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SURVEY OF RADAR SIGNAL PROCESSING

INTRODUCTION

During the last decade considerable progress has been made in radar signal processing.
This progress is directly traceable to the lowered cost and increased speed of digital hardware
and computers and to more sophisticated techniques in adaptive processing and tracking sys-
tems.

This survey of radar signal processing will neglect waveform design and include the
track-while-scan systems. Waveform design will be neglected because it has received consider-
able attention elsewhere, with the books of Rihaczek* and Cook and Bernfeldt covering the
subject in detail. On the other hand, although track-while-scan systems properly fall under the
heading of radar data processing, it does not make sense to have an automatic detection system
unless it is accompanied by a tracking system. Therefore, since tracking is a necessary part of
the entire system, the survey will include it.

Thus this survey of radar signal processing will consider the three broad areas of coherent
processing (processing of amplitude and phase), noncoherent processing (processing of ampli-
tude), and track-while-scan systems. The subjects will be discussed in the same order as the radar
signal passes through the radar system. Specifically, in the area of coherent processing the sub-
jects of sidelobe cancelers, adaptive antennas, and MTIs (moving-target indicators) will be
covered. In the area of noncoherent detection, methods of obtaining a constant false-alarm
rate (CFAR) using either adaptive thresholding or nonparametric detectors will be emphasized.
The section on the tracking system will cover the tracking filter, correlation logic, track initia-
tions, maneuver-following logic, and a basic overview of an entire tracking system.

COHERENT PROCESSING

In the area of coherent processing, adaptive processing will receive considerable attention.
There are two approaches to adaptive processing: the method of maximum signal-to-noise ratio
(S/N) due to Howellst and Applebaumn§ and the least-mean-square method (LMS) due to
Widrow and Hoff#. The two methods, although appearing quite different, yield almost
equivalent results. So that both methods will be presented, the LMS method will be used dur-
ing discussion of sidelobe cancelers, and the method of maximum S/N will be used during dis-
cussion of adaptive arrays and radars. For adaptive radars special consideration will be given to

'A. W. Rihaczek, Principles of Higlh-Resoluzion Radar, McGraw-Hill, New York, 1969.
tC. E. Cook and M. Bernfeld, Radar Signals, An Iniroduction to Theory and Application, Academic Press, New York, 1967.
tP. W. Howells, IEEE Trans. Antennas and Propagation AP-24, 575-584 (1976).
§S. P. Applebaum, IEEE Trans. Antennas and Propagation AP-24, 585-598 (1976).

# B. Widrow and M. E. Hoff, IRE WESCON Conv. Rec., 96-104, 1960.
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G. V. TRUNK

the problem of convergent rate. Finally, MTIs will be discussed and the moving-target-

detector (MTD) system will be used as an example of doppler processing.

Sidelobe Cancelers

The basic idea of a sidelobe canceler (a device that attempts to eliminate interference

entering through the antenna sidelobes) is shown in Fig. l. The signal S of interest enters
through the main lobe of the antenna, and the jamming (interfering signal}, which is much

stronger than the signal of interest, enters through the sidelobe of the main antenna. The aux-

iliary antenna is an omnidirectional antenna, and it will be assumed that the signal entering

the omnidirectional antenna is much smaller than the jamming 4 and can be neglected, since

the signal and jamming now have the same antenna gain. (The treatment of the signal in the

auxiliary channel can be found in Widrow et al.') The adaptive filter produces an output Y

which is as close as possible to the input jamming J. The filter output is then subtracted from

the main input, producing an output Z = S + J - Y. If the filter output is an exact replica of

J, the output is the desired signal S.

ANTE NNA
SIGNAL < [\S + J OUTPUT

FiLTER Fig. - Concept
t OUTPUTY of adaptive noise

canceling

MMING JG | ADAPTVE
|Ou E FOUILTER

AUX.LkARY
ANTENNA ERROR C

The filter is controlled by adjusting its parameters to minimize the output power. To

show that this minimization will force Yto be a replica of J, a development in Widrow et al.* is

repeated. First, assume S. J, and J, are zero-mean random variables, S is uncorrelated with J

and J,, and J, (and hence Y) is correlated with J. The expected output power is

E(Z21 = EtS2 j + LI Ej - y)2 } + 2 ES(J - Y)) = EtS2} + El 3- - Y)2}. (1)

Adjusting the filter to minimize E(Z 21 is equivalent to minimizing E(1j - y)2), since Yis un-

correlated with S; that is, Y is the best least-squares estimate of the jamming J Furthermore,
since Z - S = J - Y, minimizing Et (J - y) 21 causes Z to be the best least-squares estimate

of the signal S.

The adaptive filter for obtaining a least-squares estimate of a desired signal S can be

described by a weighting vector W, where WT = (W., W[2 , W ) and Tdenotes the tran-

spose. operating on the input J, = a, XT = (xt,._x,,X. Thus the filter output is

Y = XTW, (2)

'B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, 1. R. Zidleter, B Dong, 17r, arvd R.

C. Goodlin, Proc. IEEE 63, 1692-1716 (1975).

2
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and the error, defined as the difference between the input signal and the filter output, is
e =S + j - XTW. (3)

The least-mean-square (LMS) adaptive filter adjusts the weighting vector W to minimize the
mean-square error. The squared error is

4 = (8 + J) 2 -2 (S + J)XTW + WTXXTW. (4)

Taking the expected value of (4), letting the vector P be the crosscorrelation between J and X
( P = E(JX} ), and letting the matrix K be the covariance matrix of X (K = -EXXTI ), one ob-
tains

EJE2) = E1S21 + E£J21 - 2 pTW + WTKW. (5)

To find the minimum of (5) with respect to W, the gradient V of (5) is set to zero, yielding
the optimal weight vector

W = K-P. (6)
The LMS adaptive algorithm is an iterative method of finding an approximate solution to

(6). The algorithm has the advantage of not requiring an explicit measurement of the correla-
tion function or inversion of the covariance matrix. Specifically, the LMS algorithm uses the
method of steepest descent to solve (6); that is, the next weight vector W.+, is equal to the
old weight vector plus a step in the direction of the negative gradient:

WJ_ -W= Wj -ElV,. (7)
The gradient of the squared error on the jth iteration is

7 =Ve (S + J -XTW) 2 = -2eijx. (8)

Thus the next weight is given recursively by

Pj+ I= W4 + 2g EyXY )9)

and is known as the Widrow-Hoff LMS algorithm. The parameter A is a factor which controls
the rate of convergence and the stability of the method. It has been shown*t that (9) con-
verges to the optimal solution as long as Ai is between zero and the reciprocal of the largest
eigenvalue of the covariance matrix K. Shown in Fig. 2 is a typical learning curve and an aver-
age of 48 learning curves for the LMS algorithm. The average reveals the basic exponential
nature of the learning curve. For the radar case X; represents the sample from jth range cell;
consequently the number of iterations corresponds to the number of range cells.

In principal, if the situation shown in Fig. 1 is correct (no uncorrelated noise in each
channel and no signal in the auxiliary) the jamming can be completely canceled. However, if
the situation is as shown in Fig. 3, total cancellation cannot be accomplished. Specifically, the
performance of the canceler can be described by the ratio R of S/N at the output to S/N at the

*B. Widrow, P. E. Mantey, L. J. Grifliths, and B. B, Goode, Proc. IEEE 55, 2143-2159 (1967).
tR. L. Riegler and R. T. Compton, Jr., Proc. IEEE 61, 748-758 (1973).
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Fig, 2 - Typical learning curves for the LMS algorithmr.

(From}) i3. Widrow et al., Proc, IF-FE 63, 1692-171.6 (1975),

courtesy of the Institute Of E~eo~r;il and Electronics En-

gineers.)
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N O ANTENNA+ / > si O~~~UTF UT

Fig. 3 - Adaptive noise canceler with

correlated and uncorrelated noises in
the main and auxiliary antennas

AUXILtARY
ANTENNA
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primary input (main antenna). Widrow et al.* have shown that this ratio R for steady state

(after convergence) can be expressed as

R= 1A (z) + 1 [B(z) + I I
A(z) + A(z) B(z) + B(z)'

where A (z) and B(z) are noise-to-noise ratios

A (zY = So (z)/1S, (z)

and

B(z) = SI (z)/8,, z}I H (z)1 2,

(10)

(1i)

(12)

'B. Widrow, J. R. Glover, Jr., J, M. McCool, J. Kaunitz, C. S. Williarms, R. H. Hearn, J. R. Zeidier, E. Dong, Jr., and R.

C. Goodlin, Proc. IEEE 63, 1692-1716 (1975).
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in which So, S1I and Sr are the power density spectra of the noises i 0 , in, , and n respectively
and H(z) is the channel transfer function for the correlated noise (jamming). It is obvious
from (10) that the cancellation is limited by the uncorrelated noise components in the primary
and reference channels. When the jamming is much stronger than the uncorrelated noise
components, A (z) and B(z) are small and

R ~~~~~~~~~~~~~~(13)
A (z) + B(z)'

giving a large improvement in the output signal-to-jamming ratio. However the improvement
indicated by (13) is rarely achieved in practice. Factors limiting performance include the finite
time for the adaptive process, the presence of signal components in the auxiliary channel, mul-
tipath problems, and misadjustment caused by gradient estimation noise in the adaptive pro-
cess.* Furthermore, in theory N omnidirectional antennas (and associated cancellation loops)
are needed to cancel Njammers. However, because of multipath propagation, the energy from
a single jammer can enter the antenna from several directions and for all practical purposes ap-
pears to be from several jammers. Therefore in practice one requires several times as many
cancellation loops as jammers.

Recently F. Kretschmer and B. Lewist have developed an improved algorithm for simula-
tion of the Applebaum-Howells adaptive loop and for use in adaptive processing. The LMS al-
gorithm discussed above is given by

4jt +I= Wj + 241X, j. (9)
This is commonly used to simulate and analyze the Applebaum-Howells adaptive loop in the
form

WH' kWH + GO( -kh 1 X1 , (14)

where k = 1 - 1/i, with T being the filter smoothing constant, and G being the gain term.
Thus in both algorithms the next weight is derived in terms of the present error and sample.
Kretschmer and Lewis point out that for fast loops W'1 jf as given by (9) and (14) is not the
proper weight. Rather, for better cancellation and more realistic canceler loop simulation,
PJ+I should be calculated from

Wj+l = WH + 2/r 1+ 1X1I 1. (15)
In effect, by using the sample K1 to calculate the weight Wt+n, a phase shift is introduced
which can result in loop instability. Kretschmer and Lewis have shown (for the Applebaum-
Howells application) that the stability condition of the LMS algorithm is

I 1O -k)I y.1 2 -cJ 1 (16)

and that their improved algorithm is unconditionally stable.

