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ABSTRACT

The fixed-base natural frequencies of a system are those natural frequencies the system
would have if it were mounted on a base of infinite mass and stiffness. The main purpose of
this investigation is to find a generalized analytical method for determining the fixed-base
natural frequencies of an in situ or laboratory mechanical subsystem. The analysis will be
based on an arbitrary n-degree-of-freedom undamped linear time-invariant system. The appli-
cation of this analytical method is extended to cases with small viscous damping. Only one
shaker is needed to obtain the required response measurements necessary to calculate the
fixed-base natural frequencies of the subsystem. Gages to obtain these measurements should
be placed at all supporting points of the subsystem being tested and one additional point
located any other place on that subsystem, The analytical work reveals that the following
advaniages of this method are realized:

1. No assumption other than linear time-invariant of the total system has to be
imposed in the derivation.

2. No detailed physical properties of the whole system have to be known although,
by its very nature, the mobility of any element within the system depends upon the phys1cal
properties of the whole system. In fact, acquiring detailed physical properties has always
been the difficulty in calculating the fixed-base natural frequencies of a real complex system

3. Itisequally convenient to carry out the test in the field as well as in the laboratory,
provided that the shaker is capable of generating enough mechanical energy to exmte the
subsystem.

4, When conditions allow, many subsystems can be measured simultaneously. :Con-
sequently, based on the liberal choice of force application points, savings in manpower time,
equipment, and money may be effected.

There are also disadvantages:

1. Tests will not reveal fixed-base natural frequencies if the system contains exten-
sive viscous-type damping. This is not a serious limitation, however, since in the presence of
large amounts of energy dissipation, natural frequencies do not in any case represent the
significant dynamic parameters.

2.  Precise setting and alignment of the shaker is essential to avoid 1ntroducmg un-
wanted complex responses. L




In summary, this paper presents a practical method to determine the fixed-base natural
frequencies of a subsystem. If such frequencies exist, they are significant in current methods
of structure analysis and design criteria involving dynamic loading,
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SYMBOLS
The symbols used in this report are defined as they appear within the text. The most
important ones are listed below for reference,

A dot over a variable in the text represents the differentiation of that variable with re-
spect to time.

A superscript T or -1 at the right corner of a matrix indicates the transpose or inverse
of the matrix respectively.

— row matrix

{ } column matrix

[ 1 square matrix

{ } non-square matrix
(1] identity matrix
(. determinant

i absolute value

aj matrix element of [A] at ith row and jth column
L(g.q;t) Lagrangian
T(g;t) kinetic energy
Vig;t) potential
qp kth generalized coordinate
t time
[M] mass matrix
[R] damping matrix
[K] stiffness matrix
v




b

Qrj

{9
(7]

[Zz°]

Plmy; w)

frequency of excitation

jth fixed-base natural frequency of structure or substructure |
force at location k

amplitude of the sinusoidal force Fy ()

Spatial force column matrix (or vector)

relative phase angle of £th response with respect to the applied force Fj(t)
at location §

amplitude of the kth displacement response due to the applied force Fi{f}
at location j

kth spatial displacement component

Spatial displacement column matrix {or vector)
flexibility matrix

flexibility matrix element at ith row and jth column
mobility matrix

mobility matrix element at ith row and jth column
cofactor of the flexibility matrix element zj;
flexibility matrix of the equipment subsystem
flexibility matrix of the support subsystem
flexibility matrix of the base subsystem

coupling matrix between subsystem k and subsystem 2

Resonance function




DETEEMINATION OF FIXED-BASE NATURAL FREQUENCY OF
MULTIPLE-FOUNDATION MECHANICAL SYSTEMS BY SHAKE TEST

INTRODUCTION

The theory explaining the small oscillation of a simple mechanical system has been ex-
perimentally validated for some time. The application of the theory to a real complex sys-
tem, however, is limited, where precise information concerning the coupling mechanisms
among the elements of the system is lacking. Even when the exact physical constants are
given, the numerical calculations are very cumbersome. As a general practice, certain impor-
tant constants can be extracted quantitatively from the experimental results. The shake test
is often used to measure the vibrational responses. It was mentioned in the report by Petak
and O’Hara (1) that knowledge of the fixed-base natural frequencies of a system is essential
in current methods of treating dynamic problems. Since Ref. 1, the method of determina-
tion of fixed-base natural frequencies by shake test has been investigated at NRL. Simple
cases were analyzed by Petak and Kaplan (2) for a one-dimensional linear chain, and by Petak
and O’Hara (1) for a dual-foundation shipboard equipment. Experimental work on a single
support beam was reported by Remmers (3). This analytical method is proved to be.a: gen-
eralization of the aforementioned special cases.

