
NRLE Reor 8 //

NRL Report 8298

Maximum Entropy Wavenumber Analysis

WILLIAM R. KING

Antenna Systems Staff
Radar Division

March 20, 1979

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

/1.) I

r-1

�2

'V, C� 'r



SECURITY CLASSIFICATION OF THIS PAGE (W"an Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8298 |

4. TITLE (and Subtitle) 5, TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing

MAXIMUM ENTROPY WAVENUMBER ANALYSIS NRL problem.
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(.)

William R. King 53R1246

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Naval Research Laboratory RRO21-05-41 61153N-21
Washington, D.C. 20375 R12-46.101

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy March 20,1979
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 38
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rerere side if necessary and Identify by block number)

Antennas
Direction finding
Linear prediction filters
Maximum entropy processing
Spectral analysis

20. ABSTRACT (Continue on rveree oid. It necoeary nd identify by block number)

The maximum entropy spectral analysis (MESA) technique is applied to a linear spatial array of
sensors to obtain wavenumber power spectra. The resultant wavenumber spectra are compared with
conventional beamsteered antenna patterns using simulated signals mixed with Gaussian noise. The
results indicate that the MESA technique, which is an all-pole model, may provide improved accuracy
and improved spatial resolution of signals under varying signal-to-noise conditions. Some difficulties
with MESA are noted, and further investigations are recommended.

DO FORM 1DI JAN 73 1473. EDITION OF I NOV 65 IS OBSOLETE i
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Nhen Data Etrod)

-



CONTENTS

INTRODUCTION .................................... 1

THEORY ......... ...................... 2
Power Spectra .............................. . 2
Prediction Error Filter ............................. 5
Signal Simulation ............................... 6
Power Spectra Peaks .............................. 8

APPLICATIONS ..................................... 10

MESA Examples ............ ..................... 10
Single Signal ........... ..................... 10
Two Closely Spaced Signals ..................... 11
Three Closely Spaced Signals .................... 13
Pattern Averaging . ........................... 14
Mixed Signals ............................... 17
Relative Signal Phase ........................... 20

Summary of Observed MESA Characteristics .... ....... 20

OPTIMAL FILTER SIZE .............................. 23

CONCLUSIONS ..................................... 25

REFERENCES ...................................... 28

APPENDIX A - Wiener Prediction Filter ....... ........... 31

APPENDIX B - The Burg Technique ......... ............ 34

iii



MAXIMUM ENTROPY WAVENUMBER ANALYSIS

Introduction

In recent years several methods have been introduced for estimating power spectra
with considerably greater resolution than that provided by the conventional periodogram or
the Blackman-Tukey windowed Fourier transform. Included among such techniques are
maximum entropy spectral analysis (MESA) introduced by Burg [1], the autoregressive
model (AR) spectral estimation introduced by Parzen [2], and the method of maximum
likelihood as demonstrated by Capon [3] .Other methods offering high resolution, which
utilize the Fourier transform, are described by Gerchburg [4] and Papoulis [5]. More
recently, another spectral estimator has been introduced by Gray [6].

While none of these spectral estimators have been thoroughly investigated, there have
been a few comparative examinations of some of the techniques conducted by Lacoss [7],
Ulrych and Bishop [8], and Nuttall [9] . Of the comparisons investigated, in general, superior
results are achieved by using the MESA method and the Burg technique [10] for estimating
filter coefficients. The results are dramatic, and suggest that investigations of MESA and
other high-resolution techniques be continued. Because of the high resolution and stability
achieved with MESA in such initial investigations, these same properties are investigated
further in this report where MESA is applied to the analysis of simulated, multichannel,
spatial, phased-array data.

In the initial paper by Burg [1], where the principle of MESA is first suggested, the
prediction error filter coefficients (which maximize the entropy) are specified with knowl-
edge of the autocorrelation coefficients. However, in a second MESA paper, Burg [10]
defined the prediction error filter coefficients as a function of a set of uniformly spaced
data samples representative of the function of interest. In addition, Burg simplified the
method for obtaining the filter coefficients with use of Levinson's recursion equations, and
also noted in the second paper that the mean squared prediction errors may be minimized
in both the forward and backward directions. These suggestions served to greatly facilitate
the implementation of MESA and to significantly enhance the MESA properties. Taken
together, the improvements suggested by Burg [10] are often referred to as the "Burg
technique."

The concept of estimating power spectra by maximizing entropy appears unique in
the history of science, yet the resultant expression for power spectra is identical to the
representation of the all-pole method or autoregressive model (AR) introduced by Parzen
[2]. In fact, van den Bos [11] and Kaveh and Cooper [12] have noted that MESA,as out-
lined by Burg [1], is equivalent to the AR method as described by Parzen. Therefore, it is
of consequence to note that the different spectral estimates sometimes predicted with the
two spectral estimation methods are not due to inherent model differences, but rather to
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the different methods used for evaluating the corresponding filter coefficients. With this
realization, Ulrych and Bishop [8] conducted a comparative analysis of the Burg and Yule-
Walker [13,14] techniques for evaluating MESA and AR filter coefficients. In a comparison
of spectral estimation of harmonic components, Ulrych and Bishop showed that the MESA-
Burg technique provided significantly greater resolution than did the AR-Yule-Walker tech-
nique. They noted that the resolution differences are not surprising when it is realized that
the Yule-Walker technique has assumed a zero extension of the data samples, whereas the
Burg technique contains no assumptions concerning the nonsampled data field.

