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DUAL PERTURBATION CONTROL

INTRODUCTION

One problem of considerable interest in stochastic optimal control theory is that of
minimizing the expected value of a quadratic criterion in the presence of linear dynamics
and state measurements, both of which are perturbed by additive Gaussian white noise
processes whose parameters are known a priori. This classical "linear-quadratic-Gaussian"
case is important because it is both analytically tractable and descriptive of noise-induced
perturbations from nominal behavior in a more general class of optimal control problems
[1]. However, it has the simplifying but degenerate property that the optimal control
law is the functional composition of the solutions to a deterministic optimal control
problem and a state estimation problem that are essentially independent of each other
(the certainty-equivalence property). The only effect the choice of control has on the
state estimation results is to shift, by a known amount, the mean of the conditional state
distribution. Heuristically, this means that in this case the acquisition and exploitation
of state information are independent.

Some analogous results have been obtained recently [2] for a variant of this problem
in which the criterion is changed to a quadratic exponential, as it might be in minimizing
a terminal miss distance and the probability of a control-dependent Poisson failure. The
certainty-equivalence property does not extend to this case, but there is still no conflict
between the acquisition and exploitation of state information because the estimation
results are control-independent here also. There is such a conflict in the general stochastic
optimal control problem, however, where the "quality" of the state estimate can be
influenced by the choice of control. The optimal control law in such cases can therefore
be interpreted as having a dual character [3] ; it represents an optimal compromise between
acquiring and exploiting state information for the ultimate purpose of minimizing the
criterion.

This dual character is investigated here by considering an extension of the linear-
quadratic-Gaussian problem, in which the noise "covariance" matrixes vary as functions
of the instantaneous state and control. An exact solution is not attempted, but a
dynamic programing approach provides an explicit expression for the optimal control
law-in terms of initial value systems of ordinary differential equations-which is accurate
to first order in the covariance matrix variations under the restriction that they remain
small (and linear as functions of the state and control). Such results at least show how
the optimal control law starts to be affected in this particular context when the choice
of control begins to influence the quality of the state estimate, and this provides a starting
point for speculation about these effects in a more general context. Hence, this might be
called a "linear-quadratic-Gaussian infinitesimal" control problem. For such problems arising
from a perturbation analysis of a more general situation, however, the restriction of
smallness here presents little additional loss of generality, and the level of accuracy is
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compatible with that of the original analysis. Furthermore, some of the phenomena
appear to generalize at least to the case of the quadratic exponential criterion, although
the lack of a certainty-equivalence property complicates their interpretation in that case.

NOTATION

Unless otherwise noted, lower case letters are used here to denote (real) column
vectors or scalars, and capital Roman letters denote matrixes. For a matrix A, AT
denotes the transpose of A. If A is square, IAI denotes its determinant, tr(A) denotes its
trace

(E Ai),

and adj(A) denotes its adjoint, a square matrix whose i, jth component is the j, ith cofac-
tor of A. If a is a vector, each component of which is a function of another vector x,
then ax denotes the matrix of partial derivatives such that (ax)ij = 3ai/axj. If a is a scalar,
then aA denotes the matrix of partial derivatives such that (aA aA = aAji.

It will also be necessary here to manipulate three-way matrixes of real numbers,
which will always be denoted by capital Greek letters. For continuity of notation, we
adopt the following definitions for such a matrix i' = ijk = 1, ... , I; = 1, ..., J
k = 1, ...,K}:

Postmultiplication by a column K-vector x gives an I X J matrix such that

K

(rx)ij = E rijkxk
k=1

Premultiplication by an N X I matrix A gives an N X J X K three-way matrix such
that

l
(Ar)njk = E Anirijk-

i=1

Postmultiplication by a K X N matrix B gives an I X J X N three-way matrix such
that

K

( =B)ijn =L rijkBkn
k=1

The transpose of r is a K X I X J three-way matrix I" such that (r')kij = rijk. If
I = K, Tr(r) is a column J-vector such that

l
[7Trw)]>= E ]iji1

i=l

2
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1' is called symmetric if I" = I" = I"" and rijk = rjik (- I = J = K).

AxT denotes a three-way matrix such that (AxT)ijk = Aijxk.

With these definitions, the expressions ArBx, BAxT, AxTB and AxTy are unambigu-
ous. Many other consequences are obvious. Some useful properties that are not so
obvious are listed below.

tr(I"x) = [Tr(r)]Tx and a [tr(F'x)] = [Tr(p)]T

ATr(r') = Tr[(Ar)'] and BTTr(F") = Tr[(rB)"]

Tr(Ar) = Tr(rA)

(PB)' = BTF' and r"B = (BTr)"

r'xB = (BTr)'x

rxx = Tr(r'xxT)

' symmetric => (ATrA)'A and B(BrBT)" symmetric

Parentheses are omitted in this notation if the order of multiplicative association is
immaterial or if the interpretation is unambiguous; for example, rxB must mean (rx)B
because xB is not defined. If x is a vector and a is a scalar, then aAX denotes the three-
way matrix of second partial derivatives such that

(aAX)ijk = a2a/aAjjaXk-

The probability density function of a random variable x is denoted by px () and the
corresponding expectation operator by Ex. Where the meaning is clear from the context,
p(x), E(x), and E(x/y) are often used as abbreviations for px (x), Ex (x) and Exly (x, y).
The covariance of x is denoted by cov(x).

PROBLEM FORMULATION AND MOTIVATION

The problem of primary interest here is the following extension of the familiar
linear-quadratic-Gaussian optimal control problem, in which the covariance matrixes of
the process and measurement noises are allowed to have a certain kind of dependence on
the state and control vectors:

=Fx + Gu + w,
(dynamics) (1)

x(to ) is Normal (xo, P0 ) a priori y

z = Hx + v (state measurements) (2)

3
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J 2 E[Xl(tf)SfX(tf)+ f (XTAx + UTBu + 2CTU) dt (scalar criterion) (3)

where time argument t is suppressed in the notation and

E denotes prior expected value

x is an n-dimensional state vector

u is an m-dimensional control vector

z is a k-dimensional state measurement

w and v are independent zero-mean Gaussian white noise processes with respective
covariance matrix parameters

Q + 2P'u + 2'"x,
given u and xR + 2'u

A, Q, and Sf are symmetric positive-semidefinite matrixes

B and R are symmetric positive-definite matrixes

All components of A, r, and Q2 (which may be time-varying) are approximately
infinitesimal-let us say of order h; all other quantities are of order unity, including
B-1 and R-1

rijk =rjik' qk = ''jik' and E2'k = jiik (to retain covariance matrix symmetry).

An alternate criterion of exponential form is also considered for comparison, but discus-
sion of this is deferred until later. Including state dependence in the measurement noise
covariance matrix presents special difficulties and is considered separately.

The objective here is to determine, at least to first order in h, the control law that
minimizes criterion J. As usual, a control law is defined as a decision rule that determines
the control u(t) as a function of the available measurement history Z(t) = {[s, z(s)]:
se[to, t] 1. Since white noise processes do not really exist except as a kind of shorthand
notation for sequences of approximating step-function processes, the control law sought
here should really be interpreted as a limiting form of the solutions to a sequence of
restricted optimal control problems in which the control and noise values change only at
a finite number of specified intermediate times, where the maximum time interval between
such changes goes to zero in the control problem sequence.

The development here is formal, however, in the sense that no investigation is made
of the conditions under which such a limit concept is meaningful. The reason for treating
the problem in continuous time here is the more concise form of the results, together
with the fact that they can serve as a single approximation to the results for any approxi-
mating discrete-time problem with a short enough discretization interval. As usual, the

4
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process noise covariance matrix for such a discretization interval of generic length A and
index i is normalized as

y [Q(to + iA) + 2r'(to + iA)ui + 2VI(to + iA)xi]

so that the statistics of the noise increments on that interval are asymptotically the same;
i.e.,

to+(i+1 )A

cov[wiA] -* cov w(t) dt as A - O

o+iA 

and similarly for the measurement noise covariance matrix.

Aside from their conceptual interest, problems of this class can arise in the following
way. Assume that a solution to a nominal deterministic optimal control problem is
available and that perturbations about this nominal path are observable and controllable.
Suppose also that there are process and measurement noises, ignored in the nominal
solution, whose covariance matrixes possibly depend on the state and control. A common
approach to minimizing the actual expected value of the criterion in such a case is to
seek a feedback solution to an "accessory minimum problem" for the perturbations,
under the assumption that they remain approximately infinitesimal. In this context, the
accessory minimum problem would be constructed by linearizing the dynamics and the
noise covariance dependences about the nominal path. If the resulting problem is rescaled
so that the state and control perturbations are of order unity, it is often reducible to a
stochastic optimal control problem of the above form, where the covariance dependence
coefficients become the small quantities. Of course, the case of state-dependent measure-
ment noise cannot be accommodated under the present restriction. Moreover, since linear
terms in the controls are included in the criterion of this formulation, a problem of this
class could also represent an iteration in a corresponding second-order gradient algorithm,
in which the linearizations and second-order expansion of the criterion are constructed
about a trajectory that is not optimal in the deterministic problem. The importance of
this lies in the possibility of iteratively modifying the nominal path to account optimally
for noise-intensity gradients.

