same coordinate system, 
the E-field vector of a right circularly polarized wave would appear as illustrated in Fig. 1(b).  

 
Of course, combinations of pairs of circularly polarized components are not the only way a polarized 

wave can be represented or described.  Advantageously the wave would be resolved into a pair of 
orthogonal components; right and left circular as described above. But the two amplitudes and the relative 
phase between them could also be a pair of vertical and horizontal polarized components, or any 
angularly rotated linear pair. One could envision a pair of orthogonal elliptically polarized components, or 
even a nonorthogonal pair. Control of their amplitudes and phases then defines the polarization state. But 
regardless of the pair used, they provide the basis components for wave description needed for further 
analyses, described by Rumsey, Deschamps, Kales, and Bonhert [1]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  

λ 

X

Y
Z

Fig. 1 – Rectangular coordinate linear (a) and circularly polarized (b) waves and their associated wavelength  
periodicity.   is the wavelength in the propagating medium. 
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Z 

The relationship among observable parameters and the direction of propagation is further illustrated 
in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

For the circular basis representation, the E-field right and left circular components rotate oppositely at 
the same angular velocity of  (2f) radians per second, but with different amplitudes and a relative 
phase difference during the RF cycle. The waves spiral away along the “Z” axis, and for an observer 
behind the source, the right circular polarization (RCP) component rotates clockwise, and the left circular 
polarization (LCP) component rotates counterclockwise. But to an observer somewhere along the Z- axis 
and looking back toward the coordinate origin of the source, the rotation directions are reversed; RCP 
then rotates counterclockwise; LCP rotates clockwise.  
 

 Figures 3(a) and 3(b) represent two pairs of unequal amplitude, oppositely rotating circularly 
polarized waves viewed from behind the source. With equal phase between the waves initially aligned 
along the X-axis, the combination will always align along the X-axis. Assuming OX is a vertical axis, the 
polarization is purely vertical if VR = VL and a vertically oriented elliptical polarization when they are 
unequal, as illustrated in Fig. 3(a). But if the waves are in-phase along the Y-axis, the combined 
polarizations will always be horizontally oriented, assuming OY corresponds to a horizontal axis, as in 
Fig. 3(b). Other alignments result when their phase difference is other than 0 or , as illustrated in Fig. 
4(a). But the locus of the total field vector by combining RCP and LCP fields with equal amplitudes will 
always be purely linear with an orientation represented by . With unequal amplitudes, the rotation rate of 
the combined field vector varies during a cycle, but is unidirectional. Within a plane, the locus of this 
vector is an ellipse with an axial ratio of Emax/Emin oriented about the maximum field during rotation, as 
illustrated in Fig. 4(b). The results of the analysis in Section 2.3 show that  is just half of this difference. 
This representation is conceptually simple; the combined rotation (rotational sense) is the larger of the 
two components while the orientation of the major axis, whether representing linear or elliptical waves, is 
solely determined by their phase difference.  
 
 

Fig. 2 – IEEE defines the rotational sense and the clockwise tilt angle from a reference direction, shown vertical, for a 
polarized wave looking in the propagating direction. The receiver (blue) observes a counter-clockwise tilt and an 
oppositely rotating wave. 

SOURCE 

OBSERVER 
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Accurate control of polarization is important in radar, electronic warfare, and communication. 
Efficient radar target detection is generally described in terms of matched transmit and received target 
polarization characteristics. Cross-polarization represents an unwanted loss and in tracking systems it can 
introduce errors. The effectiveness of electronic countermeasures (ECM) usually requires matching the 
attacker’s characteristics. Maintaining a high axial ratio or the equivalent ratio of one sense with respect 
to the other is particularly important in SATCOM, where simultaneous use of RCP and LCP can enable 
two independent communication channels to occupy the same spectral space. In effect, sufficient 
separation between orthogonal components adds an independent polarization dimension to the available 
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Fig. 3 – Rotating unequal components; vertically oriented elliptical polarization with 0º (a) and horizontal oriented elliptical with 
180º phase difference (b) between the circular components. Axes origin corresponds to the OZ axis in Fig. 2. 

4b 

Fig. 4 – Phase difference between the two unequal circular components defines, theorientation of the major ellipse axis. 
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spectral space. Often termed “frequency reuse,” its utility requires substantial isolation, sometimes as 
much as 40 dB to prevent cross-talk between the two circularly polarized channels.  
 

Representing the amplitudes of the right and left circularly polarized E-field components by RE  and 

LE , the maximum and minimum of their combined fields are LR EE  and LR EE  . The ratio of these 
then defines the “ellipticity,” irrespective of its orientation: 
 

 LR

LR

EE

EE

E

E





min

max .                                          (1) 

 
The ratio of the circular components, characterized as the axial-ratio, is then 

 

     minmax

minmax

1

1

EE

EE

E

E

L

R





 .  (2) 

 
Figure 5 illustrates the decibel ratio of the circular components, LRdB EEAR log20 , in terms of 

the axial ratio, minmax EE , which is also expressed in decibels. The figure illustrates the nearly circular 

polarization that may be required. An axial ratio of 1 dB, defined by the relationship  ARARdB log20 , 

appears nearly circular, but only represents a circular cross-polarization isolation of about 25 dB. 
Measures of cross-polarization depend on the polarization bases and therefore are not specific to pairs of 
circularly polarized waves. Frequently, the cross-polarization for the vertical and horizontal components 
may used when the dominant system associated component is polarized along one of these directions. 
Circular polarization was chosen in connection with SATCOM because it is immune from Faraday 
magneto-optical field rotational effects; therefore, axial ratio is an appropriate measure of polarization 
purity.  

2. GENERALIZED EW WAVE REPRESENTATION 

Arbitrarily polarized waves are conveniently represented in terms of a pair of basis vectors. Although 
the X (vertical) and Y (horizontal) linear basis are most frequently used, the circular basis enables a 
comparatively easy understanding of the general characteristics of polarized waves. In this section, the 
analysis is extended using pairs of orthonormal vectors, i.e., the basis vectors are pair-wise orthogonal 
and each of unit length. To generalize this further, these unit vectors and the associated scalar parameters 
can also be complex.  
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2.1 Basis, Real and Complex Polarization Vectors and Scalar Components 

 
The E-field vector during an RF cycle is conveniently represented by the scalar parameters of an 

appropriate unit vector basis. Numerous differing vector bases, each spanning the polarization space, can 
and are used. Among many possibilities are the two linear bases: a vertical and horizontal pair, and a pair 
slanted 45º and 135º with respect to the vertical, and the clockwise and counterclockwise circular basis, 
illustrated in Section 1. But regardless of the basis used, the combined E-field vector (which defines 
polarization in electromagnetic problems, as contrasted with that used in optics) equivalence must connect 
the representation in different basis. 

 
For a selected basis pair, polarization is defined in terms of projections, i.e., components, of the field 

along a pair of unit amplitude reference vectors 1̂e  and 2ê : 

 

     .ˆˆˆˆˆˆ 22112211 eEeEeeEeeEE  


 (3) 
 
The dot products   1̂eE


 and   2êE


 are the complex scalars that define the projection of the E-field 

vector onto the pair of complex base vector fields, 1̂e  and 2ê , simply the components of the vector in the 
unit vector directions. For orthonormal basis vectors, two conditions must be fulfilled: 

 

Fig. 5 – Circularity and representation of cross-polarization ratio and axial ratio 
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                              0ˆˆˆˆ 2
*
1

*
21  eeee  and      1ˆˆ,1ˆˆ *

22
*
11  eeee .  (4) 

 
This expression defines the two unit length vectors, 21 ˆ,ˆ ee , which are also orthogonal.  

 
In the familiar vertical and horizontal component pair,    HVYX eeee ˆ,ˆˆ,ˆ  , illustrated in the right-hand 

coordinate system shown in Fig. 1, each is a real unit vector. Their components, each with some 
amplitude and phase, then form complex scalars. For example, the time-dependent complex scalar form 
of an arbitrarily polarized wave propagating in the +Z direction, i.e., away from an observer, can be 
represented in terms of these unit vectors: 
 

    YYYXXX ztEeztEeE   cosˆcosˆ


.  (5) 
  

 2  and YX  , characterize the phase relationships of the two components, where the equivalent 
polar form is 
 

 
    YX ztj

YY
ztj

XX EeEeE     ˆˆ


.  (6)  
 
Since only the phase difference between these components is significant, using YX    this can be 
written as  
                        

       Ztjj
YYXX EeEeE    ˆˆ



.  (7)  
 
Of particular significance is the result with 1 YX EE  and 2  :  

 

    ztezteE YX   sinˆcosˆ 


. (8)  
 
Within any plane Z, the temporal characteristics are those of a unit length vector rotating clockwise if  = 
+/2 and counterclockwise if  = -/2. Furthermore, in this representation, the polarized wave is 
traveling in the +Z direction and away from an observer in the right-hand coordinate system illustrated in 
Fig. 1.  Following IEEE convention, the rotational sense of a clockwise rotating wave, in the propagating 
direction, i.e., away from an observer, is right circular, and left circular with counterclockwise rotation, as 
illustrated in Fig. 2. In terms of the function exp(t-z) from Eq. (7), unit vectors and their associated 
scalar components define the circular-to-linear basis equivalence. Right and left circular polarized unit 
vectors are therefore 

 
 YXR ejee ˆˆ

2

1
ˆ 

 (9a) 
and 

 
 YXL ejee ˆˆ

2

1
ˆ 

. (9b) 
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In these equations, the “+” exponent denotes propagation away from an observer, and the 21 factor 
accounts for the difference between the magnitude of the time-dependent rotating vector and its averaged 
value during one rotational period.1  
 

For an arbitrary polarized wave, the RCP and LCP equivalent components are  
 

  YXRR ejeEeEE ˆˆ
2

1
ˆ* 


 (10a) 

and 

 
 YXLL ejeEeEE ˆˆ

2

1
ˆ* 



.  (10b) 
 
The matrix form describing the relationships of the scalar components is then 
 

 



































Y

X

L

R

E

E

j

j

E

E

1

1

2

1

.  (11) 
 
For example, the linearly polarized components of a purely vertically polarized wave of unit amplitude is 

expressed   0,1, 
YX EE . Then, the circularly polarized components     1,121, 

LR EE , also with 

a unity combined amplitude. For a horizontally polarized wave of unit amplitude,    1,0, 
YX EE , or

    jjEE LR  ,21, , again with unit amplitude, but with a 180°  phase difference between  the 
circular components. The inverse relationship describing the linearly polarized components from their 
circular component equivalents then simply involves a matrix inversion. Since the inverse of a complex 

matrix [T] is  *~
T , the X,Y components in terms of the circularly polarized components are 

 

 


































L

R

Y

X

E

E

jjE

E 11

2

1

.  (12) 
 

For wave components traveling toward an observer, also using the right-hand coordinates of Fig. 1, a 
reversal in one of the coordinate frames is required for their combination. For the pair of vertical and 
horizontal components  YX EE , , a simple sign reversal of the horizontal component is required.  

In terms of the scalar components matrix, this is accomplished by a conjugate operation. The total set 
of operations among these scalar components is then 

 

 

        YXLR EETEE ,, ,  (13) 

                                                 
1 The 21  factor actually takes into account the difference between the magnitude of the time-dependent rotating vector and 

its averaged (rms) value during one rotational cycle (NRL Memo Report M1474, Oct. 1963). 
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        LRYX EETEE ,, 1

, (14) 
 
 

         YXLR EETEE ,, *

,  (15) 
 

        LRYX EETEE ,
~

, , (16) 
 

where   










j

j
T

1

1

2

1
. (17) 

 
Each of these equations describes the relationship between the complex scalars in the linear and circular 
basis. In this context, the linear temporal form,   tE cos , would be written as previously described.  
 