Since the MESA and AR methods are most significant when processing short data sets,
it is natural to use such methods for processing data collected with multielement electro-
magnetic antennas or acoustical arrays. Such methods may well make it possible to achieve
high resolution by using unusually short antenna arrays. Consequently, in this report the
resolution property of the MESA-Burg technique is examined as a function of input-data
signal-to-noise ratios (S/li), number of antenna elements, numbers of signals, incident signal
angle, relative signal amplitudes, and relative signal phase.

THEORY

Power Spectra

The maximum entropy power spectra (MESA), which was introduced by Burg [1],
has been derived by Parzen [2] using statistical methods and by van den Bos [11] using an
all-pole model representation. To further the understanding and acceptance of MESA,
another derivation suggested by Blizard [15] is presented based upon discrete convolution
filtering and minimization of the mean squared error.

Consider the one-step discrete convolution prediction filter described by Levinson
[16] as follows:

N

it E anxt-n (1)
n=1

where it is the prediction at time t of the function xt which is sampled at time intervals
n(At). The N prediction coefficients are given by al, a2 ,... aN. The error of the one-step
prediction is et, given by

et = Xt-it

N

et = Xt - anxt-n (2)
n=1

The filtering and error analysis represented by Eqs. (1) and (2) is illustrated in Fig. 1, where
filter coefficients an are multiplied by values of x sampled at time intervals n(At), and the
resultant multiplications are summed to obtain the prediction it. The predicted signal
it and the actual signal xt are subsequently subtracted to obtain the prediction error et'
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A
xt

Fig. 1 - Prediction error filter

For convenience, the prediction error filter My is introduced as follows:

N
et= E L Xt-n (3)

n=0

where, in comparing Eq. (2) and (3), it is observed that

o= 1; 'Yn = -an, n > 1.

Equation (3) is transformed to frequency space with the Fourier transform to obtain the
following equation:

N

WN(@) = X(CO) E;y e ien(At) (4)
n=0

where the Fourier transform of a function delayed n(At) units is the exponential

eiw n(A t)

multiplied by the transformed function. The power spectra density function P(w) is defined
as

P(Co) = X2()/W

where W is the bandwidth defined by the sampling interval At; i.e.,

1
= (At)

If the signal distribution function X(w) is given by Eq. (4), the power spectra density func-
tion becomes

3



KING

C (cW)IW

P(w) = N (5)

| E znein(A t) 12

P(O) = PNW , (6)
|1 + E y ei~wn(At) 12

n=1

where the error power t2(co) is represented by PN. A requirement that the spectral error
power SN(c) be a minimum results in PN being independent of frequency as follows:

d4N(o)
dco

t2 (C) = constant, (7)

PN= constant.

Then if PN is a constant, the prediction error filter y is a whitening filter, and PN is also the
mean of the total squared error as follows:

pN = t (co),

IN [t [(CO)W]. (8)

The power spectra density function P(co) given by Eq. (6) is the same MESA equation intro-
duced by Burg [1] and later derived with detailed steps by Barnard [17 ].

The power spectra density (Eq. (6)) may also be expressed as a wavenumber power
spectra density by

P(k) PN/Kmx (9)
N

I 1 + Ei 'Yneikn(A) 12

where the time (t) and frequency (f) variables have been transformed to space and wave-
number variables by using the following relations:

X = kc, At = Ax/c,
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for

k = (27r/X) cos 0,

X = signal wavelength,

0 = signal angle of incidence,

c = signal velocity,

K = 27r/X.

Prediction Error Filter

Utilization of the MESA power spectra equation (Eqs. (6) and (9)) requires that the
prediction error coefficients yn and the mean error power PN be known. These unknown
parameters may be specified by minimizing the average time-dependent prediction error
power e2. The resulting N + 1 equations, which are derived in Appendix A, are presented in
a matrix formulation as

ro

ri

r2

rN

ri r2 . . *.rN-1

ro ri I I I rN-2

ro

ri

rN-l rN-2 rN-3 0 * rO

no

'Y1
0

0

0

(10)

where it is known that yo = 1 and it is assumed that the autocorrelation coefficients ri
(with lag iAt) are known for N lags.

The autocorrelation coefficients have the following definition:

M
r = lim 1+ XkX .

k=-M
(11)

But for a finite data set, the autocorrelation coefficients may be computed by approximat-
ing Eq. (11) with a finite summation over M data samples.
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For large-sized filters (N large), solution of the N + 1 equations given by Eq. (10)
becomes very tedious. Fortunately, Burg [10] demonstrated a more expeditious method
for specifying the unknown prediction error coefficients which appear in Eqs. (6) and (9).
He noted that the unknown parameters PN and yn may be evaluated with repeated use of
Levinson's recursion relations

N+1 ~~ t~Y+1 '~2 (12)PN +1 = PN [1 - ('YN + 1)g(2

7 >N+1 =DN + N+1 N (13)

for

P1 = ro-

,,YN+ 1 = 1,

N > 1,

and with knowledge of YN +IX which is shown in Appendix B to have the following
representation:

2M-N-1 (N* N

JN+1 M 1 (14)

'YN+1 M-NE [N)2 + (aN N)2]

where the forward prediction error is a!V and the backward prediction error is 6Y The three
equations, Eq. (12), (13), and (14), comprise the Burg technique as originally demonstrated
by Burg [10] and later generalized in detail by Anderson [18] and Barnard [17].

