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THE BRAGG CRYSTAL SPECTROMETER AS A DIAGNOSTIC TOOL

1. INTRODUCTION

The Bragg crystal spectrometer, consisting principally of a diffraction crystal and a
detector sensitive to the diffracted radiation, is useful for determining source characteris-
tics in the X-ray region of the spectrum. Not only can it be used for identifying spectral
features, but also for determining quantitatively the flux in spectral lines and in the con-
tinuum. Because its response is sensitive to the source polarization direction, it can be
used, with some limitations, as a polarimeter. If sufficient information on the diffraction
characteristics is known, it can also be used to determine spectral line shapes.

In the following, we will first outline the theory of crystal diffraction phenomena.
We will then develop a mathematical description of the interaction of source, crystal, and
detector. Using this description, we will discuss employment of the Bragg crystal spec-
trometer for determination of the properties of source spectra and, simultaneously, define
the required spectrometer characteristics. Finally, methods for determining the spectrome-
ter characteristics will be given with examples of results obtained.

2. CHARACTERISTICS OF CRYSTAL DIFFRACTION, THEORY
2.1 Bragg’s Law

Consider a small parallelepiped of a crystal lattice. This parallelepiped is defined as
a unit cell containing lattice points only at its corners. If one of the corners is chosen as
the origin, the location of an adjacent corner (lattice point) in the unit cell is given by
one of the vectors A, B, or C. The volume of the unit cell is then given by

V = (A X B)-C. (1)

The location of all other lattice points in a perfect crystalline block of such unit cells
(referenced to a corner) may be specified by the vector,

r=nyA+ngB+nsC, (2)
where the n are integers of the form

nA=0,1,...,NA—1
ng =0,1,.,Ng-1
nC = 0, 1, ’NC ~-1.

The total number of lattice points in the block is then N = Ny NgNe.
Manuscript submitted September 2, 1976.



JOHN F. MEEKINS
To describe the diffraction (scattering) phenomena, we introduce the vector,
S=3§-3, 3)
where §0 and § are unit vectors in the direction of the incident and diffracted beams,
respectively. For such a three-dimensional array of scattering centers (assuming negligible
absorption and rescattering and unit index of refraction), the intensity of the diffracted

beam will be essentially that which we would expect from a three-dimensional grating.
That is intensity I will be proportional to [1]

sin2 Ny z S'A) sin (NB - S- B) sin ( 1 C
A A
nE : . (4)
sin <X S'A) sin ()\ S B) (X )

where A is the wavelength of the diffracted beam.

For N4, Ng, and Ny >> 1, the intensity of the diffracted beam will be strongly
peaked and is given by

I« (NyNgN;)? = N2. (5)

The conditions necessary for these maxima to occur are

S‘A=h\
S'B=kA (6)
S-C = 0,

where h, k, and £ are integers (known as Miller indices). Now S is a vector normal to the
reflecting plane and of magnitude 2 sin § (8 being one-half the scattering angle); thus, the
conditions of Eq. (6) become

24 sin § cos a = hA
2B sin 0 cos § = kA (7)
2C sin 8 cos y = €A,

where «, (3, and vy are the angles between the normal to the reflecting plane and the vec-

tors A, B, and C, respectively. The direction of S is therefore uniquely defined for given
h, k, and £, and, further, there is a constant ‘‘spacing’ of the lattice planes given by

B C
thg=%cosa=z-cosﬁ=?cos'y (8)



NRL REPORT 8063
so that our maxima occur for
A= 2thQ sin 0, (9)

which is known as Bragg’s law of diffraction. If h, k, and £ have a common factor, we
arbitrarily remove it, so that

dh/m,k/m,Q/m = mDypy, (10)

and Bragg’s law becomes

m\ = 2dh/m,k/m,Q/m sin 6,,,, (11)
which we may interpret as mth-order diffraction from the plane (h/m, k/m, £/m) with the
appropriate 2d-spacing.

For the particular case of cubic crystals of one element,
Dypp = A(h2 + k2 + 92)1/2 (12)
since A, B, and C are orthogonal and of the same magnitude. For a more general

parallelepiped unit cell, Dj;¢ and the reflecting plane normal are most easily determined
by using the reciprocal lattice. We define vectors

a=(BXC)V
b=(CXA)/V 13)
c=(AXB)V
so that
a*A=b*B=cC=1. 14)
Then the vector
r, =ha+kb+fc (15)

is in the direction of the normal to the reflecting plane (h, k, £) and, further,

1

dppg = T

e 16)

In practice, for parallelepiped crystals, it is therefore possible to specify an approximate
spacing d and to obtain a slab of crystalline material cut and ground so that the surface
of the slab is parallel to the reflecting planes.

3
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Because the index of refraction to xrays for most materials is less than unity, i.e.,
n =1 - & (where § is small), Bragg’s law, as expressed in Egs. (9) and (11), is not com-
pletely accurate. For wavelengths considerably less than any critical absorption wave-
lengths [2],

2
s~ ¢ Z A2
omm,c2my A

~1.36 X 1075922, (17)

where wavelength X is in angstroms and crystal density p is in g/cm3. The deviation of

the index of refraction from unity is usually small, but for very accurate wavelength
determinations, we must modify Bragg’s law so that our dispersion relation becomes

m\ = 2d(1 - 8/sin? 6,,) sin 6,,, (18)

where 0,, is the angle measured in vacuum. The error made by using Bragg’s law can be
expressed as

AN _ ¢ ~ -5.44 X 1078 pd2, (19)

in2
sin® 6,

which for most materials is < 1073, far from absorption edges (regions of anomolous
dispersion). Nevertheless, if the wavelengths are to be determined very accurately, the
modified Eq. (18) must be used in lieu of Bragg’s law as expressed in Egs. (9) and (11).

2.2 The Small Crystall
The above equations may be derived solely by the use of physical optics. They are

by no means complete, because we also will require a measure of the diffracted intensity.
We introduce the differential scattering cross section do/dS2, defined by

do _ Energy scattered/time/solid angle
as Energy incident/time/area

The scattering of xrays is due almost completely to electrons, so we consider scattering
by an assemblage of electrons located instantaneously at positions X;. For the case of
our small crystalline block (negligible absorption and rescattering and unity index of
refraction), the scattering is then given by {3]

I 4o e2 . 2

= = 2 = _€ (2mi/N)S - x; > 2

I, do <|Z 5 € 1| /sin® ©, (20)
J mec
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where O is the angle between the observation direction and the electric field vector of
the incident radiation. The average is taken over all possible values of X; (a time average).
(This average will not be important to our treatment here, but such averaging is needed in
analysis of temperature effects.) For the case of the electric field perpendicular to the
diffraction plane E?, sin2 © = 1; for the case of the electric field lying in the diffraction
plane E7, sinZ © = cos? 26,,, 0, being the Bragg angle of diffraction. For now we con-
sider only the former case E°.

We now reference the electron positions to the center of the lattice points of Sec.
2.1; then the position of each electron is, from Eq. (2),

X=nAA+nBB+nCC+R, (21)

where R is the electron position relative to the lattice point or scattering center (atom) to
which it belongs. Then the summation in Eq. (20) becomes

Z Lz_ e(27Ti/>\)S'X-_—_ e? Ze(ZWiD\)nAS-AZ e(27Ti/)\)nBS-B
! 2

- 2
7 mecC mec® Ty np

. Z e(27ri/7\)ncs-CZ o2Ti/N)S R (22)
nC k

where we have assumed that the crystalline block consists of atoms of one kind only and
where Ry is the position vector of the kth electron in that atom (lattice point) designated
by ny(=0,1,..,N4 ~1),ng(=0,1, ., Ng - 1), and neo(= 0, 1, ..., No - 1). Since the
summations are independent, we may treat each separately. Now,

NA -1
A2M/NnaS A _
=0 e(2m‘/)\)s-A -1

e(zm'/)\)NAs-A -1

n4q

e MIMNAS A gin (% Ny S-A)

= (23)
SAMNS A i (% S-A)
and similarly for the summations over ng and nc. The summation over k£ may be
replaced by an integral of the form

where p(R) is the number density of electrons in an atom relative to its center. The
quantity f is called the atomic form factor or atomic scattering factor.
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By inserting Eqgs. (23) and (24) into Eq. (20), we find, for a block consisting of
atoms of one kind only, that
i 9 \2 sin? Ny z S'A) sin2 <NB T sB) sin2(n, I S-C

Q [ e 2 A A €A (25)

2 T T T
m.c 2 18 Q. 210 @, 215 @,
e sin (k S A) sin ()\ S B> sin <)\ S C>

i

If more than'one kind of an atom is contained in our block, we use, in lieu of f in Eq.
(25), the structure factor, which follows immediately from the above treatment and Sec.