Regardless of the changes in coordinate basis or propagating directions, the mathematical transform 
from one basis to another must leave the field vector unchanged. The matrix form of this transformation 
facilitates this conversion using a simple matrix transform that conserves the equivalent fields: 

 

 
     4,32,1 EME 

.  
 M  is a unitary matrix, so that,  
 

         IMMMM 
 ~1

, 
 

where  I  is the identity matrix (ones in the principal diagonal). For example: 

 

 

I
j

j

jj




























 10

01

1

1

2

111

2

1

.  (18)      

2.2 Geometric Characteristics of Linearly Polarized Waves 

 
Linear and circular polarized waves are characterized as special cases of general elliptically polarized 

waves, the parameters of which are important in polarization metrics. The polarization of signals radiated 
or received by an antenna is defined by the polarization of the antenna in the direction of interest. 
Although this may appear somewhat trivial, all antennas, whether simple horns, illuminated parabolas or 
phased arrays, exhibit polarization angular dependence, further motivating a better understanding within 
any system design.  

 
Some early measurements of a simple X-band rod antenna excited to radiate circular polarization in 

the axial direction are illustrated in Fig. 6 and show substantial variation in the measured off-axis 
polarization characteristics. Linearly polarized horns exhibit similar characteristics. The central axis beam 
may be linearly polarized, but away from its axis the single polarization radiator “acquires” a cross-
polarized component. For many applications this characteristic presents little difficulty, since only the 
main beam direction is important. But the directionality of phased arrays is the result of element signal 
weighting of the fixed constituent elements, each with wide angular coverage. Therefore, array element 
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off-axis polarization characteristics are relevant to overall antenna performance. Problems and solution 
approaches specific to phased arrays are described later in Section 5. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The parameters of any elliptically polarized wave can be described in terms of the locus of the 

sinusoidal field vector components in directions defined by the orthonormal vectors, xê and yê as a 

function of time for the wave traveling in the +Z direction. Within any X,Y plane, illustrated in Fig. 7, 
these are assumed:  
 

  XX tEx   cos  (19) 

  YY tEy   cos . (20) 
                                  
The total field,    YYYXXX tEetEeE   cosˆcosˆ


, is then readily visualized by the 

rotating vector Fig. 7. Polarization sense, i.e. right or left, is determined by the direction of the 
temporal variation of  shown here as the angle of the combined field vector relative to the X-Y 
axes, where YX EEr  :  
                                                

 

 
 Y

X

t

t
r







 

cos

cos
tan 1 .  (21) 

The rate of change of this angle is:  

Fig. 6 – Rod-antenna-polarization characteristics. The axial pure circularity is severely degraded near the first null. 
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      XY
YX ttr

r

dt

d 






 sin

coscos 222 .  (22)      

 
As a result, along the +Z direction, dtd is negative when Y>X, therefore clockwise rotation; right 

elliptical (or circular) polarization. Left elliptical (or circular) polarization results when Y<X, and thus 
counter-clockwise rotation. 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The clear distinction between circularly polarized and elliptically polarized waves of different axial 
ratios is illustrated by the change in rotation rates of the E-field vector from Eq. (22) and plotted in Fig. 8 
for various axial ratios. (These also correspond to the ratios of the orthogonal linearly polarized 
components, each with a 90º phase shift.) A constant rotation rate would correspond to a purely circularly 
polarized wave, while a nearly linearly polarized wave would show high, nearly discontinuous rotation 
rates during the RF cycle. As shown, the peak value of the -20 dB ratio scales beyond the ordinate scale to 
a value of 500 deg/s, within a short period, closer to that of a purely linearly polarized wave. For purely 
linearly polarized waves the field vector instantaneously changes so the ellipse is narrowed to a line, its 
polarization angle can be vertical, horizontal or any other depending on the component amplitudes, Ex and 
Ey. Circular and linear polarizations are then visualized as special cases of the general elliptically 
polarized wave. But in terms of the duality between linear and circularly polarized waves, the linear basis 
axial ratio of a wave polarized either mostly vertical or mostly horizontal will approach zero or infinity, 
but its circularly polarized equivalents, measured in a circular basis will be near unity.  

E
Y cos(t+

Y )

E
X
co

s(


t+
 X

)

Y

X
Z



Fig. 7 – Rotating E-field within one X-Y plane along the Z – axis 
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Except for purely circularly polarized waves, the angular velocity of the E-field varies during one 

period. But as is the case for circularly polarized waves, for a wave traveling away from an observer, the 
right elliptical polarization (REP) and left elliptical polarization (LEP) are respectively defined by 

   0 YX   or   0 YX  . (23) 

It is just the phase lead or lag of one of components of the rotating vector with respect to the 
other as depicted in Fig. 7, which defines the rotational direction, therefore the characterized 
sense. 

 

 

                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3 Elliptically Polarized Waves 

 
The pictorial character of polarized waves is best visualized in terms of the geometric trace of the 

rotating vector shown in Fig. 7. In general terms, this is an ellipse defined by axial ratio, major axis 
inclination and rotational sense.   The parameters of this ellipse are defined by the combined components 
and can be readily determined by a parametric solution in t of the “x” and “y” components of Eqs. (19) 
and (20). Equivalently, these are: 

 
 tbtax  sincos   (24a) 
and 
 tdtcy  sincos  ,  (24b) 
 
where              ,cos XXEa   ,sin XXEb   ,cos YYEc   .sin YYEd               (24c) 
  

Fig. 8 – Effect of linearly polarized components amplitude ratio on field rotation rate 
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
X 

Y Y' 

X' 

Equations (24a, 24b) can then be combined for the parametric solution in t: 
 

 .tan
bydx

aycx
t




  (25) 

 
Substituting the corresponding sine and cosine values into Eqs. (24a, 24b), combining terms in the 
variables, x and y, and representing the phase difference by     YX , the result is the familiar 
equation for an ellipse: 
 
  122  CyBxyAx ,   (26a)  

 

with 
 2sin

1

XE
A  ,  



2sin

cos2

YX EE
B


 ,  

 2sin

1

YE
C  .  (26b) 

 
If the coefficient 0B , the major and minor axes of the ellipse are aligned with an orthogonal pair of 
axes X'-Y', at an angle , from X-Y as illustrated in Fig. 9, since the components XE , YE were defined 

with respect to the X-Y axes. Their intercepts on these axes then define the axial ratio. If B=0, then  
and the axial ratio is defined with respect to the X-Y axes. From the figure, the relationship between two 
pairs of components, X'-Y' and X-Y is 

 

 




























y

x

y

x




cossin

sincos
,  (27a)                           

 
and the corresponding inverse relationship: 
 

 

















 









y

x

y

x




cossin

sincos
. (27b) 

 
For both of these equations,  is the inclination angle of the ellipse and can be derived from the temporal 
characteristics depicted in Fig. 9: 
 

 
 
  









 

YY

XX

tE

tE





ˆcos

ˆcos
tan 1 .  (28) 

   
 
 
 
 

Fig. 9 – General form of the ellipse defined by Eqs. (26a) and (26b) 

 
 
 
 



 
Polarization Characteristics of Coherent Waves  13 
 

 

 
The orientation of the ellipse about the rotated X', Y´ axes, found by substituting the values from Eq. 

(27b) into Eq. (26a) is then 
                                         
  122  YCXA ,  (29) 
in which  

      2sin2cos
2

1
BCACAA  ,  (30) 

      2sin2cos
2

1
BCACAC  , (31) 

with 
AC

B


2tan .  (32) 

 
In terms of the components, YX EE , and  

  cos
1

2
2tan

2 


r

r
,  (32a) 

where YX EEr  .  The ratio of the components along X' and Y' defines the axial ratio or 
ellipticity of the component wave: 
 

 
   
    


2sin2cos

2sin2cos

BCACA

BCACA

y

x















.  (33) 

 
Substituting the “A, B, C” values from Eq. (26b), the axial ratio2 is:  
 

    .  (34) 
   

The fact that the major and minor axes of the ellipse correspond to the time t̂  (or phase, t̂ ) when 
the total field vector is a maximum or a minimum, may also be used to define the relevant parameters, 
i.e., axial ratio, orientation and rotational sense. This interpretation further reinforces the concept that 
polarized waves, irrespective of their specific parameters, are characterized within a plane as a rotating 
vector. For a square of the field amplitude, V2, this is found by equating the derivative to zero: 
 

  
    

0
coscos 2222





dt

tEtEd

dt

dV YYXX 
. (35) 

 
The orientation angle of the ellipse, which corresponds to that in Fig. 9 is 

                                                 
2 Axial ratio is generally defined when 1 yx , while ellipticity is often defined by the inverse. 
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 
  









 

YY

XX

tE

tE





ˆcos

ˆcos
tan 1 .  (36)  

 
One cautionary note is that the transform depicted in Fig. 9 using Eqs. (27a, 27b) does not define an 

angle specific to the major or minor axes of the ellipse. Additionally, while the association between the 
propagating direction and the ellipse parameters can be deduced from Eqs. (8) and (26a, 26b), the 
parameters are only two-dimensional. Therefore, directionality will need to be considered when the radar 
response to target backscatter, a jamming signal, or even different radar needs to be accounted for.   
 

2.4 Circular Base Components 

 
In this basis, combining two differing but constant amplitude circularly polarized waves results in a 

rotating field vector, the terminus of which traces an ellipse as illustrated in Figs. 4(a) and 4(b). Axial 
ratio and orientation are functions of the amplitudes and phases of the circular waves, the angular velocity 
of the combined field vector varies during an RF cycle as indicated in Eq. (22). Its amplitude and velocity 
are constant only if a single component, RV  or LV , is present.  

 
With two equal amplitude circularly polarized components, which results in a linearly polarized 

wave, the amplitude of the combined vector varies sinusoidally over an RF cycle but its alignment 
appears stationary and in a direction that is half the difference in phase between the circular component 
waves ( L and R ). 

 
The utility of circular base components is generally favored in subsequent field analyses. The 

rotational directions (or sense) are determined directly, i.e., the larger of the two components, while the 
angle of the major axis of the ellipse, , irrespective of the axial ratio, is just half the phase angle 
difference between the two circular components. The axial ratio is expressed in a simple form, as shown 
in Eq. (38). Assuming a wave traveling away from an observer, the circular base field components are 
given by: 
 
     LR ztj

LL
ztj

RR EuEuE    


.  (37) 

 
The magnitude of this rotating field vector in terms of the difference in circular components amplitude 

and phase is  LRLRLR ztEEEEE   22cos222
, with maximum and minima occurring 

when   2,0cosarg  , respectively. The axial ratio is then defined, as cited in Section 1 as 

 

 
LR

LR

EE

EE
AR




 , (38) 

 
and the rotational sense is just the larger of either ER  or EL. The elliptical characteristic of this field can be 
observed in any plane along the Z-axis as a function of time, as illustrated in Fig. 7. But the angular 
orientation of the ellipse considered here is measured from the x-axis. Therefore, to determine this angle, 
a transform to the X-Y- linear basis is required. 
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For the general pair of circular components, written as:  LR j
L

j
R EE   ,  and assuming propagation 

away from an observer, the equivalent linear base components from Eq. (12) are 
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






coscossinsin

sinsincoscos

2

111

2

1 . (39) 

 
Expanding these and substituting the linear components into Eq. (27a), the result for the tilt angle 
 is simply 

 
2

LR  
 . (40) 

 
Note that this result, independent of the axial ratio when expressed in circular base coordinates, is 
consistent with the specialized vertically and horizontally polarized cases described in connection with 
Fig. 2.  The circular basis wave description, therefore, provides a direct and simple way to completely 
describe the three basic parameters (axial ratio, tilt, and rotation sense) of a polarized wave and, by 
extension those of antennas, radar targets, and jammers.  

3. POINCARÉ SPHERE REPRESENTATION  

3.1 Concept and Measures 

 
The multiple dimensionality of a polarized wave makes it difficult to assess, much less analyze, the 

relationship between differently polarized waves. These can be the radar transmitted and target reflected 
waves, the uplink and downlink of a SATCOM system or the interception and jamming of an EW signal. 
In a three-page paper in 1892, Poincaré (p. 275-277, H. Poincaré, “Theorie Mathematique de la Luminiere 
II,” Gauthier-Villars, Paris, 1892) described a very useful representational and analytical tool to simplify 
the relationships among different polarizations.  
 