The remainder of this report is concerned with the properties exhibited by the MESA
wavenumber power spectra equation (Eq. (9)) when evaluated using the Burg technique
given by Eqs. (12-14).

Signal Simulation

Resolution properties of the MESA-Burg technique are examined by using simulated
antenna data. Input signals to a linear (line), multielement, phased-array antenna are assumed
to be plane waves mixed with white Gaussian noise. The multichannel signals are pre-
processed with narrowband filtering and channel delays which serve to "direct" (or steer)
the antenna in the direction of the incident plane-wave signal. The preprocessing methods
are illustrated in Fig. 2 where the nth channel is depicted as delayed (n - 1) At seconds for

At = Ax sin (0)/c,

6



NRL REPORT 8298
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Fig. 2 - Preprocessing of a linear phased array

where c is the velocity of the incident signal, Ax is the antenna element spacing, and 0 is
the look angle of the steered array measured relative to the normal to the array.

The signal xn(0) incident to the nth antenna element is represented as

xn (0) = A exp[iQn(0)] + Qn exp(i27rqn), (15)

where A is the signal amplitude, E2 n(0) is the signal total phase, and Qn is a random number
representative of Gaussian noise. The amplitudes A and Q are relative, and are determined
by a Gaussian distribution with variance a2 and a specified signal-to-noise ratio as follows:

S A2 , (16)

2a2

q= e n , (17)

where S/I7 is the input signal-to-noise power ratio, a2 is the average noise power, and q is
a random number between 0 and 1.0 obtained by using a "white" random number
generator.

The signal phase Qn (O) has three components as follows:

n n(0) = 27ri[n - 1] [Ax/X] [sin (0) - sin (0s)] (18)

where 0 is the array look angle, 0 is the angle of the incident signal relative to the normal
to the array, 0 is the incident signal initial phase with values between 0 and 27r, and X is
the signal wavelength given by

X = c/f.

For all signals analyzed in this report, the ratio Ax/X has the value 0.5; i.e.,

Ax/X = 0.5.
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In conventional beamforming all N antenna elements are summed such that the total X(0) is

N

X(O) = {A exp[i2n(0)] + Qn exp (i27rqn)t, (19)
n=1

and the conventional antenna power pattern is computed in decibels as follows:

dB 10 log [X2 (0)/X2 (0s)]. (20)

However, the MESA technique requires multichannel data which are given by Eqs. (15)
and (18).

Conventional antenna patterns are compared with MESA patterns whenever such com-
parisons are considered worthwhile. It is specifically noted that the S/17 is defined at the
antenna element and is the same for each antenna element. Consequently, the S/77 does not
include the conventional antenna gain factor.

Power Spectra Peaks

The wavenumber power spectrum given by Eq. (9) may be expressed by

PN/K
P Pk) = r2 (21)
F2 (k)

where

N

r(k) = 1 + X~jeikn(Ax)
n=1

or

N

r(k) = |AYeikn(Ax)
n=O

for

zo = 1.0,

k = K sin 0,

K = 2ir/X.

Spectral peaks of P(k), which occur at minimal values of F(k), may be located by solving for
the roots of the function r(z) in the complex z-plane as follows.
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Consider a polynomial r(z) defined as

N
r(z) = E Ynz, (22)

n=0

where

z = IzIe'f

= k n (Ax), (23)

7= 'rn sin 0 for (Ax)= X/2.

The polynomial r(z) (of order N) may also be expressed as a function of the N complex
roots as follows:

[(z) = I(Z-Z ) (z -z 2 ) ... (z-zN) (24)

where z 1 , z 2 . . . ZN are the N roots located in the complex z-plane. The significance of r(z)
becomes obvious from the observation that the function of interest r(k) is actually the
polynomial r(z) on the unit circle, i.e.,

r(k) = r(z) for IzI = 1.0.

Consequently, r(k) has a polynomial representation in the z-plane as follows:

r(k) = I (e'O -zj)(eio - z2 ) . . . (eio - zN)I (25)

where it is recalled that 0 and k are functionally related according to Eq. (23). The product
terms of r(k) in Eq. (25) are the complex vectors (e'O - z;) which are shown constructed in
the z-plane diagram of Fig. 3. In accordance with Eq. (25), the minimal values of r(k)
occur at minimal values of the complex vectors (e'O-z.). And as observed in Fig. 3 the
complex vectors (ei4 - z1) are minimal for k corresponding to 0,, the argument of the com-
plex roots z,; i.e.,

0 = 0, where Oj = arg (z;).