This report includes the analytical presentation of this method, the physical interpreta-
tion of the entities derived, the technical method suggested in taking and analyzing test. data
and drawing conclusions, and the extension of its application to damped systems, which is
of importance in engineering practice. Various computer simulations of a problem designed
to illustrate the developed method are provided. Experimental confirmation of this method
on a three-support beam mounted on a truss-like frame will be presented in a separate report.*

The experimental techniques in principle are essentially the same as described in Ref. 2,
except that phase differences (or the relative phase) between the applied force and corres-
ponding responses at points of measurement are necessary for a subsystem having three or
more supporting points. By use of the resonance condition, the fixed-base natural frequencies
can be calculated from the experimental data. In order to eliminate the extraneous frequen-
cies inherent in this method of measurement, one additional shaking point on the equipment
subsystem itself is required. Contrary to the speculation that many shakers with variable
forces (both magnitude and phase) ought to be used in a multiple-foundation system, this
method requires only one shaker at a time. The magnitude of the forces applied is irrelevant
to the result, as long as the system is being excited to a measurable level, However, the phase
differences between the forces and the responses are important,

*NRL Report 7362
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THEORETICAL ANALYSIS OF A LINEAR TIMEINVARIANT MECHANICAL SYSTEM

It is intended to develop a steady-state method for determining fixed-hase natural fre-
quencies of anin situ or laboratory mechanical subsystem, In this analytical treatment, gen-
eralized coordinates g in configuration space, Lagrangian mathematical formulation, and
Iinear space matrix representation will be used to clarify the physical contents of the mathe-
matical formulation. Since it is understood that the main goal of this investigation is to deter
mine fixed-base natural frequencies, the result is confined to linear time-invariant systems,
of to systems behaving approximately so.

Undamped System

Equation of Molion—The Lagrangian formulation describing an n-degree-of-freedom
dynamical system can be found in many books on mechanics {4, 5). Since this formulation
is not our main interest here, only the regult will be introduced. Suppose L(g, ¢;¢) denotes
the Lagrangian of the system, T(g, ) the kinetic energy, and V{g;t) the potential energy of
the system; then by definition,

L = P(g:ty - V(g;0) 1)
TGty = § @ IM1{d} @
Vigit) = 5 a [K1{d} ®

From the variational prineiple, the equation of motion of a free systemn can be derived as

d aL alL ,
- - — =0, (4)
dtagy agy

When there are applied forces, the constitutive equation may be written as

d oL 3L
S - 2 - R 5
35, 0 % { (5)

The explicit expressions in mairix form of Eq. (4) and (5) are
[MHa} + (K}{q} = {0} (6)
(Mg} + [KHq} = {Fi)} (7
respectively.
For the particular purpose of natural frequency determination, the applied forces F(t)

on the right side of Eq. {7) have {o be limited to being sinusoidal, so as to provide a single
input with a well-defined driving frequency «w to the system. Let




NRL REPORT 7300 3
F(t) = Fsin wt , (8)

Here the phase of the force F(f) is assumed to be zero. This assumption will not lose its gen-
erality in the analysis, if a relative phase is assigned to the responses. Then the steady-state
solution of the set of n simultaneous linear differential equations, Eq. (7), has the general
form of

{ar} = { @rjsin (ot + ¢rj) } (9)

where ¢pj=nmr,n=0,1,2, - - - for undamped cases. Substituting Eq. (8) into Eq. (7), the .
setof n s1multaneous 11near d1fferent1a1 equations is reduced to a set of n simultaneous alge-
braic equations, which has the following general form

(~w2im] + (K1{q} = {F} (10)
where
-w2[M] + [K] = [2] (11)

is defined as the flexibility matrix of the system, and (1/w){Z] is normally defined as me-
chanical impedance matrix (1).