STATE ESTIMATION

For state-independent process noise (P = 0), both noise covariance matrixes can be
regarded as known, since the current control values are assumed known. In this case,
therefore, it follows from well-known results for the Kalman-Bucy filter [4] that the
conditional probability density of the state given the available measurements is Gaussian,
and that its mean x and covariance matrix Fobey the equations

x = F + Gu + FHTR-1 (z - H&); &(to) = io (4)

and

p+ p+ FpFT + QHTR-1Hp; P(to)=P0 (5)
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where

Q + 2rFu (6)

R=R + 292'u. (7)

For nonzero I, it is shown below that this conditional density no longer remains Gaussian
to first order, but rather is of the form

(+T (x -x) + tr 1 L[(x -x)(x -x - V]

1 ~~~~~~~exp -- 2(x - x)T V- (x - xF)
+ - (x -- )(x )TA(x } L (8)
3 (2ir)1/2n IV11/2

where V, L, and A are symmetric, V is positive definite, and the components of X, L, and
A are all of order h. In general, Eq. (8) can assume negative values for large enough
magnitudes of (x - x) and must be modified slightly to be a proper probability density.
Because of the rapid decay of the exponential factor, however, these modifications can be
confined to a region whose probability mass is negligible to arbitrary order in h for
sufficiently small h, so Eq. (8) will be treated as a proper density in the following. Since
it has the form of a Gaussian density function multiplied by a polynomial, it follows
directly from standard results for Gaussian moments that the integral of Eq. (8) over Rn
is unity and that

E(x)= _+ VA + VTr(AV) p (9)

cov(x)= E[(x -p)(x _ )T] = V + VLV- (p -X)(p _-)T U. (10)

Assume now that the conditional density of the state x at time t is of the form of
Eq. (8). After a short time increment A has elapsed, the conditional density of the state
at time (t + A) can be determined to first order in A by first finding the density of y,
where

y = (I + FA)x + GuA + A,

and X is a random variable whose distribution given x is zero-mean Gaussian with
covariance matrix (Q + 2T'x)A, and then finding the conditional density of y given z,
where

z = Hy +

and t is an independent zero-mean Gaussian random variable with covariance R/A. Since
w itself is regarded as a step-function approximation to white noise in Eq. (1), no correc-
tion term of the sort described by Wong and Zakai [5] is needed here to compensate for
the state dependence of the process noise.

6
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If x has the density function of Eq. (8) and s = Kx + b, where K and b are constants
and K-1 exists, it is straightforward but tedious to show from standard results for the
transformation of probability densities that s also has a density of the same form, namely

p(s) =1 + XTK-' (s -s) + tr 1 K 1 LK-' [(s _i)(s -T - KVKT]

+ 1 (s (s)T(~1TAJ~.-1)DK--1(s) F -1/2(s-i)T(KVKTl (s-s-)
+ -_s-4s-iT(K-l A K-1)'K l(s i> 

(2ir)N/2n IKVKT 11/2

s= KT+b. (11)

If s is used now to denote (I + FA)x in particular, it follows that s has a density of the
form of Eq. (8), since (I + FAf)1 always exists for sufficiently small A. Furthermore, its
9Xt1 "L," and "A" parameters differ from those of the density of x only by order hA.
From general results for means and covariances,

E(s)= (I+ FA)A Y2

cov(s) = (I + FA)U(I + FTA) = U2.

Since knowing s is equivalent to knowing x, the probability density of r = s + . is given
by the equation

p(r) = p(s + )= | p,(r - w)p,,, [co,(I + FA) 1 (r - co)] dw. (12)
n

It is assumed initially that Q-1 exists, in which case the density plx [c, (I + FA)-lx]
can be approximated to order h as

exp- cTQ- co 
p/ 1x[w,(I+ F./f) x] = {l-tr[Q ~l x(I- A Q2cowT)JL _2)1/2n iQl 2

T= '(I+ FA)-1. (13)

Using Eq. (8) to represent p5 (x) and substituting it and Eq. (13) in Eq. (12) gives

,[k(o) exp{2 [(r -co- x)TV1 l(r - co -i)+ A co co ]dc

p~~~r) f ~~~~~(27r)n V~QA 11/2

7
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to order hA, where

k(w) = 1 + XT(r - c -- ) + tr{I L[(r - co -x)(r - co -. X)T - V]

+ - (r - c -x)(r - w -x)TA(r - o -x)

- Q-t (- ) I- Q~1wAT)}.
Completing the square in the exponent gives

exp[- (r - x)T(V + Q)r 1 (r -x)
p(r) = k(co)

(27r)/2n IV + QA11/2 f

expf-! [2 -QV-(r x) T[Q -QW'QA 2]i[< -QW (r -X)A]
X 1 dw.

(27r)1 /2n IQA - QV- 1Q 2 11/2

The integrand in this expression is a Gaussian density multiplied by a polynomial, so it is
straightforward to verify that, to first order in A,

p(r)= (1+ XT(r -x) + tr {2 L[(r -x)(r - )T - (V +7 )] + - (r-x)(r-x)TA(r

exp - 2 (r -X)( +Q-1 (r - x)

(2ir) 1 /2n IV + A I1 /2 (14)

where

X =X + A[Tr(QA) - V1(QX + 2TrT')] (15)

L = L + A{[(V~1tV '4 )7- LQW-'] + [(V-'TV-I)'x)- LQWV' ] T} (16)

A A + A[(V 1 TV-1 -AQ 'V-1) + (V-ITV-r - AQV-1 )'+ (VW"TVW - AawV1)"]. (17)

This is again a density of the form of Eq. (8). From the definition of s and Eqs. (11)
and (15) through (17), the components of X, L, and A for x and r differ only by order
hA. Applying Eqs. (9) and (10) to Eqs. (14) through (17) shows that, since y = r + GuA,

E(y)=P2 + GuA P3 (18)

cov(y) = U2 + (Q + 2P'u)A =-M (19)

8
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which can also be verified directly by decomposing the expectations. The same result
holds for singular Q by continuity, since it does not involve Q-,. Equation (11) implies
that y has the same density parameters as r, except that x increases by GuA.

As a function of y, conditional density p(y/z) is proportional to p(z/y)p(y). Com-
pleting the square in the exponent of this product shows that

p(y/z) =g (1 +XT(y -x) + tr{~2 L[(y-x)(y -x) -(V+ QA)]

+ x(y -*)(y - x)TA(Y - )}) exp y ]v-y

where g is a constant of proportionality,-x now denotes the parameter in Eq. (8) for
p(y), and

V= V+QA - VHTR-1HVA

3y =x+ VHTR- (z- HY)A.

The polynomial factor in p(y/z) can be expressed as

a + bT(y -) + tr{ L*[(y 95Y(y _y)T _ V] + (y -y)(y -)TA*(y -y

where

a = 1 + A [YVHTR-1 (z - H) + tr (VAVHT-I(z- -Hx)

+ - L{VHTR-l[(z Hx(z-H)T-R]RA HV}
2

b =)+ A[L + AVHTRl (z - Hi)A] VHTRkl(z- Hi)

L*= L + 2A VHTk l(z -Hi)A

A*=;A

to first order in A. The quantity (z - H:-)A is regarded as a term of order A1/2 here.
Since p(y/z) is a probability density and must integrate to unity, a can be absorbed into
the proportionality constant g to express this density in the form of Eq. (8) such that the
X, L, and A components differ from those of X, L, and A only by terms of order hA and
zero-mean random terms of order hA 1 2. Carrying out the details to order A (only to
order A1/2 for zero-mean random terms) and using Eqs. (9) and (10) show that

9
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E(y/z) = pU3 + MHTR- (z - HpV3 )A + MTr{MHTRl [(z - Hu3 )(z - HP3 )TA

- R]R-HMA}A + terms of order h2A (20)

cov(y/z) = M - MHTR-1HM + 2(MAM)'MHTR- (z - H93 )A + terms of order h2 A

+ zero-mean random terms of order h2A1/2 (21)

A = A + terms of order h2 A + zero-mean random terms of order h2 A'1 2 . (22)

Efforts to obtain similar results in this way with state-dependent measurement noise have
been unsuccessful at this point, possibly because more information about the state is given
in this case by the scatter of a series of measurements over a short period of time than
by their average value. Since the zero-mean random terms are statistically independent
for disjoint time increments and since the third term in Eq. (20) is a zero-mean random
term of order A, the last two types of terms in each of Eqs. (20) through (22) can be
neglected because they only contribute effects of order h2 or smaller when "integrated"
over a time interval of order unity.

If we return to the notation of Eq. (4) and (5), the overall result is that

x (t + A) = x(t) + A {F(t)A(t) + G(t)u(t) + P(t)HT(t)R-j (t)[z(t) - H(t)&(t)] },

P(t + A) = P(t) + A{F(t)P(t) + P(t)FT(t) + Q(t) + 2*'(t)k(t)

- P(t)HT(t)R- (t)H(t)P(t) + 2[P(t)A(t)P(t)] ?P(t)HT(t)R- (t)[z(t)

-H(t)x~(t)] },

and

A(t + A) = A(t) + A(P'- (t)*I(t)P' (t) - A(t)(F(t) + Q(t)P-1 (t))

+ {P'(t)T(t)P'-(t) - A(t)[F(t) + a(t)P-1(t)]}'

+ [-(t)T(t)P~l (t) - A(t) [F(t) + a(t)17-1(t)]]"I

to first order in A, except for terms contributing effects of order A but of second order
in h. Furthermore, the X, L, and A components describing the conditional density of x
in the notation of Eq. (8) change only by amounts of order hA in this interval, so they
remain of order h; also, L and A remain symmetric. It is convenient at this point to
express the conditional covariance matrix as the sum

P = P+2D

where P is a "nominal covariance matrix" defined as a deterministic time function by the
classical Kalman-Bucy filter equation:

10
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P=FP+PFT+Q-PHTR-iHP; P(to)=Po. (23)

Since R-1 = (R + 292'u)-1 = R- 1 (R - 2n'u)R- 1 to first order in h and since the com-
ponents of D are of order h, the mean x and covariance matrix P + 2D of the conditional
state distribution are determined to first order in h in the limit as A -+ 0, by Eq. (23)
and the equations

x = F& + Gu + [PHT(I - 2R 1 2'u) + 2DHT]R- (z -H ); k(to) = ko (24)

D = (F-PHTR-1H)D +D(FT -HTR-lHP) + !'I + (r +PHTR-'2R-lHP)'u

+ (PAP)'PHTR -1 (z - Hx); D(to) = 0 (25)

A e + E'+ E)" E) =A P-1P-l _ A(F + QP-1); A(to) = 0 (26)

where the "t" argument is suppressed in the notation. Three-way matrix A is a determinis-
tic time function related to the skewness of the conditional state distribution, and is
identically zero in the case of state-independent process noise, when '41(t) is identically
zero. To first order in h, therefore, the so-called information state for this estimation
process consists of both x and D, not just x, and hence differs significantly from the sys-
tem state x.