Consequently, stronger spectral peaks, which occur for smaller values of r(k), occur
for roots zj lying closer to the unit circle. And as noted by Burg (in private communication),
all roots of Eq. (22) lie outside the unit circle.
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ZI

\ -UNIT CIRCLE
Z. =IZ, Ie'''

Fig. 3 - Z-plane with root Z

APPLICATIONS

MESA Examples

Several examples of MESA antenna patterns are computed in order to demonstrate
MESA characteristics. Antenna patterns are computed for linear antennas containing 8 or 16
elements spaced at half-wavelength intervals, and for various signal-to-noise ratios. Snapshot-
type antenna patterns are presented to demonstrate the explicit MESA characteristics. A
MESA snapshot pattern is a MESA antenna pattern computed by using N discrete data points
representing spatial data collected at one instant of time. In some examples several MESA
snapshot patterns may be averaged to obtain one single representative stable antenna pattern.
Some type of averaging is usually recommended when MESA is applied to actual data.
Usually, it is better to use a time average of either the input autocorrelation matrix, the pre-
diction error, or the prediction filter coefficients. However, in this demonstration of MESA
characteristics it is convenient to obtain pattern stability with the averaging of snapshot
patterns (or postprocessor integration).

The MESA algorithm, used to compute the examples in this report, utilizes complex
number arithmetic throughout, so that the input-signal and noise data may have a complex
representation. As a result, the prediction filter coefficients computed by the algorithm are
complex coefficients.

Each example MESA antenna pattern is computed for a noise field identified by a
"seed" number required of the random number generator. The exhibited antenna patterns
may be duplicated only with use of the particular seed number (IR) that is identified in
each example.

Single Signal

A MESA snapshot antenna pattern is shown in Fig. 4 for a single signal incident to an
8-element antenna at 0° (broadside to the antenna) with a S/I? of 0 dB. In this particular
snapshot pattern, which is computed by using a 6-point prediction filter (N=6), the signal
peak is about 10.5 dB above the largest noise peak. There are N peaks in a MESA snapshot
which is computed for an N-point prediction filter, and in Fig. 4 there are five prominent

10
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a -20.00 kJjU\~w
0

-32000

-4000

-5000
-9000 -6750 -4500 -2250 000 22.50 45.00 6750 90.00

ANGLE IN DEGREES

Fig. 4 - One signal at 00 (low S/i7)

peaks and one small peak located at 90°. The noise peaks would be distributed differently
in a MESA snapshot computed for a subsequent noise field. The noise field used in comput-
ing the MESA snapshot pattern consists of eight random (white) complex numbers repre-
sentative of receiver noise.

The same noise data of Fig. 4 are summed with a signal at 00 having a S/l7 of 10 dB to
obtain the MESA snapshot pattern shown in Fig. 5. Since the noise data are identical in
Figs. 4 and 5, the noise peaks have the same location in both examples, but the noise peaks
of Fig. 5 are further suppressed (both snapshot patterns are normalized at the signal peak).

A conventional antenna pattern is also shown in Fig. 5 for comparison purposes, where
the conventional pattern is observed to have a beamwidth of about 150 at the half-power
(3-dB) points on the main lobe. The width of the MESA signal peak in Fig. 5 is so narrow as
not to be measurable on the plotted pattern. Since points are computed at 10 intervals,
it can only be stated that the MESA signal peak is down by 16 dB at the 10 intervals on
either side of the peak occurring at 00. In the particular MESA snapshot illustrated in Fig. 5
there is also considerable reduction in side-peak levels in comparison with the conventional
pattern. However, side-peak levels vary significantly in subsequent MESA snapshots. Consis-
tent side-peak levels are possible only with some type of preprocessor or postprocessor
averaging.

Two Closely Spaced Signals

Two signals incident at angles of -40 and 40 are readily identified in the MESA snap-
shot shown in Fig. 6 for a complex noise and a S/lq of 13 dB, each signal, each element. The
MESA snapshot is computed for an 8-element antenna and a 6-point prediction filter, which
is denoted by the six peaks appearing in Fig. 6. Since particular snapshot patterns are not
necessarily repetitive over a finite time interval, a more representative MESA antenna pat-
tern is obtained by averaging 20 such snapshot patterns, as shown in Fig. 7.

11
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Fig. 5 - One signal at 00
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Fig. 6 - Two signals at -40 and 40
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zC -20.00 ~ /\J V \Vw
0

3. -3000

-4000

-50.00
-9000 -6750 -4500 -2250 0.00 2250 45.00 6750 9Q00

ANGLE IN DEGREES

Fig. 7 - Two signals at -40 and 40 (summed patterns)

While the two signals are resolved in the averaged MESA pattern of Fig. 7, the resolu-
tion of the averaged pattern is not as favorable as the particular MESA snapshot illustrated
in Fig. 6. However, the two signals are not resolved by the conventional antenna pattern
(also shown in Fig. 7), which is computed as the sum of two conventional patterns obtained
by "steering" the array in the directions of the two signals. It is known that the resolution
of a conventional antenna pattern is given approximately by the function R as follows:

R B arc sin (X/L),

where X is the signal wavelength and L is the array length. For an 8-element antenna having
half-wavelength element spacing,

R are sin (2/7)

16.6 degrees.

For the parameters illustrated in Fig. 7, the resolution of MESA is at least a factor of two
better than the conventional pattern.

Three Closely Spaced Signals

A MESA snapshot is shown in Fig. 8, computed for three signals incident at angles of
--7°, 00, and 70, with each signal having a S/I- of 40 dB, each element. The MESA snapshot,
computed for a 6-point filter and omnidirectional noise, has four equally strong peaks and
two low-level side peaks. It is apparent that the central signal at 0° is represented by two
split peaks on either side of the true signal location. The MESA snapshot pattern depicts
"peak splitting," which is sometimes observed in MESA snapshots at the larger filter sizes,
but is encountered less frequently in averaged MESA antenna patterns.