Linear Space—In order to simplify the mathematical manjpulation and help to shed
light on the physical insight of the formulation, Eq. {10) can be written in the followirig form:

[zW{q} = {F}. (12)

If one views Eq. (12) as a mapping or transformation between two linear spaces, then [Z] is
just an operator which maps the force space onto the coordinate space. Here [Z lis assumed
to be nonsingular; this is true for most real physical systems, and the mapping is:in-a; one-to-
one correspondence. When the inverse of [Z] exists, one can apply operator [Z] -1 to Eq
(12) to obtain

[21-1[z1{g} = [z}-3{F} , (13)

or

{a} = [z]-}{F},
where the identity equation
[z)-1[z] = [1] (14)

is used. The matrix [Z]-1 is often defined as the influence matrix, The mobility matrlx is
defined in terms of the influence matrix as
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[w] =w-IzF1. (15)

Fot the convenience of discussion, the linear spaces {q} and {F} are divided into sub-
spaces. In doing so, a few definitions are necessary, Any physical system may be described
as three main parts:

Equipment: The subsystem under investigation

Support: The subsystem supporting the equipment

Bage: The remaining part of the total system other than the equipment
and support.

Correspondingly, these three parts can be defined as three subspaces {q""}, { qs}, {qb} ,in the
coordinate space {q}, and three subspaces {F‘*} , {Fs}, {F b} , in the force space {F} Then
Eq. (12) can always be arranged to have the partitioned form

29 et (ot [ flad] [l

fes¥ 1 1241 | {3} [fah =y as

o oy e e

b

or by matrix multiplication

[z¢H{qe} +{ceHa} = (P}, an
{ce¥ g} + [250as} +{c3}qb} = {F}, {18)
{cs¥ e} + [25){q¥} = {FP}. (19)

It is apparent that there is no direct coupling between the equipment and base subsystems be-
cause of the definition of the support subsystem, In the analysis as well as tests, the three
subsystems {or subspaces) must be defined without ambiguity.

Resonance Condition—The resonance condition for the equipment subsystem requires
[ze1{ge} = o0 . (20)
Consequently, this requires
{eeHas} = {Fe} . (21)
Theoretically, there is a definite solution for Eq. {21) if the rank of {Cf }equals the dimen-

sion of {q 5} for a given set of {Fe . But this does not usually occur in practical applications.
However, the applied forces are arbitrary and under our control. Therefore one may set
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{ Fe} = {0}; that is, there are no forces which can be applied to the equipment, and still
have the resonance condition satisfied. Equation (21) becomes

{ceHas} =0 . (22)

Since {C¢} + {0}, the support-displacement response vector must vanish at the fixed-base
natural frequencies of the equipment subsystem. Now let us examine the set of simultane-
ous equations, Eqgs. (17), (18), and (19), under the resonance condition discussed previously.
The system can be described by the following equations:

[z¢W{g¢} = 0, (23)
fee{a} +{ciHa?} = {#s}, 24)
{zb}{qb} = {FP} . - (25)

It can be explicitly shown that the solution of Egs. (23), (24), and (25) does contain the in-
formation we need to know about the fixed-base natural frequencies of the equipment sub-
system, This information is in agreement with the computer simulation of a one-dimensional
linear chain structure reported in Ref. 3. In the present report, we have shown analytically
that it is true for all undamped linear time-invariant systems in general, no matter what the
forces are.

Resonance Function—A resonance function is defined in this section because of its par-
ticular importance in fixed-base natural-frequency determination. It contains information
about the resonance frequencies of the equipment subsystem. All extraneous natural fre-
quencies of the base and support subsystems are excluded. The graphical representation of
the function shows peaks at the fixed-base natural frequencies of the equipment subsystem.
The resonance function is also a function of the mobility entities of the mobility matrix of
the total system. These entities are the characteristic and invariant properties of the total
physical system, and their measurability is of key importance in this investigation.