21,

F= Z ffe(zﬂ'l/)\)S'r], (26)
J

where the sum is over all the atoms in the unit cell. Vector r; is defined as
rj = UA]A + UB]B + UC]C’ (27)

where UAJ-, UBj’ and UCj (< 1) are the distances along A, B, and C, respectively, in the
unit cell where atom j is found. For diffraction by the plane (h, k, ), Eq. (26) becomes

Fing = Z f:ie2ni(hUAj+kUBj+QUCj) ) (28)
J
Now, the total power in the diffracted beam is just

PO = j 1,dS.

Since the diffracted beam is extremely narrow, we let

dQ = dvdB

and
S= SB + 68§,

where 68 is small and
SB'A =h)\
SB.B =k>\

SB'C = QA



NRL REPORT 8063
Then, from Eq. (25),

o \2 sinZ (NA % SS-A) sin? (NB % 5s-|3> sin2<NC % 5s-c>
z ) IF(20)[2 f

2 (T sq, 2 (T sq, 22 (T sq.
sin <)\ 58S A) sin ()\ 5S B) sin (7\ 58S C)

g —
P -1

dydp.
m,c

(29)
This result is for a particular incident angle 6. By using the reciprocal lattice vectors a, b,
and ¢ from Eq. (13) and letting
88 = Mg,a + gyb + g.c), (30)
we find,
m
X 8S-A =mg,, 31)

and similarly for the other dot products. We now wish to integrate the power over all
incident angles. That is, we wish to find

fP“(e)do.

Now the element dvdf in Eq. (29) is effectively an angular area element in a plane
perpendicular to s. We may express small changes in § produced by small changes in v
and (§ as
88 = éiye7 + 6Beﬁ,
where &5 is a unit vector perpendicular to the diffraction plane and &, lies in the diffrac-
tion plane. (See Fig. 1.) We note that §:68§ = 0. Now, from Fig. 1 we see that a small
displacement in 6 produces a change in §, of
68, = - 80 cos 26’é7 + 60 sin 208,
where &, =§.
Thus, since S = § - §,
68 = (6v - 60 cos 2(9)@7 + SBéB + 80 sin 20é7.
So, the volume element in our Cartesian coordinate system (é,y, éB’ é,) is given by
dydfda = dydBdo sin 20. (32)

Now 68 is also given by Eq. (30), so a differential volume element is also given by

[(\adg,) X (\bdgy)]-(Aedg,) = A3(a X b)-cdg,dg,dg, . (33)
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Fig. 1 — The relationship between the (é., Gﬁ, é,) coordi-
nate system and the incident and difﬁ'acted direction
vectors. For appreciable intensity in the diffracted beam,
6 ~ 6. Note that S = sin (¢ + 00)67 +cos (8 +600)8,.

Since diffraction takes place only over a small range of angles, we let F(20) become
F(20¢) and sin 20 become sin 20y, where 0 is the diffraction maximum. ¥rom Egs.
(31), (32), and (33), the integral of the power over all incident angles is given by

2 \2 .
fm(o)de=zg< c 2) F(26,)228 (X D)e

mee sin26

- sin2(Nymg,) sin?(Ngmg,) sin?(Ngmg,)
X |dg,dg,dg . (34)
a"5b%5c 2 iy P
sin®(ng,) sin“(mgy) sin“(ng,)

For N4, Ng, and Np >> 1, the sin? terms in the denominator become their argument and
the integrals may be extended to +oc. Equation (34) then becomes

2

2 N, NN,

e A'BC
fPU(e)de =° |F(20,)1223 ——— . (35)

A \m,c? 0 V sin26

If n is the number of unit cells per unit volume, we find that

fpo(e)de S| 2 \F(20 )23 n?(vol) (36)

A\, 2 0 sin20

e

where (vol) is the volume of our crystalline block. This discussion is found to apply very
well to “powder diffraction,” where many small crystals are employed.

2.3 The Mosaic Crystal

We now consider a large crystal composed of small blocks of the type discussed in
Sec. 2.2. The blocks are assumed optically decoupled from one another, and the entire

8
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crystal is assumed to be so thick that no radiation is transmitted through (mosaic crystal).
In this case, absorption of incident and diffracted xrays must be taken into account. We
therefore introduce an attenuation coefficient into the intensity relation:

2

dP%(0) -2uzeselg of_€ 2,3 _ n°A

s Sl 4 dA =1 _

fd(vOI) df)fe cscfodz Ll P IF(20) "X 24 sin26, 37
e

where u is the linear absorption coefficient and A is the cross-sectional area of the
incident beam, and we have used Eq. (36). Now the total energy per time incident to
our crystal is Ig = IXA. Then, for the special case of the mosaic crystal,

2
fpo(e)de = 13( e

meC

> 2 )\3712
5] 1F(200) 2u sin20, (38)

Note that if we accumulate diffracted radiation E, as a crystal is rotated at constant
angular velocity w, we find that

E= f P®)dt = w™t | P(0)d6. (39)

The ratio Ew/Iy is known as the integrated reflection coefficient, integrated reflectivity,
or, more loosely, reflectivity from a crystal face R,.

Inserting now the polarization dependence, from Eq. (20) and the following discus-
sion, we find that for the mosaic crystal,

2
EU 2 3,,2

Rg =T (€ ) papge A (40a)

Ig mec2 2u sin26
and

T

RT = Fow = RY cos226. (40b)
"
0

These equations are incomplete, however, since they consider neither secondary nor
primary extinction. Both forms of extinction occur for angles of incidence near the
Bragg angle; i.e., they are diffraction processes. Primary extinction takes place within a
small block and is due to the reduction of incident beam intensity at a given layer in the
block by previous diffraction of other layers and by interference between the incident
beam and the rescattered diffracted beam. Secondary extinction takes place because the
beam incident to a small block has been depleted by diffraction of other (previous) blocks;
interference does not occur because the small blocks are optically decoupled in a mosaic
crystal.
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2.4 The Perfect Crystal

Diffraction from a large perfect crystal must properly take into account absorption,
index of refraction, and rescattering of the diffracted beam. To do this, we depart from
the above procedure* and consider a plane sheet of similar atoms regularly spaced. We
let a plane-parallel incident beam strike the plane at an angle 8. The beam is then dif-
fracted from the plane at essentially the same angle.

We let the plane of atoms be the x - y plane; the position of each atom in the plane
is then given by a position vector, so that

r=xe, +ye,. (41)

We let the y - z plane be the diffraction plane. Then the incident beam is described by a
wave vector, such that

2m N PN
k= (cosHey - sinfle,). (42)

Incident to each atom, then, we have wave radiation of the form

Aoei(wt-x-r)= Aoei(wt-xycosﬁ) (43)

where w = 2mc/\ and A, is the amplitude of the incident beam. Each scatterer (atom)
will scatter the incident beam in all directions in the form of a spherical wave. The
amplitude of the scattered wave will be (o-radiation only, i.e., E is perpendicular to the
diffraction plane)

e2 ?i(wt—Kycose—Kp)

- Ayf(20) (44)

mec2 P

at a distance p from the scatterer. If we now observe the scattered radiation at a point
in the diffraction plane at an angle § above the plane of scatterers and a distance R from
the origin (i.e., the position vector of the observation point is R = R (cosfé, + sinfe,))
we find that

o =[R2 +r2 - 2Ry cos]1/2. (45)

Now R >> r and for our purposes the factor p in the denominator of Eq. (44) becomes
simply R. This simple substitution may not be made in the argument of the exponential
term, however. For this purpose we expand Eq. (45), finding (to second order in r and

)
p~R -ycosh +r2(1 -sin¢ cos?0)/2R (46)

*The procedure we employ is similar to that of R. W. James, The Optical Principles of the Diffraction of
X-Rays, Vol. II of The Crystalline State Sir L. Bragg, ed., pp. 52-66, Cornell University Press, Ithaca,
New York, 1965.