13



KING
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S/N=4OdB EACHSIGNAL
8 ELEMENTS,6 FILTER POINTS
OMNI NOISE, lR=7
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-6750 -4500 -2250 0.00 2250 45.00 6750 90.00
ANGLE IN DEGREES

Fig. 8 - Splitting with three signals

For example, an average of 20 MESA snapshots, including the one shown in Fig. 8
(since the same seed number is used), is shown in Fig. 9 to illustrate that pattern averaging
serves to enhance MESA stability. In comparing Figs. 8 and 9, it is observed that even
though stability is enhanced by averaging, peak widths are increased.

Further examples of three resolved signals are shown in Figs. 10 and 11, where the
effect of increased S/77 is depicted. In Fig. 10 the noise field is omnidirectional and the three
peaks are predicted within 0.50 of the correct incident angles. Also, MESA patterns com-
puted with omnidirectional noise have an observed symmetry in peak location, whereas
MESA patterns computed for complex noise distributions do not exhibit such symmetry as
demonstrated by the snapshot patterns in Fig. 11.

The MESA snapshot patterns in Figs. 10 and 11 do indicate that resolution is improved
and side-peak levels are reduced with increased S/il. These benefits are demonstrated in Figs.
10 and 11 for a S/l increase of 20 dB. The two examples also illustrate that omnidirectional
noise does not affect the accuracy of peak location, but complex noise may cause such in-
accuracies or distortions. It appears that complex noise (receiver noise) is a more troublesome
noise than the spatial omnidirectional noise field.

Pattern Averaging

While it has been demonstrated that pattern averaging provides stability to MESA
antenna patterns, averaging also serves to broaden peak widths in comparison to MESA
snapshot patterns. The averaged pattern of Fig. 9 demonstrated MESA stability for omni-
directional noise.

Another benefit of pattern averaging for omnidirectional noise is illustrated in Fig. 12,
where side-peak levels have been substantially reduced. In the example, a MESA snapshot

14
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pattern is shown for one signal incident at -30 to an 8-element antenna. From the number
of peaks in the snapshot it is noted that a 5-point prediction filter is used. An average of
20 such snapshot patterns indicates a substantial reduction in side-peak levels that is much
greater than anticipated from the gain due only to a uniform distribution of side peaks in the
20 MESA snapshots. For in an ordinary summation of snapshots such a gain is only

10 log (M),

where M is the number of patterns summed. Consequently, it is anticipated that side-peak
levels may be reduced by only 13 dB in an average of 20 MESA snapshots. No explanation is
suggested for the gain that is apparent in Fig. 12, but if the apparent gain is real, then signal
detection may be improved substantially with pattern averaging.

The effect of averaging MESA snapshots computed for complex noise is demonstrated
in Figs. 13 and 14. A MESA snapshot of one signal incident at -30 is illustrated for a 7-point
filter in Fig. 13 where the SI77 is 0 dB. It is apparent from the averaged MESA pattern shown
in Fig. 14 that signal detection in complex noise is improved with averaged MESA patterns,
but the amount of improvement is not demonstrated by a single MESA pattern. However,
detection performance may be measured with a large collection of such patterns by con-
structing a set of ROC (receiver operating characteristic) curves that illustratethe probability
of detection for specific false alarm rates. In the particular example of Fig. 14, -therelis an
apparent gain of about 5 dB in S/I level for a zero false alarm rate. The gain appears even
more substantial in some following examples.

The SI77 gain that is apparent with the previous examples of averaged MESA patterns
appears to indicate that the gain is substantially greater with MESA patterns computed for
omnidirectional noise. One obvious reason for this discrepancy is observed in Figs. 10 and
11, where complex noise affects the accuracy of the location of signal peaks, thereby reduc-
ing the effect of pattern summation. There is little or no observable effect upon peak loca-
tion with omnidirectional noise. Consequently, the signal peaks summed in patterns for
omnidirectional noise remain sharply defined, whereas the signal peaks summed in patterns
for complex noise are distorted and broadened and show only a moderate SI77 gain due to
pattern averaging.

To recount the benefits attributable to pattern averaging, the examples presented
indicate that averaging of a sufficient number (maybe 20 or so) of MESA snapshot antenna
patterns provides pattern stability, helps to eliminate peak splitting, and may provide a
significant gain in signal detection.

Mixed Signals

A MESA snapshot antenna pattern is shown in Fig. 15 for a collection of five signals in
complex noise having S/77's of 0, 10, and 20 dB as indicated in the illustration. The example of
Fig. 15 is computed for an antenna with 16 elements and a 13-point prediction filter. Only
two of the signals are clearly identified in the MESA snapshot of Fig. 15, but all five signals
are readily and accurately detected in an average of 20 such MESA snapshots as shown in
Fig. 16. Signal detection is considerably improved in the averaged MESA pattern which con-
sists of signals mixed with complex noise. It is apparent that the particular set of complex
noise samples (IR = 5) has not adversely affected signal-peak location accuracy as was noted
in the previous examples of Figs. 11 and 14.
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Fig. 14 - Signal at -3 (summed patterns)
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Fig. 16 - Five signals (summed patterns)
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Relative Signal Phase

It has been noted by Fougere, et al. [19] that signals having initial phases other than
zero are not accurately predicted by MESA. In particular, Fougere noted that signals with
an initial phase of 7r/4 are most troublesome for MESA, as peak splitting is apparently most
severe for this particular phase.