Before we proceed to derive an explicit expression of the resonance function, it seems
essential to recall the linear space transformation in matrix form. The harmonic solution has
shown that the mobility matrix is defined as in Eq. (15). The entities of the mobility matrix
can be expressed as

z.
My = w (26)

where Zjp, is the adjoint of the flexibility matrix {Z], which corresponds to the flexibility
matrix element zp;. Physically there is a difference in meaning between the mobility matrix
and the inverse of the flexibility matrix; the mobility matrix is an operator to map the gen-
eralized velocity vector onto the generalized force space, while the inverse flexibility matrix
is an operator to map the generalized coordinate vector onto the generalized force space. In
our particular case, generalized coordinates and generalized velocities are related by a scalar
multiplier w, the frequency of excitation. It is immaterial which one is used in this analysis.
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However, in order to avoid ever increasing confusion in ferminology, the mobilities are used
throughout the derivation.

We congider a system composed of an ¢ degree-of-freedom equipment subsystem, an
m-% degree-of-freedom support subsystem, and an n-m degree-of-freedom base subsystem.
The explicit form of the set of simultaneous equations, Eq. {(13), describing the total »

degree-of-freedom dynamic system, is the following, when there is no force acting on the
equipment subsystem:

wgy = MigriFesr + o0 F My, oo My Fy

wig = mggaFoay + oo v mamFy + oot Mg ly

wge = Mg geiFouy + -0 Mg Fp + oo+ Mg nFp

wqgel = Mot 41 Fpe1 + -+ + MpgsimFm + -+ ¥ Mo nFpn
Wim = Mgy g1 Frag + oot My Fy + oo F My o Fp
WOm+l = Myt eriFoer + oo Y My F + -0+ My Fp
wqp = My ge1Foey + oo ¥ MpmFm + -0 F My o Fy .

In applying the resonance condition, we single out the part containing the generalized coor-
dinates of the support subsystem from Eqg. (27) and set them equal to zero; that is,

Qes1 = Qoag = ©°c = gm =0, (28)
or
Mosy g+1Fr1 + -0 F MgsimFm o0t Mo pFp 50,
Mo+ os1Fer1 + 2o + Moo mFm + +-0 + Mg pnpn = 0,
(29)
My e+1Fger + < * My mFyp + -0 + My nFn = 0.

Equation (29) is a set of simultaneous homogeneous algebriac equations,. In generaln — £ >
m ~ % that means an infinite number of solutions can be developed for various given forces.
In other words, the solution is indefinite. However, once again one may take advaniage of
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the fact that the applied forces are under our control during the measurement. If one limits
the total number of forces applied, one at a time, to be equal to the degree of freedom of the
support subsystem m — £, then a nontrivial solution exists. This solution requires that the
determinant, consisting of the mobhility entities associated with the applied forces, vanishes.
For example, if ali the forces are applied at the support points, then

Mo+l g1 " Mg+l m
Mo+g g+1 """ Mp42 m

= (w) . (30}
Mme+sl " Mmom

It is equally true for any other combination of m ~ £ forces. In other words, the forces can
be applied on the support subsystem, on the base subsystem, or on the combination of both.
This liberal choice of application points offers great flexibility in application of this partlcular
method.

It is important to show explicitly that Eq. (30) does contain information about the fixed-
base natural frequencies of the equipment subsystem. Recall the matrix Eq. (14). The flexi-
bility matrix and its inverse are commutative. The matrices in Eq. (14) may be pa.rt1t1oned
and written in the following form:

[ [zl {ce} I fol | e | | 1 [ o 0
__——_I _______ R R R T
e [ZS]|{C} R ={ 00
————————————— e e —t—t—
{0} |{CS}T[| [Z?] | I Man/u 0lolr
| _ J L | ! J L |

[1] { mj Q+1]w . {0}
ot ! : '| rl
_{,_}L_______;{_O}__ ’
{O} : U Mam/e : [z]
one has
— 1 " ]

[ze] '{c;—} "oy ]! mml,w--.:{o} [tz ! {0} {0} (31)

{es) 129 qeg} | [ {0}, 1 o} | - {ce}’“m {c}

{0} :{Cz}Ti[Zf’]J {0} -~ mumps | 1] {o} {0} [z%
- ! — —
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Taking the determinant of both sides of Eq. (31) and applying the identical equation

Hal{BH = fall B (32)
regults in
fz10(w) = [ZeN[Zb]wm2 |
or
_ fzen iz,
Se) Lzl ‘- 33