The radius of the Poincaré Sphere corresponds to the normalized power of the represented 
polarizations. Its surface, illustrated in Fig. 10 maps a one-to-one correspondence with all possible 
polarizations. Points located in a specific hemisphere and along the same latitude represent the same axial 
ratio. Points along the same longitude represent polarizations with the same orientation but varying 
degrees of axial ratio or ellipticity. Points along an equatorial circle represent purely linear polarization 
states. All points in the upper hemisphere represent left elliptical states while points in the lower 
hemisphere represent right elliptical states.  
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The four pairs of polarization states illustrated in Fig. 11 represented by diametrically opposed points 

anywhere on the sphere are orthogonal. For example, the two linearly polarized pairs, “V” and “H,” and 
another at inclined angles, the “RCP” and “LCP” pair or the “REP” and “LEP,” are each orthogonal. So if 
one represents the polarization of a wave traveling toward a receiver and the other that of the receiver, the 
180° arc between them represents an infinite signal loss. The measure of the arc length, l, between any 
two of these points is then a measure of their similarity or difference. In terms of decibel (dB) loss a 
simple expression for this relationship is 
 

 







2
coslog20


dBL . (41)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 – Orthogonal polarizations on the Poincaré Sphere. Polarizations represented by any two diametrically 
opposite points are orthogonal. 

Fig. 10 – Representation of polarization states on the Poincaré Sphere 
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This result, plotted in Fig. 12, is independent of the disposition of one point about the other and 

shows a small polarization loss or difference even with modest arc lengths. However, it should be noted 
that in comparing transmitted and received waves on a single sphere, account must be taken of the 
differences in the rotation and major axis tilt.  

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Recall that the major axis tilt and field vector rotation direction of a wave viewed in opposite 
directions, i.e., toward or away from an observer, is reversed. Therefore, one can represent the 
polarization of an incident wave by the point that corresponds to the antenna that best receives it. This is a 
useful representation, for example, when estimating the polarization difference between an incident wave 
and a jamming signal that accounts for both the correct sense of the incident wave and that of the 
jamming signal. 
 

Figure 13 illustrates one quadrant of the upper Poincare' hemisphere. A point “P” is sufficiently 
described by a complex scalar in the appropriate basis. For linear X-Y basis this is simply: 

 

 

 YXj

Y

Xj

E

E
r    , (42) 

 
 

and Eq. (42) can then be used in defining the sides and angles of the associated right spherical triangle 
outlined in the figure. 

 
 
 

 
 
 
 

Fig. 12 – Polarization loss between any pair of points on the Poincaré Sphere separated by an arc length l 
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The latitudinal angle, side “b,” is related to the axial ratio AR. Since axial ratios of linearly and 
circularly polarized waves are “ ” and “1,” respectively, while b is “0°” and “90°,” respectively, the 

axial ratio is represented by an angular arc of AR1tan2 1 . Using Eqs. (32a) and (34) and appropriate 
trigonometric equivalents:  

 

 








  sin

1

2
sin

1
tan2

2
11

r

r

AR
b . (43)                           

 
Longitudinal angles, for example side “a,” are a measure of polarization angular tilt. Like the Earth’s 
Greenwich location, horizontal polarization universally serves as the reference longitudinal direction   
Orthogonal polarizations along the equatorial plane and planes parallel to the equatorial plane are 180º 
apart, so polarization angular tilt, , is represented by an angular arc “a” of 2as defined inEq. (32a): 
 

 








   cos

1

2
tan2

2
1

r

r
a . (44) 

 
Using the right spherical triangle relationship, cottansin ba  , then angle is simply represented by 
 
 =  . (45) 
 

Fig. 13 – Upper hemisphere Poincaré Sphere quadrant. Angles and sides of a right spherical triangle define 
the location of a single polarized wave at “P.” 
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Side “c” can be determined from the right spherical triangle trigonometric identity as bac coscoscos  , 
then  
 
 rc 12tan  .  (46) 

  
Finally, using the identities bacoscoscotcot  , the remaining angle, , in terms of “r” is 

  cot
1

1
tan

2

2





r

r
.  (47) 

 

3.2 Relationship Between Differing Polarizations  

 
Systems analyses or designs invariably involve the association of one polarization with another. 

Basically the question that must be answered is: “How close is one polarization to another?” For example, 
target detection may involve the relationship between the polarization of the transmitter and that of the 
target or clutter. Electronic Warfare (EW) applications can involve the relationship between the 
polarization of a radar and that of a jammer. In a SATCOM application, the effectiveness of frequency 
reuse depends on maintaining the orthogonality between polarization channel pairs for effectiveness. The 
differences mean propagation direction as well as the usual parametric measures. The approach taken in 
analyzing such problems can be in terms of polarization sphere metrics or classic complex waves 
analyses. Both are therefore briefly outlined.  
 

On the polarization sphere, two different polarizations can be represented by their locations that can 
be referenced to any pair of base polarizations. Figure 14 illustrates polarizations located by points P1 and 
P2 referenced to horizontal polarization at the point    0,0,1,, zyx . The arc length l and the associated 
decibel (dB) difference illustrated in Fig. 12 then define the difference in their polarizations. Generally, 
the proximity rather than the disposition of these points is important, so a variety of parameter changes 
can be applied assuming the goal is to match or reject one or the other.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X 

LCP 

Y 

21 

22 

21 

22 

2-1 

P1 

P2 

g1
g2 

l 

Fig. 14 –  Polarizations represented by points P1 and P2 and the reference horizontal polarization define an oblique 
spherical triangle, enabling calculation of the arc l. 
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The arc length l can be defined in terms of the polarizations defined by their component field ratios r 
and the phase difference or by the axial ratios and tilt angles. The sides, g1 and g2, of the two right 
spherical triangles in terms of the axial ratio and tilt angles are determined using the relationship: 

 
                                     ,2cos2coscos nnng   .2,1n  (48)  

 
Angles , 2 in terms of these parameters are defined by 

 

 



2sin

2tan
tan  . (49) 

 

The sides, g1, g2, the angular difference 1-2, and the arc 21PP     define an oblique spherical triangle. 

In terms of the two sides, 21, , and the included angle  21   , which are defined in terms of the 

axial ratio and tilt of the component polarizations cos  is then: 
 

   212121 2sin2sin2cos2cos2coscos   . (50) 
 

The formalism using complex field components yields the same results. Coupling or isolation 
between two different fields can be expressed in terms of the projection of one field component on the 
other. Assume the components a receiver and transmitter expressed in a linear X-Y basis are: 
 
 YXc eEeEE ˆˆ 21Re 


 and YXTrans eEeEE ˆˆ 43 


, (51) 

 
in which E1 , E2 , E3 and E4 are complex scalars. Assume the scalar components are 
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X EEEEEEEE
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Then, normalize the power represented by each scalar so that 
 
 1

2
4

2
3

2
2

2
1  EEEE . (53)     

 
The coupling or isolation is then determined by the projection of one component on the other, represented 
by the dot product: 
                                                                             
 *

Re Transc EEE


 . (54) 

 

4.  CO-AND CROSS-POLARIZATION; LUDWIG-3 REPRESENTATION 

There is a recognized and explicable ambiguity in the IEEE definition of co-polarization and cross-
polarization field components when describing the characteristics of an antenna. A simple unambiguous 
definition defines the co-polarization as one the antenna is intended to radiate, while the cross-
polarization is that which is orthogonal. These can be defined in terms of any basis pair, but regardless of 
the basis used, a “reference direction” cited by the IEEE definition is needed. There is no ambiguity 
concerning the co-polarization of the E-field from a single short dipole along the OY axis as illustrated in 
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Fig. 15. The reference direction is the OY axis. In any plane containing the dipole the co-pol field varies 
as the cosine of the angle from its axis, while it is invariant in any orthogonal plane. The characteristics 
are the same for a small dipole aligned with the OX axis. Then the reference direction would be OX. With 
both dipoles the co-polarized field may be represented by one dipole along the reference direction, and 
the cross-polarized field by the other dipole. This definition implies orthogonality between their fields, 
but as described in connection with Section 5.1, these fields are only geometrically orthogonal in a single 
direction: azimuth = elevation = 0°, as shown in Fig. 19.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Complete antenna patterns need to deal with both the problems of depicting a spherical projection of 
the pattern on a flat surface as well as a meaningful polarization representation. The former problem is a 
familiar one in cartography while the latter must deal with the ambiguity inherent in the IEEE 
characterization of co-pol and cross-pol components.  Various mapping transforms, the most popular 
being the Mercator projection, adequately represent most area features defined by unit vectors   eer ˆ,ˆ,ˆ , 

but within up to elevation (latitudinal) angles of about 60°. Area distortion at higher angles is familiar to 
everyone.  But antenna patterns usually require accurate amplitude and angular definition over wider 
angles, so the manner in which these are made involves practical matters concerning antenna rotation 
about two orthogonal axes. Concerning far-field patterns, practicality usually favors elevation-over-
azimuth rotation. Azimuth “cuts” for each value of fixed elevation angle are recorded often using a single 
linearly polarized transmit signal, defined along unit directions YX ee ˆ,ˆ  and receiving the signals from the 

pair of orthogonal antenna ports representing the  EE ,  components along unit directions  ee ˆ,ˆ . As 

long as the angles are properly recorded, complete spherical coverage can be realized. At any angular 
point within the coverage, the components of both pairs are defined orthogonal, but like the curvature of 
longitudinal spherical lines viewing a global sphere, or their projection on a plane surface, there is an 

Y

Z

X 

Fig. 15 – Representation of the E-fields around a small dipole, illustrating a cosine axial variation, none in the 
transverse direction. 
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increasing rotation of one pair with respect to the other with increasing (or decreasing) latitude as the 
longitude is changed. The affect and the transform that accounts for this rotation and distortion is then 
equivalent to the polarization representation proposed by the third of Ludwig’s alternative 
representations.  

 
Ludwig [2] in a classic paper of only four pages in a transactions communication note more than 30 

years ago, Roy and Shafai [3], and Knittel [4] have defined co-polarized and cross-polarized components 
in a manner that better resolves the ambiguity in the IEEE definition. Among many possibilities, 
Ludwig’s third variant that defines the components in a manner equivalent to those measured on an 
antenna pattern range using an elevation over azimuth mount, is widely accepted, provided a single 
linearly polarized  illuminator is first aligned with the antenna under test at azimuth = elevation = 0°. This 
assures that in this direction the fields from a dual orthogonal-port antenna are properly defined co-pol 
and cross-pol. Then, with successive azimuth φ angle cuts, each at a different fixed elevation angle θ, the 
fields are measured along the θê and φê directions. 

 
Figure 16(a) illustrates two dipoles, the longer of which, along the OY axis, represents a co-polarized 

component, and the smaller, along the OX axis represents the cross-polarized component.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Along a line-of-sight direction, OP, their spherical basis fields, (Eθ, Eφ ) would be measured. These 

same fields are shown in Fig. 16(b) with an added rectilinear coordinate pair A and B. The components 
along these coordinates is a function of angle φ :  
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Fig. 16(a) – Dipole fields EX , EY and their equivalent polar 
components Eθ , Eφ . 

 
 

Fig. 16(b) – Rotation of the component fields, Eθ , 
Eφ , relative to the azimuth angle, φ. 
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Then, since the co-polar and cross-polarized components were defined along the OY and OX axes, their 
equivalence and thereby the Ludwig-3 components are then: 
 

 






































E

E

E

E

polcross

polco

sincos

cossin

. (56) 
 
This result is followed by the rotational transform of the measured components along the unit vector 

directions  ee ˆ,ˆ . Of course, the same result can be realized by an equivalent rotation of the measurement 

probe polarization during pattern measurements, as suggested by Maters and Gregson [5]. A similar 
measurement rotation approach was also described by Roy and Shafai [4]. 

5. PHASED ARRAYS 

Phased arrays consist of numerous elemental radiators in a pattern matrix on a surface that is usually 
planar, but can be occasionally cylindrical. Control of their amplitude and phase excitations then enable 
beam formation and direction within a large azimuth elevation region using a physically immovable 
structure. Versatility and responsiveness are its main advantages, but complexity and matrix structure are 
its main disadvantages. Elements can consist of single or multiple polarized dipoles, slots or waveguides 
and individually connected to signal sources or receivers, or by interconnection through multiple sub-
apertures. The wide angular coverage of each radiator or subaperture provides the signal coverage that is 
generally complex weighted to provide the required pattern control.  In terms of polarization performance, 
array design always encounters the distortion shown in Fig. 6, since beam formation must involve these 
off-axis characteristics of its constituent elements.  