10
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where we have substituted r sing for y. The amplitude of the scattered beam from one
scatterer, given by Eq. (44), is now

2 ilwt-k R-kr2(1-sin2¢cos26)/2R]
R

- Ayf(20) 47

mec

We define

_ amplitude of the scattered beam from a single scatterer 48)
9 amplitude of the incident beam )

We then see that the total contribution at our observation point due to all the scatterers
in the x - y plane is

2n oo
g=N f f q rdrdo, (49)
0 0

where N is the area density of scatterers and we have assumed the plane sheet of scatter-
ers to be large. From Eqgs. (47) and (49), we find that

2 = <]

i(WEt-KR 27
q = - Nf(26) € el( = ) f f e—(iKr2/2R)(1—sin2¢cos20) rdrd¢. (50)
mec2 0 0

The integrals are quite straightforward and yield

2
g = iNA(20) —— eilwt-xR) 2T
mgc? K sinf

which is again a plane wave. This equation can be rewritten as

. > N iwi«R)
q = indf(26) > nd © (51)
mgc

where we have replaced k by 27/A and N by nd (the product of the number density of
scatterers and the distance between planes of scatterers). If we translate back to the
origin (R = 0) and ignore the time factor (an unnecessary complication in the following
treatment), we have finally, for the ratio of diffracted to incident amplitudes (including
the effect of a phase lag of very nearly w/2, which takes place on reflection),

2
—iq=i(nd)\/sin0)f(26)< ¢ 2). (52)

mec

11
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Sk Ty
\/ k PLANE

d T4t Sk+1
[} 8 k + 1 PLANE

Fig. 2 — Relationship between the reflected, incident,
and transmitted amplitudes and the reflection planes

The same sort of developinent of the ratio of the amplitudes of the forward scattered and
the incident beams gives

2
mec

2
—iq0=i(nd>\/sin0)f(0)< u > (53)

Let us now consider a crystal composed of many layers of such planes, strictly parallel,
and with all scatterers in register. Let T}, be the incident amplitude to the kth plane and
S;, be the total amplitude of the scattered waves from all planes 2> k. The fraction
transmitted by each plane is (1 - ig); the fraction reflected is - ig. Then, as shown in
Fig. 2,

Sy, =-iqTy + (1 - igg)e (2/Ndsinb g, | (54)

and

Tk = (1 - iqo)e—(izﬂ/k)dsinﬂ Tk _ i(—ze-(i2ﬂ/)\)2dsinosk+l (55)

where we have included phase factors to account for the distance d between planes
(assuming plane-parallel radiation), and g, rescattering from the reverse side of plane k.
These two equations lead to an equation for the transmission amplitudes only and
another for the scattered amplitudes only. Then setting

Th4q =xTp, and Sy, =yS,
(where |x| and ly| are assumed to be very nearly, but less than, unity) we find,

(1 - iqg) (1 . x) = qge~(2TNdsing 4 (1 _ g \2o-(i2/A\)dsind 4 Gi2n/N)dsind ()
X

and an identical equation for y. From our assumptions, x = ¥, and therefore also Sy =
xSy. If we assume that 0 is nearly the Bragg angle for the wavelength of the incident
radiation, the phase factor becomes

e—(i217/?\)dsin0 = g imm-iv (57)

12
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where v is small so that
eV x1-p. (58)
Also, since |x| is nearly unity,
x~ (1 - §)e”imm, (59)
Substituting for x in Eq. (56), we find
£2 ~qq - (go +v)? (60)
Using S+ = xS, and Ty, = xT}, yields
So =-iqTy + (1 - iqg)e mmH)xs,).

Thus the ratio of diffracted amplitude S and incident amplitude T, is, from Eqgs. (58),
(59), and (60),

S'0 -iq

= % -q .
To 1-(1-igy)1-i)[1+/qq-(q0+0)%] qg+vJlgg +v)%-aq

The ratio of diffracted to incident intensity is then just IS4/T |2, and we choose the sign
of the radical to guarantee that the reflection coefficient is

(61)

RY(v) = 1S /To 1% <1. (62)

We now consider the special case of negligible absorption. If the crystal does not
absorb, ¢ = g and q( and q are real. Then,

— = 4 (63)

To  qp+vt/lgg +v)*-4°

and for lqo + vl <gq,
R°(v) = 1. (64)

Again, outside of this region the sign of the radical is chosen to ensure the validity of
Eq. (62). Note that the peak of R9(v) occurs for v = - qo. If 0 is the Bragg angle, the
peak occurs for an angle 0, + A6, where

nd\|f(0)l(e? /mec?)
2nd

B cosf sinfg

Af =

)
B sinf cosfly ’ (65)

13
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corresponding to the modification of Bragg’s law expressed in Eq. (18). The width is
approximately

Av =-2q.
This corresponds to an angle
50 =240 L |
90
Then, for o-polarization,
509 = 2A6 @9—) (66)
f(0)

and for m-polarization, the angular width is

£(26)
507 = - 8.
ZAG} 70) ’ lcos20 | (67)

For negligible absorption, the integrated reflection coefficients are then given by
4
fR(@)d@ = 3 60,

where the factor 4/3 comes from the additional contribution of Eq. (63) in the wings.
Then we see that

8 na2 2
o - S
[rowan - 2 i, 200 = (682)
e
8 n\2
T = =
fR 00 = 52 sy M(200)] = feos2lo|. (68b)

these are Darwin’s formulas for the integrated reflection coefficients of a perfect crystal

{4].

The Prins modification of Darwin’s treatment includes absorption by allowing 6, q,
g, and g to be complex [5]. Then

§—>6+if

14
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where
B =Au/4m

(u being the linear absorption coefficient). Now

qO sin00
-6 +iB)= — (69)
o,
A
and we can set
_(A+iB)= q sinf
=g
A
and
— = qsinf
-(A+iB)= . (70)
27 4
A
Setting A6 = § - 0 (small), we see that
v sinf
cosf sinfyAf = (71)
2y
A
Then, by substituting Eqs. (69), (70), and (71) into Eq. (61), we find
S .
0 _ A +iB (72)

To c+/C2-(A+iB)A+iB)
where C = cosfly sinfjAf - & - iB. For the case of a composite crystal containing more
than one kind of atom, f is replaced by F (Eq. (28)) in g¢, q, and g, so that §, §, A, B,
A, and B are also modified.

For a nonpolar crystal ¢ = gand A + iB = A + iB. Thus

F(20,) . 2
R =fR°(0)d0 -2 f 1+iB/A | dn
sin20q | F(26) 8 B\ B\2
i . i i
-+ -2 - + =
ST T
(where the polarization factor in A and B has been set equal to unity), and
RT =R{ lcos26,] (73b)
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where R( is of the same form as R but A and B now include the polarization factor
lcos284 1.

Some actual crystals seem to be described quite well by the perfect crystal descrip-
tion given here, especially when Egs. (62), (72), and (73) are applied.

2.5 Discussion of Theory

It is not our intent to vigorously derive the theories of crystal diffraction, nor to
include every aspect of crystal diffraction; for these and other discussions the reader is
referred to the appropriate literature,* from which much of the above material has been
taken.

Constructing an x-ray spectrometer instrument that takes advantage of the dispersion
relation (Bragg’s law) is quite simple. We are afforded, potentially, a great deal of flexi-
bility in the choice of crystal and of atomic plane spacing, so the wavelength range of
interest can also be matched, within limits. It is therefore possible to determine which
lines are present and the ratio of line radiation to continuum in the neighborhood of the
lines.

Unfortunately, we have at least two markedly different theories (mosaic and perfect)
defining the integrated reflection coefficient, only one of which (perfect) defines a
reflectivity curve. It is thus impossible to determine the spectrum of the incident radia-
tion from diffraction theory unless one knows which (if either) idealized theory pertains
and knows the structure factors (including temperature effects, not included here). One
must therefore determine for each crystal those parameters required.

In the following, we explore the expected results obtained by a Bragg crystal spec-
trometer for various types of sources and ways of experimentally determining the parame-
ters needed to define the incident source spectrum.

3. INTERACTION OF SOURCE, CRYSTAL, AND DETECTOR

The typical arrangement of a Bragg crystal spectrometer is shown in Fig. 3. The
atomic planes of the crystal are oriented at an angle § to the incident beam; the detector
is at an angle 20 to the incident beam and views the diffracted radiation from the crystal.