Equation {33) shows that Q{w) = 0 not only carries information about the fixed-base natural
frequencies of the equipment subsysiem, that {Z%] = 0, but also the fixed-base natural fre-
quencies of the base subsystem as well as the natural frequencies of the total system. These
extraneous frequencies can be eliminated by construcling another determinant having an
order of m— 2 + 1, It is done physically by adding another force applied al one of the equip-
ment points. If we designate this determinant as '{w), then

Mg 2 e My m
Masl g+1
= Q'(w) .
My g s Mm m
Following the same procedure in deriving Q{w), one has
2(w) = [ze] 1[2”}]1 meetl (34)

izu

In generat, {{ 7€'} does not vanish at the fixed-base natural frequencies of the equipment sub-
system unless the determinant }[Z¢]] and the determinant {f Z¢]] do have common factors.
'This will be discussed later.

Now we are in position to construct the resonance function Y(my;, «) in explicit form.
This is defined as

Q (w)” u Lz HY (35)

Tw) iz}

Y(mpj;w) = "

Here, the double line designates absolute value. The uge of the absolute values in the reso-
nance function evaluation essentially converts the zero-crossing points of function {{Z¢}} =
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to minima. For a physical system, [[Z¢]| is finite for finite cc. The singularities of Y (mp;;w)
corresponding to |[Z¢]l = 0 gives the fixed-base natural frequencies of the equipment sub-
system.

As for the identification of the detected resonance frequencies concerned, the extrane-
ous frequencies of the base subsystem and the total system are eliminated. As pointed out
before, when there are decoupled subsystems within the equipment subsystem, ambiguity
arises due to the fact that [[Z¢]| and |[[ Z¢]| have common factors. In turn, the resonance
function y(myj; w) does not reveal all the resonance frequencies as expected. The remedy
for such ambiguities is to take one or two more force application points on the equlpment
subsystem for cross-check purposes.

Although the derivation of the resonance function is based on the assumption that the
m — ¢ forces are applied to the supporting points, the actual locations of the application
points of the forces are irrelevant as long as they are kept away from the equipment subsys-
tem. The aforementioned fact is not obvious, because the extraneous frequencies induced in
the derivation of the functions £2(w) and Q'(w) depend upon the force-application points.
However, those induced extraneous frequencies are common factors of Q(w) and Q'(w). As
a consequence, the resonance function remains unchanged. A mathematical proof for thls ‘
liberal choice of force application points will be given in the next paragraph.

To prove the above statement of liberal choice of force-application points, we refer to
Eq. (31), in which the matrix replaced the inverse flexibility matrix having its physical sig-
nificance. In that matrix, one noticed that the mobility entities were replaced by unity or
zero, except those lying in the m — £ columns. Those columns correspond to the locations
where forces are applied and include the eigenvalue function £(w) for the resonance condi-
tion of the equipment subsystem under investigation. In this particular case, the resonance
condition is

Quel = Geag = ' - gy = 0

with forces applied at the supporting points gp+1, @o+2, -+ * qm. Now suppose one of the ap-
plication points, say q,,, is to be changed to a point on the base subsystem, say at q,, where
L<w< m,and m < v < n, the corresponding matrix change is as follows: '

’_ : mi e+1/fw mi wiw M1 m/w l
[1] 1 {0}
! . I
e Sttt =
ot | I {0
_...{__}_L _________________ .L.{_}:_
| |
! I
{0} ;L[]
| Mpe+lfs " Mam/o ' " Mhw/wl
L I ’ |
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to
| mi m ciem m ] 0 m 0 i
{I] | 241 oo 1 w—lho 1 wHljw 1 m/w | 1 vw
i |
B ]
0} | 1
oy [
| Ir
| S
i { 1
{G} j 1 My v/
| Mp e+rljw "7 Mpe-1jo' " " Mn w+lio "' Mp miw l I_
! l K
1 i !