Comparison of the LMS algorithm with the improved algorithm was made using comput-
er simulations. Correlated Gaussian noise (mean = 0, variance = 2) was used as an input to
the main and auxiliary channels of the sidelobe canceler. At the 250th range cell a constant
signal at S/N = -20 dB is introduced. The signal residue for both algorithms with canceler

'B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, Proc. IEEE 55, 2143-2159 (1967).
tF. Kretschmer and B. L. Lewis, "An Improved Algorithm for Adaptive Processing," NRL Report 8084, Dec. t976.
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parameters of k = I - 2 7r (0.000124) and G = 100 is shown in Figs. 4 and 5. Although the

LMS algorithm had unstable performance, the improved algorithm had completely stable per-

formance. Also, for slow loops there will be ringing in the LMS algorithm, which will result in

degraded cancellation performance. In a previous paper Kretschmer* investigated cascading

sidelobe canceler stages as a method of obtaining improved cancellation ratios and transient

responses. Thus a higher effective loop gain would be achieved with low actual loop gains,

which are required for stable operation. In lieu of their later work, the improved algorithm

provides another way of obtaining high loop gains. Lewis and Kretschmer are now working

on a open-loop digital implementation of a sidelobe canceler.

i: ½

[I 

b

Fig. 4 - Adaptive-can~celer responsc ot

the 45M algorithms

The sidelobe canceler removes the jamming signal after it has entered the main anwenna.

Adaptive arrays, which require individual receiving elements, attempt to prevent jamnming from

entering the antenna receive pattern by placing a receiving antenna null in the direction of the

jammer. Before commencing with a discussion of adaptive arrays and radars, it is pointed out

that the September 1976 issue of the IEEE Transactions on Antennas and Propagation is a spe-

cial issue on adaptive arrays and contains many interesting articles.

Adaptive Arrays and Radars

Qualitatively, in an adaptive array the received signal is the weighted sum of the signals at

the individual receiving elemnents, with the weights being a function of the received signal.

The theory of adaptive arrays was first discussed by Applebaum,t and Widrow et al.t have

'F. F. Kretschmer, IEEE International Radar C~ooL, t8t-t85, 1975.

tS. P. Applebattm, "Adaptivc arrays,' Syracutse University Researc:h corp. Report SPL.-769, June t964.

*B. Widrow, P. E. Mantey, L. J1. Griffiths, and B. B. Goode, Proc. IEEE 55, 2143-2159 (1967).

6
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F ig. 5 Adaptive canceler response 
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made major contributions to the theory; however a later development of Brennan and Reed*
will be followed. Their approach is similar to Applebaum's in that they maximize S/N, which
they show is equivalent to maximizing the probability of detection when the noise is Gaussian
distributed.

Let the radar be composed of N receiving elements, and let the last M time samples from
each element be processed. Thus there are a' = NM space-time samples. Define S to be a
complex (amplitude and phase) n-vector which contains the desired signal components, and
define X to be a complex it-vector containing the noise samples. The radar return Z is given
by

Z =S + X. (17)

To detect the signal S, the radar output is passed through a linear filter described by a weight-
ing vector W. Thus the output of the detector (the filter) is

Y = W"Z. (18)

Brennan and Reed showed that S/N at the output of the filter is

[S = WTS 2 (19)

where the asterisk indicates the complex conjugate and K is the noise covariance matrix,
K=E(X X7), X having zero mean. Consequently what is required is the value of Wthat max-
imizes (19). If the Schwarz inequality is used, it can be shown that the maximum value of
(19) is ST K ISa and that this value is obtained when

W = a'K-ISt, (20)

'L. E. Brennan and 1. S. Reed, IEEE Trans. Aerospace and Electronic Systems AES-9, 237-252 (1973).
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where a' is an arbitrary nonzero complex number. This criterion has been known for some

time.* However, it is rarely used, since K is not known a priori- and if K is estimated, it has

been extremely difficult to invert K in real time.

What makes the Brennan-and-Reed approach different from other adaptive array process-

ing is not the ability to place spatial nulls in the direction of jammers but rather the temporal

processing that is equivalent to a motion-compensated MT) (moving-target indicator). The

compensated MTI behavior is obtained by selecting the proper steering signal 3. The selection
of the steering signal Swill be illustrated for the case of an airborne coherent pulsed radar.

Assume that the return is range gated, there are NR range cells, and the return fronm the
jth cell is

Z(j) = X(j) + S(). (21)

The return signal from the rth receiving element and mth time sample can be written as

Sr (in) &r&aY, r 1 ... , N, (22)

where y = -47r VTA is the doppler phase shift, with V being the relative velocity of the tar-

get, T being the time between transmitted pulses, and X being the radar wavelength. The
quantity 6, is

br Are r = I ... N, (23)

where Ar is the signal amplitude at the rth element, 8 is a constant phase factor, and ar is the

relative phase between the target and the rth element. For a linear array with element spacing
d, the phase angles Obr for a signal arriving at an angle 41 with respect to the array normal are

Okr 7 Asin q, r = 1,.s N. (24)

Thus the expected signal for a linear array can be obtained by substituting (23) and (24) into

(22).

Both clutter and target will have returns of the form of (22). Since the velocity of the tar-

get (and consequently the relative velocity V) is unknown, it is impossible to specify S for the

optimal weighting given by (20). However, since (22) is computable for ground clutter as a

function of the radar-clutter-cell geometry, one selects a steering signal Swhich is orthogonal to

the ground-clutter vector S'. Thus the purpose of S is to reject the clutter, not to detect the
target. This is about as close to an optimal detector as one can obtain, since it can be showe

that no uniform most-powerful test exists when the target velocity is unknown.

As an example let M 2 and assume ong wants to detect a target in a direction normal

to the direction of the platform velocity (the radar is sidelooking). Then SX (mi) = Ate' 5 and
for uniform amplitude taper (Ar = 1, r = 1, ..., N) the clutter signal is

S ir = e' [1, .... 1, 1, .. 1, I 1. (25)

The appropriate steering signal S which is orthogonal to S', STS' = 0, is

ST= [1, ..I - ,1,, -1 1, (26)

Ii. L. VanTrees, IEEE Trans. Military Electronics MIL-9, 216-229 (1965).

8
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which corresponds to a target at 1/2 the blind speed of the radar:

V IJj(27)
V-2 12 )

Thus, if (26) is used in (20), the detector is optimized for canceling main-beam clutter. We
now consider how (20) can be implemented adaptively.

Brennan and Reed use the method of steepest ascent to maximize S/N:

F .- -WTS 2 (28)
WT'KW

The recursive algorithm for steepest ascent is

W(jt-l WQ(J) + I I- (])VF[W(j)J, (29)

where 7Ft W(j) I is the complex gradient of F evaluated at W(j), which has been shown to
be

7F= 2 1 WTS W TS' _I W KS IW 1 . (30)
W'KWJ I WTKW I

If K is assumed known and A (J) is chosen to be a constant, one can apply known theorems*
to show W(j) approaches a critical point as a limit. Thus, if W(0) is sufficiently close to the
optimal value, WQj) approaches aKslS* in the limit.

The trouble with using (30) in (29) is that VFis a nonlinear function of W(j), which in
some adaptive systems can cause computational difficulties. Hence the algorithm was linear-
ized by noting

lim WTS 1 = a. (31)
X-X WT'KW a,

Thus, if u (J) equals a constant Ai, (29) reduces to

V(j-t-l ) = W(J) + aL[S* -a*K(j) W(,j)J (32)
where K(j) is a statistical estimate of the unknown covariance matrix K. The best
(maximum-likelihood) estimate of K is

K(j) = Z*(J)ZT(j). (33)
Brennan and Reed then showed that (32) converged. Specifically, the expected value of (32)
converges to aK -IS*, where K = E{K(j)I for all j, if Z(j) are independent and 0 <c 1 <
2a'2/max Xi, where XA (i = 1, .. a, ') are the eigenvalues of K

The block diagram of the adaptive radar is shown in Fig. 6, and the implementation of an
adaptive loop is shown in Fig. 7. The steady-state antenna pattern can be calculated from (20),
and the S/N improvement can be found from STK IS+. However in many radar environ-
ments the clutter has a temporal and spatial variation; consequently the rate of covergence is
important. To study this phenomena, computer simulations were used.

'M. J. D. Powell, SIAM Rev. 12, 79-97 (1970).
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IILUiMIUN Wnk Vnk

+ - H//- Fig. 7 - Implenentation of an adaptive loop. (From L. E.
Brennan, J. D. Malleti, and 1. S. Reed, IEEE Trans. Anten-

Snk ltnas and Propagation AP-24, 607-615 (1976), courtesy of the
Vz 1k v F ! r Institute of Electrical and Electronics Engineers.)

SUM

The basic parameters for a ten-element adaptive array using only one time sample (N=
10 and M = 1) are given in Table 1. In the first simulation, 30 discrete clutter points were uni-
formly distributed in the two symmetrical intervals [17°, 90°1 and [ -17°, -90°], and the radar
was looking normal to the aircraft velocity vector. The simulation results are summarized in Fig. 8,
where the base of the plot is 45 dB below the peak gain. The back antenna pattern is the ini-
tial receiving pattern, the middle eight patterns are from range cells 200 to 1600 in 200 range-
cell intervals, and the last pattern is the steady-state pattern. Since there are 30 interference
sources and only 10 elements, it is impossible to put a null at each intereference angle. Rather
the adaptive array follows two strategies: it widens the main beam and consequently lowers
the general sidelobe level, and it places receiver nulls at transmitter maximums and vice versa.
After 1600 interactions all but 1.6 dB (27.3 - 25.7) of the maximum signal-to-clutter improve-
ment has been obtained.

In the second simulation the 30 clutter points were placed nonsymmetrically about zero
in the interval [15', 450]. The simulation results are summarized in Fig. 9. Although the
sidelobes are reduced in the proper angular interval, after 1600 iterations only 24.7 dB of the
possible 44.1-dB improvement in the signal-to-clutter ratio has been obtained. Brennan and
Reed have shown that the time behavior of the weights is a sum of exponentials of the form

N
WI = X C [ t e ±I( tTl (34)

where T is the time constant and G is the gain of the low-pass filter. Thus the rate of conver-
gence is controlled by the smallest eigenvalue of K; specifically, the effective time constant is
r/ (GX min + 1). This suggests that rapid convergence can be obtained by selecting G to be
large and/or r to be small. However this is not a useful solution to the convergence problem,
since Brennan et al.* have shown that the total output noise power in the adaptive array is

P =WTK iW |1 + j (35)

*L. E. Brennan, E. L. Pugh, and 1. S. Reed, IEEE Trans. Aerospace and Electronic Systems AES-7, 254-262 (1971).
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Table 1 - Parameters Assumed in a
Simulation of an Adaptive Receiving Array

Ten-element linear array
Element patterns isotropic over -7r2 >Ž a < 7r/2

Half-wave-spaced elements
Uniformly illuminated transmit array
30 scatterers in the sidelobe region, equally spaced in angle
No interference for -0 1 < 0 < 0 I

Each receiving-element weight controlled adaptively
Simulation of 1600 independent sets of input signals (range

resolution cells}
No receiver noise

Fig. 8 - Projectograph plot of the gairt
of a ten-element adaptive array in the
case of symmetric Ctut.er distribution.