OPTIMIZATION

It follows from the arguments of Stratonovich [6] and Striebel [7] that an "optimal
cost function" can be defined consistently here in terms of t and the current conditional
distribution of the state given the preceding measurements. It is assumed that conditions
are such that the solution to the corresponding Bellman equation and boundary condition
is unique and that it is sufficiently regular that second-order changes in the equation
produce only second-order changes in the solution. It is convenient to proceed by con-
sidering the possibility of such cost functions depending only on x, D, and t to first order
in h, in which case there exists a (scalar) function J(k, D, t) such that

J(k, D, t) = conditional expected "cost-to-go,"

that is,

E{- [XT(tf)SfX(tf) + tf(XTAx + UTBU + 2cTu) dt]}

using an optimal control law, given that x(t) = x and P(t) = P(t) + 2D, plus terms of
second order in h or smaller. (The question of the possible nonexistence of an optimal
control law is not examined here.) The usual invariant imbedding formalism of dynamic
programming (see Dreyfus [8], for example), using x and D as state variables and neglect-
ing second-order terms, shows that the Bellman equation reduces to the following equation
for J in this case:

11
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1 ~~~~~~~dDJD:~ d& 1 d.~d&T)0= min El- (&TA& + uTBu) + cTu + jx + Jt + tr(JD + dtt
12dt 2 XX dt]

(27)

where the expectation is conditioned on the event x(t) = x and P(t) = P(t) + 2D, or,
equivalently, on Z(t). Evaluating the conditional expected cost-to-go at the terminal time
shows that J must also satisfy the boundary condif ion

J(&, D, tf) = 2 &TSf& + tr 1 [[SfP(tf) + SfD]. (28)

If a function J(!, D, t) that satisfies (27) and (28) to first order in h can be found, then
it is a first-order approximation to the optimal cost function and determines the optimal
control law to first order by the regularity assumption.

Taking expected values in Eqs. (27) and using Eqs. (24) and (25) gives, to first order
in h,

0 = min ( {&TA& +tr[A(P+2D)] +uTBu} + cTu +Jt(F& + Gu) + Jt+ tr[JD(FD +DFT

+ r'u +'"X -DHTR-lHP-PHTR-lHD +PHTR-&l2'uR-lHP) +Jx (2 PHTR-1HP

+ DHTR-lHP + PHTR-lHD - PHTR-1 Q'uR-lHP)]

+ . (PAPHTR-1HP)ijk(PJD1)jik)- (29)
ijk

Collecting terms and cyclically permuting matrix products in the trace operand gives

0 = mn I pT Al~+ UT~] + CU + [1 1(2 TA+uTBu] + [F + Gu + Jt + tr {2 AP + 2 JjxPHTR-1HP
U

+[A+JDF+F JD - (JD t j)PHTRlH-HTRHP(J J)]D

+ [R-lHP(JD -Jx)PHTR + JD] u} + [Tr(JD *)] T&

+ E (PAPHTR-1HP)ijk(PJDx)jik) (30)
ijk

12
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Equating the u-derivative of the left-hand side of Eq. (30) to zero specifies the minimiz-
ing control as

U =-B-1{GTJT +C + Tr[R1HP(JD -J-X)PHTR 12 +JD r]}. (31)X~~~~~~
Substituting Eq. (31) into Eq. (30) to eliminate the minimization operation gives

1 xTAx +J-F&+ [Tr(JDlI )]T&+Jt+tr { AP+ 2 JtePHTR1HP

+ [A + JDF + FTJD - (JD - Jjj)PHTR1H - HTR lHP(JD - Jtj)]D}

- 2 [GTJT + c + Tr (JDr + R-1HP (JD

- 2 J.x)PHTR-12)] TB-1[GTJT + c + Tr(JDr +R1HP(JD

- 1 JX)PRTR-1Q~1 + ~~(PAPHTR lHP)ijk(PJDX)jik = 0. (32)

For the function J defined as

J(X, D, t) =2TSI + OT& + tr(ND) + 2 e (33)
2 2

where S. ¢, N, and e are (deterministic) functions of- t only, the partial derivatives are

JX~ =x~TS + 

JD =N

JX =S (34)

JDX = °

_ =2TSx + kT& + tr(ND) +-2e

It can be verified by substituting Eq. (33) in Eq. (28) and Eq. (34) in Eq. (32) that Eqs.
(28) and (32) are satisfied by Eq. (33) if

S = - SF - FTS - A + SGB-lGTS; S(tf) = Sf (35)

N = - NF - FTN - A + HTR-lHP(N - S) + (N - S)PHTR-1H; N(tf) = St (36)

13
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= (SGB- GT-- FT)o + SGB-7{c + Tr[Nf + R-'HP(N - S)PHTR-l f] } - Tr(N*);

(tf) =° (37)

and

e= [G +c+Tr[NF+R-1HP(N-S)PHTR-1f]]TB-1 [GTf +

+ Tr[Nf + R-1HP(N - S)PHTR-1Q]] - tr(AP + SPHTR -'HP);

e(tf) = tr[SfP(tf)]. (38)

Therefore, it follows from Eqs. (31) and (34) that the optimal control law can be
expressed to first order in h in terms of the solution of the terminal value system of
ordinary differential equations (Eqs. (35) - (37)) as

u = - B-1 {GTS + c + GT+ Tr[RlHP(N - S)PHTR-l Q + Nr] } (39)

where P and x are given by the initial value system of ordinary differential equations
(23) through (26). The implementation of this control law requires that Eqs. (24) and
(25) be integrated in real time-a total of (n/2)(n + 3) independent components for n
state variables-to provide the current values of x; the other differential equations can be
solved beforehand by integrating Eqs. (23) and (26) forward, then Eqs. (35) through (37)
backward.

When r, 2, and '4 are identically zero, Eqs. (23) through (26), (35), (37), and (39)
reduce to the well-known solution

u = - B-1 [GT(S& + ) + c]

x = Fm + Gu + PHTR-1 (z -H); &(to) = &o (40)

T= (SGB-1GT FT)T+SGB-lC; T(tf) = 0 (41)

of the corresponding classical linear-quadratic-Gaussian problem. Two first-order
departures from this classical solution are induced in the optimal control law by first-
order nonzero values of these quantities. One is the augmentation of the state-estimation
equations by using Eqs. (24) through (26) instead of Eq. (40) for determining x. The
other is the addition of the deterministic time function

5U = - B-'{GT(o - T) + Tr[R 1IHP(N - S)PHTR-162 + Nr] } (42)

to the control. This structure is displayed schematically in Fig. 1. Since the conditional
expected value of the driving term (z - Hx) in Eq. (24) is always zero, so is its prior
expected value, and it follows from Eqs. (1) and (24) that the prior expected values of
x(t) and x(t) are always the same. Therefore, the mean sample trajectory of the optimally
controlled system can be determined by Eqs. (23), (35) through (37), (41), (42) and the
equations

14
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Fig. 1 - Optimal control law structure

x = F + Gu; g(to) (43)

R = - B-1 [GT(Sx- + A) + c] + 6il (44)

where x(t) and ui(t) denote the (prior) expected values of the state and control at time t
under the optimal control law. If the control problem here represents a second-order
description of the effects of perturbations about a nominal path in an iteration of a
gradient algorithm, this mean sample trajectory is a natural candidate for the nominal
path in the next iteration. Such a gradient algorithm would converge in general to a
nominal path that is different from the deterministic optimal (with c + GTq = BSii
instead of zero), the result representing a compromise between the deterministic optimal
and a path encountering the lowest expected noise intensities. Thus the noise statistics
in this context enter into the optimization of the nominal path as well as the correction
of noise-induced deviations from this nominal.

It is interesting to note from Eqs. (33), (37), and (38) that the introduction of
first-order values of r, Q2, and I only changes the optimal cost function from the classical
value by second order when c, x, and D are all zero, a condition of particular interest
when the problem arises from a perturbation analysis. However, this is easily shown to
be the case for the cost function associated with any control law which differs only by
first order from the classical optimum. Since the only first-order approximations used
in the derivation here were the dynamics for x and D in the Bellman equation, and since
first-order accuracy in the dynamics is sufficient for second-order accuracy in the cost in

15
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deterministic control problems of this sort [1], this property suggests that the cost func-
tion of Eqs. (33) and (35) through (38) might actually be accurate to second order in h
under these conditions. The approximations here are of a somewhat different character,
however, because they pertain to the dynamics of an information state (x, D) that is
significantly different from the system state x, and even the simple scalar problem with
c = Q = IF = 0 provides a counterexample to this conjecture. It is instructive to examine
this example in detail to reveal how such a phenomenon can occur and also to enhance
the plausibility of the regularity assumption by verifying that no contradiction arises here
when the analysis is extended to second order. In this case, the conditional distribution
of the state is exactly Gaussian, with parameters that have the following dynamics to
arbitrary order in h:

x~ =fix+gu+ P+ 2d (z x(to)=X0
r

+,u_2d2

=(f ) d d(to) = 0.

The structure of these equations is such that there can be no Wong-Zakai correction terms
for any reasonable control law generating u. Since this conditional distribution is always
Gaussian, the optimal cost function J can be expressed exactly as a function of only x, d,
and t. Using their dynamics in the Bellman equation and minimizing gives the following
equations, accurate to arbitrary order in h:

u = [g4 + YJd ]
b

1 ,~2 + 2\J+~ P 2d rl+ Jt+(.p + 2d)2 1 (j Y2ax + p + 2dI) X dd+Jt 2r + J (gJ++ -YJd )2= °

J(&, d, tf) = 2f(X2 + p(tf) + 2d).

An exact solution to these equations is not available in closed form, but J can be imagined
as a power series in x and d with time-dependent coefficients, and such a function of the
form

J= 2 sx2 +¢x + 2 vd + pd2 + ?X'd + - e + third-order terms
2 2 2

can be examined as a possible solution. Substituting this expression and its derivatives
into the partial differential equation and collecting coefficients of like powers of x and d
show that all but third-order terms vanish on the left-hand side (remember that d itself is
of order h) and that the boundary condition is satisfied exactly if v = s + y and if
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s =g- 2sf - a + sgX+ gbz s(tf) = Sf
b b ;

p (b f)y (WX _ ;~ g Y¢t) = = 

2 ~ ~ ~ ~ 2

_= _ f) 1, + Y s g(tf) =

(P3f) + sg (g t + fy); O ) = 0

ap - Sp2 + 1 (go +yv) 2 ; e(tf)Sfp(tf).

To second order in h, therefore, these equations determine the optimal cost function and
thereby give the optimal control law as

1 1
u = -b[g(s +) +'Yv + 2y'yx +gXd + 2yvd].