The determinant of this new matrix is also an eigenfunction Q{w) corresponding to the same
resonance condition as stated before, buf with the difference that one of the applied forces

is changed fo a new location at g, on the base subsystem instead of at q,, on the support
subsystem. If one makes the corresponding change in Eq. (31) and designates the new mafrix
as { V], one will have the following mairix equation:

{86)

[z°1 {0} g {0}

S Y i S i
i 10--rc1w Qicwlﬁﬂ "o Coel -1 O Coeyopry vt
S |

eaT | ' !
{Cs} : Cw v I
(2} V] = | "1 |

S S R
| ! B b
j 0 Cm+l v 0 Zpaimetr " " Zmat 01 0 Zay g1 7
| i .

o | z 1
i Cn v |
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Taking the determinants on both sides of Eq. (36), one has

Mo+l e+l " " Me+] w=-1fw Mo+l w+lfw © " Mo+l m/w Mo+l v/
izl- :
Mpmetlfw = " Mmow-1/w Mmw+lfe ' " " Mmmieo Mnye
Cwv Cwm+l " Cwor1 Cwuwtl T Cwn

b b b .
Cm+l v Cm+1l m+1 ** "Zm+1 -1 *m+1 v+l

‘z?ﬂ'{'l n (37)

=[z] - Cp-1v 23—1 m+l '23—1 -1 33—1 v+l T '23—1 n
b b b b
Cytl v v+l m+l " "Zp+l v-1 Bptl v+l T T " 2p+l n
b b b b
Cav  Znm+l t'Znp-1 Zpousl **Zpan
or simply
I[Ze]l :
Qw) = = - [ZV]) wm—2 38
[z ! (38)
where [Z7'] represents the matrix
-
Cwv Cwm+l -~ Cwurl1 Cwusl "'Cwn—|
b b b /]
Cm+l v @m+l m+1 """ Fm+l -1 Fml pil ' @mel n
b b b b
Co-1v Zp-1m+l """ 2p-1 -1 B~1 i+l """ Bu-1n
b b b b
Cusl v 2p+l m+1 """ Zpal -1 Ryl el " " R2utl n
b b b
Cnv  Znom+l T Zp -1 En vl zﬁn ]




12 NI AND SKO®

The indices w and v are rather arbitrary within the limit of ¢ < w < m,and m < v < n. This
procedure can be repeated to interchange the force-application points between the support
subsystem and the base subsystern as desired. When each additional application point of the
forces is changed to another location, Eqs. (37) and (38) show that the difference in the
eigenfunction 2(w) is limited to the induced extraneous frequency function { Z?] alone, but
not to the absolute value of the ratio of the determinant { Z¢1! and the determinant {Z L.
This means that such exchange of force-application points will not alter the information of
the fixed-base natural frequencies of the equipment subsystem, Nevertheless, the solutions of

i[zb1t = 0 and zvl = o,

in general, will not be identical. Therefore the remaining task is to show that the extraneous
frequency funetion, |[Z®} = 0, will remain unchanged if an additional force is applied to the
equipment subsystem. Afteniion is called to the fact that the flexibility matrices [ Z%] and
[2?] of the subsystems are merely artificial designations for the convenience of discussion.
They are physically equivalent, in reality; choice of one or the other is dependent on which
part of the system is of inferest in the particular investigation. Because of this equivalence
hetween the equipment and base subsystems, one may conclude, without repeating the mathe-
matical manipulation, that one additional shaking point on the equipment subsystem will not
change the determinant {Z%]], but will change the determinant {{Z¢}l. This is the property
being used in constructing the resonance function ¢(mg;;w) to assure that all the induced ex-
traneous frequencies are eliminated.

Damped System

The computer simulations in the “Example Problem” demonstrate the soundness of the
developed fixed-base natural-frequency determination method for a one-dimensional muliiple-
foundation undamped system. It is of both theoretical and practical interest to ask whether
this method can be used in studying damped systems. In order to answer this question, an
analytical approach is necessary for two reasons: first, the extension of this method to apply
to damped systems is not frivial; second, damping does exist in all physical systems. In other
words, this analysis is intended to show the applicability and limitation of the fixed-base
natural-frequency determination method on damped systems on the one hand, and the in-
trinsic properties of the damped system on the other. Either of the aforementioned inferests
reguires proper understanding of the experimental results. Such understanding cannot be
achieved merely from the measured dynamic responses. The exact manner of acquiring the
test dafa sometimes is the determining factor to accomplish the purpose. It is known that
the shake test has been used to measure impedance, mobility, and natural frequency of a
mechanical system directly or indirectly through response measurements, Those quantities
are immensely useful in structure analysis and design eriteria where dynamic loadings are
involved. The purpose of this analysis is to provide a better understanding of real complex
systems, s0 that use of test data will be more confident,