From the theory described earlier, diffraction from a crystal depends on the polariza-
tion state of the incident radiation. We will see that in some respects this is a complica-
tion, but nevertheless it is potentially useful for determining the state of polarization of
the source. In any case, we must find some means for treating it. A further complication
is that few x-ray sources are monochromatic, and it is nearly impossible to obtain one

*Good texts on the subject of x-ray diffraction by crystals are R. W. James, The Optical Principles of the
Diffraction of X-Rays, Vol. II of The Crystalline State Sir L. Bragg, ed., Cornell University Press, Ithaca,
New York, 1965); and A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment, 2d ed.,

D. Van Nostrand Company, Inc., Princeton, New Jersey, 1935. A more elementary treatment is given
in A Guinier, X-Ray Diffraction, H. W. Freeman and Company, San Francisco, 1963.

16



NRL REPORT 8063

CRYSTAL
1 DIFFRAGTED
RADIATION
INCIDENY DETECTOR
RADIATION

|
|
I
|
|
|
I
|
|

Fig. 3 — Typical arrangement of crystal and
detector of a Bragg crystal spectrometer

that is not divergent. In the following treatment, we will find that the characteristics of
our spectrometer that must be determined in the laboratory are (a) the quantum efficiency
of the detector; (b) the integrated reflection coefficient; (c) the reflectivity curve;

(d) the polarization dependence; (e) the atomic plane spacing; and (f), for very accurate
identification of spectral features, the index of refraction. The means by which the
quantum efficiency of a detector may be determined is similar to that dealt with at some
length in Meekins et al. [6] and will not be further considered here; we will assume the
detector efficiency to be known. In addition, atomic plane spacing d and index of
refraction may be obtained to sufficient accuracy by least-squares fitting techniques
applied to known laboratory spectra. Thus, they also will not be further considered; we
will assume them to be known.

In the following, we will demonstrate the need for the above spectrometer charac-
teristics (or lack of them) when dealing with specific sources as well as the methods for
their determination in the laboratory. We first devise a means for treating rotations when
we have a polarized source.

3.1 Polarization and Rotations
Consider a source emitting linearly polarized radiation. We may describe the radia-

tion using amplitudes, which we take as parallel ({|) and perpendicular (1) polarization in
some reference frame. We thus describe the sources as

.or=(c">. (74)
C,

If we simply view the source with a detector having unit efficiency to both Il and L
components, we in fact find an intensity, flux, or power, which is
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P=gig=C} + 3. (75)

Suppose we have a detector sensitive to linear polarization, oriented so that the
source and detector reference frames are coaligned. A workable representation of the

detector response is then
€) O
&= (76)
0 € 1

where the € are detector efficiencies. Then the intensity as seen by the detector is
=g sgr= 02 2
P=glga= Ce, + Cle (77)

Also, in our formalism, we will require the description of rotations. Since amplitudes
transform as vectors, a rotation of ¥ about the direction of propagation is described as,

7 cosy  Bsiny
v siny cosy

where we must determine 3 and y. We have set the coefficients of the cosy terms equal
to 1 so that %y, =1 for Y = 0. Now %y must be unitary, so that

BIZ=h2=1
and
*
Y =-b

Now, suppose we perform a rotation between the detector and source. Then,

P=guf&u o
or

P=¢)[CY cos?y + C¥ sin® Y + C; Cy(B* +B) siny cosy] + ¢, [CF sin2y + C2 cos?y

- C1Cy(B" + ) siny cosy].

From the Law of Malus, we know that the dependence of intensity on angle of rotation
Y is of the form sin2y and cos2y, not siny cosy. So g* = -B, and we choose 8 =i so
that counterclockwise rotations may be considered positive. We also find that circular
polarization may be treated by allowing ¥ to be a function of time. X-ray measurements

are usually made over times that are long in comparison to the cycle time of Y, however,
and therefore time averages of cos2y and sin2y must be taken, leaving us with (C} = 0),

1 2
p= 5 () +€)Cy
i.e., no information on the polarization.
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We now insert a polarizer (e.g., crystal), which in its own reference frame is described

by

A 0

H = (79)

0 A
i.e., diagonal, since it cannot mix polarization states if the source polarization reference
frame is the same as that of the polarizer. If we now use a source, a polarizer, and a
detector (which is rotated by  with respect to the polarization reference frame of the
polarizer and source), we find that the intensity is

P =§Z’TJZT@Z$}£@/wJL@;’

and we conclude that Ay and A have the same phase, which we set equal to zero so that
A) and A are real.

Normally, the x-ray detector itself is not sensitive to polarization, so that
&=e€l. (80)

Then, for the general case of a multicomponent system with rotations Y1, ¥a, ..., ¥,
between polarizers and source, we would have

P=elt, ¥y .. KUy AP, (81)

In the following, we will consider two configurations: 1. A source, a crystal
(rotated), and a detector (Fig. 4); for this case,

P(eV) = elotut, o
= eAﬁ(Cﬁ cos2y + Clz sin2y)
+eAZ(CY sin?y + CF cos?y) (82)
2. A source, two crystals (the second rotated), and a detector (Fig. 5); in this case, .
P(1, eY) = ebtpayon, a2
= eBﬁ(AﬁCﬁ cos2y + Afcf sin2y)
+eBHARCE sin?y + Afcf cos?y) (83)

where we have indicated the rotations of each crystal by ¥ and parameters of the second
crystal by By and B, .

We see that the treatment of polarization effects and the interaction of rotations
about the incident beam are straightforward with the use of these matrix operators.

19



JOHN F. MEEKINS

DETECTOR

DIFFRACTION PLANE
REFLEGCTION PLANE

|

2

Fig. 4 — Diagram of the polarization reference frame
and a rotated crystal. The crystal is represented by
the reflection plane. The diffraction plane contains
both the incident and diffracted x-ray beams and is
normal to the reflection plane.

3.2 The Source, Crystal, and Detector: Operator Approach
We will describe the source as seen by our detector or crystal by a function S5 in
units of photons per time per wavelength interval per (angle)2. The principal direction

will be along the x-axis, so divergence angle vector § lies in the y - z plane. We insist
that the centroid of the incident radiation and the x-axis be coincident, so that

_’-687\1‘5 dﬁydﬁz = 0. (84)
As noted above, diffraction from a crystal depends on the state of polarization of the
incident beam and its orientation. Whenever this must be considered we will write
_al
Snes =Shes *+ Shes- (85)
Source function S is related to the amplitudes of Sec. 3.1 by
I =2
Sxes = Cj

L = A2
Syes =C2. (86)
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DETECTOR

DIFFRACTION PLANE REFLECTION PLANE

REFLECTION PLANE

\
\ SOURGE

Fig. 5 — Diagram of the polarization reference frame
resulting from diffraction by one crystal and a second,
rotated, crystal. The crystals are represented by the
reflection planes. The diffraction planes contain both
the incident and diffracted x-ray beams of each crystal,
and each diffraction plane is normal to its associated
reflection plane.
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In nearly all cases, it is possible to restrict the divergence of the source to very small
angles, so that we may describe a specific ray incident on our crystal or detector by a unit

vector:
62 +52
h~|1- J——é— 8y + 6,8, +0,8,. (87)

Over a small range of incident angles, the quantum efficiency of most x-ray detectors is
constant and independent of polarization. Thus, if we view an x-ray source with a detec-
tor, we would observe

n; = fe()\)S)\ta dAdb, db, (88)

in units of photons per time. Thus, we may describe the detector with a detector opera-
tor identical for both polarization states:

E= f e(\)d\dq,dq, (89)

where dqy dq, indicates integration over all incident angles.

From the earlier discussions, we know that diffraction from a crystal depends on the
angle between the atomic planes and the incident x-ray beam, and that the peak intensity
of the diffracted beam occurs when Bragg’s law (Eq. (11)) (or small departures therefrom)
holds true, i.e., when

m\ = 2d sinf,, .

Even with an incident beam with no divergence, there is a small spray of radiation
diffracted. There is also a small range of incident angles over which diffraction takes
place (albeit not at peak intensity). Referring to Fig. 6, we let the principal direction
(centroid) be along &, ; the normal to the atomic planes is then represented by

-~

N = cosa€, + sinae

y (90)

so that &, lies in the atomic (reflection) plane and normal to the principal directions of
both incident and diffracted beams. If we represent the incident beams by Eq. (87), the
total diffracted intensity over all diffracted angles will be proportional to a function (to
first order in By, §,,and 0 - P)QO) ~ ¢ - 5y), where 0(\) = sin~1(mA/2d) and

¢ = /2 - a. Referring to Fig. 7, we let the principal direction of the diffracted beam be
e,. Due to mirroring at the crystal, the small divergence angles 6y, 6, become - 6y, -5,
upon diffraction. Then to describe the ray of the diffracted beam we use

) ) ) (my =8,)2 +(n, - 8,)%]
np = (ny -6y)e, +(n, - 5,)e, +|1- 2 e (91)

X
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CRYSTAL

CENTROID

Fig. 6 — Incident and diffracted beams of a
crystal, showing the crystal normal and the dif-
fracted spray about the centroid.