The improvement in the signal-to-
sidelobe clutter ratio from the initial re-
ceiving pattern (at the rear) is 27.3 LIB
for steady state (pattern m the front)
and 25.7 dB after 1600 ilteratons.
(From L. E. Brennan and L. S. Reed,
tEEE Trans. Aerospace and Electronic
Systems AES-9, 237-252 (19773), cour-
tesy or the Institute of Electrical and

Electronics Engineers.)

Fig. 9 - Projectograph plot of the gain
of a ten-elerent adaptable array in the
case of nonsymmetric clutter distribu-
tion. The improvement in the signal-
to-sidelobe clutter ratio is 44.1 dB for
steady state tnoo shown) and 24.7 dB

after 1600 iterations (pattern at the
front). (From L. E. Brennan and L. S.
Reed, tIEE Trans. Aerospace and
Electronic Systerns AES-9, 237-252
(1973), courtesy or the Institute oF

Electrical Engineers.)
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where W is the average weight vector in the absence of loop noise (departure from steady
state). The quantity WTKW is the noise power when W = K-1 S*. Consequently, the output
power has been increased by the factor G EX1/2T due to loop noise. Thus, when K contains
both small and large eigenvalues, it is impossible to select a G and T which yield both rapid
convergence and low loop noise. To avoid the convergence problem, Reed et aL* have sug-
gested a direct computation of the weights.

The maximum-likelihood estimate of K, assuming the noise is Gaussian distributed, is

K = ± j Z*(j)ZTj). (36)

Since Z*(i)ZT(,j) is an n-by-/l matrix of rank 1, L must be Ž,n for the inverse to exist. Then
the filter has the form

w = K k-IS*. (37)

The output S/N for (37) normalized by the maximum S/N, STK IS*, which corresponds to
(20), is

p (K) = fI } A _ IA_(5 Tk -Is*) 2

W =(STK-lS+) (ST_-KAKKAS*) (38)
The expected value of (38) is

Elf) (K)) = (L + 2 - 1)/ (L + I). (39)

Thus the average loss can be kept less than 3 dB (E{p (K)} > 1/2) by letting L > 2n.

However, whereas the adaptive loops of Fig. 6 require n complex multiplications, the
sample-matrix inverse method requires approximately 11 complex multiplications. To reduce
the complexity of the method, one can update the covariance matrix using

K, = (I - ;a)k-_l + (VZ*(j)ZrT( , (40)

where a is the weight applied to the current sample. Then the inverse of K1, given K1 l ist

= -I K, i\ | [Et| |KX-, Z-(j)] [ZT, Zj) (41)
1 I -a ji j (1 -s ) + (Xiz kj\ Z o)

This method of updating the inverse requires approximately 2n2 complex multiplications. The
average computation time for updating the weights W depends on how frequently they must
be updated. For example, depending on the radar environment, updating the weights every
PRF using (36) may be quite adequate; consequently the computation time may be less than
that of the adaptive loops.

Brennan et alA compared the convergent rates of the three methods using a computer
simulation illustrating airborne MTI performance. The results of the simulation are shown in

'1. S. Reed, J. D. Mallen, and L. E. Brennan, IEEE Trans. Aerospace and Electronics Systems AES-1O, 853-863 (1974).
tJ. M. Shapard, D. Edelbtute. and G. Kinnison, Naval Undersea Research and Development Center Report NUC-
TN-528, May 1971.
XL. E. Brennan, J. D, Mallett, and 1. S. Reed, IEEE Trans. Antennas and Propagation AES-24, 607-615 (1976).
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Fig. 10. In both instances, (a) forward looking and (b) sidelooking, the two methods of calcu-

lating k A provide an excellent convergent rate. Figure 10 indicates an MTI gain of plus 100

dB, but in practice the MTI gain would be limited to a lower figure by internal clutier motion.

Most work on adaptive arrays and radars has been limited to theoretical studies. However

there has been some experimental work at Ohio State University,' the Naval Research Labora-

tory,f and the Wide-Aperture HF Radio Research Facility operated by Stanford Research Insti-

lu~te4

Moving-Target Indicators

Moving-Target Indicators (MTls) were first investigaled in the 1940's, and they have

been discussed in detail in the books by Skolnik#** and Nathansontt. The coherent MTI,
the most common MTI, uses an internal coherent reference source to distinguish a moving tar-

get from fixed clutter returns. The MTI signaJ is obtained by coherently subtracting the re-

turned voltages from successive transmitted pulses:

Zj Q) = Zj (1) - 4 (1./, (42)

where Z, () is the ith returned pulse in the jth range cell. Larger clutter attenuations can be

obtained by using multiple pulses. The frequency (doppler) response of the MT1 is that of a

bandpass filter.

The most serious problems associated with MTI are limiting and blind speeds. The first

of these can be covered very simply. In the classic paper of Ward and Shrader*t it was shown

that MTI improvement could be degraded by 20 dB in a three-pulse canceler by limiting the

clutter return. Their work showed that the degradation was Fundamental to limiting and that

consequently a large dynamic range is required to avoid limiting.

The major problem with MTI is that blind speeds, corresponding to doppler frequencies

higher than Nyguist rate, occur at

V1 = 2T' 2 = 1, 2, 3, (43)

Thus for an L-band (1.3-Gl0z) radar with a PRF of 300 pps the blind speeds occur a niulltiples

of approximately 70 knots. Because of the width of the clutter notch (rejection region of the

canceler), many air targets would not be detected. There are several solutions to the problem

R. T. Compton, IEFFE Trans. Antennas and Propagation AP-24, 697-706 (1976).

tW. F. Gabriel, 'Proceedings Adaptive Antenna Systems Workshop Maych 11-]3, Vol. 1", NRL Report 7803, Sept.

1974.
4L. I. Griffths, IEEE Trans. Antennas and Propagation AP-24, 707-720 (1976).

§T. W. Washburn and L. F. Sweeney, Jr., IEEE Trans. Antennas and Propagation XP-Z4, 721-732 (1976).

# M. 1. Skolnik, Introduction Eo Radar Sysunlts, McGraw-Hill, New York, I962.

*'M. 1. Skolnik, editor Radar Handbook, McGraw-Hill, New York, 1970.

ttF. E. Nathanson, Radar Desrgn Prncip/es, McGraw-HMit, New York, 1969.

nIl. R. Ward and W. W. Shrader, EASCON Conyention Record, 168-173, 1968.
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Fig. 10 - Adaptive performance as a function of the
number of samples (eight elements, two pulses, element
spacing = 0.5, interpulse motion = 0.2). (From L. E.
Brennan, J. D. Mallett, and 1. S. Reed, IEEE Trans. Anten-
nas and Propagation AP-24, 607-615 (1976), courtesy of the
Institute of Electrical and Electronics Engineers.)
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of blind speeds in MTls. Among these are variable PRF, staggered-PRF MTI, antd dual-

frequency MTI.

The simplest solution is to use a variable-PRF system. If an interpulse period of T is

used, a blind speed of V1 is obtained. Then, if the interpulse period is changed by a small

fraction l; the blind speed changes by the same fraction r; and the smallest common blind

speed is 3y//IO - r. Thus, if an L-band radar has two PRFs, 300 pps and 270 pps, the blind

speed of the radar system is approximately 700 knots. There are two disadvantages of such a

system: (a) second-time-around clutter (clutter beyond the unambiguous range, caused by

ducting at sea or high-altitude long-range clutter such as mountains and chaff) passes through

the MTI, and (b) the constant PRF for a two- or three-pulse burst makes the system more

vulnerable to jamming. The simple solution to (a), using an extra filler pulse (transmitting

three pulses but only using the last pulse out of a two-pulse MTI). makes situation (b) worse.

An elegant solution to the blind-speed problem is the staggered-PRF MTL. The basic

MTI configuration is shown in Fig. iI. The interpulse durations 7. are constrained by the rela-

tion

;y T j 1s(44)

where FB is the first blind doppler frequency and 2, are integers for all A. Capon* showed that

the optimal weights la,} for minimizing the output clutter residue while retaining some fraction

of the average gain of the filter (this constraint avoids the trivial solution a, = 0, for all ) lare

the components of the eigenvector associated with the smallest eigenvalue of the clutter co-

variance matrix. This procedure ignores what happens in the filter passband. Hsiao and

Kretschmert developed a procedure for setting the interpulse periods to minimize the RMS

passband ripple while maintaining the minimum clutter residue. A typical response is shown

in Fig. 12. The basic trouble with this system is that second-time-around clutter will not be

canceled.

A third solution to the blind-speed problem is the dual-frequency MT1 first discussed by

Kroszczynski*§ and later by Hsiao# . The system works by transmitting two frequencies

whose ratio r is slightly less than [, filtering out the sum signal and retaining the difference sig-

nal. The system performance is basically that of a low-frequency radar; hence the blind-speed

problem is reduced. The detrimental factor is that the clutter improvement factor is reduced

by several dB. A typical filter response for a dual-frequency MTI is shown in Fig. 13.

Although the passband response is quite variable, no attempt has been made to reduce the

variation by changing r. Hsiao indicates that the staggered-PRF MTI is preferable to the dual-

frequency MTL However this author believes that the dual-frequency MTI should not be dis-

carded that readily. An alternate solution, and possibly a better one, is to operate individual

MTls at the two frequencies.

J. Capon, IEEE Trans. Information Theory tT-10, 152-159 (1964).

tJ. K. llsiao and F. F. Kretschmer, Jr., The Radio and Etectronic Engineer 43, 689-693 (1973)

t]. Kroszczynski, Radio and Electronic Engineer 34, 157-159 (1967).

§J. Kroszczynski, Radio and Electronic Engineer 39, 172-176 (1970).

# J. K. ttsiao, The Radio and Electronic Engineer 45, 351-356 (1975).
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Fig. 11 -A staggered-PRF MTI filter.
(From J. K. I1siao and F. F. Kretsch-
mer, Radio and Electronic Engineer 43,
689-693 (1973), courtcsy or the Inslitu-
tion of Electronic and Radio En-
gincers.)
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Fig. 13 - Target-signal gain function
of a dual-frequency MTI system with r
= 0.89. (From J. K. llsiao, Radio and
Electronic Engineer 45, 351-356 (1975),
courtesy of the Institution of Electronic
and Radio Engineers.)
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Fig. 12 - Frequency response for a
seven-pulse staggered-PRF MTI filter.
(From Eisiao and Kretschmer, Radio
and Electronic Engineer 43, 689-693
(1973), courtesy of the Institution of
Electronic and Radio Engineers.)
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Doppler Processing

An MITI canceler provides near optimal target detection in clutter but provides little or no

improvement against receiver noise. McAulay* formulated the problem as a classical detection

problem and showed that the optimal detector could be structured approximately as an MTI

canceler followed by a narrow-band doppler filter bank. This structure has the practical advan-

tage of greatly reducing the dynamic range Fequired at the input of the filter bank. In this

configuration, the MTI canceler provides improvement against clutter, and the doppler fitter
bank provides improvement against noise.