Equation of Motion—A damped system involves dissipation of energy. In numer-
ous experimentally justified cases, the dissipative forces in a mechanical system are indeed
proportional to velocities and referred to as viscous damping. For such a system, one may
use the Rayleigh dissipation function, which is defined as
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2

where rj; are the elements of the damping matrix [R ], which are real and positive.

The corresponding constitutive equation of motion in the Lagrangian formulation
becomes

3L oL R
- — + = Fp(i 40
dt (3% ) L CL 1 #(t) (40)

or, written in explicit matrix representation of the governing differential equations,
Mg} + [RMa} + [KNq} = {F} . (41)

A great number of structures also exhibit energy loss during motion, with the dissipa-
tive forces proportional to displacements known as coulomb damping. It is equally possible
that energy losses due to dissipative forces proportional to acceleration may have a sizable in-
fluence on the system in motion. However, these latter cases may be described by Eq. (41),
if we regard the mass matrix [M ] and the stiffness matrix [K] as effective mass matrix and
effective stiffness matrix accordingly. Therefore, Eq. (41) may be used to study damped
linear time-invariant systems in general. 3

Closed Form Mathematical Solution—In an idealized shake test, a shaker prov1d1ng a real
sinusoidal force is assumed in a mathematical model. Such a foree may be expressecl as

F(t) = F sin wt.

The steady-state solution of the governing differential equation, Eq. (41), is supposed to
exist, in which the whole system vibrates at the unique frequency w of excitation. The re-
sponses can be expressed in the following general form:

{Q’k} = {q—k sin (wt + ﬁf’kj)}
_ . (42)
= {Ek cos wt + by sin wt} , e

where a, = gp cos Spj» br = gy, sin ¢p;,and in general ¢, # nm,n=0,1,2,... for cases in
which viscous damping is involved. It is evident that in a damped system, two components are
needed to describe a single response, i.e., either (g »®pj) or (ay, by). Taking the time deriva-
tives of Eq. (42) and substituting them into Eq. (41), one has

—mz[M]{Esin wt + b cos wt} + w[R]{a_sin wt — b cos wt}
_ _ (43)
+ [K]{Esin wt + b cos wt} = {Fsin o.:t}
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Since sin wt and cos wt are independent, Bq, (43) may be written as
~ofM{a} - wir){5} + (KN} = {F}, (44)
~2AMa} - lR1{B} + (&Ha} = {0} . (45)

By rearrangement of the terms in Egs. {44)and {4B), and writing them in a compact form,
we have