====_"73 8y

CRYSTAL

-8y | centrom

A
ey

&
Fig. 7 — Incident and diffracted reference frames.
The divergence angle becomes negative on reflec-
tion.

where 7,, and 71, are the spray angles in the corresponding directions for a nondivergent
incident beam. Then, to first order in angle, the spread about the centroid may be
described by the function Q[(n, - 8,)&, + (n, - 8,)e,]. We arbitrarily employ the
normalization and centroid conditions,

f Qx)dx =1 (92-2)

f xQ(x)dx = 0 (92-b)
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f@(}éy +28,)dydz = 1 (92c)
and
f (vé, +28,)Q(vé, +28,)dydz =0. (92-d)

Then our entire diffraction function is
Q[e()\) -9 - 5y] .RO()\)'Q[(ny - 6y )éy + (nz - 62)éz] ’
where R (M) is a normalization factor and is a local constant.
Suppose we have a spectrometer having diffraction characteristics described by our
diffraction function and a detector of unit efficiency. We irradiate the crystal with a
monochromatic, nondivergent source of the form

Sxes =SO(A =X )5(52)5(5y ).

Then the observed count rate will be
ng = Stfﬁ()\ - )\O)B(SZ)B(Sy)dByd6z

'Q(G()\) -9~ 5y )RO(}\)Q[(ny - 6y )éy + (nz - 5z)éz]
.d)\d(ny - ay)d(nz - 62)
=SRo(Ag)RQ(O(Ng) - ).

If we now rotate the crystal at a uniform rate dy/dt = w, we find that the total number
of photons contained in the diffracted line is

n=wlS,Ry(\g)-

Then
nw

Ro(o) = 3
t

(93)

which we may use as an experimental definition of the integrated reflection coefficient,
in agreement with Eqgs. (40), (68), and (73). From our above discussions, we know that
the diffraction will depend on the state of polarization of the source and its orientation
with respect to the diffraction plane. We therefore define a crystal reflectivity operator
as

]I\, 9) =jdqquy QU[6(N) - v -q,1R§(N)
X Q[(ny - qy)8y +(n, -q,)8] (94)
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where we have used dqquy to indicate integration over the angles of the incident radia-
tion. There is a similar expression for the crystal reflectivity operator to be used with
m-polarization. We have then a general crystal reflectivity operator,
R\, 9) =RIA, ) + TN, ) (95)
each part acting on only that part of the incident radiation that has the indicated
polarization. We have, then, established a connection between our reflectivity operators

and the polarizer parameters squared, A% and AZ. (See Eq. (79) and the following).
I 1

Suppose we examine a monochromatic, distant point source of radiation, linearly
polarized at orientation «,

Sxes =S¥\ - X9)8(8,)8(8,) (96)

with a Bragg crystal spectrometer. From such a source, we will observe a count rate in
our detector of

n; = ER(\, 0)Syss-
If we let the direction between the k-polarization incident and the normal to the dif-
fraction plane be { (see Fig. 4), from Eq. (82) we find that

n, =fs;§ 8(\ - Rg)8(8,)8(5,)d5 ,d3,

*{cos2YQI[O(N) - ¢ - 8, IRFMNQ[(n, - 8,)8, + (1, - 5,)&,]
+sin2YQT[O(\) - ¢ - 8, IRTVQ™[(n, - 8,)8, + (n, - 8,)8,1}
"e\)dNd(n, - 8,)d(n, - 5,). (97)
Carrying out the indicated operations yields
n, = S¥e(Mg){cos2YQI[0(Ng) - P1RJ(Ng) +sin2yQT[6(Ng) - IRT(No)}.  (98)
If we now orient our spectrometer so that ¢ = 0,
n? = 8fe(Mg)Q[0(\g) - Y1R§ (o) (99)
and if Y = 7/2,
nf = S5e(Mo)QT[6(Ng) - ¥IRT (o). (100)

If we scan the spectrum at an angular rate dyp/dt = w, the total number of counts
(photons observed by the detector) observed under the line would be, from Eq. (99),

no = Se(N\g)RJ(Ng)w ™t (101)
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and, from Eq. (100),
n" = 8fe(Ng)RF(\g)w L. (102)
If we observed the source directly with our detector, the count rate would be
7 =Ste(ng). (103)
Thus, the integrated reflection coefficient (at Ay) to o-radiation is, from Eq. (101),
Rg(ko) =n’w/n, (104)
and that to w-radiation, from Eq. (102), is
Rg(ho) =n"w/h,. (105)

For a randomly polarized source, we let 8§ = S¢ + ST, where S = ST in magnitude.
Then

n, = €Ny )(S7 +ST) (106)
and the total number of counts from a randomly polarized source is
n" =eN\g)w ISTRG(\g) + STR(N\y)]. (107)
From Egs. (106) and (107), the integrated reflection coefficient for incident random
polarization is

Ri(N\g) = wn'[A; = % [RJ(No) + R{(Xg)]. (108)

For an arbitrary state of polarization of the incident radiation, we let
s¢=s!+st  (orthogonal). (109)
Then, if we perform all the indicated operations (letting  be the angle between L-polari-
zation and the normal to the diffracted plane (see Fig. 4 and Eq. (82)), we find the
count rate to be
ny = €Q){Q7[0(\g) - PIR§(\o) ISt cos2y + S) sin2 ¢ ]

+QTIO(Ng) - P1 RE(N)IS, cos?y + Sk sin2 Y1) (110)

Scanning through the line, we find that the total observed counts would be

n = e(Ag)w L [RI(N)(S} cos2y J_rs}' sin2y) + RT(o)(S) cos2y + S sin2¢)] (111)
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while
7, = €(\o)(S} + S}
ny = €(Ag)(S¢ +S¢).
Thus we see that we may set
— (0l wl 9 ol Ly a3 2
ng=(ng +ng')cosy +(ng" +n;)sin=y
n= (nUi + n"“) cos2y + (n"” + n"i) sin2

and
7, =nt+n) (112)

which will simplify our mathematics as we continue to more complex sources.

The application of our operators to idealized line sources is reasonably straightfor-
ward even when polarization effects are included. We have found experimental defini-
tions for the integrated reflection coefficients for idealized sources (Eqs. (104), (105),
and (108)), which may be compared with the theoretical definitions in Eqgs. (40), (68),
and (73).

4. APPLICATIONS TO REAL SOURCES AND USE
AS A DIAGNOSTIC TOOL

In this section, we will apply the Bragg crystal spectrometer to realistic sources
using our operators. Simultaneously, we will find those spectrometer characteristics
required for determining as much as possible about the source spectrum. We have
already mentioned the use of Bragg’s law (Eq. (11)), from which spectral features as
observed by our spectrometer may be identified. Quantitative aspects of the spectrum
are somewhat more difficult to determine, however, as we shall see.