The moving-target detector (MTDY, developed by Lincoln Laboratoryt4 for the FAA,

uses this type of' processing. During 1976 the MTD was tested with a modified FPS-18 radar at

the FAA facility in Atlantic City, N.J. The modified FPS-IS radar is an S-band radar instru-

mented to 48 n.mi. The range cell is approximately 1/16 n.mi., the beamrwidht is .5O, the scan

rate is 15 rpm, and 20 pulses are returned as the radar sweeps past the target.

A block diagram of the MTD signal processor is shown in Fig, 14. An azimuth cell is

defined as a half beamwidth (0.750) and contains ten pulses, with the time lapse for the ten

pulses being referred to as a coherent processing interval (CPI). In a CPl the ten pulses are

passed through a three-pulse MTI canceler, and the eight output pulses (two pulses are needed

to load the MlT) serve as an input to an eight-point FFT, the points being weighted to provide

low filter sidelobes. The radar PRF is changed from 1000 pps to 1150 pps on alternate CPIs to

avoid the blind-speed problem.

FROM

10 ADED-LESCRETE
2,&-MHz WAORELERFOUtRtER WIGHTIN

RATETRNFM

MEMtORY 

760 r &cQ RW'rX aND

CELLS VELOCiTY MAGNITUDE LEVEL
PER FULTER MEASUREMENT

SWEEP

CLUTTER bTRSODN
RECURSIVE _ _

FILTE R

;~~~~ HIT 
DISC e 0 [IGENERATOR 

Fig. 14 i MTD signal processor

'R. J. MeAulay, Tech. Note I3972-14, Lincoln Laboratory, Mass. Inst. of Tech., 1972

tR. M4. O'Donnell, C. E. Muehe, Nt. Labiat, W. 4. Drury, and L. Cartedge, EASCON Convention Record 7 1-75, 1974

tC. E. Muehe, L. Cartledge, W. }I. Drury, E. M. Ilorstetter, M. Labitt, P. B. McCorison, and V. 3. Sferrino, Proc. IEEE

62, 716-723, (1974).
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The 2.9 x 106 range-azimuth-doppler cells (760 x 360/0.75 x 8) are individually thres-
holded. In this process a clutter map is generated by weighting the radar return in the zero-
doppler filter over the last eight scans (32 s) using a digital filter. Thus tangential targets hav-
ing zero doppler can be detected if the target level exceeds the clutter-map level by a specified
constant. That is, tangential targets can be detected in spotty ground clutter by using the prin-
ciple of interclutter visibility*. The thresholds for filters 2 through 6 are set using a mean-level
threshold. Specifically the threshold for a given-number filter is basedt on the average return
in the given-number filter from the range cells < 1/2 n.mi. (eight cells) on either side of the
test cell. Since clutter spills over into filters I and 7, two thresholds are generated for these
filters. One threshold is based on the map, a second threshold is based on the mean level over
a range interval, and the higher of the two thresholds is used.

The MTD represents a great improvement in signal processing for FAA air-surveillance
radars. A good match of processor to radar has been designed, and component technology has
made the processing practical to implement. Presently, a second-generation MTD is being
designed. This MTD uses no MTI, but rather each filter is optimized to obtain the maximum
signal-to-clutter-plus-noise ratio for an assumed clutter spectrum.

Noneoherent Moving-Target Indicators

Noncoherent MTTs are described in Skolnik's Introduction to Radar Systems* and Radar
tlandbook.§ They differ from coherent MTI by not using an internal coherent reference source
but rather mixing the received signal with itself. Thus, when both clutter and a target are
present, the beat between them yields a return at the target doppler. On the other hand, when
only a target is present, the signal return is at zero doppler and cannot be detected. Conse-
quently, for noncoherent MTI to be useful, gating circuitry is required for passing the non-
coherent MTI output when clutter is present and passing the regular video when clutter is not
present. Generally fringe areas cause major problems for the gating circuitry, making perfor-
mance unacceptable.

A different kind of noncoherent MTI has been made possible by high-power microwave
sources.# Lewis and Cantrell** propose transmitting a short pulse and subtracting successive
noncoherent pulses. This is similar to an area MTI discussed in Introduction to Radar Syslemls~t
except that the short pulse enables the subtraction to be made on a pulse-to-scan pulse rather
than a scan-to-scan basis. Thus, with a I ns pulse and a PRF of 200 pps, all moving targets
above 60 knots can be detected; that is, there are no blind speeds.

*D. K. Barton and W. W. Shrader, EASCON Conv. Record 294-297, t969.
tDetails about various thresholding techniques can be found in the section on noncoherent processing
*M. 1. Skolnik, Introduction to Radar Systems, McGraw-Hill, New York, 1962.
WM. 1. Skolnik, editor Radar Handbook, McGraw-Hill, New York, 1970.

#V. L. Granatstein, P. Sprangle, M. Herndon, R. K. Parker, and S. P. Schlesinger, J. Applied Physics 46, 3800-3805
(1975).
*B. L. Lewis and B. H. Cantrell, "Short Pulse Noncoherent MTI, patent application, Navy Case 60372, NRL, Nov.
'975.
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NONCOHERENT DETECTION

The earliest noncoherent signal processing was performed by radar operators using visual

inputs from PPIs and A-scopes. Although operators can perform this detection task accurately,

operators are easily saturated and become quickly fatigued. To remedy this situation and to

provide quick reaction times, automatic detection and tracking (ADT) systems have become

quite popular during the 1970s. The statistical framework necessary for the development of

ADT was introduced to the radar community in the 1940s by Marcum', and later Swerlingt

extended the work to fluctuating targets. They investigated many of the statistical problems as-

sociated with the noncoherent detection of targets in Rayleigh noise. Their most important

result was the generation of curves of probability of detection WD) versus signal-to-noise ratio

(S/N) for a detector which sums N enveloped detected samples (either linear or square law)

under the assumption of equal signal amplitudes. However, in a search radar, as the beam

sweeps over the target, the returned signal amplitude is modulated by the antenna pattern.

Many authors investigated various detectors (weightings), comparing detection performance

and angular estimation results to the optimal values. The detectors investigated included the

moving window, feedback integrator, two-pole filter, binary integrator, and batch processor.

In the original work on these detectors, the environment was assumed known and homo-

geneous, so that fixed thresholds could be used. However a realistic environment, contanintg

land, sea, and rain for example, will cause an exorbitant number of false alarms for a fixed

threshold system. Two approaches, adaptive thresholding and nonparametric detectors, have

been used to solve the false-alarm problem. Both solutions are based on the assumption that

homogeneity exists in a small region about the range cell that is being tested. The adaptive

thresholding method assumes that the noise density is known except for a few unknown

parameters. The surrounding reference cells are then used to estimate the unknown parame-

ters, and a threshold based on the estimated density is obtained. Non parametric detectors oh-

tain a constant false-alarm rate (CFAR) by ranking the test sample with the reference cells.

Under the hypothesis that all the samples (test and reference) are independent samples from

an unknown density function, the test sample has a uniform density function; consequently a

threshold which yields CFAR can be set.

Classical Theory

The radar detection problem is a binary-hypothesis-testing problem:

Ho: no target present

or

Hi, target present.

Many criteria can be used to solve this problem, but the most appropriate for radar is the

Neyman-Pearsont criterion. This criterion maximizes PD for a given probability of false alarm

*J. 1. Marcum, IRE Trans. Information Theory 6, 59-267 (1960).

IP. Swerling, IRE Trans. Information Theory 6, 269-308 (t960).

t.. Neyman and E. S. Pearson, Biometrika 2OA, 175-240. 263-294 (1928).
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(Pi ) by comparing the likelihood ratio (L) to an appropriate threshold T. A target is declared
present if L (xip xx,. )x 0I )->T, (45)

L(xl,..., x,) = p{Xl ..(x X, Ho )

where p(x, ..., xI HI ) and p (xl, . xl I Ho ) are the joint densities of the n samples under the
conditions of target presence and target absence respectively. For a linear envelope detector
and white Gaussian noise the samples have a Rayleigh density tnder H0 and a Ricean density
under HI , and the likelihood detector reduces to

Rae Jo |72 | > T, (46)

where 10 is the Bessel function of zero order. For equal-amplitude (A, A) small signal
pulses (A, < < a-), the detector reduces to the square-law detector:

X X, Ž T. (47)

This detector and the linear detector were first studied by Marcum* and were studied in
succeeding years by numerous people. The most important facts concerning these detectors
are the following:

* The detection performances of the linear and square-law detectors are similar and are
close to the performance of the optimal detector.*

* Since the signal return of a scanning radar is modulated by the antenna pattern, only
0.84 of the pulses between the half-power points should be integrated, and the antenna beam-
shape factor (ABSF) is 1.6 dB.t The ABSF is the number by which the midbeam S/N must be
reduced so that the detection curves generated for equal signal amplitudes can be used for the
scanning radar.

* The collapsing loss for the linear integrator can be much greater than the loss for a
square-law integrator.* The collapsing loss is the additional signal required to maintain the same
PD and PfO when unwanted noise samples along with the desired signal-plus-noise samples are
integrated.

Most signal processors are required not only to detect targets but to make angular esti-
mates of the azimuth position of the target. Swerling§ calculated the standard deviation of the
optimal estimate by using the Cramer-Rao lower bound. The results are shown in Fig. 15,
where a normalized standard deviation is plotted against S/N per pulse. This result holds for a
moderate or large number of pulses integrated, and the optimal estimate involves finding the
location where the correlation of the returned signal and the derivative of the antenna pattern
is zero. Although this estimate is rarely implemented, its performance is approached by simple

'J. 1. Marcuni, IRE Trans. Information Theory 6, 59-267 (1960).
L. V. Blake, Proc. IRE 41, 770-774 (1953).

*G. V. Trunk, Proc. IEEE 60, 743-744 (1972).
P. Swerling, Proc. IRE 44, 1146-1155 (1956).
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Fig. 15 Comparison of angular esti-
mates with the Cramer-Rao lower
bound. In the ordinate expression, ir is
the stantdart deviation of the estimttion
error aid N is the number of ptAises
within the 3-dR heamwidth, which is
20.