Because - s2g2 /b is the only zeroth-order driving term for 5, y is of order unity, and
since y/r is the driving term for 4i, so is u. But yp appears as the driving term for X, so X
is of order h, which implies that s here, and therefore e as well, differ from those given
by Eq. (35) and (38) by order h2 . Thus the systematic inclusion of second-order effects
introduces second-order changes in both the optimal cost function and the optimal con-
trol law, even when c, x, and d are all zero. Nevertheless, the optimal control law
remains unchanged to first order. This phenomenon appears to depend on the
coefficient X of the kd term in the optimal cost function, and hence on a property of the
information state, correlation between the dynamics of x and d, which has no counter-
part of the system state x.

PERFECT STATE MEASUREMENTS

In the limiting case in which current state x is known exactly and can be used in the
control law, an optimal cost function J(x, t) can be defined as the conditional expected
cost-to-go under an optimal control law given that x(t) = x. In this case the Bellman
equation corresponding to Eqs. (1) and (3) can be derived in the usual way to give

min {Jx(Fx + Gu) + Jt + tr [Jxx (I Q + F'a + i x)] + 2 (xTAx + uTBu) + cTu} = 0

(45)
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to first order in h. Differentiating to determine the minimizing control gives

u = - B-1 [GTJXT + c + Tr(JXX )] . (46)

If Eq. (46) is substituted into Eq. (45) to eliminate the minimization operation, and if the
function

J(x, t) = xTS(t)x + qT(t)X + 2 (47)

and its partial derivatives are substituted into the resulting equation, the left-hand side is
a quadratic polynomial in x whose coefficients are all identically zero if S satisfies Eq.
(35) and if

= (SGB-1 GT - FT)ri + SGB-1 [c + Tr(SP)] - Tr(S'I); 1?(tf) = o (48)

and

8 = [GTq + c + Tr(Sr)] TB-1 [GThq + c + Tr(Sr)] - tr(SQ); 6(tf) = 0. (49)

Furthermore, the cost function of Eq. (47) satisfies the boundary condition

J(x, tf) = I XTSfX (50)

for the terminal values given in Eqs. (35), (48), and (49). Substituting into Eq. (46) and
assuming uniqueness and sufficient regularity of solutions to the Bellman equation gives
the optimal control law here to first order in h as

u = - B-1 [GT(Sx + q) + c + Tr(Sr)]. (51)

This control law differs from the classical optimum only by the addition of the determinis-
tic time function -B-1 [GT(i7 - 0) + Tr(Sr)]. The mean sample trajectory of the optimally
controlled system is given by Eqs. (35), (43), (44), and (48), except that this time function
replaces H in Eq. (44). Again, the covariance matrix perturbations cause only a second-
order change in the optimal expected cost if x(to) = 0 and c = 0.

THE ROLE OF MEASUREMENT NOISE

The effects of measurement noise in this context can be clarified by considering the
variable

Y(t) = N(t) - S(t). (52)
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The optimal control law of Eq. (39) can then be expressed in terms of the equations

u = - B-1 [GT(S& + -q) + c + Tr(Sr) + GTO + Tr(Yr + RP1HPYPHTR½12)] (53)

Y = Y(PHTR-lH - F) + (HTR-lHP - FT)Y - SGB-1 GTS; Y(tf) = 0 (54)

0 = (SGB-1 GT - FT)o + SGB-1 Tr(YF + R-lHPYPHTR- l ) - Tr(Y'I); O(tf) = 0

(55)

where P. x, S, and 7i are as given earlier by Eqs. (23) through (26), (35), and (48). Com-
paring this realization with Eq. (51) shows that it is the same control law as the optimum
for the case of perfect measurements except for the replacement of x by x and the addi-
tion of the deterministic quantity -B- 1 [GTO + Tr(Yr + R-lHPYPHTR-12)]J, all of
whose terms are coupled to the control through the matrix Y (indirectly in the case of
0, where Y appears in the driving term of differential Eq. (55) defining 0). This struc-
ture suggests that the concept of certainty-equivalence here should refer to the replace-
ment of x by x in the optimal control law for the case of perfect measurements with the
same process noise, not the completely deterministic case (the two concepts coincide in
the classical perturbation-free problem). With this interpretation of certainty-equivalence,
the other additive terms in the control law can be regarded as the "dual control"
phenomenon identified by Feldbaum [3]. This phenomenon is the deviation of the
optimal control from that which exploits the current state information optimally (inter-
preted here as certainty-equivalent control) for the purpose of improving the quality of
this information for future exploitation. Although the influence of the noise covariance
matrix perturbations in this dual control phenomenon is mediated by the matrix Y, the
values of Y itself are determined entirely by the corresponding classical problem without
such perturbations. Hence, Y might be regarded here as a coefficient matrix governing
the sensitivity of this classical problem to dual effects caused by noise covariance per-
turbations of this sort. This matrix plays no role in the classical problem, however,
because the conditional covariance of the state cannot be affected by the control there;
i.e., there is no interference between the acquisition and exploitation of state information.
Also, it follows from Eq. (34) and the definitions of Y and D that

Y = JD - Jtt = 2JF - JXX (56)

in the control problem with noise covariance matrix perturbations.

Although the filter and control gains can be determined separately in the correspond-
ing classical problem by the independent Riccati equations (Equs. (23) and (35)) for P
and S, both of these variables enter into the Eq. (54), which determines Y. This last
equation can be regarded as a symmetric linear differential equation in Y with driving
term -SGB- 1 GTS and zero terminal value. Since B is positive-definite by assumption,
this driving term is always at least negative-semidefinite, so Y(t) is symmetric and
positive-semidefinite for all t 6 tf. The fact that Y(tf) is zero indicates that dual
phenomena are unimportant in control problems of sufficiently short duration, which is
intuitively reasonable because there is too little time in such cases to take enough
advantage of an improved state estimate to justify the cost of achieving it by nonoptimal
explotiation of the current estimate. The estimation error in the classical system obeys
the differential equation
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(x- )=(F - PHTR-1 H)(x - &) + (w - PHTR-lv). (57)

If the system (F, H) is observable, then Eq. (57) is stable, which implies that Eq. (54),
for Y, is stable in reverse time.

There is also a connection between the behavior of Y and the information theory of
Shannon [9]. The entropy of the state vector in the classical problem can be determined
by standard methods in units of "nats" as

2 [nQn(2ire)+QnjPj].

If the measurement process is discretized in small time increments of length A, and if M
is used to denote the value of P immediately before a measurement, the amount of
information that measurement provides the controller about the state is given by the
resulting reduction in the entropy, which is asymptotically

-2nIMI - 2 QnIM -MHTR-1HMAI.2 ~~2
Taking the limit of this difference as A -+ 0 and dividing by A gives the information rate
of the measurements in nats per unit time as

1 tr(PHTR- 1H).
2

On the other hand, it follows from Eq. (54) that

dI gY = 2tr(PHTR-lH)IYI - 2tr(F)IYI - tr[SGBP'GTSadj(Y)]. (58)
dt

This implies that at least the determinant of Y will remain close to zero if this informa-
tion rate is high, which again is consistent with the intuitive interpretation of dual control
phenomena. Whether the values of all the Y components remain small, however, will also
depend on the structure of the observation system in the general multivariate case.

The dual aspect of the optimal control of Eq. (53) arises in two ways. One is by
the direct addition of a term depending only on the current values of Y and of the
control-dependent noise perturbation coefficients rI and Q2. The other is through the
current value of 0, which in turn depends on all future values of these quantities and of
the state-dependent noise perturbation coefficient T as well. These two effects correspond
roughly to the phenomena of "caution" and "probing" identified by Bar-Shalom and Tse
[10] in connection with their and Meier's more general "wide-sense adaptive" approach
[11,12] to dual control problems.
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AN ALTERNATE CRITERION

To what extent do the preceding results depend on the special nature of the underly-
ing linear-quadratic-Gaussian control problem? It is instructive to consider a variant of rmr

this problem, solved recently by Speyer, Deyst and Jacobson [2], in which the quadratic
performance index (3) is replaced by the exponential criterion

J E{u exp [2 p(XTSfXf + jtf UTBu dt)]} (59)
to

where p is a scalar. If the preceding state and control dependences of the noise covariance
matrixes are introduced in this context, the state estimation results are the same as
before. Hence it is meaningful to consider an optimal expected cost-to-go function de-
fined to first order in h as

J(&, D, t) = E f1 exp [I p(xTSfxf + jtf uTBu dt)] / x(t) = x, P(t) = P(t) + 2D}
L t (~~~~~~~~~~~~~~60)

where u is generated by an optimal control law.

It follows from this definition that

J(&, D, tf) = EX/AD [pe1I2 hIX Sfx] (61)

Assuming that P(tf) from Eq. (23) is invertible and that P-1 (tf) > YSf, this expectation
can be evaluated for the class of conditional state distributions encountered here by com-
pleting the square in the exponent and using standard results for the moments of
Gaussian distributions. With much manipulation this result can be expanded to first
order in h as

J(&~,ID, tf) expjp s Tl 1 MX ( Mf + ptr(MfD)
II pfi7sf i1/2 2mfJ

+p12&TSf(Pil - Sf-1 Tr[Sf(Pl -_ pSf)f1AfPf]

+ 13 tr[&&T[Sf(Pf-l -_ Sff)'Af (P1 - ASff1Sf] '(P-1 -MPS)-1fSf^]}

(62)

where Pf and Af denote P(tf) and A(tf), and

Mf = Sf + ASf(PFi - pSiffSf. (63)

For a small time increment A, J obeys the following recursion relation to first order
in A:

J(&, D, t) = min EX, wv/XD [e 1/2pAUTBU J(& + AX, D + AD, t + A)], (64)
U
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where Ak and AD are the increments in x and D that occur in the time interval [t, t + A]
when control u is used. Expanding J to first order in A with a Taylor series about (x, D,
t), using the dynamics of Eqs. (24) and (25) and taking expectations in the usual way
gives the Bellman equation

J(Q, D, t) = min e1t2P8uTBu (J(&, D, t) + A[Jt + 4(Fk + Gu) + tr {JD [(F - PHfR 1 H)D
UI

+ D(FT -HTR-IHP) + +'x' + Vu + PHTR-12'uR-1HP] + Jjt [2 PHTR-1HP

+ DHTR-lHP + PHTR-IHD - PHTR-12'uR-1HP]}

+z (PAPHTR-1HP)ijk (PJD.)jik])- (65)
ijk

Cyclically permuting matrix products in the trace operand, expanding the exponential
factor in a Taylor series, subtracting J(Q, D, t) from both sides of the resulting equation,
dividing by A, and neglecting higher order terms in A gives

min (2 u(UTBu)J + Jt + J.(Fx + Gu) + uTTr[PHTR-l1 9R-lHP(JD - J4) + rJD]