5.1 Angle between E-fields: The Geometric Effect 

 
When the antenna array plane is fixed, but its collimated beam is directed over a wide coverage 

volume, polarization control requires appropriate weighting of the element pairs. Usually these are 
vertically and horizontally polarized and accurately orthogonal aligned, one with the other. Two factors 
need to be considered, the elements cross-polarization characteristics and the spatial angular relationship 
between their radiated (or received) fields in the beam direction. Consider the cross-pol level of a single 
dual linearly polarized element within a matched array or array port. Examine the far field in a direction 
normal to the array. For vertical excitation, the ratio of measured horizontal to vertical polarization then 
represents the cross-polarization characteristics of that element. On reception, the signal from a vertically 
polarized source also results in a small horizontally polarized signal. Like the rod antenna in Fig. 6, the E-
field polarization from the (only) port of the rod antenna deteriorated at angles outside the rod’s axis. For 
a phased array, this is likened to a distortion in the matrix structure.  

 
A simple illustration of a representative array rectangular matrix grid shows this distortion and is 

readily interpreted as an angular change between the fields of its linear “elements.” Shown from the same 
distance, the square grid in the left photo in Fig. 17 is distorted and their angular orientations changed as 
shown in the illustration at the right of the same grid portrayed at 45° azimuth and 30° elevation. Of 
course, photos, while serving to illustrate the effect described, are also subject to some degree of 
approximation that may concern the purists among us. In an exact case, i.e., without the camera view, the 
polarization target plane is normal to this LOS and the angle between orthogonally polarized “elements” 
can be readily calculated. But a photo, taken from any finite distance shows a range-dependent distortion; 
parallel lines do not appear exactly parallel. (Recall the “vanishing point” used in artistic renditions.) The 
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variability of this effect can be shown analytically by replacing the camera “lens” with a pinhole in an 
opaque plane through which all rays from an element points must pass. Their intersection with another 
distant parallel plane then provides the element “image” at that distance that also enables a simple 
calculation of the angles between lines. Of course these “images” on that plane are inverted, but has no 
effect on the results, which disclose that only image portions at the center are undistorted. Other parts 
show a range dependent distortion. For the elevation of 30º and an azimuth of 45º and distance used in 
this figure, a correct result should have been 63.43º, but actual measured angles of the photo print varied 
within 63º to 70º. 

 
Problematic of phased arrays, element phasing can optimize beam gain in a given direction, albeit 

lessened by the reduced projected aperture area. But full accounting of the beams polarized components 
directions must also account for this geometric distortion. This effect is commonly experienced and not 
very different than looking at a room ceiling corner from various angles. Its correction is especially 
important in the control of the polarization characteristics of phased arrays because, as noted earlier, their 
beams are not confined to their plane normal. The solution involves the availability and control of two 
signal ports. Typically, although not essential, these may be aligned with the X-Y axes as shown by the 
dipole elements in Fig. 18.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                              
 
 
 
 
 
 
 
 
 
 

Fig. 17 –Two illustrations of a representative phased array grid of vertical and horizontal polarized elements viewed in a 
direction orthogonal to the aperture plane (left) and at 45 azimuth, 30 elevation (right). 
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Along a line-of-sight defined by a specific azimuth and elevation angle, the planes of an element 
fields intersect at an angle, , as shown in Fig. 19. If the line-of-sight is normal to the AOB plane, then the 
planes of these fields intersect at 90°. For a circularly polarized performance benchmark, equal amplitude 
excitation with a 90º phase difference provides purely circular polarization along the OZ direction. At 
other angles, the circularity rapidly deteriorates. Their polarization planes, AOP and BOP, intersect at a 
point “P” along the line-of-sight direction. The angle  represents the angle between the two field vectors 
in a plane normal to the line-of-sight or, equivalently the angle between the two polarization planes. Then, 
assuming the fields around their respective axes are sufficiently omnidirectional, their magnitudes and 
phases can be observed over wide angular elevation and azimuth angles. (Although only a dipole pair is 
illustrated, in terms of polarization analyses this dipole pair can also represent the orthogonal ports of an 
entire phased array.)  

 
Angle  is also the same as the angle between the normals of their polarization planes, so that the 

required field angle can be determined by calculating the angle between these plane normals. Assuming a 
unit radius sphere, the Cartesian coordinates of points defining these planes are:  

 

    AEEAEzyxP coscos,sin,sincos,,  ,  (57a) 

    0,0,1,, zyxA , (57b)         

    0,1,0,, zyxB ,  (57c)           

and    0,0,0,, zyxO .  (57d)       

 
 
 
 
 
 

Fig. 18 – Fields from horizontal and vertical dipole elements are within planes parallel to the element axes. 
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Defining unit vectors along the X, Y, and Z axes by ZYX eee ˆ,ˆ,ˆ , the determinant form of the vector 
equations defining planes AOP and BOP are then 

                             
                            

 0

1coscossinsincos

1000

1001

1ˆˆˆ

: 

AEEAE

eee

AOP

ZYX

 (58) 

 
and 

 

0

1coscossinsincos

1000

1010

1ˆˆˆ

: 

AEEAE

eee

BOP

ZYX

. (59) 

 
 
                              
The angle  between the normals to these planes is given by:  
 

Fig. 19 –Line-of-sight azimuth and elevation angles from a dipole pair aligned with the X – Y axes. 
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in which F


 and Q


 are the vectors defining planes AOP and BOP, respectively. Completing the solutions 
to Eqs. (57, 58, 59, 60), the angle between the two planes is given simply by: 
 
 EAsintancot  . (61)           

 
This equation is plotted in Fig. 20 for several constant field angle values. It illustrates, for example, that 
for an array beam steered angle of 45º azimuth and 15º elevation, the angle between the field components, 
due to geometry alone, is nearly 15º less than the 90º at broadside. Near a typical phased array scan limit 
of 60º azimuth, 60º elevation, the angle between the E-fields of the orthogonal elements, or equivalent 
array ports, is less than 40º. This doesn’t preclude radiating a purely circular polarization by properly 
phasing the elements, but the penalty is the reduction in power.       
    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equation (61) described the angle between the EX and EY field vectors in the LOS plane in terms of 
spherical coordinate angles  ZA  and  LE . However, an equivalently alternative representation 

in terms of angles  is illustrated in Fig. 21. It describes the fields along the slant plane shown in the 

Fig. 20 – Angle () between vertical and horizontal field components as a function of azimuth and elevation 
relative to the plane of the elements. 
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figure. These planes also correspond to the IEEE definition (#2.193) of intercardinal planes, although the 
single one at γ = 45° is the one most referred. Their relationship at any point  zyxP ,, , is readily shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

The components of the vector OP  in terms of each of the two reference angles are in spherical 
coordinates:                                        

 sinx  (62a) 

  sincosy  (62b) 

  coscosz  (62c) 

 
In slant plane coordinates: 

  sinsinx  (63a) 

  cossiny  (63b) 
 cosz  (63c) 
 
Since these represent the same components of the vector, Eq. (61) can be defined: 
 

 


cos2

2sinsin
cot

2

 . (64) 

 
 

Figure 22 illustrates the substantial change in this spatial angle within the intercardinal plane. 
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Fig. 21 – Components of a vector OP defined by angles  
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The spatial field angular relationship is a matter of geometric projection of the component fields.  
Excite both V- and H- ports and measure the spatial angle between the radiated fields as a function of 
observation angle. When the direction is normal to the array plane, the spatial angle between the two 
fields is 90°. However, as the direction of observation is changed, the spatial angle between the two fields 
decreases.  

 
When the observation angle is 60° × 60° with respect to the array normal, the calculated spatial angle 

is only about (less than) 40°. A compensation for this angular change can be made when it is required that 
a specified polarization be radiated in this direction. For example, if purely right or purely left circular 
polarization is required, the two ports would need to be driven by equal amplitude signals that differed in 
phase by 180° ± 40°. (Normal to the array, when the spatial angle between two exciting fields is 90°, the 
circular polarization requirement is met with the familiar phase shift values of ± 90°.)  In a similar 
manner, the compensation for generating a specifically oriented linear polarization in a specified direction 
can be determined in terms of an excitation ratio of two equal-phased signals.  

 
Figure 5 illustrated the relationship between axial ratio and the cross-polarization of a wave expressed 

in terms of equivalent circularly polarized components. Eq. (61) defined an effective geometric angle  in 
terms of a line-of-sight defined by azimuth and elevation angles. Except for quadrature phased equal 

amplitude components when 0ZA , the result for an inter-cardinal scan effectively define elliptically 
polarized waves with varying axial ratios.  Figure 23 illustrates the distinct differences in the axial ratio 
due to the angular change, . The larger the axial ratio, the more elliptical the polarization is. The effect 
not unlike the changes shown in Fig. 6, clearly show the importance of compensation at the element or 
sub-array level, if consistent polarized performance is to be maintained.  
 
 
 
 
 

Fig. 22 – Geometric effect; the variation of the spatial angle  between fields in the LOS plane defined by a 
scan angle  for an intercardinal angle, γ = 45°. 
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5.2 Combining Signals from Dual-Polarized Elements  

 
In this analysis, no restriction is placed on their relative values, so it applies equally to a single 

element pair or the dual ports of combined elements of an array or subarray. Although appropriate phase 
and amplitude weighting is required, neither axes orthogonality nor in the case of many types of phased 
array elements, is phase center coincidence conditional. The phase centers need not be actually 
coincident, but these as well as axes orthogonality will impact the “polarization bandwidth.”  This is 
defined in Section 7 as the signal bandwidth within which a prescribed level of cross-polarization is 
maintained or exceeded for a fixed set of amplitude and phase weights. By example, the goal here is 
circularly polarized purity, but any other requirement can be similarly met. Generally some form of phase 
compensation will be required and it is important to keep in mind that phase realized components or a 
computer algorithm is distinct from a phase factor  dd   2  due to a physical length “d.” The 
conditional wavelength dependent equivalence represents a paradox that can lead to errors. Assuming 
equal amplitude components, their phase relationship must differ by 90°. For widest bandwidth this 
means a wavelength independent 90°. A line length d is unacceptable, as may be an algorithm such as 
CORDIC. 
 

Figure 24 illustrates two complex scalar fields, 1
1

 jE  and 2
2

 jE , components of two linear 

orthogonal reference vectors  YX ee ˆ,ˆ . In order to include the geometric effect described previously, 

assume that their physical angular orientation with respect to the Y-axis is 1 and As a result, neither 

Fig. 23 –Axial ratio and circularity as a function of 
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spatial nor signal orthogonality is assumed. An appropriate performance measure is the cross-polarization 
of a circularly polarized wave and this parameter is used here and elsewhere in the analyses. 

  
The respective scalar field components to be combined are 

 

    222111222111 sinsinsinsincossincoscos  EEjEEEX  , (65) 
 

    222111222111 sincossincoscoscoscossin  EEjEEEY  . (66) 

                          
The relationship between the scalar components and the equivalent circularly polarized components in 
terms of the unit vectors  LR ee ˆ,ˆ , assuming the case for transmission, is, from Eq. (11): 
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Substituting Eqs. (65) and (66) into Eq. (11), the equivalent circularly polarized components are 
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An appropriate measure of the circularity of the field derived by combining two linearly polarized 
waves is simply the ratio of its equivalent circularly polarized components, as expressed in Eqs. (67) and 
(68). It conveniently describes its circularity, and the decibel value also measures its conformity with 
SATCOM “dual-use” requirements, typically –25 dB to –30 dB. Expressing the ratio of the two 
component amplitudes by 21 EEr   and the physical angle and phase difference respectively by  and 

: 
 

2
2

 jE

1
1

 jE

1 
2 Y 

X 

Xê  

Yê

Fig. 24 – Location of two complex E-field components relative to orthogonal X – Y axes. 
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This form agrees with the general notion that a purely circularly polarized wave results by combining 

two equal spatially orthogonal linearly polarized components that differ in phase by 90º. The cosine 
argument of these expressions also indicates that the physical angle between the two linearly polarized 
components is combined with the phase difference between these components. Therefore spatial non-

orthogonality due to the geometric effect, i.e., o90 , can be offset by adjusting the component phases. 
This fact is important and provides the means by which a dual-polarized phased array can maintain good 
circularity throughout its scan volume. But the price to be paid is the gain loss associated with the 
rebalancing of the component amplitudes that accompanies this compensation. 
 