0 2 4 6 a to
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estimates, such
Fig. iS.

as the maximum-value and threshold-crossing procedures, as can be seen in

Integrators

Almost all signal processors use linear rather than square-law detectors, since a linear
detector is easily built by using a matched filter and a half-wave rectifier followed by a low-pass
filter. However many different integrators are used to accumulate the linear-envelope-detected
pulses. A few of the most common integrators are shown in Fig. 16. Some advantages and
disadvantages of these integrators are as follows.*t

Moiing window

The moving window performs a running sum of N pulses; as the latest pulse is alidded to
the sum, the pulse that is N PRFs in the past is subtracted from the sum. The detection per-
formance of this detector is only 0.5 dB worse than the optimal detector which weights the re-
turned signal by the fourth power of the voltage antenna pattern. The angular estimate is ob-

*D. S. Palmer and D. C. Cooper, IEEE Trans. Information Theory IT-It, 296-302 (1964).
tG. M. Dillard, IEEE Trans. Information Theory IT-13, 2-6 (1967).
tB. H. Cantrelt and 0. V. Trunk, IEEE Trans. Aerospace and Electronic Systems AES-9, 649-653 (1973).
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Fig. 16 - Commoo integrators

tained by either taking the maximum value of the running sum or taking the midpoint
between the first and last crossing of the detection threshold. Both methods have a bias of N/2
pulses which is easily corrected. The standard deviation of the estimation error of both estima-
tors is about 20% higher than the Cramer-Rao lower bound. The major disadvantage of this
detector is that the last N pulses for each range cell must be saved. For radars with large
beamwidths and thus many pulses, the moving window requires extensive hardware. However
with the lower cost and size of memory this disadvantage is rapidly disappearing.

Feedback integrator

The amnount of storage required can be reduced significantly by using a feedback integra-
tor, which requires the storage of only one number. Although the feedback integrator applies
an exponential weighting into the past, its detection performance is only I dB less than the op-
tinal integrator. Unfortunately difficulties are encountered when using the feedback integrator
to estimate the azimuth position. The threshold-crossing procedure yields estimates only 20%
greater than the lower bound, but the bias is a function of S/N and must be estimated. On the
other hand the maximum value, although having a constant bias, has estimates which are 100%
greater than the lower bound. This author's opinion is that this detector has limited utility.
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Two-poie filter

The two-pole filter requires the storage of an intermediate calculation in addition to the

integrated output. However with this rather simple device a weighting pattern similar to the
antenna pattern can be obtained; consequently good performance would be expected, The
detection performance is within 0.15 dB of the optimal detector, and its angular estimates are
about 20% greater than the Cramer-Rao lower bound. If the desired number of pulses in-

tegrated is changed (because of change in rotation of the radar or use of another radar), it is

necessary to change only the feedback values K1 and K2 . Their optimal values are set by

K1 = 2 e C&(dhI\IY cos (cgTI) (48)

and

K -tlhi /TI T (49)

where ' = 0.63, NA(°r = 2.2, and N is the number of pulses between the 3-dB points of the

antenna.

Binary Integrator

The binary integrator is also known as the dual-threshold detector, M-out-of-N detector,

or rank detector, The input samples are quantized to 0 or I depending on whether or not they
are less than a threshold T, . The last N zeros and ones are summed and compared to a second

(detection) threshold T2 = M. The detection performance of this detector is 2 dB less than
the moving-window integrator because of the hard limiting of the data, and the angular estima-

tion error is 250%o greater than the Cramer-Rao lower bound. This detector is used because it is

easily implemented, it ignores interference spikes which cause trouble with integrators that

directly use signal amplitude, and it works extremely we[[ when't the noise has a non-

Rayleigh density.

A comparison of the binary integrator (three out of three), the median detector (two out

of three), and the mean detector (moving window) in log-normal interference is shown in Fig.

17. The optimal binary integrator is much better than straightforward integration. The optimal
values for the second threshold were found by Schwartz: for Rayleigh interference and by

Schleher§ for log-normal interference.

Batch Processor

The batch processor is used when there are a Large number of pulses in the 3-dB

beamwidth. If KN pulses are in the 3-dB beamwidth, K pulses are summed and either a 0 or I

is declared depending on whether or not the sum is less than a threshold T1 . The last N zeros

and ones are summed and compared to a second threshold M.

D. C. Schleher, tEEE 1975 International Radar Cont., 262-267, 1975.

tO. V. Trunk, 'Non-Rayleigh Sea Clutter: Properties and Detection of Targets," NRL Report 7986, June 1976.

'M. Schwartz, IEEE Trans. Information Theory 2, 135-139 (1956).

§M. C. Schleher, IEEE t975 Internationat Radar Conf., 262-267, 1975.
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Fig. 17 - Comparison Of VaTiOuS deteclors in log-normal
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The batch processor, like the binary integrator, is easily implemented, ignores interfer-
ence spikes, and works extremely well when the noise has a non-Rayleigh density, but further-
more in comparison with the binary integrator the batch processor requires less storage, detects
better (less than 2 dB from moving window), and estimates angles more accurately.

The batch proccessor has been implemented by the Applied Physics Laboratory' of
Johns Hopkins University with great success. To obtain a more accurate azimuth estimate,
they use

F Ai A , (50)

L A,

where A, are the amplitudes of the sums greater than T, and 0, are the corresponding antenna
azimuth angles. When many pulses are on target (N > 20), this detector is generally favored
by this author.

False Alarms

If fixed thresholds are used with the previously discussed integrators, the detectors will
saturate the tracking computer associated with the system and disrupt the system. Three im-
portant facts should be remembered:

* It makes little sense to have an automatic detection system without an associated
tracking system;

* The sensitivity of the detector should be as high as possible without saturating the
tracking computer;

"Radar Processing Subsystem Evaluation', Vol. 1, APL Report FP8-T-013, Nov. 1975.
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* False alarms and false targets are not a problem if they are removed by the tracking

computer. Tracking (scan-to-scan processing) is the only way to remove stationary

point clutter or target MTI residues.

One can reduce the number of false alarms with a fixed-threshold system by setting a

high threshold, but this would reduce sensitivity in regions of tow-noise (ciutter) return. A

detector is required which will detect a target when it has a higher return than its immediate

background. Two such types of detectors are adaptive-thresholding and nonparametric detec-

tors. Both of these detectors assume that the samples in the range cells surrounding the test

cell (called reference or neighboring cells) are independent and identically distributed; further-

more it is usually assumed that the time samples are independent. Both detectors test whether

the test cell has a return sufficiently larger than the reference cells. A survey of CFAR pro-

cedures can be found in Hansen'.

Ada prive Thresholding

The basic assumption of the adaptive-thresholding technique is that the noise density is

known except for a few unknown parameters. The surrounding reference cells are used to es-

timate the unknown parameters, and a threshold based on the estimated density is then ob-

tained. The simplest adaptive detector is the cell-averaging CFAR investigated by Finn and

Johnsont. If the noise has a Rayleigh density, only the parameter ar needs to be estimated,

since the mean of a Rayleigh distribution is (a r/2 and the variance is (r 2 (2v-7r/2).Thus,by

estimating the mean, one obtains an estimate o- which can be used to set a threshold Tto yield

the desired P f. However, since T is set by an estimate ar, it must be slightly larger than the

threshold one would use if ar were known a priori. The raised threshold causes a loss in target

sensitivity and is referred to as a CFAR loss. This loss has been calculated by Mitchell and

Walkert, and some results are summarized in Table 2. As can be seen, for a small number of

reference cells, the loss is large because of the poor estimate of a-.

This thresholding technique is more effective in maintaining CFAR when it is applied to

the binary integrator or batch processor, as shown in Fig. 18. This is because when the

number of pulses integrated by the binary integrator is moderate, the P,, on a single pulse is

rather large; for example Pfr = 0.1 for a single pulse yields Pfa = 10-5 for a seven-out-of-

ten integrator. Thus, since most non-Rayleigh densities are Rayleigh-like to the 10th percen-

tile, this type of processor will maintain a low in most non-Rayleigh environments. This

demonstrates a general rule: to maintain a low Pf, in various environments, adaptive thres-

holding should be pLaced in front of the integrator. For any noise distribution, CGAR can be

maintained by counting the number of ones out of the comparator per scan and using this

number to control K; that is, if the number is too large, K is increased.

Front-end thresholding, which maintains amplitude information by dividing the average
reference value into the test cell, was investigated by Hansen and Ward§ and is shown in Fig.

19. This type of processing is especially effective when there is strong interference which is

variable on a pulse-to-pulse basis.

'V. G. Hlansen, IEEE tnternational Conference on Radar - Present and Future, 325-332, 1973.

ttl. M. Finn and R. S. Johnson, RCA Rcview 29, 414-464 (1968).

4R. L. Mitchell andl J. K. Walker, IEEE Trans. Acrospace aind Electronic Systems AES-7, 671-676 (1971).
§V. G. hlansen and 11. R. Ward, IE-EE Trans. Aerospace and Electronic Systemns 8, 648-652 (1972).
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Table 2 - CFAR Loss for P., = 10 6 and PD = 0.9

Number of Loss for Various Numbers
Pulses of Reference Cells (dB)

Integrated 1 2 3 5 10_

Il - - 15.3 7.7 3.5 0
3 - 7.8 5.1 3.1 1.4 0

10 63 3.3 2.2 1.3 0.7 0
30 3.6 2.0 1.4 1.0 0,5 0

100 2.4 14 1.0 0.6 0.3 0

REFERENCE
CELLS /N

Fig. 18 - Cell-averaging CFAR implemented wit th le batch processor

REFERED
CELLS

Figw 19 - Front-end cell-averaging
CFAR receiver
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When the noise has a non-Rayleigh density, such as the chi-square density or log-normal

density, two parameters must be estimated, and the adaptive detector is more complicated. If

several pulses are integrated with any of the amplitude integrators, the integrated output will

be approximately Gaussian distributed. Then the two parameters which must be estimated are

the mean and the variance. These estimates are given by

x= L x., (51)
A

and

-2 2 1 Lx? A 2 (52>

where the summation is over the Al range cells surrounding the test cell.

When successive pulses in the same range cell are correlated (as with returns from rain

or sea clutter), many false alarms will occur if only the mean value (51) is estimated. A thres-

hold of the form

T = X + KJe (53>

will provide a low Pt for the amplitude integrators: moving window, feedback integrator, and

two-pole filter. Nothing can be done to the binary integrator to yield a low in correlated

noise; thus it should not be used in this situation. On the other hand, if the correlation time is

less than a batching interval, the batch processor will yield a low Pf without modifications.

Nonparametric Detectors

The most common way nonparametric detectors obtain CFAR is by ranking the test sam-

ple with the reference cells. Under the hypothesis that all the samples are independent sam-

ples from an unknown density function, the test sample has a uniform density function. For

instance, with reference to the rank detector in Fig. 20, the test cell is compared to IS of its

neighbors. Since in the set of 16 samples the test sample has equal probability of being the

smallest sample (rank =0 or equivalently any other rank), the probability that the test sample

takes on values 0, 1, .15 is 1/16. A simple rank detector* can be constructed by comparing

the rank (number of reference cells that the test eall exceeds) to a threshold K; and the output

is 1 if the rank is larger and 0 otherwise. The zeros and ones are summed in a moving win-

dow. This detector incurs a CFAR loss of about 2 dB and is extremely effective, if the time

samples are independent. Only certain values of Pa can be obtained. Thus, if the number of

pulses integrated is small, low ef, values cannot be obtained.