+ kTTr(PJD) + tr{ [JDF + FTJD - (JD - Jtx)PHTR-1H - HTR-lHP(JD -J~,)]D

+1 J^ + E(PAPHTR-4HP)ijk(PJD.)jik) = ° (66)
2 X xJ ~~~~~ijk

Equating the u-derivative of Eq. (66) to zero gives the minimizing control as

P71u = - - {GTJT + Tr[PHTR-lf2R-lHP(JD- Jxx) + rJD]}* (67)~~j X

Substituting Eq. (67) into Eq. (66) to eliminate the minimization operation gives the
following partial differential equation for J:

t+ [F + TrT(4IJD)] x + tr { [JDF + FTJD - (JD - Jtt)PHTR-1H

-HTR-lHP(JD - Jxx)] D + 1 JxRn lHP} - {JxG2 X jHR'PI J,

+ TrT[PHTR-l1&Rl'HP(JD- Jxx) + rJD ]} 2-1 {GTJT (68)
2pJ (Continued)
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+ Tr[PHTR1QRl1HP(JD -JXX) + rJD]} + E (PAPHTR_1HP)ijk
ijk

WPD.0fik °0 (68)

An exact solution to Eqs. (68) and (62) is not known. However, for a cost function
of the form

J(XD, t)= - exp UXT(2M + ,uMDM) x + ,qTxc + ,utr(ND) + W tr(xxTHU)J

(69)

where M, N, and H are symmetric and the components of 0 and H are all of order h, it
can be verified that

J. = ,u[&T(M + 2pMDM) + OT + pkTHI]J (70)

JD = g(N + pMxx&TM)J (71)

JX= ,uM+ 2,MDM + 2,uH& + p[(M + 2,MDM)x + 0 +,UH&&] [xT(M + 2,uMDM) +

+ p&THX]}J (72)

JDX= ,u2 [(MkTM)' + (MkTM)" + (N + 1IMxxTM)kTM] J + terms of order h (73)

Jt, [T (2 M + pkDM +,uMDMI)x + fT& + tr(ND) + 3 tr(xx~lix) 2 J. (74)

Substituting Eqs. (69) through (74) into Eqs. (62) and (68), neglecting terms of second
order in h, and equating coefficients of like powers of x and D shows after much manip-
ulation that the Bellman equation and boundary condition are satisfied to first order in
h if

N=M+ Y (75)

and

M = - MF - FTM + M(GB-1 GT - PHTR-lHP)M; M(tf) = Mf (76)

Y = Y(PHTR-lH - F) + (HTR-lHP - FT)Y - MGB- GTM; Y(tf) =O (77)

= [M(GB-1 GT -pPHTR-1HP) - FT] 0 + MGB-1Tr(rN + PHITR-IR- 1HPY)

-,LMPHTR-lHP Tr(PAPY) - Tr(TN + pPHTR-l HPH) - pM Tr({(PAPHTR l HP)'P

+ [(PAPITR-1HP)'P]' + [(PAPHTR-1HP)'P]"}M); 0(tf) =PSf(Pj1

- 11Sf)1 Tr[Sf(Pj 1 - pSfr)-l AfPf] (78)
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H = E + W + E"; (tf) = p[Sf(Pf1 - pSf)-'Af(Pf - uSf)-1 Sf] '(Pf- -S Sf)Y1S

0 = H[(GB-1GT -pPHTR-1HP)M - F] + [(MrM)'B-GT -M4' -p(MPAPM)' J(79)

PHTR-1HP]M

a = pctr(MPHTR1HP); a(tf) = II-PpPfsfI (80)

Furthermore, the solutions to Eqs. (75) through (80) are such that M, N, and H are
symmetric and 4 and HI are of order h. Under the appropriate uniqueness and regularity
conditions, therefore, they and Eq. (69) determine the optimal cost function to first
order in h. From Eq. (67), the optimal control law is

u =- B-1 {GT[M +p(IU + 2MDM)] x + GTO + Tr[PHTRl%2R- 1HPY + r(N

+ pMxxTM)] } (81)

to first order. The variable M here corresponds to the variable Q in Speyer et al. [2], and
these results reduce to theirs when r, Q2, and IF are all zero.

Role of Measurement Noise

In the limiting case of perfect state measurements, an optimal expected cost-to-go
function J(x, t) can be unambiguously defined as the conditional expected cost-to-go
under an optimal control law, given x(t) = x. A similar derivation shows that the Bellman
equation for this case is

J[Fx + tr ( Q +- 1j [JxG + TrT(Jxxr)]B-l [GTJXT + Tr(Jr l)]
[(82)

+ Jt = 0; J(x, tf) = le 112xT(tf)Sfx(tf) (

to first order in h, and that the corresponding optimal control law isu =_ [GTjXT + Tr(jxxr)]. (83)
It is a matter of straightforward substitution to verify that this Bellman equation is
satisfied to first order by the function

J(x, t) = -l exp [ xT2TMx +,UrTx + P tr(xxTnX (84)
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if

M = - MF - FTM +M(GB-lGT - pQ)M; M(tf)= Sf (85)

= [M(GB-1 GT - pQ) - FT] q + MGB' Tr(rM) - Tr(XFM +,pHQ); fl(tf)= 0 (86)

11 = 6 + J' +e"; fl(tf) = 0, where 8
> ~~~~~(87)

e =Hff[(GB-1GT -Q)M -F] +(MFM)'B-IGTM -M M

a = pio5tr(MQ); OZ(tf)= 1 (88)

and that the optimal control law can be expressed as

u = -B-1{GT(M +plx)x + GT? + Tr[r1(M +-,ixxTM)]}. (89)

This reduces to the result of Jacobson [13] when r and IF are identically zero.

To investigate the dual control phenomena here, it is necessary to determine first
which part of the optimal control law (Eq. (81)) constitutes "optimal exploitation of
current state information." It was natural to interpret the latter as an extended form of
certainty-equivalent control in the case of the quadratic criterion, but it is clear from the
results of Jacobson [13] and Speyer et al. [2] that this form of certainty-equivalence
does not even hold for the exponential criterion in the classical case without noise
covariance perturbations, because M differs from M. However, a natural extension of this
property does hold in this case. Comparing derivatives and boundary conditions shows
that

M = S[I-,u(K +P)S]-1 = [I-pS(K +P)]-'S = S +,uS[(K +P)-l pUS]-1S (90)

where S is as given by Eq. (35) with A = 0 and

k= FK + KFT - Q; K(tf) =0 (91)

and that

M = S(I - pKS)-1 = (I - ySK)- 1 S.

Since S and K are independent of the measurement process parameters, this means that
the instantaneous value of the optimal control for both noisy and perfect measurements
can be realized as the functional composition

u =-B-1GT[I-pS(K +P)]f'S& (92)

of a control law determined entirely by the problem with perfect measurements operating
on the mean x and covariance matrix P of the current conditional state distribution,
where these parameters are taken respectively as x and 0 in the case of perfect measure-
ments. This decomposition therefore shares the essential properties of the refined
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certainty-equivalence concept described in the preceding section. The main difference is
that the construction here is slightly more elaborate and involves the covariance matrix
generated by the state estimator as well as the mean.

This idea can be extended to the context of noise covariance perturbations by
showing from Eq. (90) that

M + 2puMDM = [I - pS(K + P + 2D)] -1 S

to first order in h, and showing from Eqs. (90), (87), (79), (35), (26), and (23) that

fl={[I-pS(K +P)]-1 [T +,u(SPAPS)'PS] [I-p(K +P)S- 1 }'[I-p(K+P)S]-', (93)

where

T= + '+ E"; E3 = T(GB- GTS - F) + (SrS)'B-lGTS

- (S4IS)'(I - pKS); T(tf) = 0 (94)

and that H is given by Eq. (93) with P = 0 and A = 0. Since Eq. (94) is also independent
of the measurement process, it follows from Eq. (81) that a similar realization of the
optimal control law here can be constructed to first order in h as

u = B-l (GT[I - pS(K + P + 2D)] -'S& + pTr{[(HG)" + MFM] xxT} + Tr(rM)

+ GTO + Tr[(r + PHTR-lQR-1HP)V] ) (95)

where M and H now denote the expressions in Eqs. (90) and (93). The optimal control
for the case of perfect measurements is given by Eq. (95) with x = x and P = D = 0
there and in Eqs. (90) and (93), and with the last two terms of Eq. (95) replaced by
GTw.

This construction shows that the optimal control law can be realized as the sum of
a certainty-equivalent control law, in the extended sense proposed here, and a residual
deterministic term. If "optimal exploitation of current state information" is interpreted
as certainty-equivalent control in this sense, then the dual control phenomenon here is
this residual term, an additive deterministic time function as in the case of the quadratic
criterion. The portion of the deterministic terms in Eq. (95) to be included in the
certainty-equivalent control law is somewhat arbitrary, however, because this form of
certainty-equivalence allows the use of the deterministic time functions P and A as
arguments in the control law. It would be ideal if 0 in Eq. (95) could be decomposed as

0(t) = f, [P(t), A(t), t] + Y(t)f2 [P(t), A(t), t] + f3 [P(t), t] 0(t) (96)

with

0(t) = L(t)O(t) + Y(t)f 4 [P(t), A(t), t]; 0(tf) = 0

77(t) = f, (0, 0, t)
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where f1 through f4 are independent of the measurement process and L depends only on
the completely deterministic problem. The dual control could then be reasonably
identified in analogy with the case of the quadratic criterion as the deterministic term

-B-1{GT[Yf2 (P, A)+f3(P)0] + tr[(r +PHTR-1QR-1HP)Y]}

coupled to the control through the Y matrix.

Such a decomposition of 0 has not been found for the general case. In the special
case of classical process noise (r' = 0, IF = 0), however, A, T, and q are all zero, and the
optimal control law can be realized as

u = - B 1 {GT[I - 11S(K + P + 2D)] -'S& + GT[I - pS(K + P)] -10 + Tr(PHTR-192R-HPY)}

where 0 is given by Eq. (55) with r = 0, 'I = 0, and Y as given by Eq. (77) rather than
Eq. (54). The dual control in this case is therefore

- B-1{GT[I - ,uS(K + P)] -10 + Tr(PHTR 1 R'1HPY)}.