The results using Eq. (69), plotted over a narrow range of phase and amplitude ratio values, assuming 
ºareshown in Fig. 25. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For other angles, the results can be closely represented by linear translations to a point about the 
changed null point in the figure center. Good cross-polarization performance for a benchmark circular 
polarization or to meet any other specification requires tight control of the basis components amplitudes 
and phases that are combined. This is readily accomplished by controlling the combined amplitude and 

Fig. 25 – Circular cross-pol, by combining linear polarization components 
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phase of a dual-pol element or array antenna ports. The combination of coherent signals from both of the 
element terminals or the combined array ports is then required to maintain one field with low cross-
polarization. Of course, when signals are received and the components noise figures set to satisfactory 
levels, the same signals can be combined in multiple ways to meet multifunction operation requirements. 
These may include any or all of the required surveillance, tracking, ID, and EW functions. 

5.3 Cross-polarization and Parameter Precision  

 
Within the combining networks, precision in both amplitude and phase are important, but each 

impacts the cross-polarization differently. Figure 26 shows axial ratio between the right and left circularly 
polarized components as a function of the two linearly polarized fields that are combined with the phase 
required to maximize this ratio.  The two curves, for geometric effect angles 35° and  = 90°, are the 
typical limits within the scan volume of a phased array, defined by Eq. (61) for AZ = EL = 60°, or 0°. 
Assuming good circularity is required, the performance deteriorates with just a little amplitude imbalance, 
so careful control will generally be required. For a representative dual-use circular cross-pol goal of -25 
dB, linear components must be balanced to about ¾ dB. 

 
In Fig. 27, the same ordinate and abscissa plot the result of phase error; each of the plots represents an 

error of just one degree in phase from the optimum value given by 80º - ). Comparing these two 
results, amplitude errors affect the cross-polarization to a greater degree than phase errors. This can 
impact any tradeoff between numbers of bits in amplitude and phase precision necessary to maintain or 
exceed a specific cross-polarization level.  

 
 
                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26 – Maximum ratio of circularly polarized components by combining 
linearly polarized components within the scan volume of a typical phased array. 

90°  35°
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From Fig. 27, it is observed that when the two combining amplitudes are equal, i.e., their linear 

components ratio equals 0 dB, the circularly polarized axial ratio is very large, but with one linear 
component reduced to half the other, the circular components axial ratio is reduced to 10 to 15 dB. From 
Fig. 28 a similar reduction occurs, but is less sensitive to phase errors.  
 

The loss of the purely circular polarized field when the two equal linearly polarized field components 
are optimally combined is illustrated in Fig. 28. Using Eq. (68) with r = 1, changing  results in this 
optimization within the limits of  shown. Although the cross-pol level is zero, the optimization results in 
significant co-pol loss. Effectively, this loss is due to the geometric effect alone. Regardless of the 
geometric effect angle, assuming r = 1, a compensating phase, , will result in a purely circularly 
polarized wave. But the penalty is a loss in this wave. Of course, for an array, this loss is in addition to the 
scan loss due to the effective aperture loss with scan.  
  
 
 
 
 
 
  
 
  
 
 
 
. 
 
  
  
 
 

Fig. 28 – Circular polarization loss, with two equal amplitude vertical and 
horizontal polarized components combined, as a function of the geometric effect 
angle, .  

Fig. 27 – Circular components ratio combining linear components with various phase 
errors. Phase errors shown in 1º increments. 
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A representative problem involves determining the parameters and losses associated with phase 
compensation of imperfect vertical and horizontal polarized elements to generate (or receive) circular 
polarization. Performance quality is a function of two factors, the cross-polarization of the elements and 
the signal power division or other amplitude difference between the element polarizations.  Establishing 
and maintaining pure circular polarization (RCP or LCP) requires balancing both amplitudes and phases 
of the element radiating (or receiving) signals throughout the angular lines-of-sight of interest. Using a 
combination of vertical and horizontal polarized elements, Eq. (69) conveyed the requirements in which  
is the physical angle between VE and HE when projected on a plane orthogonal to the line-of-sight and 

the applied phase, phase between VE and HE , with a specific amplitude ratio, r. Irrespective of that 

ratio, the phase shift that compensates the geometric effect represented by , as shown in Fig. 19, can be 

expressed in terms of an optimization problem for the ratio LR EE . Figure 29 shows some results of that 

optimization in terms of that ratio. These curves bound most lines-of-sight of interest and illustrate that a 
proper combination of angles and  enables compensation of the “geometric effect” using phase shift 
alone. Regardless of “r,” optimum circularity (lowest cross-pol) results when    180 . But the 
best circularity also requires good amplitude balance, for which phase is ineffective. A further accounting 
must also include the cross-polarization levels of the elements. Signal input to the vertical port of a dual-
polarized element results in a small horizontally polarized component.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.4 Impact of Bit Resolution on Polarization Characteristics 

 
The parameters required to achieve and maintain a specific polarization with acceptable cross-

polarization values over a wide field of view, are readily calculated. Assuming these are all implemented 
digitally, the actual performance will be a function of the bit accuracy of the constituent parameters, 
whether amplitude or phase is required. Figure 20 illustrated the substantial change in the geometric field 

Fig. 29 – Optimized circular cross-pol level as a function of linear component ratio 
for geometric effect angles between 35º and 88º. 


º
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angle between a pair of vertical and horizontal polarized elements as a function of viewing angle 
requiring compensation.  For circular polarization, Eq. (69) described the ratio of the circularly polarized 
components in terms of their linear amplitudes and phases. Assuming equal amplitudes, this ratio is 

 

 

 
 






cos1

cos1

L

R

E

E
,  (70)    

 
in which  and  represent the geometric angular and component signal phase differences. Then, for 
purely right circular polarization, .   Clearly errors in setting , due to bit quantization results a 
finite EL component, therefore less than infinite circular cross-polarization ratio.  
 

In general, a number X within an interval of values max0 XX   can be divided into N binary bits, 

with the least significant bit (LSB) defined by  
 

 N

XLSB
2

max . (71) 

 
Assuming five-bits will represent the phase within a 180° phase interval, the LSB is 5.625° and the 

possible binary values range from    000000  to    375.17411111 . The required phase shift  could 
be approximated by the nearest N-bit value within the interval. This too involves an approximation, the 
simplest of which is using either the rounded or truncated values. For example, the closest five-bit binary 
value for a required phase of 121.877° with Xmax = 180 is    125.11810101 . Within element spatial 
angles, illustrated in Fig. 20, rounding the required phase to one digit, then using this value results in a 
slightly better result than truncating to two digits. Using Eq. (70), Fig. 30 illustrates the cross-polarization 
performance with the phase quantized to four, five, six and seven bits. Five or six-bits provide good 
performance, however the combination of bit accuracy of both angle and amplitude need to be 
considered.  
  

Numbers of bits are critical costs factors in designing antenna systems, especially in large phased 
array systems with large numbers of elements. For the circular polarization benchmark, Fig. 31 illustrates 
the poorest (highest dB level) circular cross-polarization achievable for various bit levels. 
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5.5 Combining Polarization Components 

 
The general case where the fields from both vertical and horizontal ports each have cross-polarized 

components associated with them is illustrated in Fig. 32.  These four field components then combine and 
their resultant is examined in the line-of-sight plane defined by the azimuth and elevation angles shown.  
As before, the directions along which the fields are combined define geometric effect angle . These can 
then be resolved in terms of their circularly polarized equivalents using Eq. (11). The components shown 
in the figure, correspond to the following parallel (||) and cross-    polarized components: ||11 EEV  ,  

Fig. 31 – Required phase shifter bits for different ratios of circular cross-polarization. 
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amplitude components. 
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 11 EEH , ||22 EEH  ,  22 EEV . Assuming lossless elements, 12
1

2
||1  EE  and 12

2
2
||2  EE . 

Then, expressing the dB ratios of the co- and cross-polarized components by ||log20 EE , the four 

radiating components are 
 

 
 
 
 
                                                                                                                                          (72) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
. 

 
 
                                

  
 

A further factor concerns the ratio of the element drive signals. To some extent these drive signals 
could also account for any other amplitude imbalance between the element ports. Figure 33 accounts for 
this by just using a relative amplitude “k” and also adding the phase control “.” 
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Fig. 32 – Representation of the fields from a linear dual-polarized element in a line-of-sight plane 
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The resulting linearly polarized components are then 
 
 
  
                                                                                                                                          (73) 
 
 
 
 
In terms of combining orthogonal pairs, it is seen that the polarization direction represented by 1E is the 

same as that of ||2E and that of 2E is the same as that of ||1E so their respective pairs can be combined, as 

long as their phase weightings and differences, either laterally or normal to their surface plane are also 
included. A representation of the combined fields, including these phase weightings used to control the 
equivalent circular polarization components is then shown in Fig. 34. The X -Y- axes are an orthogonal 
pair in the LOS plane illustrated in Fig. 33. The total vertical (or horizontal) component is the phase 
adjusted sum of the co-polarized component from element “1” (or “2”) and the cross-polarized 
component from element “2” (or “1”). Combining all of the component scalars, the components are: 
 
                               , (74) 
 
  (75) 
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Then the equivalent circular basis (transmission) components from Eq. (11) are 
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Substituting the linear components defined by Eqs. (73, 74, 75) into this equation, the circularly polarized 
quality, i.e., the combinations with the least cross-polarization can be determined. Assuming specific 
signal divisions, k, solution for the best phase  12   , for various geometric angles,  12    can be 
found which minimizes one of the two circularly polarized components. Clearly the various possible 
combinations are endless. Three groups were chosen. These use values for “k” of 0, -0.5, and -1 dB. 
Within these groups, the phase settings , which minimize the combined right circularly polarized 
component, were determined using the gradient search technique available in Excel© for 12 combinations 
of linearly polarized elements with prescribed cross-pol characteristics defined by 1  and 2 . The 

tabulated results are the requisite phase settings, the cross-pol ratio expressed as 
dBLR EE  and the loss in 

the co-pol components, LE . The results are tabulated and printed in Appendix A. Although these results 

were independently calculated, all of the phase settings for the same elements defined by 1  and 2 are 

essentially identical. While the results are not shown for  90 ,  90 ; as expected, setting 100  
dB essentially removed any cross-pol contributions from the elements. But cross-pol values are best 
(smallest value of RE ) when 0k  dB, since the amplitudes of the combined components can be 

identical. Although the sources of the somewhat random values for LR EE  are not immediately obvious, 

the phase contributions of element “2” polarization impact the combination component scalars in different 
ways. Unsurprisingly, the overall results verify the importance of elements cross-polarization 
characteristics and amplitude balance. With poor elements accurate phase trimming may help, but 
ultimately detailed parameters need to be measured and both amplitude and phase compensation included.   
 

Fig. 34 – Parallel and orthogonal fields in the line-of-sight plane 
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6. PHASE CENTER COINCIDENCE  

The phase center of an orthogonal element pair consists of two distinct parts, one due to their 
common physical intersection and another resulting from their field excitation (or reception) points. As a 
result ascribing the term “coincident phase center” can be interpreted as either of the two effects or their 
combination.  
 

The effective radiating center for a single notch type or Vivaldi radiator varies along the throat as a 
function of frequency. An orthogonal intersecting pair that is aligned at their base therefore has identical 
radiating centers at the same frequencies, so the term “common radiating center” is appropriate. Their 
fields viewed along angles away from their common axis also issue from a common point. Of course if 
the polarized elements are physically separated, their radiating enters differ, resulting in a line-of-sight 
angular dependent path difference. Field excitation combines the propagation time within the element and 
that of the circuitry to the excitation ports. Differences then introduce frequency dependence between 
combined ports, which ultimately constrains polarization bandwidth. A compensating line should be 
effective, although differences in media propagation times will impact the result.  

 
Within the grid of array elements mechanical and electronic interconnections provide dual 

linearly polarized ports, which can then be combined to maintain a prescribed polarization characteristic 
throughout the antenna scan coverage. Line interconnections also need to account for differences in media 
propagation times.  