Real sources are divergent and nonmonochromatic and may also be arbitrarily
polarized. We will describe these sources by
l
Snes = Shes * Snes- (113)

Then count rate nd" is

ngt = f Sne5@8:d8, Q10N - v - 8, 1RGMQC [(ny - 8,)8, + (1, - 5,)8,)

* €(N\)dAd(ny, - 6,)d(n, - 6,). (114)
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Suppose the divergence is not too large. Then, since R, and € are both local constants

(reasonably far from absorption edges in both crystal and detector) and the crystal
diffracts in only a small range of angles, Eq. (114) becomes

n% = RI(\ )e(xo)fs*tsdazdtsydm[o(x) -p-5,1. (115)

If we let the source emit both line and continuum radiation, where the continuum is
locally constant in wavelength, then

S%\t 5= S%\%G (line) + S%\fs (continuum), (116)

and it follows that

nfl =RI(\, )e(xo){fs%adﬁzdaydm” () -¢-8,]

+fs_7L\(tj8d62d6nyo [O(A) -¢ - 5y]d7\}. (117)

Now from Bragg’s law for first-order diffraction,
d\ = 2d cosfdo

and, since ¢ is very nearly equal to 0,
nol ~ Rg()\o)e()\o){fS#\{‘adbzdﬁyd)\Q[G()\) ~p-8,] +2d cosp sigt} (118)

where S%\(t‘v is the number of photons per wavelength interval per time contained in the
continuum. If we scan over the line at a rate w = dy/dt, (the elapsed time being At) we
find, just as for Eq. (101),

nt = R§(\o)eMo)(w S + At 2d cospS;C ) (119)
where S%L is the total number of photons per time contained in the line over which the
scan took place. While the identification of a particular line in a spectrum (including its

diffraction in several orders) is usually unambiguous, identification of the continuum is
often not, so we include all the diffraction orders by setting

- 1
n% = W IRI(Ng)e(N)StE + At 2d cosy Z — Rg()\olm)e(?\o/m)Si((’;/m . (120)
m
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where m is the order of diffraction. Far frcm a line, but not so far that R, €, ¢, and
S)\t are appreciably different,

ndl = 2d cosy Z = RG(\g/m)eMo/m)SyC . . (121)

Then the number of counts in the line is

nolL = nol(hne + continuum) - Atntl(contmuum) (122)
Usually, a linear interpolation of n; (continuum) is performed to determine the con-
tinuum contribution to the spectrum under the diffracted line. If so determined, At n,
is much more nearly the true contribution under the line. Now the total counts in the
line observed by the detector will be, from Egs. (112), (120), 121), and (122),

nl (line) = w=1e(Mo){ [RG(Ng)StL + RE(N)SIF] cos2y
+ [RIOQISIE + RE(N)SL] sin? y} (123)

which is identical to the result obtained from a monochromatic distant point source.
(See Eq. (111).) The continuum count rate in the spectrum is

n (continuum) = 2d cosy Z — e(ko/m){[R (7\0/m)S7\ m ¢ +R”()\0/m)S)\0/m :] cos2y

+ [R{ (o Im)SNS 1 o + REMo/m)SRC ), (1 sin®y T (124)

If we have reason to believe that the source is randomly polarized,

_olr 21 lc._olc_1
Sit =8i" = 5 Sf and 8,{ =8 = 5 S,
so that,

nl = wle(N\g)SFRY(Np) (125)

and
1
= 2d cosy Z ~ e()\o/m)SC;\O/m r (o /m) (126)

where we have used Eq. (108). If no higher order continuum is present (or, if any, such
has been removed),

=2d coswe()\O)Sg\ORB()\o ). (127)
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Even for a source with unknown orientation  with respect to the plane of diffraction,
it is possible to find the total contribution to the spectrum from the sum of both
polarizations just as if the source is randomly polarized. We make two spectral scans,
one at some orientation ¥ and the other at Y * 7/2. Then the total of the two scans of
the continuum becomes

Z n¢ = ndiC + n?llc n n;rJ.C +nl e

or
C _ C
0 € = 4d cospe(ho )R (Mo)SS,, (128)
where we have again removed any higher order contributions, and ng ot = S%\gt + S;I\COt.
Similarly, for the line radiation,
2nk = 2BE (\)SEwTe(hq). (129)

Thus, to find the source spectrum due to the total of both polarizations from the Bragg
crystal spectrometer results, we must know the integrated reflection coefficient Ri(A) due
to a randomly polarized source. If we had instead taken the difference between the two
scans,

1
Anf = 2d cosy cos 2y Z ~ e(\o/m)[RJ(Ng/m) - RT(Ng/m)] [sig,m .- s{g,m ]
m

(130)
wARL = e(\)[R§(Ng) - RE(Mo)] [S+E -5 cos 2y (131)
where
AntC =ntclw ""tclw + 12
and
Anl =nli, —nlly oo
At this point, we note that angle ¥ for the continuum need not be the same as the
corresponding angle for the line(s). We may now write
anb _ [RG0G)-RF0)  (siE -s]F) wos 20, 159

=nl 2R (\g) St
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and if we were certain that no higher order continuum were present (or that any such
continuum had been removed),

Anf  [R§()-RI0)] (S}, -$35)

cos2y. (133)
Znf 2R{(Ag) S?\Ot

By producing a number of such ratios for various angles  + £ (¢ varied), we can deter-
mine ¢ (An = O for £ = /4 - ¢, £ odd). We further note that if ¢ = 7/4 (essentially
Brewster’s angle), the theories on crystal diffraction (Sec. 2) give Rg = 0. Then (A\¢ = 2d
sinm/4),

sl
An (S)\ot ;\({;t)

Entc SAot

and similarly for the ratios of the integrated line intensity. For this particular instance
(¢ = 7/4), the polarization ratio AS/ZS may be determined without any knowledge
about the crystal. The more general case (arbitrary y), however, requires Rf (Ay) and
Rg()\o) - Rg(?\o), i.e., any two of the integrated reflection coefficients (from Eq. (108)).

cos2y, (134)

We include one other case here. Some sources are so small in angular extent that
they may be considered to be of the form

S)\ts =S>\t5(5z)5(5y). (135)

We will consider here only line radiation, since the contribution due to continuum may
be readily removed. Then

Snes = (SEE +83E)8(5,)8(5,)). (136)

Let us now assume that the wavelength distribution in the line of our source may be
given by,

Sik = T8t
and I IL (137)
SIL = 7()s)

where T()\) is a positive definite function normalized to unity. Then, from Egs. (112)
and (115),

nk = e(o) {ISEL U (p) + S)LUT(9)] cos?y + [S)E U (p) + S{LUT(9)] sin? Y} (138)
where we have let \

U%(p) = | TMRGMNQ[O(N) - ]l dA
UT(p)= | TMRGNQT[O(N) - pldN. (139)
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Now if the source is randomly polarized or if we are able to average two spectral scans at
V¥ and ¢ * 7/2, we find

ny = €(\o)SEU(p) (140)

where U" = (U? + U™)/2. The source line shape is sometimes very useful, but unless
T(N) is quite broad, its determination depends on our knowledge of @ and Q°. Even
then we must solve an integral equation. We note in passing that SIXt may include more
than one line, in which case T(A) will be the shape of the sum of lines.

From the above discussions, we see that the Bragg crystal spectrometer is an
extremely useful device, but its usefulness is limited (not surprisingly) by our lack of
knowledge of it. We have attempted above to create a hierarchy of source information
available, given limited knowledge of the spectrometer (in the sense of calibration). The
minimum requirement is the atomic spacing (and index of refraction if needed) from
which the wavelength of spectral features may be determined via Bragg’s law, as expressed
in Eq. (11) (or Eq. (18) if necessary). Quantitative measurements of continua and total
line intensities may be obtained from Eqs. (125) through (129), provided that the
quantum efficiency of the detector and the integrated reflection coefficient from random
polarization are known. From Egs. (132) through (134), source polarization may be
found (in one case with very little calibration of the spectrometer) provided that the
integrated reflection coefficients to polarized radiation are known. Finally, it is possible
with Eq. (140) to determine although with difficulty, the source line shape, or to
separate nearby lines, given the reflectivity curve of the crystal employed.

5. DETERMINATION OF THE CRYSTAL PARAMETERS
5.1 Absolute Integral Reflection Coefficients

In the laboratory, x-ray generators are usually sources of both line and continuum
radiation. We will assume here that this is the case. Except for plasma sources, these
generators generally produce line radiation that is very nearly monochromatic and, for
our purposes, essentially a delta function. The degree of polarization is not usually known,
so we must not assume the source to be unpolarized. The orientation of the polarization
can generally be surmised, however, by symmetry arguments; so, we will assume that the
angles between the reflection plane and the polarization directions are 0 (or 7/2).