The variable Y in this context differs from that for the quadratic criterion because
M replaces S in the driving term of the defining differential equation, Eq. (77). Also, it
follows from Eqs. (71) and (72) that

Y JD JeI

except for approximately infinitesimal terms. The qualitative behavior of this Y remains
the same as that of Eq. (54), however.

MEASUREMENT NOISE STATE DEPENDENCE

The case of state-dependent measurement noise covariance matrixes is analyzed in
discrete time because of difficulties described earlier. For this purpose, the following
control problem is considered:

xi+, = Fixi + Giui + wi; x0 (Normal (x0, PO) (dynamics)

Zi = Hixi + Vi (state measurements)

1 [TN-1 

J = 2 Nf E (~xx + uTBu)J (criterion to be minimized)
i=0

where F- 1 exists, and {wi} and {Iv} are independent zero-mean normal random variables,
given the current state and control history such that

cov(wi) = Qi + 2r1Uu + 2Vixi; i 0, *--.

cov(vi) = Ri + 292'_U + 2Tix.; i = 1, ..., N
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and the components of Ui, *il, Qi- and Ti are all of order h. The convention here is
that measurement zi is available at epoch i before control ui is chosen, except at the
initial epoch, when there is no measurement and u0 is chosen on the basis of the prior
state distribution. The linear term in the control is excluded from the criterion for
simplicity, but this is otherwise the discrete-time analog of the control problem given by
Eqs. (1) through (3).

State Estimation

Suppose that the conditional density of the state at epoch i after the receipt of zi is
of the form of Eq. (8), with parameters x-i, Vi, Xi, Li, Ai and with corresponding mean
and covariance denoted by xi and Pi. The density of wi given xi and u- is zero-mean
Normal with covariance matrix Q + 2q'Ixi, where Q denotes Qj + 2Pu5. Letting s denote
Fixi implies that s has a density of the form of Eq. (8), such that

X = Fi_~i

V = FiViFT

XT = XTF-l

L = (F-l)TL F-l

A = [ (Fi-1 )T AiFT1 F

by Eq. (11). Again assuming for convenience that Q-1 exists, it follows that

Pwils(w, S) =Pwilxi( xil

I-1 /2wTQ-1w
- {1 - tr[Q1 VWs(I- Q-1wwT)]} e / /

to first order in h, where V' - V'F'-1. If r = s + wi, thenIii

p(r) = p(s + wi) = f P,(r - w)pw i,(w, r - w) dw
Rn

- k(w) e-112[wTQ-lw+(r-w-R)TV~l(r-w-x)] dw

JRn (2ir)nIVQI1/2

to first order in h, where

k (w) = I + (r - w - x) + tr {2 L[(r - w - x)(r - w-)T-

+-e (r - w - xc)(r - w - )T A(r - w - x) - Q-1 V (r - w) [I - Q-1 WWT] 
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Completing the square in the exponent gives

1/2(rx)TM~1(rTx) e e-1/2 [w-(I-VM 4 )(r-x)]T(V-VM- 1 V)-1 [w-(I-VM- 1 (r-R)] -
p(r)2= lM J k(w) - dw

p~) .(27r)1/2n imi112 Jfn k(21r)l /2n IV -dw1Vl/ 

where M = V + Q. The integral is the expected value of a third-degree polynomial in w
and (r - x) with respect to a Normal distribution whose mean is proportional to (r - x).
Therefore, it can be expressed in the form

constant + XT(r - ) + tr2 L[(r - x)(r -x)T - M] + (r - x)(r -)TA(r -x)

where the constant is independent of (r - x). L can be taken as symmetric because M is,
and L and X are of order h because X, L, and A are. Since p(r) is a probability density,
the constant term must be unity, by Eq. (8). Carrying out the details of the third-
degree terms in this expectation shows that

A=(M- 1 VAVM-1)'VM- 1 + (M-1 'IM-)'VM-1 +[(M-1 1TM-1)'VM-1]'

+ [(M-"IM-')'VM-1 ] "

which is also symmetric and of order h. Therefore, p(r) is of the form of Eq. (8).
Decomposing expectations into marginals of conditionals over s shows that

E(r) = E(s) Fi= i

and

cov(r) = cov(s) + Q + 2'P"g = FAP1FT + Qi + 2rIui + 2TIi

to first order in h.

If xi,, is denoted by y for convenience? then y = r + Giuj and y has a density of
the form of Eq. (8) with parameters (x, M, X, L, A), where M and A are as used pre-
viously, x denotes the preceding variable x plus Giui, and X and L are such that

E(y) = Flij+ Giu- i+1 (97)

cov(y) = cov(r) A N

to first order in h. Denoting zi+1 , Ti+1, and Hi+, by z, T, and H implies that

e-1 /2(z-Hy )TR-l(z-Hy)
p(zly) = [1- tr{R 1 T'y[I-R' (z -Hy)(z -Hy) ]}] (2r)1/2k JR 11/2
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to first order in h for a specified ui, where R = Rj~1 + 292u1 . As a function of y, the
conditional density p(y/z) is proportional to p(z/y)p(y). Completing the square in the
exponent of this product and using the "matrix inversion lemma" gives

p(y/z) =g +XT(y -) + tr{2 L[(y -_ )(y _ i)T _ M] + 1 (y - x)(y - x)TA(y -C)

exp - (y (y
- R-1T'y[I - R-1 (z - Hy)(z - Hy)T] 1 ) 2 1I2

where g is a constant of proportionality and

V = M - MHT(R + HMHT)-lHM

y = x + VHTR-1 (z - Hx).

The polynomial factor in p(y/z) can be expressed to first order in h as

1 + bT(y - y) + tr { L*[(y -y)(y - y)T - V] + 1 (y - y)(y - y)TA*(y

where

b =X + [LVHTR-1 - 2HTR-l1T'x(R + HMHT)-l](z - MR)

+ Tr (z - Hx)(z - H)T {R-1'HVAVHTR-1 -' 2R'-HV[(R + HMHT )-1 TR-H]"

+ (R + HMHT)-1 T(R + HMHT)-1I - TR-1

L* = L + 2(HTR-1TR-1H)'i + 2{[A + (HTR-lTR-lH)']MHT - HTR-1T

- (TR-'HY')}(R + HMHT)-l (z -HR)

A* = X + HTR-1 TR-1 H + (HTR-1 TR-lH)' + (HTR-lTR-lH)".

Since L* and A* are symmetric, p(y/z) is a density of the form of Eq. (8). With the use
of earlier definitions and results, it follows from Eqs. (9) and (10) that its mean &j+j and
covariance matrix Pi+1 are given to first order in h by

ki+1 = xi+l + NHT(R + 2T'ii+l + HNHT)-' (z - Hx5i+l) + V Tr{(R + HNHT)-l [HNANHT

+ T - 2(HTR-1T'NH)'] (R + HNHT)-l [(z -HxBi+5 )(z - H~i+1 )T - (R + HNHT)]}

Pi+, =N -NHT(R + 2T'51i+l +HNHT)-1HN+2{ [V(A +HTR-lTR-lH)V]'NHT

- [V(HTR-lT' + T"R-'H)V]'}(R +HNHT)-l(z -HxI+,L).
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If the covariance matrix perturbations Di are defined as (Pi - Pi)/2 where Pi
denotes the conditional .state covariance at epoch i and {Pi} is the sequence of nominal
covariance matrixes defined recursively as

Pi =Mi -MH[T(RB +H-M`HiT)-'H-M`; P0 =Po (98)

Mi+ 1 = FP iF + Q (99)

then it follows by induction on i that the components of Di are of order h. It is a
straightforward but lengthy matter of substitution into the original definitions to show
by induction that conditional mean xi and covariance matrix (Pi + 2Di) of the state at
epoch i is determined to first order in h by Eqs. (97) through (99) and the following
equations:

xi+1 = i+l + {[Mi+l +2(I-P1i+1 HT R71 H. +)(F1DiFT + rFU + txi)]HiTj

- 2P HT1 R, 1 [(Qi + Tr+, Gi)ui + Ti+l Fi~i] } (RBi+ + H1+1Mri+1H7j )j

X (zi+l - Hi_+lRi+l ) + P,+, Tr{(Ri+l + Hi-+jMi+jHT+l - r

+ H~i+1M~i+1Tki+1Mi+lBHT+1 - 2(H, ~R-,+ ililHi-+l) I (Ri+l

+ Hil M~l~T~l) 1[ (Zi+l -_Hi+j, Xi+l )(Zi+l - yi+l ji+ )T - (Ri+l

+ H -M + H lTfi )]}; 1o = 5o (100)

iD (I -Pi-+lHT'+IR,'1 Hi_,)(FDifi + fi"U +VX)I-y HiT R7.- H ~P.~ 1)

1+1 i+' 1+1 + 1 + +

+ P1 +,HT BR-,1 [92u1 + T'r+ (Fiki + Giui)] R-1 Hj+jPi+

+{[pi+l(ATki+l + HT R'1T.BR Hi+.)Pi+1 ] 'M.i+ H 1 - [P1+j (HfT 7R,-1mT'
1+1 + i+1 i+li1 i+ + i+ +1

+ Tr,+ R- Hi+ )Pi-+l ]'} (Ri+l + H+lMi+HT -H

Do = 0 (101)

A1 1 4 = (Mr-' F P A PSFfTM7+ 1 )'PSFTM-h + {M-1 [*'P+FT PiFiT)

+ ('I'P FT)"]M, }M-21 (102)

= Ai + HTR71 T.BRlHi + (HTRBlT.BRl7H.)' + (HTRP7lT.R7lH)"; Ao = 0. (103)
1 1 i ZI I II I I I

The main conceptual distinction between the state estirnation results here and the
discrete-time analogs derived earlier for the case of state-independent measurement noise
is the appearance of a driving term in Eq. (100) containing the difference between the
observed and expected scatter matrix of "innovation vector" (zi+1 - Hi+,l 1i+1 ). This term
is present in the discrete-time version even if the T1 are zero, but it vanishes in the
continuous-time limit in this case. However, this does not happen for nonzero T.
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Optimization

If the optimal expected cost-to-go function at epoch i + 1 (after zi 1j is available) is
of the form