In Fig. 17, an average of 20 MESA snapshot patterns is shown for the same five signals
and noise and the same antenna and filter size depicted in Fig. 16. However, the signal in-
cident at 600 has a phase of 7r/4 (450) relative to the other four signals, all of which have
zero initial phase. In comparing Figs. 16 and 17 it is noted that the two signals located at
300 and 600 are considerably broadened by the phase shift, which suggests that some of the
summed MESA snapshots either contain inaccurately located peaks or suffer some peak
splitting at these two signal locations. Whatever occurs, pattern averaging has again served
to maintain pattern stability so that signal peaks are accurately predicted even though some-
what broadened.

In a further examination of the effects of signal phase, another averaged MESA
antenna pattern is shown in Fig. 18 for the same signals and noise and parameters of the two
preceding examples. The exception is that the signal incident at 600 has a relative phase of
7r (1800). There is evidence of severe peak splitting at the wider angle signals. It appears that
a signal phase of ir is most troublesome for MESA and is responsible for severe loss in ac-
curacy and peak distortion.

Phase distortion effects are examined further for two closely spaced signals separated
by 60 with a S/lq of 20 dB each, and detected with an 8-element antenna using a 6-point
prediction filter. The resulting averaged MESA antenna pattern for the two signals, both
having zero initial phase, is shown in Fig. 19 where the two signals are separated by a shal-
low null of only a few dB. The averaged MESA pattern for one signal (the one at +30)
having an initial phase of ir/2 is shown in Fig. 20. Clearly, the effect of the 7r/2 relative (and
initial) phase is to shift the two signal peaks further apart and to enhance resolution at the
loss of accuracy. Also, the signal peaks appear somewhat broadened.

In Fig. 21 an averaged MESA pattern is shown for the same two signals in the two
previous examples, but with the one signal incident at +30 having an initial (and relative)
phase of Ir (1800). The pattern distortion is similar to that depicted in Fig. 20 for a relative
phase of 7r/2, but is not nearly so severe. Distortion effects are also minor (similar to Fig. 21)
for a phase shift of 7r/4.

Summary of Observed MESA Characteristics

The illustrations of MESA antenna patterns show that these patterns have substantially
reduced peak widths and consequently have better resolution than conventional antenna
patterns. Also, signal detection with MESA appears to be improved over signal detection
with conventional patterns. Such improvement is indicated by the substantial reduction in
side (noise) peak levels achieved with postprocessor integration (pattern averaging).

Multiple signals of varying power levels may be accurately predicted with MESA,
although the number of antenna elements must be greater than twice the number of signals
to be detected.

20



NRL REPORT 8298

FIVE SIGNALS
16 ELEMENTS
13 FILTER POINTS
COMPLEX NOISElR=5
(SUM=20)

-5000 - f , *. *
-90.00 -6750 -4500 -2250 0.00 22.50 45.00 6750

ANGLE IN DEGREES
90.00

Fig. 17 - Five signals (phase at 600 is 7r/4)
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Fig. 18 - Five signals (phase at 600 is 7r)
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Fig. 21 - Two signals (relative phase of ir)

Examples of phase distortion are noted for phases ir and ir/2, which are thought to be
most troublesome.

One type of averaging, postprocessor integration, is shown to be most effective in
providing stability in the computed MESA patterns and in substantially improving signal
detection. It is likely that preprocessor integration is equally effective, and may be prefer-
able to postprocessor integration when computational time is considered.

OPTIMAL FILTER SIZE

The size N (number of filter coefficients) of a MESA filter is constrained to be at least
one less than the number of data samples M, i.e.,

N < M - 1,

so that at least one data sample which is not convolved with the filter coefficients is available
for estimating the prediction error. The lower bound on N is dependent upon the total num-
ber of spectral parameters, since some minimal number of filter coefficients is required to
accurately represent all spectral component parameters such as amplitude, frequency, and
phase. For instance, if there are P spectral components, all with the same relative phase,
then N is constrained as follows:

2P < N < M - 1, (26)

where 2P represents the total number of spectral parameters.
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While N is bounded, the actual filter size is optional within the bounds of Eq. (26).
Anderson [18] and others have noted that the criteria for selecting the filter size depend
upon the intended application or function of the MESA power spectra. For in using MESA,
it is observed that the spectral characteristics of MESA are a function of the filter size. Both
resolution and peak height are improved at the larger filter sizes, whereas stability and ac-
curacy sometimes are better at the smaller filter sizes.

Some criteria for determining the filter size are required if MESA is to be used in a
completely automated manner to determine unknown power spectra. One criterion,
which is representative of two MESA characteristics, is the output S/a7. Peak height and
resolution are two interrelated properties that are optimal with maximization of the output
S/77. King [20] has noted that maximization of the output S/ti at a spectral peak is a reli-
able criterion. Another criterion developed by Akaike [21] has been investigated by Ulrych
and Bishop [8] and found to be only partially satisfactory.

King [20] noted that the output S/ti at a spectral peak c0 is given by

(S/7)O P"N ' (27)

where the power spectra are evaluated at the spectral peak coo. With use of the power spectra
expression (Eq. 6),

-r7)(oo F2 (X0) X (28)

where

N

FN(wo) = W 1 + L AYdeioon(t) (29)
n=1

A maximum (S/q),, requires that F (CoO) be a minimum. Therefore, an optimal filter size
is the filter size (No that minimizes TN(wO).