Suppose we describe the source to be used for calibration by

= (qlL I 1C Ic
Saes = (S5 + Sy )8 (A -Ro) + Sxgs + Syes- (141)

Then the detector viewing diffracted radiation from a crystal will observe

n, =ER(X, 9)Sy,s
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or, from Egs. (82), (89), and (94),
ne= [{ISHB0-20) +5551Q7 1600 - o - 8, 1RGOV

© QUl(ny -8,)8, +(nx - 8,)8,1 + [SIESA -2g) + 5151
* QTOMN) - -8y 1RFMRI(ny -8,)8, +(n, -5,)8,1}
* e(A)dMd(n, - 6,)d(n, - 6,)ds,db, (142)
where we have set Y = 0.
Assuming that the S>\t8 are constants locally independent of wavelength and scanning
the spectrometer in ¢ at rate w, we find the total count in the line and continuum to be

eV = 1),

R(1)EYC = () {Rg(k0)<w"1 f SHds,ds, + 2dAt cosp f sitcadézday>
+Rg(7\0)< fs"Ldes ds,, + 2dAt cosy fS)\thﬁzdSy)} (143)

where At is the time required to make the spectral scan. If we now rotate the spectrome-
ter by m/2 about the incident beam, we similarly find (e"p i);

n(i)L+C = 60‘0)[}280‘0% f ||Ld6 d5 + 2dAt cosy fS;l\l%dﬁzdﬁy>
+Rﬂ(7\0)< -1 fS dé, d5 + 2dAt cosxpfs)\ dd,do >] (144)

It will become apparent later that including both the continuum and the line creates
a needless complication. We might use the continuum only, but the number of photons
diffracted in some of the following procedures will be very small. The continuum can be
determined by interpolation between measurements made on each side of the diffracted
line. The diffracted continuum produces count rates of

n (1€ = e(Ng)2d cos<p[ (Ao)fsmda db +R"()\O)f8;|\tc5d8 ds,, 9 (145)

and

n,(i)¢ =e(\g)2d cos¢[ (xo)fs{fada ds +R"()\0)J‘S)\t5d6 d5 . (146)
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We now let

n()*C - n()¢
n(L)HC - n@)¢

(147)

which becomes

f slLds,ds +R”fS dé,ds,
h= (148)
RS f SiLds,ds, +RT f S)Las,ds,

Now we examine the spectrum with a second crystal (parameters Ry, @, and @1). Then
the observed count rates, from Eq. (142), are (Y = 0)

-~

ny(1)FC =€(7\0)<Rg1 { Jsi

+ R, {fS"g{“Q"[G(ko)w 6,1d8,ds, +2d cos;pfsy\fsdts dé }) (149)

Q‘{[G()\O) -9 -6,1d6,ds,, +2d cosapj >\t8d5 dé }

and on either side of the line,

n (1)¢ = e(\y)2d cosp < fsmda ds, +R] fs{fsdazd5y> . (150)
Keeping this same crystal in the first position, we examine the diffracted beam with our
original crystal (Fig. 5). Then,
n; = E&R(, X)(R1 (A, ‘P)S)\ts

or, from Eqgs. (89) and (94) (ignoring polarization effects),
ny= jSAtGdazdﬁyQ1 [0()\) ¢ - 6y]-RO]_(A)'Ql [(ny - 6y)éy + (nz - 62 )éz]

: d(ny - 6y)d(nz - 6z)Q[B()\) -X- ay ]RO()\)Q[(E:V - ay )éy

+ (&, - 8,08, 1e(NV)dNd(Ey - o )d(E; - o) (151)
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where for
Y=0,n(1,1); @, =n,-38, and o, =7, -5,
v=m/2,n(1,0); o, =n,-5, and o, =-n, +3,
y=mn(1,-1); o, =-n, +8, and o, = -7, +§,. (152)

The orientations of both crystals are indicated by the notation used for Eq. (83). Now,
Eq. (151) can be reduced to

nt = fs)\tsdazdayQ]_ [0(>\) -9 - ay]Rol()\)_Q_l [(ny - 5y )éy + (nz - 62 )éz]d(ny = By)
*d(n; - 6,)Q[0(N) - x - o, JRy(N)e(N)dA. (153)
If we now sweep the second (original) crystal at rate w over the doubly diffracted
radiation (dx/dt = w), we find

n=wl f Snd6,d6,Q1 (B(N) - ¢ - 8,)Ro; (MR (Ne(N)dA. (154)

Inserting the source and crystal polarization properties by using Eq. (83), (141), and
(152), we find that

n(1, DFC = n@1, - HIC = (A g)w™? <RgRg1 { fs% 0110(g) - v - 8,1d8,d8,,
+ 2d cosy fS*%dﬁzdﬁy}
I
+RTRT, { fstg T 0() - v -8,1d5,d8,

+2d cosy f s{fsdazdayD (155)
and

n(1, H*C = e(\g)w™? (RgRgl { J‘ SHEQG 100N - ¢ - 8,1d6,dS,, + 2d cosp f S%\fadéizd&y}

+RIRT { f S)EQT 100N - v - 8,1d8,d5,, + 2d cosp f 816 ds,ds,, }) .(156)
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By setting the crystal in the first position (parameters Ry¢, @1, 61) off the line, we
obtain

n(1, )¢ =n(1,-1)°¢ = e\ Yool (RgRgl 2d cosy fS%\deSzdﬁy

+ RERT. 2d cosy f s{$5d52d6y> (157)
and
n(1, )¢ =e(N\g)w” <R”Rgl2d cosy fskt8d5 ds,, +R8R812d cosy fS{ﬁstdey).
(158)

(Normally, measurements are taken on each side of the line and averaged.) Now we may
obtain

n(1, Y =n@, DI -n(@, 1)¢
n(1, -1)E=n(1, -1)M*C - nQ1, -1)¢
n(1, )t =n@, HC -n@, ) , (159)
and, from Eqs. (149) and (150),
n (L)X = n,()FC - ny (1)

solely due to line radiation.* We now let

wn(, 1) wn(, - 1)F

wG = (160)
n(1)F n, (1)L
or
RIR f s Q9ds,ds, + RTRT f s)LqQnas,ds,
WG = (161)
RS, f S Q9ds,ds, +RT, f slLqras a5,
and we further let
H=n(, )k m@, 1) = n@, yl/mna, -1)F (162)

*A note of caution: The measurements here, n(1, 1)L+C, n(1, -1)L+C, n(1, i)L+C, and nt(l)L+C, are
functions of ¢, the angle between the centroid of the incident beam and the crystal planes; great care
must be taken to ensure that this angle is the same for all four measurements.

36



NRL REPORT 8063
or,
Tpo 1L A0 Iz
RoRo fstﬁ Qydd,dd, + RgRgl fStS Q’{d52d6y
H= . (163)
o 17 Iz
RORS, [ stf@gas,as, + RERT, [slkaasas,

07701

Now source functions Si‘aL and StuaL will have the same angular range, which can be made
(and usually is) much larger than that of the reflectivity curve of a perfect crystal, the
case for which Q% # Q™. We therefore let

2alL _ olL
885 =S5 -

Then
g f Sikds a5, = f s)kas,ds, (164)
and further,
g2 J‘Stlg‘Q‘{dﬁzd8y= fsj'ngdazdﬁy. (165)

These steps would have been impossible if we had included the diffracted continuum as
well as the diffracted line. We also let

fZRg = Rg (166)
and we assume that
f2R81 = Rgl (167)

i.e., the two crystals are the same in this respect. (This assumption is not necessary in
cases for which Rgl /Rg1 is known.) We may now write, Eq. (148),

2 3+ g2
h= _i;g_ (168)
and
2(1+g2
g=1"(+e) (169)
1+ f4g2
Elimination of g2 produces
18 - 3aft +3af2 =1 (170)
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The roots of this equation are

r?=1
2 _ 3o<—1> [<3a—1>2_ ]1/2
f < CEARANE !
and
- _1\2 1/2
= (35)- o - )

Now, if f2 =1 is the root, H=h = 1. Thus, « = 1 and we find that all three roots are
the same, f 2 = 1, a trivial result. We also see that if o < 1, our remaining two roots are
complex, an unphysical result, so o 2 1. Comparison with our diffraction theories shows
that the only reasonable root is

_ _1\2 1/2
o) [

since this is the only one for which RT/RZ < 1, in general. We may now find g2, a
measure of the polarization of the source. Equation (161) may now be written

po (L+7%%

wG = 0 — o
(1+7%g2)

(173)

from which R] may be found; Rf = szg and Rfy = 1/2 (RJ + R{) readily follow. All
the integral reflection coefficients are thus determined.
5.2 Relative Integral Reflection Coefficients

By following the procedure in Sec. 5.1 we may determine the integral reflection
coefficients of a crystal, which can then be used as a standard. When such a standard
exists, integral reflection coefficients of another crystal may be found by comparison.