J(, D, i+l1)= TS . 1 +(qT+, +01,T )x+tr[(Si1 l + Yi+)] + i 1

to first order in h for i+ = and Di+, = D, where Si+, and Yi+1 are symmetric, then
the Principle of Optimality implies that the optimal expected cost-to-go at epoch i is

J(x, D, i) = min E{ 2 (xfTA x + UT BU + 5 + ei 4)

T+ + OT,+)ki+l + tr(Si+l + Y1+1)Dj+1} (104)

to first order in h, given that ki = x, ui = u, and Di = D. The expectation in Eq. (104)
can be evaluated from the dynamics of x and D to first order in h as

1 [xTA k + uT(B5 + GfTSi+1Gi)u + ei+l + tr(AtPi + Si+1Pi+iHT R' BHi+Mi+, )]

i+l i+l )(F& + G u)+ X TSji+j Giu + tr[(I - HT R-1 H P )

X Yi+l(I-P1+ HTjR1 Hi+ )(FDFT +Ir'u +' )1i+1 i+14H~ ( 1 1 

+lR1 H +jPi+j Y+jPi+ HTl (R7Au + T+ Giu+ T'+,Fik)

+S. 1(F.DFT + ru + 'If A) +A1 D] + I !TFTS Fk (105)
i+1 I I ~~~2 i' .+ (15

Equating the u-derivative of Eq. (105) to zero shows that this expectation is minimized if

u = - (Bi + GTS Gi)-l{GT[S +IF1 + + + 0i+j + Tr(P5 +1 H T BR- T1 1R- 1 H1i+,
1 +1 Ij i+1+1 j+ i+1 +1

+ (I -P.+1 T R1 H11 )J7(I - HT RH1PH P )Yj41jX i+, i~+l )] +Tr~lriSi+l ( Pi+1 ,+lR, i+ )(I -+ H,+lR. lli+1 i+l Y
i+1 i+1 i i+1 ~ ~ ~ ~ 11 +1i+

+PHT RlSQ P-lH P Y ]}'(16

Substituting Eq. (106) into Eq. (105) to eliminate the minimization operation in Eq. (104),
and equating coefficients of like powers of x and D in the resulting equation shows by
induction on N - i that

J(xc,2D, i) =2TS£x + (?IT + OT)x + tr[(Si + Y5 )D] + - ei (107)
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to first order in h if

Si =Ai + FT[S. - SGi(Bi + GTS.G)-GTSi+]Fi; SN = Sf (108)-i ii+1 1+1 I 1+l i ii~i 18

Yi FT [(I - Hl R- H lP. )Yi(I - P +jHT RF1H)-+ )

+ S1 1Gi(Bi + GTSi+,Gi) 'G[S i+]Fi; YN ° (109)

,-i = FT+ -FiSi, G.(B1 + GiS.+1 Gi)1 [GTi+l + Tr(riS1+4 )]

+ Tr('f iSi+1); flN 0 (110)

0i =Fi [I -S.+ G1 (B + GTSi+,Gi)-1 GT] [0i+1

+ Tr(P.i~HT+1 7R2-1 T B'H P+,Pi+, Y5+,,)] - FTSi+l Gi(B.1+1i+1i+1i+1 I I I 

+ GiTS ~Gi)-1 Tr[(I -Pi+,HsT R7, .li)ri(I -H,+R1 ~H. lP. )Yi-+lI i+1 1+1 1+1 1+1 1+1 1~+1 i+1 I

•Pil 1+1 R nR1 Hi+ Pi+l Yi+j I + Tr[(I - Pi+1 HT R H. )1 i(H
HT i+ B 1 +B' P +.1 i+1 i+1)i

-T HlR-1 H.lP.~ J)yi+l ]; ON= ° (111)

ei= e + tr(AePi +Si+Pi+,B, H R- H M +j); eN =tr(SfN) (112)

since Si and Yi are symmetric and 7ni and Oi are of order h. This implies that the optimal
control law here is given to first order in h by Eqs. (97) through (103), (106), and (108)
through (111), with ui and &i replacing u and x in Eq. (106).

Role of Measurement Noise

If exact measurements of system state x are available to the controller, then the
optimal expected cost-to-go function can be defined directly in terms of the system state.
If this function is of the form

J(x, i + 1) =2XTS,+,X +.77T x + 2 i11 1+ +

to first order in h at epoch (i + 1) for xi+, = x, where Si+, is symmetric, then the optimal
expected cost-to-go at epoch i is

J(x, i) = min E [2 (xTAx + UTBiu + XT. Si xi. + i+l ) + T X (113)
is 2i1i+ +)+ i1i1
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to first order in h, given that xi = x and ui = u. It follows from the dynamics of x that
the expectation in Eq. (113) is

1 [XT(Ai + FiT~i~lFi)x + uT + G£TS1+1Gi)u + 5j+l + tr(Si+Qi)][xT(A + FfS5+F- xuTB.G

+ [GT(S.+1Fix + ni+l) + Tr(riSi+l)] Tu + [FTqi+l

+ Tr(qiSi+l )] Tx. (114)

Equating the u-derivative of Eq. (114) to zero shows that this expectation is minimized
if

u -(Bi + GTSi+1Gi) [G (Si+JFix + ,i+l) + Tr(r1iSi+l)]. (115)

Substituting Eq. (115) into Eq. (114) to eliminate the minimization operation of Eq.
(113), and equating coefficients of like powers of x in the resulting equation shows by
induction on N - i that

J(x, i) = xTSx + Tx + 2 i (116)

to first order in h if Si and P1i are as given by Eqs. (108) and (110), and 6i is given by
the recursion

i =5i+1 + tr(Si+,Qi); 5N = 0- (117)

Therefore the optimal control law here is as specified by Eqs. (108), (110), and (115)
with the formal replacement of u and x by ui and xi. Comparing Eq. (106) with Eq.
(115) shows that the optimal control laws for noisy and perfect state measurements are
related to each other in the same way as their continuous-time counterparts in the case
of state-independent measurement noise, with the Yi here serving as a sequence of
coupling matrixes for the dual control terms.

Asymptotic Formulas

A control problem of the form considered in this section can also serve as a discrete-
time approximation to an extension of the continuouq-time problem of Eqs. (1) through
(3)1 with state-dependent measurement noise, with covariance parameter R(t) + 2&2' (t)u +
2T'(t)x, if t and i are related such that t = to + iA, where A is the (constant) discretiza-'
tion interval, and if
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F. = I + F(t)A

Gi = G(t)A

Ai = A(t)A

Bi = B(t)A

Qi = Q(t)A

ri = r(t)A

*i =P1(t)A

R I= R(t)

i= A

92i = n (t)

The case of nonzero c(t) in Eq. (3) is omitted here. If terms of second order in A are
neglected, and if x(t) is used formally to denote the difference

Xi+, -xi
A

and similarly for other such differences, the results of this section reduce to the following
asymptotic form for small A, where the "t" argument is suppressed in the following
notation:

Filter

x = Fx + Gu 4 {PHTf[I- 2RB(92'u + T'&)] + 2DHTIR-1 (z -Hx)

+ P Tr {R-1 TR-' [(z - Hx)(z - H)T _ R]}; C(to) =o (118)

P= FP +PFT + Q -PHTR-IHP; P(to) =P0 (119)

D= (F-PHTR-lH)D +D(FT -HTR-lHP) + (r +PHTR-1 2R-lHP)'u

+ (I +PHTR-lTR-lHP)'& + {(PAP)'PHT - [P(HTR-lT' +T"R-lH)P]'}

X R-1(z -H); D(to) = 0 (120)
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A = E +e' + e" E A P-1*P-1 +HTR-lTR-lH - A(F + QP-1); A(to) = 0 (121)

Controller

u = - B-1 {GT(S& + 7 + 0) + Tr[rS + (r + PHTR-l2R-lHP)Y]} (122)

S = - SF - FTS - A + SGB-lGTS; S(tf) = Sf (123)

Y= Y(PHTR-1H - F) + (HTR-1HP - FT)Y - SGB-lGTS; Y(tf) = 0 (124)

2 = - FTq + SGB-1 [GT71 + Tr(rS)] - Tr(4IS); q(tf) = 0 (125)

0 = - FTO + SGB-1 [GTO + Tr(rY + PHTR-9l2R-lHPY)]

- Tr(PY + PHTR-1 TR-1 HPY); O(tf) = 0 (126)

Optimal expected cost-to-go

J(x, D, t)= 1 xTS+( +(+ O)T + tr[(S + Y)D] + - e (127)
2 2

e = - tr(AP + SPHTR-1HP); e(tf) = tr[SfP(tf)] (128)

Perfect measurements

u = - B-1 [GT(Sx + ,) + Tr(-S)] (129)

1 
J(x, t) = 2 xTSx + ,TX + 18 (130)2 -i

8 = - tr(SQ); 5(tf) = 0 (131)

These equations agree with those derived earlier for T identically zero. A basically new
phenomenon arises for nonzero T, however, when a driving term for x appears that con-
tains the scatter matrix of the measurement vector about its current expected value and
depends explicitly on the length A of the discretization interval.

In either case, there is a conceptual difference from the continuous-time results
derived earlier. As before, the discretization increment A must be small enough that
A << h in order to justify the retention of terms of order h but not of order A in the
asymptotic "differential" equations. Since terms of order h2 were neglected in the
underlying discrete-time analysis, however, these asymptotic equations are also only
meaningful if A >> h2 , an additional constraint that was absent from the earlier con-
tinuous-time results. Since the standard deviations of the measurement noise components
are of order A-1/2 for small A, this additional constraint is equivalent to the condition
that the measurement noise magnitude be small compared to 1/h with high probability,
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or equivalently that T'HTz as well as T'x remain of order h. Furthermore, for a short
discretization increment A, the random variables

[(z - ffi)(z _ H.X)T _AR] 

are statistically independent at different time steps to the degree of accuracy of the
analysis here, and have zero mean and covariances of order unity. Hence, the cumulative
contribution over an interval of order unity of the scatter matrix driving term

PTr{BR4TR1 [(z-HM)(z -H&)T- RI }

in one filter equation, Eq. (118), is approximately a zero-mean random variable with
covariance of order h2 /A, since this interval contains the sum of 1/A such increments.
This means that the constraint A >> h2 is also equivalent to the requirement that the
effect of the scatter matrix driving term on the state estimate x remain small compared
to unity (with high probability). If this inequality is reversed, in fact, the scatter of the
state measurements dominates all the other statistics in the state estimate x generated by
the filter equations, Eqs. (118) through (121), for nonzero T, which seems suspicious for
realistic applications. This phenomenon suggests that the additional constraint in this
context reflects a practical limitation in constructing an appropriate measurement noise
representation.