 
Assuming the elements are physically oriented orthogonal to each other, their excitation center’s 

can be displaced normal to the array plane, as illustrated in Fig. 35. The LOS is defined by angle  within 
the array plane oriented at angle  Except for issues concerning their individual cross-polarization 
characteristics, described in Section 4, any required polarization in any line-of-sight direction normal to 
the array plane is achievable, but only at a single frequency. This is due to the equivalence between a 
phase displacement,  , and that from a physical line length, dd )2(   . As a result, 
differences in their physical phase centers constrain the bandwidth within a specified nominal value. 
Assuming the phase center displacement is along the OZ axis as illustrated in Fig. 35, the unequal 
distance, d, can be approximately offset by an equivalent line interconnection, assuming equivalence in 
propagating velocity is maintained. (Theoretically, a small uncorrectable difference between the field 
vectors in a plane orthogonal to the line-of-sight remains.) 
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In this report, polarization characteristics are described in terms of representative ideal dipole 
elements. These are readily visualized and served in characterizing the basic polarization characteristics 
of phased array elements and their combination. They are geometrically orthogonal with a common 
terminal drive or reception phase center point at the coordinate’s origin. Among current multiple array 
arrays elements, the flared notch (Vivaldi) radiator is foremost. The effective radiating center of the 
Vivaldi element varies along its throat as a function of frequency, enabling the element alone to have 
wideband performance. But in combination with orthogonal Vivaldi elements, lateral displacement of 
their phase centers, as suggested in Fig. 36, constrains bandwidths, since any displacement results in 
wavelength-dependent phase differences in their combination.  

This is illustrated in the array rendition in the detail representation on the right. It can be shown that 
the angle  between the two linearly polarized fields is independent of the displacement in the phase 
centers. Therefore, defined by the geometric effect described in Section 5.1, the angle  between their 
fields remains as given by Eq. (61) is EAsintancot  . The same accommodation in the element 
signals combination enables maintaining specific polarization parameters throughout the angular coverage 
of the array. However, the substantive range difference to the line-of-sight plane due to the lateral 
elements displacement can greatly impact the polarization bandwidth.  This can be shown using the 
illustration in Fig. 37.   

 

 

Fig. 35 – As in Fig. 21, with element phase centers displaced normal to the array plane, XOY. 
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Fig. 36 –  Representation of Vivaldi-type element radiators with laterally displaced phase centers. These introduce unequal 
phase delays in the LOS direction during scan. 

Fig. 37 – Representation of Vivaldi-type element radiators with non-coherent phase centers.  Distances to a plane 
orthogonal to the LOS are unequal functions of azimuth and elevation. 
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The general equation for a plane at distance D from the origin of the X-Y-Z coordinates is
.0 DCzByAx  For a length OP = 1, point “P” is defined in terms of the azimuth and elevation 

angles by   zLZLL AEAEEzyxP coscos,sincossin,, , . The constants A, B, C, D of the line-of-sight 

plane orthogonal to OP are then: ,sin LEA   ,sincos ZL AEB   ,coscos zL AEC   1D . The 

shortest distance from a point defined by coordinates  cba  ,,  to the LOS plane is given by the well-
known equation: 
 

 
222 CBA

DCcBbAa
S




 . (76) 

 
Referring to Fig. 37, the difference in lengths between the lines containing the points (d,0,0) and (0,d,0) is 
then 
 

 LZL EAEdS sinsincos 
. (77)  

 
For a wavelength normalized separation, S , this is equivalent to  S2  radians and can greatly impact 

both phase compensation and polarization bandwidth. Without sacrificing polarization bandwidth, the 
sole alternative is the design of element pairs with coincident phase centers. One more recent design, due 
to Pickels, Rao, Patel, and Mital [6] at NRL is conceptually illustrated in Fig. 38. In this design, improved 
symmetry in the two radiators and associated baluns structural layout results in no lateral or radial (axial) 
differences of the phase centers, thereby enabling the widest range of polarization characteristics with the 
widest polarization bandwidth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 38 – Intersecting Vivaldi linearly polarized elements designed at NRL with coincident phase centers, illustrated in 
the drawing at right. 
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7. POLARIZATION BANDWIDTH 

This is defined as the maximum bandwidth within which the cross-polarized component is equal or 
less than a specified value. Beam steering and polarization control of a physically fixed phased array both 
require phase weighting of the elements. But the control processes are somewhat different. Beam steering 
results from appropriate element signal delays or line lengths. The familiar expression for the phase from 
a line length is  :   , where  2 , expresses the equivalence between the phase and line 
length, but only at a single wavelength. Maintaining circular polarization, for example, requires a phase 
difference of 4  radians between orthogonal equal amplitude linear polarized components, regardless of 
the wavelength. However, unwanted wavelength dependence occurs using an equivalent line length. 
Wideband array steering control can benefit using coincident phase center elements together with true 
time delay steering, but this does not necessarily negate phase control of polarization and potential 
bandwidth constraints.    
 

The phase difference for a differential length S for two frequencies, fO and  f1 is 

 
    Sff

c
S OOO  11

2  (radians), (78) 

where “c” is the speed of light in the propagating medium. The geometric effect also impacts the 
combined fields radiated (or received) by the element pair.  Assume that a compensating phase, , offsets 
the effects of signal path differences and noncoincident phase centers, as shown in Fig. 39. 
 
 

  

 
 
 
 
 
 
 
 
 
The equivalent components along a pair of X – Y axes resulting from the combined effects of 
these factors and the geometric effect angle  are 
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The equivalent right and left circularly polarized components for waves traveling away from an observer 
from Eq. (11) are 
 

V 

H 
S
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

Fig. 39 – Element signal paths combining the effects of signal path differences and noncoincident phase 
centers S and the compensating phase 
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Substituting the relevant terms, the ratio of right to left circularly polarized components is 
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. (80) 
 
A purely right circularly polarized wave at a single frequency, fO, results if the left circularly polarized 
component is zero, which requires the compensating phase 
 

 
  SOO . (81) 

 
This compensation, for any specific  is exactly correct at a single frequency. The polarization of finite 
spectral content signals is then degraded, i.e. operating bandwidth within a prescribed cross-pol level is 
restricted. Defining the bandwidth in terms of frequencies normalized to a band center, f0, the bandwidth 
is closely defined by: 
 
 
 . (82) 
 
 
Applying the compensation expressed by Eq. (81) to the circular components ratio expressed by Eq. (80), 
the result in terms of wavelength normalized separation, S , is 

 
 
                                                . (83) 
 
 

Regardless of the source of the difference, S , bandwidth defined within specific polarization 

parameters is a significant array design issue. The impact of path length differences, S  in constraining 

polarization bandwidth is illustrated in Figs. 40 and 41 within an intercardinal scan. (The relationship 
between the azimuth and elevation angles and an intercardinal angle, , in a plane defined by 4  , as 

shown in Fig. 22, facilitates an  understanding defining the geometric effect angle  in which 

 2sincos2cos  .) Dual use typically requires circular cross-pol levels of -25 dB or better within 

the signal spectral space, so the available bandwidth for elements spaced /2 apart, for example is very 
restrictive. Figures 42 and 43 depict the same conditions as those for Figs. 40 and 41 except the ordinates 
are expressed as axial ratios of the polarization ellipses.    
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Fig. 40 – Circular cross-pol bandwidth characteristics for element centers spaced /2 apart. 
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Fig. 41 – Circular cross-pol bandwidth characteristics for element centers spaced /4 apart. 
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Fig. 42 – Equivalent circular cross-pol bandwidth characteristics for element centers spaced /2 apart. 
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Fig. 43 – Equivalent circular cross-pol axial ratio bandwidth characteristics for element  
centers spaced /2 apart. 
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8.  SCATTER MATRIX 

The network formalism that relates network output versus network input carries over to the 
relationship between radar target polarization illumination and the target polarization backscatter in the 
form of the scatter matrix. In this case the target functions as a transformer of a polarized transmitted 
incident wave to a reflecting polarized wave impinging on the receiving antenna. The utility of the scatter 
matrix for use in matching, rejecting or identifying a target requires that its characteristics be described in 
terms of known basis coordinates. This doesn’t mean that the basis is unique, nor does it mean that any 
identifiable target characteristics require a specific basis. Uniqueness is a characteristic of the target not 
the descriptive basis.    
  

A fully polarametric radar, as described by Huynen [7], will measure all parallel and orthogonal basis 
components as well as the phase between them. For duplexed radar, one with common transmit and 
receive antennas, the collective result at one frequency within the radar time-volume cell is a description 
of the scatter matrix. Typically, for a known incident polarization, the backscattered polarization would 
be measured. Assuming vertical and horizontal polarization is used, the scatter matrix, in which ""xx  
means vertical transmission and reception, ""xy vertical transmission, but horizontal reception and ""yy  
means horizontal transmission and reception is defined by 
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Each component term is generally complex so ignoring a common range dependent phase, there are a 

maximum of five independent parameters. These five, together with X-Y basis polarizations are all that is 
known about the target within a specific time-volume cell. But while the matrix is polarization basis 
specific, knowing that basis enables determining an exactly equivalent form in any other basis. So even 
though the two scatter matrices may appear completely different, they will equally describe the same 
target within the same time-volume cell.  If the column vector represents the incident polarized wave 

 ii EE 21 , then the backscattered field at the antenna in the same polarization basis is: 
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It should be recognized that as two-dimensional components, ss EE 21 ,  only describes a polarization 
ellipse in terms of the components basis. It conceals anything concerning the operating process. Also, a 
third dimension, the “handedness” of the equivalent rotating field vector must also be accounted for to 
properly characterize the received voltage at the terminals of a radar antenna. Although seemingly trivial 
it is understood that within a specific time-volume cell of the target and at one operating frequency, 
measurement of the scatter matrix completely describes everything that can be learned about the target. 
The scatter matrix can also be measured at any one basis, and a corresponding matrix readily written for 
any other. Most commonly, the matrix of the same target may be written in a linear X-Y basis or a 
circular, R-L basis. Each exhibit target characteristics in a different, sometimes more feature recognizable 
manner. Since targets move and cells change it doesn’t appear to be very much. But the matrix basis is of 
lesser importance than invariant characteristics of the target, essentially what Huynen [7] termed the 
“phenomenology” of the target.  
 



50 Irwin Olin 

 

8.1 Other Scatter Matrix Forms 

 
Conceptually, the polarization characteristics of a radar target are simple and were so defined in 

matrix form in a widely referenced M.Sc. thesis by E.M. Kennaugh  written in 1952 [8]! Subsequently, 
his matrix form burgeoned. This matrix is sometimes termed a Sinclair matrix, a Mueller matrix, 
occasionally a Kronecker matrix, and at times as a Jones matrix. (Technically, differences between these 
matrices concern component coherency; subjectively, they concern scientific field, i.e., electromagnetic 
vs optics: F.T. Ulaby and C. Elachi [9] and Mott [10]. The 2 × 2 scatter matrix form is elemental insofar 
as coherent components polarization description in concerned. In its basic form it simply relates the 
coherent field backscattered from a target as a result of a particular coherent incident field. It differs little 
from the basic relationship for a microwave network that is so well expressed in the MIT Radiation Lab 
book, following World War II:      ASB  ; output  B  from a network described by a matrix  S , for 

a specific input  A . 

  
However, other derived or more readily measured forms appear in the literature. Foremost among 

these is the power scatter matrix, first proposed by C.D. Graves [11]. This form is based on the total 
power incident and back scattered from a target. It conveniently describes the backscattered power for any 
polarized illuminating power, but omits the phase reference necessary for the complete matrix 
description. In terms of the Poincaré Sphere, the wave polarization power could be located at any point 
along any great circle, an infinite number of possibilities! Another form, necessary for the description of 
collectively time varying (within the radar time-volume cell) scatterers, is its representation as the 
Mueller matrix with the wave characteristics represented by Stokes parameters, which accommodate 
partially coherent waves in terms of time averaged power components.  Still other forms include 
covariance and coherency matrices.  
  