By making use of Eqs. (143) through (146), we find that the total number of counts in a
line observed by our detector is (for ¢ = 0)

n(1)L = n(1)X*C - Atn,(1)€ = e()\o)w‘l[Rg()\o) f S}GLdazday
+RI(\) f s}%dazday] (174)
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and (for Yy = 7/2),
n(i)F = n(i*C - Atn,(i)¢ = e(\p)w™? [Rg(xo) f Sifas,ds,
+RJ fSt'%dﬁzdéy]. (175)
Now, by adding these two equations, we find
2on=nME +n()F = e(\g)w 12RE(N¢) f Sk.ds,ds, (176)

where S{‘G = 9L + S Thys we see that direct comparison between the measurements
taken with the standard and those taken with our sample readily provides the integral
reflection coefficient RBO\O) due to random polarization of our sample.

Usually, the radiation in a spectral line is not greatly polarized, so that taking the
difference of n(i)X and n(1)L often results in large statistical errors. The continuum
radiation, however, may be polarized to a considerable degree, so for the determination
of RZ and Rg (or rather, of their difference) we will use the continuum. From Eq. (145)
and &46) (if AnC = n,()C ~ ny(1)C),

An§ = e(\g)2d cosp [RG(Ng) - RT(Np)] j (S{tca - 536)d5 ,ds,. (177)

Now, direct comparison between the measurements taken with the standard and those
taken with our sample provides Rg(N\g) - Rj(Xg). By using R{;(Ao) as determined, we
can readily find R(Ag) and R7(Ao).

5.3 Reflectivity Curve

We will assume here that we have an unpolarized source of line radiation. (A
continuum is included in our measurements; but we have seen that its contribution may
readily be removed.) In front of this source, we arrange two slits of equal width some
distance apart and uniformly illuminated by the source. In the x-ray region, diffraction
effects due to macroscopic slits are unimportant, so the radiation falling on a Bragg
crystal spectrometer may be described by (assuming random polarization),

Saes = 8:(8,)8(N ~ Rg)hA(3,) (178)
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where
h(tSy) =0 for |6y | =6,

1
h(by) = 3 (59 +8,) for 0=8,>-3,
h(s,) = 6i0 (69 - 8,) for 085, <8§j. (179)

We will require (for minimum statistical errors) that 5, be on the order of, or less
than, the diffraction width. From the detector of the spectrometer, we obiain a count
rate,

n;=e(g) Ugt(az)dsz] fh(ay){Rgo\o )QU[I(No) - @ - 8,

+RT(M\)QT[0(Ng) - ¢ - 8,1} d8,, (180)

as a function of crystal angle . Taking the second derivative of n,(y) with respect to ¢
and integrating by parts twice, we find that

d%n

— =const.f[6(6y +80) - 25(8,) +8(5, -850)1QIOM) - ¢ - 6,1d5,  (181)
¥

where we have set @ = RJQ° + RjQ". The integral can be evaluated trivially:

dznt

o = const. {Q[O(N\g) - ¥ + 851 - 2Q[0(Ng) - ¢] +Q[O(g) - v -8o1}. (182)
¥

By starting with data far from the line, so that d%n,/dy? = 0, we may also assume that
QIOMg) - ¥ +89] =RIO(Ag) - ¥]1 =Q[O(Ng) - ¥ -85] =0.

For clarity, we set ¥y = v - 8(0g) + 63. Then we find

dznt(')’ = 50)
QL-7)= T +2Q(-v +8g) - Q(-7 + 28y). (183)
Y

Thus, starting at a point where all terms equal zero, v = - v, i.e., Q> 6¢) = 0, we find
fOl'—’YO <7<—’yo +60,
d2n,(y -8,)

Q(-v)= 3

dy
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So we have Q(yg = -y 2 7g - 8p). For the next interval, -y, + 85 <y < -7, + 2§,
we find

d?n,(y - 8)
Q(-v) = ., +2Q(yg Z -7 +8y =7y - 6g).
dy

For the next and all succeeding intervals, we must use all the terms, since none are cer-
tain to be zero. We may continue on in the same way until we have the complete

shape (except for a constant) of @[6(A) - ¢], the integral of which we set equal to unity.
Because of statistical considerations, fitting of n, may be required, and care should be
taken to insure that the second derivatives of the fitted curves are continuous.

6. INTEGRAL REFLECTION COEFFICIENTS:
AN EXAMPLE, LITHIUM FLUORIDE

The techniques of Sec. 5.1, were used to determine the first-order integral reflection
coefficients of a lithium fluoride crystal (200), which are shown here as an example. The
detector used was a flow proportional counter filled with 10% methane in argon. The
pressure to which the counter was filled became the largest contribution of systematic
errors. Systematic errors were determined by before-and-after measurements of the line
intensity diffracted by one crystal. The errors resulting from statistical (Poisson) varia-
tions in the x-ray source were taken into account by the methods described in Appendix
A. Errors, both systematic and statistical, are included in the error bars of the figures.

In Fig. 8, we show the determined ratio R" /R? as a functlon of Bragg angle 0,
together with that expected from an ideal mosa1c crystal, cos226, and that expected from
an ideal perfect crystal, |cos20|. Neither of these idealizations descnbes this ratio over
the entire wavelength range included in our measurements. In Fig. 9, the three integral
reflection coefficients Rg, Rg, and R, are shown as functions of wavelength. Since all the
data presented in Figs. 8 and 9 are derived from the same set of measurements, the error
in each datum for a particular wavelength is not completely independent of the error in
any other. For example, the error in R6 (A = 1.54 A) is not found by taking one-half the
square root of the sum of the squares of RJ(A = 1.54 A) and RJ(\ = 1.54 A).

7. CONCLUSIONS AND DISCUSSION

In the preceding sections, we have discussed the usefulness of the Bragg single crystal
spectrometer as a tool for quantitatively analyzing the spectra of x-ray emission sources.
With such a device, properly calibrated, we may determine not only the wavelengths of
spectral features, but also the energy contained in the lines and continuum as well as the
degree of polarization. Line shapes can also be determined (with some difficulty),
depending on the intrinsic line width and spatial extent of the source. The Bragg crystal
spectrometer is therefore a valuable tool for diagnosing x-ray sources (e.g., astrophysical
and laboratory plasmas).

We have presented an outline of the theory of x-ray diffraction from crystals and
discussed the qualitative aspects. Application of the theory to real crystals (including
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Fig. 8 — The ratio of the polarization factor, Rg/Rg, for a lithium fluoride crystal
(200 cut). Note that this ratio conforms to neither the perfect crystal diffraction
theory (]cos20]) nor the ideally imperfect crystal diffraction theory (cos228).
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Fig. 9 — First-order integrated reflection coefficients for a lithium fluoride crystal (200 cut) asa
function of diffracted wavelength. Two of the data points at 0.877 A are displaced in wave-
length for clarity.
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absorption effects) involves extensive numerical calculation even if, indeed, the theory
applies to the crystal in hand. We have also presented, in as general a form as possible,
the techniques and measurements required to determine the characteristics of a single
crystal Bragg spectrometer. The procedures are illustrated using a lithium fluoride crystal
(200).
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Appendix A
STATISTICS AND PROPAGATION OF ERRORS

Suppose we make m independent measurements. Each measurement will have an
associated error (e.g., if N is the number of observed photons from a source, the standard
deviation is /N if the photons are Poisson distributed). We associate orthogonal unit
vectors &, &y, &3 ... &, with the m independent measurements N, Ny, N3, ..., N,,.
Denoting the standard errors by ¢, 03, 03, ..., 0,,, we may define error vectors o;, 0y,
o3 ..., 0,,, where 0; = 0,6;. Now, suppose we have a calculation based directly on
measurements of N;, i.e,,

f=FfNy,Ny, . Npy). (A1)

Then, approximately, the error Iofl in f is obtained from

of
Of = W g;. (A2)
i=1 !
Now, suppose we calculate an additional parameter:
h=h(f, Ny, Ng, .. N,,). (A3)

In this case we would normally take

2_ 3 [k Of if_>2 2
o2 ;<af Wt o (A4)

For complicated expressions arrived at through many algebraic steps, the propagation
of errors in such a way becomes tedious and difficult. The same result is obtained if we
take

m

oh oh
oy = =5 O'f+ : a_]vl g; (A5)

and let g5, = |g;,| be the error in h. Often, the final results desired are not statistically
independent and the relationship of the errors in the final result might also be required
for future calculations. Keeping m-dimensional error vectors is often not practical. By
using the Schmidt orthogonalization procedure, we reduce the dimension of the error
vectors to at most the number of final results desired.
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