The measurement noise in actual applications is never exactly white anyway, but
rather has limited bandwidth and nonzero relaxation time. Thus it is more realistic to
imagine state measurements that are ordinarily approximated as being corrupted by white
noise as having been averaged by some kind of "prefilter" (say a sample-and-hold filter)
before reaching the controller. As long as the noise is state-independent, however, the
state-estimation results do not depend significantly on the exact form of this prefilter as
long as its sampling period is short compared to the system time constants (and to h in
the present context), and no serious error is introduced by disregarding its effects and
treating the measurement noise as white.

This ceases to be true for the sort of measurement noise state-dependence considered
here, where the state-estimation equation, Eq. (118), would depend explicitly on the
sampling period A of the prefilter. This means that an additional parameter of the
measurement process, normally unimportant in practice (namely a time constant equivalent
to the sampling period of a sample-and-hold prefilter), must be specified in this context
to achieve state-estimation results accurate to order h. Such a time constant may be
readily available, however, in applications that are truly digital. Also, the results here
would be valid only for measurement noise state dependence sufficiently weak that the
dependency parameter h is small compared to the square root of this prefilter time
constant A in properly adjusted units. In fact, these results suggest that if this state
dependence is strong enough and if the measurement noise values become independent
over a short enough time interval, then the scatter of the measurements really does con-
tain more information about the state than their average value, which would be a drastic
departure from the usual filtering situation. The analyses here break down at this point,
however, and do not verify this conjecture.
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Fig. 2 - Relative motion coordinates

A NUMERICAL EXAMPLE

A numerical illustration of some of the foregoing ideas can be obtained from a
planar free-space interception problem in which a homing interceptor has noisy measure-
ments of a target's relative angular position. Any out-of-plane motions are assumed to be
controlled independently. The problem developed here is too highly idealized to serve
any useful design purpose, but hopefully is still indicative of the basic character of a
realistic intercept situation.

The interceptor is assumed to be initially on a collision course with the target, which
is subsequently perturbed by a white-noise acceleration along its trajectory, perhaps
representing random drag fluctuations. The goal of the interceptor is to minimize a
weighted sum of the integrated square of its maneuvering thrust and the square of the
distance of closest approach to the target. It is convenient to adopt the relative coordinate
system shown in Fig. 2, with the origin fixed at the nominal target position. Random
forces acting on the interceptor are disregarded here. Such forces would also be significant
in reality, but their inclusion here would only complicate the problem without changing
its basic character. Also, the interceptor's control acceleration u is constrained for
simplicity to be perpendicular to its current relative velocity (not quite optimal for non-
infinitesimal 0). With this constraint, u can be regarded as a scalar, the interceptor's
speed is a constant s in relative coordinates, and the interceptor path [x(t), y(t)]
generated by an otherwise general nominal control 4(t) obeys the equations

x= sin 

y - cosO

0 = li/s.

With reference to this nominal path, let tf be the time of its closest approach to the
origin, and for a general realization of the interception process define
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m(t) = distance the actual target location at time tf would be from the closest point
on the interceptor's path if no force were applied to either vehicle after
time t

T(t) = time at which the interceptor would be at this point on this path.

It follows from these definitions that

=(tf-T) -[~§tlu + (tf _t) sin (a +0O)Fi[tf - t]

0 = u/s

where Fv is the random in-track target acceleration, taken to be a zero-mean Gaussian
white noise (GWN) process with constant intensity parameter q. If these dynamics are
approximated by neglecting the departures of the ratio (T - t)I(tf - t) from unity and if
m-(t) denotes the history of m generated by R, then the deviations from the nominal path
reduce to

m = (tf - t)u + (tf - t) sin (a + F + O)Fv

0 = l/s

where mi = m - m + fi(tf), 0 = 0 - 0, and ii = u - R. It is assumed that the actual time
and distance of closest approach are approximately T(tf) and Ff(tf) for a reasonable
nominal path generating tf and ff. If the criterion to be minimized is of the form

J= - E am2[T(tf)] + f )1 2dt}; a>0
to

and the deviations from the nominal are small, then

Ja 2. E[arn2(tf) +ftfs 2 dt] + 2 [T(tf) - tf] 12(t).

Assuming that deviations of T(tf) from tf are negligible compared to other deviations
from the nominal makes this equivalent to minimizing the criterion

J = 2E [am2 (tf) + (U2 + 2uu) dt]

if second-order terms in the deviations are disregarded.

For initial conditions it is assumed that m(to) = m-(to) and 0(to)= 0(to), SO the
initial values of. the state variables are specified as fh(to) = F(tf) and 0(to) = 0. It also
follows that 0(t) remains known exactly. The effects of noisy angular position measure-
ments on the estimate of mn can be represented only approximately by noisy measurements
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of mn itself. To make such an approximation, we first assume that the major source of
error here is the uncertainty in the relative velocity derived from the angle measurements.
Next we consider the one-coordinate free-space system of lateral motions

Vt

t GWN(O, q), (q a constant)

with closing speed s and exactly specified initial conditions, for which the state covariance
matrix components evolve with elapsed time r as

Pvv = qr

1 _ 2
PAP= 2

"Xv - 3pX=3qr

On the other hand, if terminal (lateral) position X(tf) is estimated solely from noisy
measurements of X during a time interval (t, t + r) short enough that the process noise
disturbances are negligible, it is routine to show that almost the same accuracy is obtained
for r << tf - t by lumping the observations in the outer two quarters of this interval at
the corresponding endpoints. If the X measurements are derived from line-of-sight data
with noise intensity r, each lumped position observation has a linear variance of

4rs2 (tf - t)2

T

since the range is s(tf - t). The corresponding variance of the terminal position estimate
derived from these observations is therefore

(tf - t2 4r S2 (tf-2

if only errors due to velocity uncertainty are considered. Choosing T to match the
variances of the lumped position measurements and the disturbances (of position) from
the neglected process noise during the same observation interval gives

1 -3 = 4rs2(tf- t)2 or =F12 r(tt)
1q 3 ( or T2 S (tf-t).3 Irq f

The variance of 1X(tf) then becomes 4s/r N/T473 (tf - t) 3. But in the absence of process
noise, the same variance would be obtained from noisy observations of X(tf) itself over
this time interval if the noise intensity were

4s r (tf - t)3.
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In the interception problem, then, it is a reasonable approximation to endow the inter-
ceptor with a continuous measurement z of state variable mh, which is basically a pre-
dicted terminal miss distance, such that

z(t) = m(t) + u(t), u is GWN[, 4s 4r (tf _-t)3]

where r is the noise intensity of the line-of-sight measurements and q now denotes the
intensity of the process noise component lateral to the current nominal interceptor
velocity in relative coordinates.

With these approximations, the intercept problem reduces to the following with
respect to the postulated nominal trajectory:

m = (tf - t)i + w; in(to) = m-(tf)]
- dynamics

0 1=/s; 0(to) = J

J= - E [am 2 (t)+ft(u 2 +25i)dt] criteriontobeminimized

z = m + v state measurements

where

w t GWN[O, q(tf - t)2 sin2 (a + 5) + 20U]

i q(tf -t) 2 sin(a+ 5)cos(a+0)

v GWN[0, 4s qr sin (a + O)(tf - t)3]

with 0 = 51s, and where second-order terms in deviations from the nominal have been
neglected. This is a control problem of the form considered above, with state variables
im and 0. The only nonzero covariance perturbation parameter is

/~~~~~
*mmW - q(tf - t)2 sin (a + 0) cos (a +0).

Most of the equation components determining the optimal control in this case are trivial;
the rest reduce to the following, where tildes are suppressed in the notation:

ui (tf-t)(SmmFl+Om)-- -u

Smm = a
1mm 
1 + -3 a(tf-t)3
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Pmm (Nmm ~Smm )
,~MM = Pmm(Nmm -Sm) ;Nmm (tf) = a

2s r sin (a + 5)(tf - t)3

Pmm = q(tf - t)2 sin2 (a + p) -; Pmm(to)=°
4s Ar sin (a + 6)(tf -)3

fm Smm (tf _ t)20m + Smm (tft) ( i7); 0m (tf) O

¢d =A Mm (tf - t)*MlMO; ¢00(tf) = 

(Pmm + 2Dmm )(Z - h)
m= (tf - t)U + - -; n(to) - (tf)

4s t +sin (a + 6)(tf _-t)3

0 = U/S; O(to) = 0

^, D~mm mm
Dmm= 0 4 mmO Dmm (to) = .

2s qrsin (or+ )(tf -t)

This solution can be incorporated in an iterative algorithm that gives the new
nominal control generating the nominal path for the next iteration as

UNEW =UOLD + E(U),

where u- is generated by the optimal control law of the current iteration. It is helpful for
this purpose to refine the values of if(tf) and tf for the next iteration by generating
R(tf) as the distance from the origin to the tangent to the interceptor's old nominal tra-
jectory at time tf, where this nominal is generated by the exact equations

X =OLD sin0OLD; ' (to) °

Y - ucLD cos 0 OLD' ~Y(tO) specified

and then replacing the value of tf by the time of closest approach to the origin on this
tangent, assuming that the interceptor traverses it at speed s.

Figure 3 shows some numerical results of this iterative procedure for a nominally
right-angle interception in absolute coordinates. The deterministic intercept trajectory
(zero control) was used as the nominal for the initial iteration. Only mean sample path
results are shown here, which would be the pertinent information for nominal trajectory
analysis. The mean sample path does what one might expect; it departs from the
deterministic intercept path for a more nearly head-on terminal approach, which appears
most clearly in relative coordinates. The certainty-equivalent mean sample path is also
shown to display the contribution of the dual-control effect here. The corresponding
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Fig. 4 - Dual-control coupling parameter

values of the one nontrivial component of the "dual control coupling matrix" are shown
in Fig. 4. These particular results were obtained with a terminal miss weight of a = 1000.
This problem is singular at the terminal time and the iterative algorithm diverged for
larger values of this weight.
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