If the maximum S/17 is a criterion for determining the filter size, then the MESA
properties of accuracy and stability are not optimized, and remain as inherent MESA
characteristics. Both accuracy and stability (under varying noise fields) have been satisfactory
with use of a maximum S/il output. However, when signal relative phase is nonzero, spectral
peaks of the computed power spectra are often instable. Sometimes, averaging of such com-
puted spectra appears to restore the stability. Examples of MESA antenna patterns of phase-
shifted signals are provided in the previous section.

Of course, maximization of the output S/71 at each spectral peak requires that the peak
locations w be known. The peak locations may be determined by solving for the roots of
the function rN(w) at a stable and accurate low-order filter size. Knowledge of the peak
locations is also most helpful in accurately representing computed power spectra.
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An example of the value of maximizing the output (SI??). is given in Fig. 22(a-g),
where the MESA wavenumber spectra are computed for a signallocated at 00 (broadside
to the antenna). The antenna has eight elements and the input S/17 is 0 dB per element. The
MESA power spectra are shown computed for all possible filter sizes 2 < N 6 7 in Fig.
22(a-f).

A familiar problem with MESA, line splitting occurs at the larger filter sizes 5 < N < 7.
At the lower filter sizes 2 6 N < 4, the power spectra having the best resolution and greatest
peak height occur at the filter size N = 4, Fig. 22(c). The filter size N = 4 is also the size de-
termined by maximizing the output (S/l), and the optimal power spectra for N = 4 are
shown in Fig. 22(g). Of the six possible filter sizes, the power spectra for N = 4 are clearly
those with the best resolution and peak height. Maximization of the output (S/n1),0 also
serves to avoid such problems as peak splitting as observed with the example given.

CONCLUSIONS

Examples of MESA antenna patterns presented in this report are an improvement over
conventional phased-array antenna patterns. Several direct comparisons illustrate the im-
proved resolution and side-peak suppression that are characteristic of MESA. However, it
should be emphasized that these results were obtained from computer simulation modelling
of the antenna elements and the sources. The simulations did not include degrading effects
such as antenna errors, signal scintillations, etc., so that it is not appropriate to assume that
these remarkable resolution characteristics of MESA will hold under real-life conditions.

The best means of applying MESA to actual radar signals has not been established.
Apparently some form of integration (or averaging) is necessary at some point within the
MESA algorithm in order to gain stability in the computed antenna patterns. Postintegration
(or pattern averaging) demonstrated in this report is one method for obtaining pattern
stability. However, stability may also be obtained by averaging the elements of the covari-
ance matrix, the prediction errors, or the prediction filter coefficients.

While MESA appears to be a useful method for obtaining improved antenna patterns,
it remains to qualify these improvements and to establish the appropriate applications of
MESA to radar problems through further analytical and experimental investigation.
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APPENDIX A t:

WIENER PREDICTION FILTER

PREDICTION FILTER

Consider a signal x(t) with a waveform known only over the time interval (OT). The
waveform may be predicted (or estimated) for points outside the window (OT) by using the
prediction filter in a convolution with the known signal x(t) as follows (suggested by Wiener*):

fT
x(t) = a(T) x (t - r) dr, (Al)

where x(t) is the predicted signal and a(r) is the impulse response of the prediction filter.

If the signal has been adequately sampled within the time interval (OT) such that

At < 1 (M -1) < 2f,

for a sampling interval At, M data samples, and signal frequency f, then the discrete convolu-
tion may be employed as follows:

N

Xk = an Xk-n I N < M, (A2)
n=1

where the summation is taken over N filter coefficients, N being less than the number of
data samples.

PREDICTION ERROR FILTER

An error ek may be defined for the known set of data samples by

Ek = - ik

N

=Xk - anxk-n (A3)
n= n

N

n=0

*N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, John Wiley and Sons,
Inc., New York, N.Y. 1949.
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for

m0 = 1, n = 0,

'n =an, n > 0,

where Yn is the nth prediction error filter coefficient.

The squared error is expressed as follows:

N
m2 = E

m=O

N ~~~~*
L ynz'mxk nXkrm -
n=0

(A4)

Since yo = 1, there are N remaining unknown prediction error coefficients. These N coeffi-
cients may be determined by minimizing the total mean squared error EN which is defined by

M

EN =M + 1 E k .
k=-M

(A5)

The summation is taken over all errors possible to compute in a forward prediction within
the data window defined by N + 1 data samples. The incorporation of Eq. (A4) into Eq.
(A5) results in the following equation:

M

EN= N 1 
k=-M

j

N

n=O

1
I mM + 1'

N

m= 

yn Ym Xk-nXk--m

(A6)
M~~~*Xk-nk-m

k=-M

N
E =1 

m=O

N

L rm-nfn'ym 
n=O

where rm -n represents the data set autocorrelation coefficients.