Much of the early experimental work was also limited by the inability to conveniently vary the 
polarization coordinates of the transmitter and receiver. The use of vertical and horizontal components 
dominated the work. Then phase measurements were not always convenient, adding further to the 
difficulty in accurately describing the complete target scattering matrix, even for one angle aspect or 
range segment. But phase can be determined by adding an additional pair of linearly polarized 
measurements, e.g., slant right 45° and slant left 45°. For a static target and measurement, this can lead to 
a proper scatter matrix for one measurement basis, i.e., vertical and horizontal, but targets can exhibit 
characteristics such that a linear basis measurement yields inaccurate scatter matrix. For example, a 
simple flat plate may be better characterized by measurements using a circular basis, since the rotational 
sense of the wave from a plate is better observed. Nonetheless a single scatter matrix, regardless of its 
accuracy and derivation will only provide a characteristics snapshot and alone will not enable target 
classification. Even so, the characteristics of even a single matrix have been and are of interest. The 
scatter matrix is essentially independent of the basis used for its measurement. But if accurate it readily 
discloses polarizations that would result in a maximum signal, the co-polarized characteristic, as well as 
the polarization that would result in zero, i.e., a null polarization.     
 

8.2 Canonical Structures 

 
In theory, any target could be reduced analytically to an assembly of small points, a bit larger, then 

spheres or plates, but there are some basic structures with readily visualized polarization characteristics 
that taken together, i.e., within a single radar time-volume resolution cell, comprise the collective radar 
target. While not canonical in the purest sense, the four matrixes in the Table, expressed in a linear V-H 
basis and in terms of a rotational angle  are most often described. 
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Alone none of these matrices can completely describe the scatter matrix of most targets; their 

visualization as part the complete target is palliative in its interpretation. The sphere or flat plate could 
also include a trihedral corner, but in the linear basis the transmitted and received components are 
identical. The dipole orientation defines its transmitted and received components orientation. The dihedral 
essentially combines two plates but is nonetheless a basic structure because it includes an important and 
well-known effect. 
         
 
   
 
 
 
 
 
 
 
 
 
 
 
  
 

In terms of the radar environment, each reflection results in an inversion of the rotational 
direction of a circularly polarized transmitted component. This effect can be exploited in radar 
target detection. The reversal in polarization sense of rain, considered single bounce contrasted 
with targets that include other multiple bounce effects could be separated with radar using a 
circular polarization. 

8.3 Co- and Cross-pol Nulls of Target Backscatter 

 
Target backscatter usually includes components both parallel and orthogonal to the illumination. 

However, in the case of four target illumination polarizations this doesn’t occur. These are of particular 
interest since they offer some target categorization uniqueness. Two polarizations describe target 
backscatter polarizations that are exactly orthogonal to the illumination polarization and while the 
remaining two polarizations are for the backscatter without any cross-polarized component. The first pair 
has been described as “Co-polarization nulls” since all of the illumination that is backscattered is 
orthogonal to that of the incident polarization, i.e., exactly mismatched. (Not good for radar attempting 
target detection!) The second pair, described as “Cross-polarization nulls” represents a match between 
illuminating and backscatter polarizations, since no backscattered component is orthogonal to the 
polarization incident on the target. The significance of these polarizations is a representation of the 
inherent target properties, as contrasted to the scatter matrix that only represents these properties in one of 
any number of possible bases. Assuming the scatter matrix and basis is completely described, both co- 
and cross-pol nulls can be determined. Nonetheless, any measurement or appropriate null representations 
all describe ellipses. These, in turn are characterized by the ellipse geometry: axial ratio, angular 
orientation and the rotational sense of the generating rotating field. The latitudinal and longitudinal 
coordinates of the Poincaré Sphere then provides a convenient mapping to further visualize all of the 
targets characteristics.   

Structure Rotation angle [S] 
Sphere or Flat Plate Any 









10

01
 

Dipole at  2














2cos12sin

2sin2cos1
 

Dihedral at  2








 


2cos2sin

2sin2cos
 

Helix Any  











1

1

j

j
 

Table 1 – Canonical Radar Targets in a Linear V-H 
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Among the numerous papers and publications dealing with the derivation of null characteristics from 
a specific scatter matrix, those by Huynen [15], Boerner, El-Arni, Chan, Saatchi, Ip, Mastoris, Foo, and 
He [12] and Cloude [13] are foremost, although earlier Kennaugh described the problem in his M.Sc. 
thesis. It is recognized that although the mathematics appear similar to a conventional 
eigenvalue/eigenvector problem, propagating directional differences (illumination vs backscatter) make 
the solution much more difficult and all have avoided this “pseudo-eigenvalue” problem. But the goals 
are the same; unitary transforms are sought that will either diagonalize the scatter matrix, thereby 
describing the cross-polarization nulls, or result in a matrix with zero main diagonal terms, thereby 
describing the co-polarization nulls.   
 

The basic work assumes a transform of the scatter matrix using a general unitary transform matrix,
 T , with complex scalar coefficients in the same scatter matrix basis, to a new matrix in a new basis with 
either diagonal or off-diagonal zeros. The general form of the transform matrix is: 
 

   






 






 1

1

1

1





T  . (86) 

 

The corresponding scatter matrix terms, from the transform 1 TSTS , represented with primed 
superscripts, are then: 
   

   )]([1 211222
2

11
1

11 sssss     (87a) 
 

   ][1 21122211
1

12 sssSs     (87b) 
 

   ][1 12212211

1

21 sssss     (87c) 
 

   )]([1 21122211
21

22 sssss       (87d) 
 
Then by setting 011 s and 022 s , the transformed matrix defines the co-polarization nulls, in which 

2112 ss  , to represent a duplexed, monostatic transmitter/receiver: 
 

 22

2211
2
1212

s

sssspolco 
 .  (88) 

 
Setting 12s and 021 s , then the transformed scatter matrix, as shown by Boerner et al. [12], results in  
the corresponding scalar (defining the cross-polarization nulls) : 
 

 
a

acbbpolcross

2

42 
 ,

 
(89)

 
 where the quadratic coefficients are 
 

 21112122 ssssa   ,  (90a) 

 
 2

11

2

22 ssb 
, (90b) 
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and
 

 ac . (90c)
 

8.4 The Huynen Fork 

An inferential “so-what” implied by detailed calculations or measurements was recognized by 
Huynen and depicted on the Poincaré Sphere. Although just four complex null parameters can hardly be 
expected to sufficiently classify a target, they do serve to depict the target in a manner that is independent 
of the scatter matrix and therefore more closely aligned with a radar target from a conceptual sense. 

  
Unsurprisingly, the quadratics in Eqs. (88) and (89) provide the four polarizations unique to the 

scatter matrix defined in Eq. (85). Huynen, Boerner and others have shown that these are displaced within 
a single plane, as illustrated in Fig. 44. Moreover, while the plane is diametrical, it may be inclined at any 
angle. An examination of the disposition of the “fork tines” reveals that all four polarizations need not be 
shown, only two are necessary. The co-polarization nulls are always 180º apart and while the locations of 
the two cross-polarization nulls always bisect the line of the co-polarization nulls, a target specific 
solution with the two cross-polarization nulls coalesce are also possible. Therefore knowledge of a few 
points can enable a calculation of the complete scatter matrix. In a sense the Huynen Fork fulfills the 
objective for a phenomenological description of a radar target. Its independent basis requires only a few 
parameters and is readily visualized. But there are infinite numbers of targets and many likely 
duplications or finely separated “forks” possible and the description doesn’t say anything directly about 
the target itself.   

8.5 Scatter Matrix Decomposition 

There is a certain familiarity concerning anticipated backscattered polarizations following 
illumination of simple targets with specific polarizations. The backscatter from an inclined wire or the 
edge of a sheet will be linear and at the same angle as the wire or sheet. The backscatter from a sphere or 
to some degree a rain drop will return with a circular polarization of an opposite sense. If a flat sheet is 
illuminated with one sense of circular polarization, the backscatter will be circularly orthogonal. 
Reflections from flat plates and corners are very different.  

 

    Fig. 44 –  A principal plane of the Poincaré Sphere containing the target co-polarization and cross-polarization nulls. 
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Figure 45 shows a simple navigation buoy illuminated with circular polarization. As a radar reflector 
for use in navigation, it is mostly an assembly of corner reflectors. For the representative measurements, 
the buoy was tethered and it rotated during measurements. The polarization changes and even the pattern 
widths, based on physical dimensions, have the unmistaken character of a rotating corner. Sometimes the 
backscatter appears as a broad double-bounce effect, resulting in same-sense circular backscatter within 
the corner view, then followed by brief, narrow, opposite-sense polarizations, essentially as a flash from a 
single side, which is plainly visible in the plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Other structures will show different identifiable characteristics, each with known parametric matrixes 
and all combined within a single scatter matrix range-angle-time cell. If their numbers are not too small, 
the scatter matrix as a sum of these basic, canonical matrix forms can be written so that each matrix 
coefficient defines the magnitude of the associated reflectors. This then bears a closer association to the 
“phenomenology” goal first proposed by Huynen, which only identifies the collective co-pol and cross-
pol components of the scatter matrix. Of course, each is a complete analytic representation of the scatter 
matrix, so it can be interchangeably derived.  
 

Rewriting matrixes as sums of simple elementary forms is well known in the quantum mechanics 
community as a means to separately identify specific characteristics. The Pauli Spin matrixes represented 
particle spins about each of the three axes, such that each rotation described a specific characterization. 
These results have been reported in the literature. But like the Huynen Fork, it is more an interpretation of 
the scatter matrix than identifying the detailed physical structure of a target. It may be useful, but much 
more is needed if that is among the goals of specific radars.  

 
A mainstay of the radar remote sensing community is the synthetic aperture radar (SAR). It provides 

useful detail of large areas filled with collections of scatterers of interest. The familiar two-dimensional 
mappings with buildings, roads, rail lines, vehicles, trees, farm crops, etc., are distinguishable to most 
readers, but can be further enhanced by decomposing the scatter matrix into summed components of 
canonical scatterers. Each of these confers amplitudes of specific matrix components that are then 
distinguished using a false color representation. Numerous scatter sets have been suggested. Work in 
optics uses Pauli matrixes, but one that assumes decomposition into components of a sphere, a diplane at 

Fig. 45 – Left and right circularly polarized returns from a buoy, similar to the photo with angular 
rotation.  



 
Polarization Characteristics of Coherent Waves  55 
 

 

a specified angle  and a helix, appears to have favored Krogager [14], but their equivalence using 
appropriate constants can be shown: 
 

   






























1

1

2cos2sin

2sin2cos

10

01

j

j
kkkS helixdiplanesphere 


 . (91) 

 

An impressive number of papers have and continue to be written concerning “radar scatter matrix 
decomposition,” Internet search engines can fill report pages, for which the reader is recommended. Of 
course, all concern a static representation of the scatter matrix as the sum of known simple geometric 
targets in one form or another, i.e., some underlying assumptions are always made. The components used 
in any decomposition of the scatter matrix are all justified by assumptions concerning the physical 
properties of the target structure. Unsurprisingly these will be diverse and have been analyzed, 
demonstrated, and extensively reported in the literature. However, if the resolved time-volume cell is very 
small, i.e., it contains a single representative scatterer, then there would be no differences. But this is not 
the case. So, as a result, approaches to decomposition are sometimes argumentative. Some of the relevant 
background is described by Huynen [15]. But future work could well recount very early polarization work 
in which motion, e.g., the target or components movement or rotation, added a still further classification 
dimension.  In early work associated with satellite orbiting, it was shown that satellite spin was readily 
measured using a polarization technique, as Fig. 46 suggests. Basically irrespective of any target 
composition, its rotation, or any of its components’ rotation, results in a measurable frequency translated 
backscattered component. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

8.6 Control of Polarization Axial Ratio and Ellipse Orientation 

A coherently polarized wave has been characterized in terms of the axial ratio and angular orientation 
of the ellipse traced by a rotating field vector. Radar targets can be illuminated by specifically 
characterized polarized waves to achieve a specific objective, such as illuminating a rotating target to 

Fig. 46 – Circa 1950 representation of polarization frequency translation from a spinning satellite 
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facilitate identification, as in the case for Fig. 46. An electronic warfare application may require 
transmission of a polarized wave with a specific axial ratio and orientation. Such parameter specific 
polarizations can be simply developed by controlling transformations of just a few basic structures, as 
illustrated in Fig. 47. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

In this particular example, unit vertical and horizontal polarized inputs applied to a circuitry cascade 
of adjustable phase shifters and waveguide quadrature hybrids enable independent control of the axial 
ratio and orientation of the output polarization. The axial ratio of the combined 43 BB output components 

is a function of the phase shift while the orientation of the ellipse is a function of the phase shift  The 
circuit essentially operates the same as a radar target, the polarization at the input is controlled and 
transformed to another at its output. 