If the time samples are dependent, the rank detector will not yield CFAR. A modified

rank detector, called the modified generalized sign testt (MGST) is an attempt to maintain a

low Pi and is that shown in Fig. 20. This detector can be divided into three parts: a ranker,

an integrator (in this case a two-pole filter), and a thresholding device. A target is declared

when the integrated output exceeds two thresholds. The first threshold is fixed (equals

A + T73K from Fig. 20) and yields CFAR when the reference cells are independent and

identically distributed. The second threshold is adaptive and maintains a low SPS when the

*V. C. Hansen and B. A. Olsen, IEEE Trans. Aerospace and Electronic Systems 4, 942-950 (197H.

tG. V, Trunk, B. H, Cantrell, and F. D. Queen, IEEE Trans. Aerospace and Electronic Systems le, 574-582 (1974).
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reference samples are correlated. The device uses the mean-deviate estimate, where ex-
traneous targets in the reference cells have been excluded from the estimate by use of a pre-

liminary threshold T2, to estimate the standard deviation of the correlated samples.

The rank and MGST detectors are basically two-sample detectors. They decide a target is

present if the ranks of the test cell are significantly greater than the ranks of the reference

cells. Target suppression occurs at all interfaces (such as a land-and-sea interface), where the

homogeneity assumption is violated. However, some tests exist (Hansen* investigated the

Spearman Rho and Kendall Tau tests) which depend on only the test cell. These tests work on

the fact that, as the antenna beam sweeps over a point target, the signal return increases and

then decreases. Thus for the test cell the ranks should follow a pattern first increasing and

then decreasing. Although these detectors do not require reference cells and hence have the

useful property of not requiring homogeneity, these detectors are not generally used because of

the large CFAR loss taken for moderate sample sizes: for N = 16 the loss is 10 dB, and for

N = 32 the loss is 6 dB.

The paper by Hansen* is worth noting because it introduced the concept of importance-

sampling for calculation of false-alarm thresholds. The fundamental principle of the

importance-sampling technique is to modify the probabilities that govern the outcome of the

basic experiment of the simulation in such a way that the event of interest (the false atarm)

occurs more frequently. This distortion is then compensated for by weighting each event by

the ratio of the probability that this specific event would have occurred if the true probabilities

had been used in the simulation to the probability that this event would occur with the distort-

ed probabilities. Consequently by proper choice of the distorted probabilities the number or

repetitions can be reduced greatly. Further details on importance sampling can be found in

Trunk et al.t, Hansent, and Hillier and Lieberman§.

In summary, when only a small number of returns are available (less than eight), ampli-

tude information must be used, and this author favors the moving-window integrator. When a

moderate number (between eight and 20) are available, a rank detector should be used if sam-

ples are independents and a two-pole filter with thresholding of the form T = X + KJi should

be used if the samples are dependent. If a large number of pulses (greater than 20) are avail-

able, the batch processor or MGST processor should be used. These rules should serve only as

a general guideline. It is highly recommended that a sample of the radar environment be col-

lected and analyzed and that various detectors be simulated on a computer and tested against

recorded data.

Sequential Detectors

Sequential detectors, which can be used with phased-array radars, are based on the idea

that in many cases, depending on the returned samples, a decision can be made on a few sam-

'V. G. Hansen, f EEE Trans. I nformation Theory IT-16, 309-3 8 8 (1970).

t0. V. Trunk, B. H. Cantrell, and F. D. Queen, IEEE Trans. Aerospace and Electronic Systems tO, 574-582 (1974>.

tV. G. Hansen, Computer and Electrical Eng- L, 545-550 (1974).

F. S. Hllier and G. J. Lieberman, Intrrdction so Opersioos Research, IoLden-Day, New York, 457-459 (1967),
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ples. The sequential likelihood-ratio test (SLRT) works as follows: given independent samples
Xl ..., Ax,, calculate the likelihood ratio

Los = p(x , x( , H)'p (XI Ho.

If LI, >0 A, accept H1 (target present); if L,, <( B, accept HD (no target present); and ifB < L,1 < A, take another sample. The SLRT has the useful properties that the thresholds
are set by the simple formulas A =P/PD , and B = (1 PD )/ (I - hl ) and that for alltests with a given PD and P4, the SLRT requires the smallest average sample size. Further de-
tails about the SLRT can be found in Lindgren*.

An early application of sequential detection to radar was discussed by Marcus and Swer-
lingt. Unfortunately, in radar the application of SLRT is not straightforward, since one is re-quired to make a decision in every range cell before the test can be ended and the agile beam
moved. The modified problem considered was

H0 : noise present in all range cells

or

HI: exactly one signal present in the ith range cell G unknown).

They performed some numerical calculations and concluded that:
* The greatest savings in average sample size comes when no signal is present (Ihi

true);
* In comparison with a fixed-sample-size test, SLRT provides a greater savings when

the number of range cells is small and when S/N is small;
* It is not necessary to truncate the test.

TRACKING SYSTEM

Track-while-scan systems (tracking systems for surveillance radars whose nominal scan
time if from 4 to 12 s) will now be considered. If the probability of detection (P)) per scan is
high, if accurate measurements are made, if the target density is low, and if there are few falsedetections (crossings of a threshold, with no judgment being made on whether or not it be-
longs to a valid target), the design of the correlation logic and tracking filter is straightforward.
However in -a realistic radar environment these assumptions are never valid, and the design
problem is complicated.

White and Silbermant list many problems encountered in actual situations. Among these
problems are target fades (due to multipath propagation, clutter masking, interference, blind

'B. W. Lindgren, Sraoisrical Tr'wor, MacMillan, New York, 1962,
tM. B. Marcus and P. Swerling, IEEE Trans. Information Theory 8, 237-245 (1962).
tD. M. White and S. R. Silberman, "Simulation of 2D Radar Automatic Detection and Tracking Systems: Baseline Pro-gram," Technology Service Corporation, TSC-W8-60, Aug. 1975.
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speeds, and atmospheric conditions), false alarms (due to noise, clutter, interference, and jam-

ming), and poor radar parameter estimates (due to noise, unstabilized radar platforms, un-

resolved targets, target splits (two detections for a single target), multipath propagation, and

propagation effects).

A general outline of a track-while-scan system will be considered first. Then the tracking

fiter, maneuver-following logic, track initiation, and correlation logic will be discussed in detail.

Finally, methods of integrating data from several radars will be discussed.

System Outline

Almost ail track-while-scan systems operate on a sector basis. A typical series of opera-

tions is shown in Fig. 21. For instance, if the radar has reported all the detections in sector I I

and is now in sector 12, the tracking program would start by correlating (trying to associate)

the clutter points (stationary tracks) in sector 10 with detections in sectors 9, 10, and 11.

Those detections that are associated with clutter points are deleted (are not used for further

correlations) from the detection file and are used to update the clutter points. Updating clutter

points usually implies replacing the old point by the associated detection,

INMLtALIZATiON

TENTATIVE TRACKS

Fig. 21 - Various operations of a

#8 FIRM TRACKS track-white-scan system performed ont

a sector basis

10 CLUTTER POINTS

4? RADAR POSITION

Next, firm tracks in sector 8 are correlated with detections in sectors 7, 8, and 9. By this

time all clutter points have been removed from sectors 9 and below. Those detections which

are associated with firm tracks are deleted from the detection file and are used to update the

appropriate track. The filter for performing this updating will be described in the next subsec-

tion.

Usually, some provision is made for giving perference to firm tracks (with respect to ten-

tative tracks) in the correlation process. By performing the correlation process two sectors

behind firm track correlations (Fig. 21), it is impossible for tentative tracks to steal detections

belonging to firm tracks. In other tracking systems the correlation for firm and tentative tracks

is performed in the same sector; however the generalized distance D between tracks and detec-

tions is incremented by AD if the track is tentative.

Finally detections which are not associated with either clutter points or tracks are used

for initiation purposes. The most common initiation procedure is to initiate a tentative track;
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later the track is dropped or else made a firm track or clutter point. Cantrell et al.* suggest that
both a clutter point and tentative track be established. If the detection came from a stationary
target, the clutter point will be updated and the tentative track will eventually be dropped. On
the other hand, if the detection came from a moving target, the tentative tracks will be made
firm and the clutter point will be dropped. The latter method requires less computer computa-
tion time when most of the detections are clutter residues.

The correlation procedure is made in a sector framework to avoid the necessity of corre-
lating all tracks with all detections. The procedure can be implemented very easily by defining
two computer arrays: a sector file and a track file. The sector file for sector I contains the first
track number in sector 1, and the track file for track J contains the next track number in the
same sector as track J or a zero, indicating that the track is the last track in the sector. Further
information about the details of a tracking system can be found in Cantrell et alt, Wilson and At
Cantrellt, and Trunk et al§.

Tracking Filters

Before proceeding, the coordinate system in which the tracking will be performed will be
discussed. The quantities measured by the radar are spherical: range, azimuth, elevation, and
possibly range rate. Thus it may seem natural to perform tracking in spherical coordinates.
However this causes difficulties, since motion of constant-velocity targets (straight lines) will
cause acceleration terms in all coordinates. A simple solution to this problem is to track in a
Cartesian coordinate system. While it may appear that the appropriate transformations [
(x = R cos Hf cos Oa, etc. where R is the range, He is the elevation angle, and Ha is the az-
imuth angle) will destroy the accurate range track, Cantrell# has shown that the inherent ac-
curacy is maintained. Quigley and Holmes** note that maneuvering targets cause a large range
error but a rather insignificant azimuth error and thus suggest using a target-oriented Cartesian
coordinate system. Specifically, the x axis is taken along the azimuth direction of the target
and the y axis is taken in the cross range direction.

Skalanskytt performed one of the first analyses of the tracking filter for a track-while-
scan system. He considered the a -J3 filter described by

x5 (k) = xP (k) + ae [x, Wk -xP (k) ], (55)

Vs (k) = Vs (k -I ) + d [xm (k) -xP (k) ]/T, (56)

*B. 11. Cantrell, G. V. Trunk, F. D. Queen, J. D. Wilson, and 1. J. Alter, IEEE 1975 International Radar Conference,
391-395, 1975.
tB. 1{. Cantrell, G. V. Trunk, and J. D. Wilson, "Tracking System for Two Asynchronously Scanning Radars," NRL Re-

port 7841, Dec. 1974.
UJ. D. Wilson and B. 1[. Cantrell, "Tracking System for Asynchronously Scanning Radars with New Correlation Tech-
niques and an Adaptive Filter," NRL Report 7952, Jan. 1976.
§G. V. Trunk, J. D. Wilson, B. if. Cantrell, J. J. Alter, and F. D. Queen, "Modifications to and Preliminary Results for
the ADIT System", NRL Report 8091, Apr. 1977.
# B. 1{. Cantrell, "Description of an (t - 1a Filter in Cartesian Coordinates," NRL Report 7548, Mar. 1973.
**A. L. Quigley and J. E. Holmes, "The development of Algorithms for the Formation and Updating of Tracks," Ad-
mirality Surface Weapons Establishment, WP-XBC-7512, Portsmouth P06 4AA, Nov. 1975.
ttJ. Sklansky, RCA Review 18, 163-185 (1957).
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and

x1 (k + 1) =x k) + V, (k)T, (57)

where x5 (k) is the smoothed position, C, (k) is the smoothed velocity, x p (A) is the predicted

position, x., (Al is the measured position, T is the scanning period (time between detections),
and rt and 0 are the system gains.