The prediction error coefficients are defined with minimization of the total prediction
error as follows:

aEN

ayk

N

= E Jnrk-n = 0,
n=O

(A7)

for k = 1, 2, 3,. . .N. The resulting N equations with N unknowns are
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k = 1,ar 1 + lr0 +y 2r +. . .+yNrNl = 0,

k = 2, y0 r2 + ylrl + 72r0 + + NrN2 = 0, (A8)

k N,,or* + +*y r = 0=N-N + lrNl + y 2 rN-2 + * * +

An additional equation which defines EN results for k = 0 where Eq. (A6) is evaluated as
follows:

N

EN = 7° E '(nrn for k = 0, (A9)
n=0

when it is recalled that -yo = 1.

Burgt has assumed that the mean squared error power EN, as defined by Eq. (A5)
for the time domain, is equivalent to the mean squared error power PN, which is given by
Eq. (8) for the frequency domain. However, KingI has noted that EN and PN are equivalent
only when the predicted noise power equals the actual noise power or when the noise power
is negligible. It follows that for high signal-to-noise conditions, it may be assumed that

PN =EN (A10)
and PN may be evaluated as follows:

N

PN= 'Ynrn fork = 0, (All)
n=0

or

yoro ++ +Y1 + *r . . yNrN = PN (A12)

If Eq. (A12) is combined with the set of equations (A8), the resulting set of equations may
be expressed in matrix formulation as follows:

r 0 r 1r 2r 3 ... rN 70 PN

rrrr * rNl 

r rrr r = 0 (A13)2 1 0 1 .. N-2 2

rN N-1rN-2 N-3 0 * 'N 0Y_

t John P. Burg, "Maximum Entropy Spectral Analysis," presented at the 37th Meet. Soc. Explor. Geophys.,
Oklahoma City, Oklahoma, Oct. 1967.

:iWilliam R. King, "Some Effects of Noise Upon Maximum Entropy Spectral Analysis," NRL Memorandum
Report 3645, Nov. 1977.

33



APPENDIX B

THE BURG TECHNIQUE

Burgt has proposed a method for computing a set of N + 1 prediction error filter coef-
ficients as a function of a known set of N coefficients using the Levinson recursion equation

,,N+1 = kN + +.N+1 , (Bi)
k _k N~+ 1 k

where the only unknown in Eq. (B1) is the last coefficient YNN+1 of the new set. Burg sug-
gested that the unknown coefficient A +1 be obtained in a least-square error analysis that
incorporates both the forward and backward prediction of the kth point as follows:

N

Xk =EL an xkn X (B2)
n=1
N

Xk = an Xk +n ' (B3)
n=1

where the forward prediction Xk and the backward prediction Xk are expressed as discrete
convolutions of the prediction filter set an (of size N) with the set of N + 1 data samples.

It follows that corresponding forward and backward prediction errors, denoted by
otN and gN respectively, have the following representations:

oN=Xa - Xa k Xk Xk

N

kf N = SS Vn xk n X forN+ 1 < k < M, (B4)
n=0

where M is the number of data samples, and

Pk = Xk - Xk

N

3kN = L +nX for 1 < k < M-N, (B5)
n=0

where 'YN+1 = 1 and -nN = -aN1 n n

tJohn P. Burg, "A New Analysis Technique for Time Series Data," presented at NATO Adv. Study Inst.
Signal Process. with Emphasis on Underwater Acoust., Enschede, Netherlands, 1968.
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Barnardt has noted that the forward and backward prediction errors are interrelated
through the Levinson recursion relations

aNk = ,N+1 PN + a°N (N + 1 < k <M), (B6)
k 'N+1 k,-N +k (+

PN+1 = N+1)* -+N + 0jN, (16 jM -N). (B7)i = (IN + (1 

The prediction errors may be computed with the Levinson recursion relations given by Eqs.
(B6) and (B7) in a bootstrap manner that greatly reduces the number of computations re-
quired with use of the matrix formulation given by Eq. (10).

The total mean squared error may be expressed as the sum of the forward and back-
ward mean squared errors as follows:

EN = M NN ) + k (B8)

for a filter of size N where N 6 M - 1, with M = number data samples.

In order to use Eqs. (B6) and (B7) as written, the total mean squared error may be ex-
pressed for filter size N + 1 as follows:

= 1~~~k=EN+l 2(M-N-1) E k++3+(N) B9

Incorporation of the Levinson recursion relations, Eqs. (B6) and (B7), results in the follow-
ing expression for EN+1:

M-N-1 ~~~22N+1 2(M---N-1) N+ + + ((1N + k 3N)] (
t Thomas E. Barnard, "Advanced Signal Processing. The Maximum Entropy Spectrum and the Burg Technique,"

ALEX (03)-TR-75-01. Texas Instruments, Inc., Equipment Group, P.O. Box 6015, Dallas, Texas, June 1975.
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KING

In order to minimize the mean squared error, the partial derivative with respect to aN++
(the only unknown filter coefficient) is set equal to zero:

aEN+l
=0

aN+1

2(M-N-1)~~~~[(N+ k+N = Ok+N (B+l)lj(K+N 1) 
~~~~~~~~~~~~~~~~~ .

Equation (Bil) may be solved for YN1as follows:

-- N-N*-2 E + +N I XN) (B12)

aN+1 _ k l
2(M-N-i = AlN-i(N2

k=1k L ()

The new larger set of prediction error coefficients may be evaluated with use of the recursion
relation, Eq. (Bi), and Eq. (B12), which greatly reduces the number of computations re-
quired of the matrix formulation given by Eq. (10).
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