 
An analysis of this circuit is facilitated using the familiar combinations of network matrices. Using 

the generalized notation, noted in Section 8.1, ASB  , the 4-port scatter matrix of the first phase 
shifter is given by 
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S .  (92) 

 
The equivalent form for the quadrature hybrid is given by 
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



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




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SHy . (93) 

 

 

H1 H2 1 A 

4 B 2 A 

3 B 

Fig. 47 – Cascade circuit enabling control of axial ratio and ellipse orientation. 
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Each is assumed lossless and fulfills the unitary condition ISS   . The parameters of the combined 

network can be found by assuming the output of one, 43,BB , serves as the inputs, 21, AA , for the one 

following. For the lossless elements, 021  BB , and: 

 

 
         21213 coscossinsinsincos1 EEjEEB    , ( 94) 

                                                                                                                                     

          21124 sinsincos1sincoscos EEjEEB   . (95) 

 
Since rBB 43 , and    43arg BB , Eqs. (32a) and (34), respectively, determine the ellipse 

orientation and axial ratio.   
 

Other circuit combinations using waveguides or their printed circuit equivalents most certainly are 
possible, which can then be used to readily control the generation and reception of polarized waves.   
 

9. POLARIZATION FILTER 

In a general sense, the performance and characteristics of a filter are defined in terms of the 
preferential selectivity of one of its input characteristics over others. For a frequency filter, characteristics 
can be defined in terms of the gain or loss of one or a group of input components over others. 
Alternatively, the frequency selectivity, relative bandwidth or quality “Q” of a resonant circuit can be 

defined in terms of its phase response near its maximum design frequency, r: 
r

rQ














2

1
. 

A polarization filter can also be designed to exhibit a preferred output for one or a group of similarly 
polarized input components using the polarization selectivity inherent in an array, waveguide or other RF 
circuit element.  The selectivity is limited and based on the mode selectivity of the element. A vertical 
dipole or TE10 waveguide ideally rejects horizontal polarization; a right circular spiral rejects left circular 
polarization. Plotted on a Poincaré Sphere, the rejection is defined by a 180° arc. The loss for other 
polarizations, defined by an arc are given by Eq. (41) and plotted in Fig. 12. The polarization difference 
or loss between two polarized signals is readily determined.  

Figure 48 illustrates two points located on a sphere quadrant by the usual coordinates. In the 
Poincaré Sphere notation,  corresponds to twice the angle of the major ellipse axis and as a function of 

the axial ratio,   1tan22 1  , where represents the axial ratio, AR with respect to the 
reference horizontal polarization.  
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The spherical triangle H,P1,P2 then defines the arc P1P2, a measure of the polarization difference 
between the points at P1 and P2. Expressed as a function of the axial ratios 1  and 2  and their phase 

difference  21   , the arc is 
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PP .  (96) 

 
In terms of a decibel difference between the two waves: 
 

 






2
coslog20 21

1021

PP
PP

dB
. (97) 

 

Polarization filtering is, therefore, based on a signals characteristic relative to an inherently 
polarization-selective component, and its “selectivity” can be represented by the arc length on the 
Poincaré Sphere, as illustrated in Fig. 12. The most frequent utilization of polarization filtering is the 
rejection (or minimization) of rain clutter to enhance target detection. For most radar time-range-angle 
cells, target structural complexity assures reflection from any incident polarization. But since rain is near 
spherically shaped, an oppositely sensed circular polarized component dominates the backscatter, 
therefore facilitating target selectivity. Poelman [16] described a more selective approach. It is essentially 
a target decomposition approach. Visualized on a Poincaré Sphere, all of the received polarization 
parameters are reprocessed numerous times, each using a different scatter matrix transform that places its 
cross-polarized nulls close to the desired polarizations match; a ring about one polarization. In rain 
clutter, an improvement of about 6 dB over just a circular polarization technique is claimed.  

Z 

•
•

P2 
P1 
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Y 

1

2

1
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H 

Fig. 48 – Location of two polarizations in terms of the axial ratio and the inclination of the major axis. 
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Appendix A 

CHARTS DEPICTING POLARIZATION LOSS 

 
 

In the following tables, parameter combinations have been optimized for minimum circular 
polarization loss, as described in Section 5.5. 
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Appendix B 

SATELLITE COMMUNICATION 

 

The polarization parameters within a given coordinate system in terms of any specific basis are well 
defined. But often the effect of separated coordinate systems must also be considered. The notable 
example is in satellite communication.3 At each communication site vertical polarization is readily 
defined by the local gravity vector and the horizontal polarization within an orthogonal plane, which then 
defines beam directions and polarization orientation in terms of the local coordinate system, usually 
spherical coordinates. The local coordinates of different sites, each with pointing beams at the same 
satellite will then differ, as will their vertical polarization reference.  Optimum performance at each site 
requires the correct, albeit different, local directive angles and accounting for polarization alignment 
differences.  

The relationship between an Earth communication site and a geostationary communication satellite is 
illustrated in Fig. B1. Along the line OC at the communication site, the local gravity vector r


 defines the 

orthogonal horizontal “ground” plane. The line OS to the satellite also defines an orthogonal plane, that of 
the satellite directive antenna. For a geostationary orbiting communications satellite, the polarization 
angular orientation within that plane, defined by the E-field vector e


, is aligned with the Earth north-

south polar axis. The location of the satellite, at a specific longitude and necessarily within the equatorial 
plane (0° latitude), and the communication site latitude and longitude are sufficiently descriptive for the 
intercommunication analysis following. 

  

                                                 
1 D. Roddy, Satellite Communications, 2nd ed. (McGraw-Hill, New York, 1989). 
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SATELLITE DIRECTION ANGLES  

The essential details are illustrated in Fig. B2: S  and C  are the   respective longitudinal angles of 

the satellite and communication sites from the Greenwich Meridian, C  is the latitude of the 
communication site, and Re and Rs are the distances from Earth center to surface (assuming a spherical 
Earth) and to the geostationary orbiting communications satellite.  

  

Fig. B1 –Satellite (S) and communication site (C) orientation. Communication and satellite azimuth along the Greenwich 

Meridian are at “A” and “B,” respectively. r


 is the communication site local gravity vector and e


the satellite E-field vertical 
polarization vector.  
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Expressed as vectors, the line-of-sight (LOS) from communication site to satellite is OCOSCS  . 
In terms of Earth-centered spherical coordinates, these are 

 

 0cossin kRjRiOS ssss


  , (B1) 

 ceccecce RkRjRiOC  sincoscossincos


 ; (B2) 

 

kji


,, are unit vectors in the x, y and z directions, respectively. 
 

The LOS vector is then 

 

 
    ceccessccess RkRRjRRiCS  sincoscoscossincossin


 .  (B3) 

 
  

Fig. B2 –  Angles associated with communications between the site at “C” and the satellite at “S” 
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The elevation angle of the satellite from the communication site is the complement of the angle 

between OC and CS : 

 

 
 CSOCc :2 .  (B4) 

 
As a result, 
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coscos21
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sin

2 .  (B5) 

 
In general,   sescc RR coscos , so the that the final result is 

 
  

 

 
     sccsese

sescc
c

RRRR

RR









coscos21

coscos
sin

2

.  (B6) 
 

Referenced to the north direction, the angle , between the communication site north, characterized 

by a vector CN  in Fig. B2, and the satellite LOS, CS  is  

 

 CSCN

CSCN




cos .  (B7) 

 

From Fig. B2, OCONCN  , and ceRkjiON sin00


 . 

 
Applying these together with Eq. (B3), the result is 
 

 
 

     sccsese

scc

RRRR 







coscos21

cossin
cos

2  . (B8) 

 

The relationship among the angles c, and the satellite azimuth c and the angles ande in the 
local communication site coordinates is illustrated in the right spherical triangle shown in Fig. B3, from 
which it is seen that 

 

 e
c 


cos

cos
cos 

.  (B9) 
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Expanding this, 

 

 

 
 scc
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.  (B10) 
 
(The radical is negative since c = 180º when s .) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Equation (B10) can then be rewritten as 
 

 

 
c

sc
c 


sin

tan
tan




.  (B11) 
 

SATELLITE POLARIZATION  

The approach is to calculate the difference between the satellite and communication site polarization 
vectors when they are referred to the common plane, OSC, as illustrated in Fig. B2.  The communication 
site polarization plane is represented by the normal vector r


, defined by the Earth radius and the latitude 

and longitude angles c and c. The satellite polarization plane, essentially defined by the station-keeping 

Fig. B3 – Satellite direction in terms of the communication site angles, c, and c. 
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direction along OS when the meridian angle s is specified, remains fixed while serving communication 
sites over a wide area.4  

The outward-directed normal to the satellite and communication site planes, OTS and OCS, are given 

by vector cross-products of their respective vectors, OTOS  and OCOS  , where 

 0cossin kRjRiOS ssss


   (B12) 

 0cos0 kRjiOT ss


  . (B13) 

 

From Eq. (B2): ceccecce RkRjRiOC  sincoscossincos


 .  
  
Then, combining these with Eq. (B2), the angle between the normals of these two planes is  
    

 
     
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
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







22 coscos1

sincos
cos . (B14)                  

The angular directions and their relationships with reference directions can be somewhat confusing. 
Viewed from the satellite,  increases counterclockwise as sc   . The vertical polarization vector of 

the communication site is parallel with the OCS plane, i.e., 90º greater than the normal to that plane. 
However, the satellite vertical polarization vector is normal to the plane OST. Therefore, the angle from 
the vertical polarization of the satellite to the vertical polarization of the communication site is the 

complement, o90 , in a clockwise direction. To maximize the coupling between the communication 
site and the satellite, as well as minimizing any cross-polarization effects, these two directions must be 
matched. Looking at the satellite from behind the communication site, rotating the communication site 
component in a counter-clockwise direction achieves this result. Representing the required polarization 
rotation by  , and using Eqs. (B2), (B12), (B13) and (B14), the required rotation is         

 
 

c

cs




tan

sin
tan




,  (B15) 

 
in which a negative value signifies a counter-clockwise rotation.     

An example of the directional and polarization orientation angles is a vertically polarized 
communication link between NRL’s CBD ground site at 38.657º north latitude, and 76.528º west 
longitude with Telstar11, located at 37.500º west longitude.  

Using Eqs. (B6), (B11), and (B15), with c = 76.528º, s = 37.500º, and c = 38.657º, Re = 
6.37814x106 m and Rs = 4.216414x107 m, the results are  

c= 29.804º, c=127.618º, and = -38.210º.

                                                 
4 Small angular differences among the multiple satellite beams covering different geographic surfaces from the same 
satellite location are ignored. 
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Effects of Polarization Misalignment  

Correct polarization alignment between the communication site and satellite is clearly required to 
optimize intercommunication power transfer. Small angular differences will have negligible impact on 
this transfer. For example, the one-way reduction in power transfer from a misalignment of 5º is only 0.03 
dB. The greater impact of misalignment is the independent use of dual polarized channels, which then 
provide “a frequency reuse” characteristic. For this purpose, polarized component orthogonality is 
paramount. Requirements will depend on the waveform coding used, but a typical baseline is –25 dB.  
Cross-polarization characteristics at both the communication site and the satellite depend on the 
technology used to form orthogonal beams. A well-designed system may have an isolation of –30 dB or 
more and a poor one of –20 dB or less. Achieving good isolation depends on many factors; of course, 
these include antenna element or feed design, but other factors will also impact performance. At the 
communication site, for example, one factor is multipath caused by site topography and nearby structures, 
fixed or moving and, depending on operating frequency, magnetic effects (Faraday rotation) may also 
impact performance. Additional factors can even include atmospheric inhomogeneities. Figure B4 
illustrates the impact of polarization alignment errors on a ground-satellite link with various cross-
polarization levels. Assuming that a –25 dB cross-polarization level is required for effective frequency 
reuse and that the cross-polarization levels of the ground and satellite systems are –30 dB, the 
misalignment must be less than 1.5º.  

 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 

Fig. B4 – Effect of polarization misalignment on cross-polarization level 
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