The optimal filter for performing the tracking when the equation of motion is known is

the Kalman filter, first discussed by Kalman* and later by Kalman and Bucyt. The Kalman

filter is a recursive filter which minimizes the least-square error. The state equation in xy coor-

dinates for a constant-velocity target ist

X(t + i) =+() X) ±+ I(t) A(), (58)

where
Ii TO 0

XW = } W t 1, +' Wt = to I 0 .

) I0 0 0

d () T T and A (t) 1ox

with Xit) being the state vector at time t consisting of position and velocity components x (t),

-i W, y Ws and NOt>; t + 1 being the next observation time; Tbeing the time between obser-

vations; and a, U) and ay W) being random accelerations with covariance matrix QO). The

observation equation is

YW) = Ml) Alt) + LU), (59)

where

Y) = (1,) MG) =11 0 0o1, and V( = UI
.YM (r I' 10 0 1 = 1Vy Wt1

with YH) being the measurement at time t consisting of positions x1,, (LI and Y.. U antd V)

being a zero-mean noise whose covariance matrix is RU).

The problem is solved recursively by first assuming the problem is solved at time t -1.

Specifically, it is assumed that the best estimate k t-1 t -1 ) at time t -1 and its error covari-

ance matrix PUt -It -1) are known, where the caret in the expression of the form k(4t s)

signifies an estimate and the overall expression signifies XU) is being estimated with observa-

tions up to Y(s). The six steps involved in the recursive algorithm are

1. Calculate the one-step prediction

x Olt |t 1} 4(i ) I 1|t Il ( 60 )

'R. E. Kalman, Trans. ASME Series D, J. Basic Engineering 82, 35-45 (1960).

tR. E. Kalman and R. S. Bucy. Trans. ASM E Series B, 1. Basic Engineering 83, 95-107 (1961).

iF. R. Castella and E. G. Dunnebacke, IEEE Trans. Aerospace and Electronic Systems 13, M891-895 (1974>.
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2. Calculate the covariance matrix for the one-step prediction

P(Gj I -l) = cb (t-1 )p(G-1 lt-- l) T( -1 ) + ± (t 1 )Q(t -1 )I, T(t-1} (61)

3. Calculate the predicted observation

Y(t n-1 ) = M(tA)X( I -1); (62)

4. Calculate the filter gain

A (t) = P(tI t-1 ) MT(i) IM()pUIt t -1 )M(t) + R (t) 1-; (63)

5. Calculate the new smoothed estimate

kX {tr) X ( t| I -l) + A ( [) [YO - Y(t t I - 1; (64)

6. Calculate the new covariance matrix

PGI A) = [I -A xt)AMG) IP(tI f-). (65)

In Summary, with an estimate X(t -I -1) and its covariance matrix PU -1It -1) as the
start, after a new observation YG) is received and the six quantities in the recursive algorithm
are calculated, a new estimate xtj 0 and its covariance matrix P(tG t) are obtained.

It is fairly simple to show that for a zero random acceleration, Q(t) _ 0 and a constant
measurement covariance matrix R W) = R, the ct -f filter can be made equivalent to the Kal-
man filter by setting

2 (2k -1) (66)
k(k + 1)

and

/3 6(67)
k(k + I)

on the kth scan.*

Thus as time passes, aE and f3 approach zero, applying heavy smoothing to the new sam-
ples. This method is optimal for straight-line tracks but must be modified to enable the filter
to follow target maneuvers.

Maneuver-Following Logic

Benedict and Bordnert noted that in track-while-scan systems there is a conflicting re-
quirement between good noise smoothing (implying small a and ji) and good maneuver-
following capability (implying large ct and /). Although some compromise is always required,
the smoothing equations should be constructed to give the "best" compromise for a desired

*A. L. Quigley, IEEE International Conference on Radar - Present and Future, 352-357, 1973.
tT. R. Benedict and G. W. Bordner, IEEE Trans. Automatic Control AC-7 (No. 4), 27-32 (1962).
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noise reduction. Specifically, since the variance-reduction ratio K, defined as the steady-state

variance in the filter position output divided by the variance in the measured position, equals

K = a e -2 3 -2a - 1 (68)

the (a, /3) pair should be chosen to satisfy (68) and maximize the maneuver-following capabili-

ty. Benedict and Bordner* defined a measure of transient-following capability and showed that

ax and / should be related by

f= (69)
2 -a

Alternately an (cr, U) pair satisfying (69) can be chosen so that the tracking filter will follow a

specified g turn. Cantrellt developed a method of determining the probability that the target

detection will fall within a correlation region centered at the predicted target position when the

target is performing a specified g-turn. Then the (a, P) pair yielding the smallest correlation re-

gion should be used.

The trouble with the preceding method is that if high-g turns are followed the noise per-

formance is rather poor. To rectify this situation, a turn detector employing the two correlation

regions shown in Fig. 22 is used. If the detection is in the nonmaneuvering correlation region,

the filter operates as usual, a and /3 being reduced according to (66) and (67). Usually it is

worthwhile to bound cy and /3 from zero by assuming a random acceleration Qot) # 0

corresponding to approximately a 1-g maneuver. When the target falls outside the inner gate

but within the maneuver gate, a maneuver is declared and the filter bandwidth is increased (af

and t are increased); Quigley and Holmes* increase the bandwidth by lowering the value of k

in (66) and (67). To avoid the problem of the target fading and a false alarm appearing in the

large maneuver gate, the track should be bifurcated when a maneuver is declared. That is, two

tracks are generated: the old track with no detection and a new maneuvering track with the new

detection and increased bandwidth. The next detection is used to resolve the ambiguity and

remove one of the tracks.

MANEUVERiNG GATE

PREDIcTED Fig. 22 - Maneuver and nonnmaneuver gates centeredt at

_ POSITION ttc target's predicted position

SMOOTHED L NON MANEUVERING
POSITION GATE

'T R. Benedict and G. W. Bordner, IEEE Trans. Automatic Control AC-7 (No. 4), 27-32 (1962).

tB. }1. Cantrell, 'Behavior of (e - Tracker for Maneuvering targets Under Noise, False Target, and Fade Conditions,:

NRL Report 7434. Aug. 1972.
$A. L. Quigley and J. E. Holmes, 'The development of Algorithms for the Formation and Updating of Tracks," Ad-

mirality Surface Weapons Estabiishment, WP-XBC-7512, Portsmouth PO6 4AA, Nov. 1975.
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Cantrell et al.* suggested that the a-/ filter (described by (55), (56), and (57)) be made
adaptive by adjusting ce and :3 by

= 1 - eo T (70)

and

3 = I + e 2 2e T - 2 w 0T cos u0 oT 1T t2 (71)

in which

oi o = ° 51 Ipi W1 )I2 (k ) |,(72)
where

pt ) e T pi (k -1 ) + (I - e ( ) e (k)e (k -1) (73)
and

p2 (A) = e TP2 (k -1) + (1 _ h T) e (kid (A) (74)

with 6 being the damping coefficient (nominally 0.7), T being the time since the last update,
a and Cb being weighting constants, and e (k) being the error between the measured and

predicted positions on the kth update. The basic principle of the filter is that p1 (A-) is an esti-
mate of the covariance of successive errors and p2 (Ac is an estimate of the error variance.
When the target trajectory is a straight line, p1 (Ac) approaches 0, since the expected value of
c (k) is 0. Thus co0 approaches 0, and the filter performs heavy smoothing. When the target
turns, pi (Ac grows, since the error e (k) will have a bias (either positive or negative). Thus wo
grows, and the filter can follow the target maneuver.

Another solution to the target-maneuvering problem is due to Singerf, who suggested us-
ing the Kalman filter with a realistic target-maneuvering model. He assumed that the target
was moving at a constant velocity but was being perturbated by a random acceleration. Since
the target acceleration is correlated in time (if the target is accelerating at time F, it is likely to
be accelerating at time t + At), it was assumed that the covariance of the correlation was

r(r) E= a W)Q(t +T)' = (2 e HI, (75)

where a (t) is the target acceleration at time fr, 2 is the variance of the target acceleration, and
at is the reciprocal of the maneuver time constant. The density function for target acceleration
consists of delta functions at ± A, axI each with probability Pllax' a delta function at 0 with
probability PO, and a uniform density between -Antiax and Anax5 For this density

r2 -= ma (1 + 4 P ax - Po ) (76)

For this target motion Singert then calculated the state transition matrix f U) and the covari-
ance matrix QG), thereby specifying the Kalman-filter solution. He generated curves which

'B. If. Cantrell, C. V. Trunk, F, D. Queen, J. D. Wilson, and J. J. Alter, IEEE 1975 International Radar Conl'erence,
391-395, 1975.
tR. A. Singer, IEEE Trans. Aerospace and Electronic Systemns AES-6, 473-483 (1970).
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give the steady-state performance of the filter for any data rate, single-look measurement accu-

racies, encounter geometry, and class of maneuvering targets.

Track Initiation

Detections that do not correlate with clutter points or update tracks are used to initiate

new tracks. If the detection does not contain doppier information, the new detection is used as

the predicted position, and a large correlation region must be used. The probability of false

alarms being in the large correlation region is large; hence tracks should not be declared firm

until a third detection (falling within a smaller correlation region) is obtained. The usual initia-

tion criteria are three out of four and three out of five. The possible exceptions are when

doppler information is available (so that a small correlation region can be used immediately) or

for popup (close) targets in a military situation.

Quigley and Holmes* suggest using a sequential hypothesis-testing scheme for initialing

tracks. When a correlation is made on the ith scan, Ai is added to the likelihood; and when a

correlation opportunity is missed, A, is subtracted from the likelihood. The increment A, is set

by the state of the tracking system, being a function of the closeness of the association, the

number of false alarms, the a-priori probability of targets, and the probability of detection.

Although this method will inhibit false tracks in dense detection environments, it will not

necessarily establish the correct tracks. The proper solution will probably be a method of gen-

erating trial tracks using detections from the last several scans and then eliminating the false

tracks in an easily implemenable manner.

To initiate tracks with detections from unsynchronized radars, Trunk et al.t suggest that

two times, namely TD and 74, be used. If time T 0 goes by between track updates, the tenta-

tive track should be dropped; and if the track is updated after a time TF after initialization, the

tentative track should be made firm. Setting TF > TD insures that three detections are re-

quired for making a track firm.

Firm tracks that are not updated in 30 or 40 seconds are usually dropped.

Correlation Logic

Several procedures will now be given for associating detections with tracks. Of special in-

terest are the conflicting situations of multiple tracks competing for a single detection or of

multiple detections lying within a track's correlation gate (or region).

First, to limit the number of detections that can update a track, correlation gates are used.

A detection can never update a track unless it lies within the correlation gate which is centered

at the track's predicted position. The correlation gate should be defined in r H) coordinates, re-

gardless of what coordinate system is being used for tracking. Furthermore the gate size

should be a function of the measurement accuracy R U) and prediction error P(tt -I ) so that

'A. L. Quigley and J. E. Hlmes, "The developmen -of Algorithms for the Formation and Updating of Tracks," Ad-

mirality Surface Weapons Estabiishment, WP-XBC-75t2, Portsmouth P06 4AA, Nov. 1975.

tGi. V. Trunk, ]. D. Wilson, B. tI. Cantrell, 1. J. Alter, and F. D. Queen, 'ModifIcaions to and PreliMinfary Results fo;

the ADIT System,' NRL Report 809t, Apr. 1977.
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the probability of the correct detection lying with the gate is high (at least 0.99). In some
tracking systems,* the correlation gate is fed back to the automatic detector, and the detection
threshold is lowered in the gate to increase PD.

When several detections are within the correlation region, the usual and simplest solution
is to associate the closest detection with the track. Specifically, the measure of closeness is the
statistical distance

2 = ( -p 1r,, ) 2+ , -op ) 2
D = +2 '(77)

2 +1rr (Tn

where (rp, 02 ) is the predicted position, (r, M IOM ) is the measured position, or 2 is the variance2' pof rp - r,,,, and ,rr2 is the variance of 0p - 0,,. Since the prediction variance is proportional
to the measurement variance, ( 2 and 0//2 are sometimes replaced by the measurement vari-
ances. Statistical distance rather than Euclidean distance must be used, because the range ac-
curacy is usually much better than the azimuth accuracy.

Problems associated with multiple detections and tracks are illustrated in Fig. 23: two
detections are within gate 1, three detections are within gate 2, and one detection is within gate
3. Table 3 lists all detections within the tracking gate, and the detections are entered in the
order of their statistical distance from the track. Tentatively, the closest detection is associated
with each track, and then the tentative associations are examined to remove detections which
are used more than once. Detection 8, which is associated with tracks 1 and 2, is paired with
the closest track (track I in this case); then all other tracks are reexamined to eliminate all as-
sociations with detection 8. Detection 7 is tentative associated with track 2; a conflict is noted
but is resolved by pairing detection 7 with track 2. When other associations with detection 7
are eliminated, track 3 has no associations with it and consequently will not be updated on this
scan. Thus track I is updated by detection 8, track 2 is updated by detection 7, and track 3 is
not updated.

._ _ DETECTION

_ X PREDICTED

Fig. 23 - Example of' the problems X#2 # iO.T._
caused by miultiple detections and 7
tracks in close vicinity

An alternate strategy is to always pair a detection with a track if there is only one correla-
tion with a track. As before, ambiguities are removed by using the smallest statistical distance.
Thus track 3 in the example is updated by detection 7, track I is updated by detection 8, and
track 2 is updated by detection 9.

*S. R. Cook. "Development of IADT Tracking Aigorithmu," Johns Hopkins University, Applied Physic Laboratory,
F3C-1-061, Sept. 1974.
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Table 3 - Association Table for the Example shown in Fig. 23

Closest Association Second Association Third Association
Track______

Number Detection 2 Detection D2 Detection D2

Number D Number Number

3 8 1.2 7 54 92

2 8 3.1 7 5.4 9 .7.2

3 7 6.3 -

Singer and Sea* were two of the first people to recognize and characterize the interaction

between the correlation and track update functions. Specifically, three distinct situations can

occur: the track is not updated, the track is updated with the correct return, and the track is

updated with an incorrect return. They generalized the tracking filter's error covariance equa-

tions to account for the a priori probability of incorrect returns being correlated with the track.

This permits the analytical evaluation of tracking accuracy in a multitarget environment which

produces false correlations. Furthermore, using the generalized tracking error covariance equa-

tion, they optimized the filter gain matrix, which yielded a new minimum-error tracking filter

for multitarget environments. Also, they generated a suboptimal fixed-memory version of this

filter to reduce computation and memory requirements.

A later paper by Singer et al.t uses a-posteriori correlation statistics based on all reports in

the vicinity of the track. Again the mathematical structure is similar to the Kalman filter: the

state equation is (58), the observation equation is (59), the one-step prediction is (60), and the.

corresponding covariance matrix is (61). The estimation error is denoted by k(tlt') =

kG) - X(rl') and has mean and covariance matrices denoted by btjtl) and Pt[L). The

correlation gate size and shape is based on the Mahalanobis distanced and it is assumed nk

sensor reports fall within the gate on scan A-. Included in the number Ok are extraneous re-

ports whose number obeys a Poisson distribution and whose positions are uniformly distribut-

ed within the gate. The smooth estimate is given by

kS(i E) = XUIS t -I } + A (G, (78)

where A (W) is chosen to minimize the noncentral second moment of the filter estimation error.

The problem is solved by using track histories. A track history (t at scan k is defined by

selecting, for each scan ( < A, a sensor report Y" (i) where 0 < j( < n, with j, = 0

corresponding to the hypothesis that none of the reports belong to the track. The number of

such track histories is
k

L() - (1 +n9) (79)

'R. A. Singer and R. G. Sea, IEEE Trans. Automatic Control AC-IS, 57t-582 (1973).

tR. A. Singer, R. G. Sea, and K. B. Housewright, IEEE Trans. information Theory IT-29, 423-432 (1974).

tR. A. Singer and A. J. Kanyuck, Automatica 7, 455-463 (1971).
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Associated with each history ( is the probability p,, (U) that the history o! is the correct one,
given observations through time t (scan Ac). The terms b,,t (ti t-1 ) and P,. (j t -1 ) are the
bias and covariance of the estimation error XtI t-1), given observations through time t - I
and given that track history V 'at time - I is the (only) correct one. Recursive equations are
obtained for p , b*,, and FD,; then it is shown that the optimal correction vector is given by

L (A
A (t) O MPe (db, (tI -1 (80)

This solution not only minimizes the mean-square error but also is an unbiased estimate.

The trouble with the optimal a-posteriori filter is that it requires a growing memory.
Hence several suboptinial filters were suggested. The first suboptimal filter considers only the
last N scans; track histories which are identical for the last N scans are merged. The second
suboptimal filter only considers the L nearest neighbors in the correlation gate; essentially the
gate size is changed to limit number of reports to L. The last method uses both techniques:
considers only the last N scans and restricts number of reports on any scan to L.

Simulations were run to compare the optimal and suboptimal a-posteriori filters, the op-
timal and suboptimal a-priori filters, and the Kalman filter. Some of the results are summarized
in Figs. 24 and 25. In Fig. 24 the filter variance normalized by the theoretical (perfect-
correlation) Kalman-filter variance is plotted for several filters. As a class the a-posteriori filters
provide better performance than the other filters. 1lowever, for high density of false reports
(4t3 rR = 0.1), the a-posteriori filter is 30 times worse than predicted by the standard
Kalman-filter approach. Thus the standard approach should never be used in dense-target (or
false-target) environments. Figure 25 gives the probability of making a false correlation.
Again the a-posteriori filters provide the best performance.

Stein and Blackman* have proposed a maximum-likelihood approach similar to Sittlert for
solving the multitarget correlation problem. Their approach is unified in that they consider the
total correlation-track problem which includes track initiation, confirmation, gating, and dele-
tion logic. They compare their results with a standard approach and show significant perfor-
mance improvements. However this author wonders how complicated the method is to imple-
ment and what their improvement is relative to a more sophisticated approach such as that of
Singer et al.t.

Radar Integration

There are many ways of integrating (combining) radar detections from multiple radars
into a single system track file. The type of radar integration that should be used is a function
of the radar's performance and its environment. Although no firm rules can be generated,
several methods and some general rules are as follows:

* Track selection. Generate a track with each radar, and choose one of the tracks for
the system track. The only advantage of this method is that it is the simplest
method to implement.

J. J. Stein and S. S. Blacknian, IEEE Trans. Aerospace and Electronic Systems AES-1I, 1207-1217 (1975).
tR. W. Sittler, IEEE Trans. Military Electronics ME-8, 125-139 (1964).
AR. A. Singer, R. G. Sea, and K. B. 1{ousewright, IEEE Trans. Information Theory IT-20, 423-432 (1974).
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* Average track. Generate a track with each radar, and weight the tracks to form a

system track. The method can be applied when many radars are providing unsyn-

chronized radar date.
* Augmented track. Generate a track with each radar, choose one as the system track,

but also use selected detections from other radars to update the system track. This

method should be used when one radar provides substantially better data than oth-

er radars. Detections from other radars should be used when the primary radar

misses some detections or when a target maneuver is declared.

* Average detection. Average all detections, and use the average to form a system

track. This method should be used when many radars are providing detections

essentially at the same instant.
* Merged detections. Use all detections to update the system track; tracks may or may

not be initiated using all detections. Theoretically this method provides the most

information; that is, if the detections are properly weighted, this method always

provides the best performance. However care must be taken so that bad data do

not corrupt good data. Thus this method should be used when the radars are sup-

plying data of comparable accuracy.

The most important advantage of radar integration is provide the tracking information in

one central source. Radar integration also provides improved track continuity and improved

tracking performance on maneuvering targets. Little improvement is obtained in track-

initiation times, since in practice almost always one radar will detect and establish a track be-

fore any other radar can provide some detections.

Either the a -f filters or the Kalman filter can be used when the radars are at the same

location. However Trunk and Wilson* indicate that the Kalman filter must be used to provide

triangulation effects when the radars are in different locations. Various methods For multiple-

site correlation are also discussed by Singer and Kanyuckt.

CONCLUDING REMARKS

The problems involved in coherent processing have received the greatest attention in this

survey. Presently the trend appears to be toward a digital implementation of the adaptive pro-

cessing algorithms: direct open-loop calculation of canceler weights and numerical inversion of

the covariance matrix for adaptive arrays. it can be expected that such systems will be built

and tested during the next several years.

The area of noncoherent processing has been studied intensively since 1940. The em-

phasis in later years has been on techniques to limit the number of false alarms (while

suffering only a small target-sensitivity loss) so as not to overload the tracking system. Many

systems have been built and tested, and not much more research seems necessary in this area.

'G. V. Trunk and J. D. Wilson, "Tracking Filters for Multiple-Platformn Radar Integration,' NRL Report 8087. Dec.

1976.
tR. A. Singer and A. J. Kanyuck, Autornatica 7, 455-463 (1971).
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During the last several years much progress has been made in track-while-scan systems.
This work has given guidance on the important problem of track-detection correlation in a
dense multitarget environment. The major problem still needing a solution is that of track ini-
tiation in a dense environment.

One problem, which has received little attention so far but which will receive more atten-
tion, is that of adaptively controlling the surveillance radar. Problems of interest are: when
should frequency and/or polarization diversity be used, when and where should various radar
modes be used, and how should the signal processing be reconfigured to cope with a changing
environment? Future radars will have more flexibility, and their control will become extreme-
ly important.
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