(K] - wfM] | -wlR] (&) {F}
~~~~~~~ e el I S . (46)
“R] K] - oy {5} {0}

Theoretically, the problem is solved once a set of forces along with the physical properties
[M],[K], and [R] of the system are given. A closed-form solution can be worked out from
Eq. (46) by any computer means. However, the application of Eq. (46) in practical measure-
ment is not trivial, With this closed-form solution in mind, an approximate solution fora
shake test will be developed in the nexti paragraph.

Approximate Solution For Shake Tesi—Equation (46) tells us: {a) when the system is
undamped, i.e., when [R] =01, {5 }and {b }are not coupled (the solution will be identical
to the solution of Eq, (10) if {a }is replaced by {g}; and (b) when the system is damped, or
[R1=1{0],{a} and%g} are coupled. Then the phase factor becomes important, and a set of
2n linear simultaneous eguations has to be solved. In generai, the semi-analytical determina.-
tion of fixed-base natural frequencies of such a system is complicated.

Since numerous small viscous damped mechanical structures do exist, it is well worth
while {o continue the investigation of these systems. In order to establish the justification
to extend the developed method to such cases, we recall Eq. (46). In Eq. (46), one sees that
when damping is small, the real part of the response {E } is weakly coupled with its correspond-
ing imaginary part {5 }, and Eq. (44) approaches Eq. {10} as damping decreases towards zere.
Consequently, the solution of the real part of Eq. (46}, ie., {E}, alsc approaches the responses
{?j } of the undamped system in Eq. (10), which is real. Therefore for a slightly damped sys-
tem, the solution may be approximated by using Eq. (46) for shake-test analysis. To be more
specific, we rewrite Eq. (46} in the following form

[z} i—w{Rl {3} {7}
——————— = : (47)

wlR] : [z1 {5} {0}

where [ Z] is the flexibility matrix of the very same system, but with no damping. Then the
real part of the solution of Eq. {47) may be regarded as the approximate solution of a slightly
damped system. To show this, we suppose that the system under study is not excessively
damped; the real part of Eq. {47) may be approximated as the solution of the system. In
solving for the responses in terms of applied forces
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{a} {r}
= [G] . (48)
{v} {o}
where

¢l ={———7———— . (49)
wlR], [Z]

The explicit expression of the real part is
{E } {Ef COos ¢}
(11 + w2z Rz R]) - 214{F} - (50)

= (11 + (10 10RY)2) 121 {7}

where the matrix w[Z 17! is the mobility matrix [J{]. When [R] is small, the followmg ap-
proximation may be made:

(I + (IR1)D = u =, 6D

because the elements of the matrix [ WI{R 1, m;rjp , are much smaller than the dampmg ma-
trix elements r;;, which are in general small. Then Eq. (50) becomes

{Ecos gb} ~ [Z]"l{ff"h} ) (562}

It is exactly the form of Eq. (14}, except that the responses involve a phase factor-cos ¢.
Therefore, the developed method can be applied to slightly damped system as well,

EXAMPLE PROBLEM AND DIGITAL COMPUTER SIMULATION

A specifically designed sample is in order to illustrate the applicability of the developed
method. Also some comparisons were made to bring out the ambiguity which could arise due
to negligence. A simple, but still general, undamped one-dimensional system of nine degrees
of freedom as shown in Fig. 1 will be treated. The equations of motion for free vibration
may be derived from

{ﬁ(a—._) - == =90 where L=T-V |, (E1)
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Fig. 1 - Configuration of the nine-degree-of-free-
dom, one-dimensional, undamped composite sirue-
ture for digital computer simulation

L L I Lo )_!

1 .2 1 . Lg—-Lg - - 1 . Ly—Lg - .
T = 5My + éMz[yz-r 3L3 5(3’1*3’2)}2+-§M3[3ﬂ3+—4§;ﬁ(?2‘3’3)}2

1 .2 1 . Li—-Lg .. - le 1 . Lo —Lg .. - s
+ 5 Mayg + §M5 [3’5 + 1L1 6 (v4 -3’5)] + EMG[TYB + 8 (ys ~ ve)

i .2 1 2. 1 . L1 - Lg . . 2
T gMyyg + Mgy, + §M9[y3 Y W —ys)]

1 . Lg-Lyp - - 2z, 1 2
+ = = - + =

—

1 Ly - L
V= 2Ki(y1-v4)% + Kalye - 23 (g +y4)]2
5 2 I

1 Le— L 1 1
+ ng[ys - 2L 8 (s +y5}]2 + §K4(3f4—3’7}2 + §K5(y5—yg)2
2

1 i 2 1 1
+ §K6(3’6_}’9)2 + §K7y7 + §K8y32 + §K9y92 . (E3)

For this particular system, the kinetic energy T is coordinate independent and the potential
energy is velocity independent; thus the Lagrangian equation has the form

d{al av
—_— —— + — = .
dt (33’:‘ ) 3y; 0 (ED
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By differentiation of T and V, the equations of motion are:

2
Lo—-L " La-L Le\..
[Ml + Mz( 3L3 5)}3’1 + Mz( 3L3 5)(3%)3’2 + K1y1 —Kiy4 = 0,

2 2
Lg — Lg .Ii) 5) (L4 - LG) . Ly - Lg\/Lg\..
My (__Ls )(La ¥1 + | M2 Is) * M3 s Y2 + M3 I (——L4)3’3

Li~L IL{-L
+ Koyg — Kz( 1L1 3)3’4 - Kz( 1L1 3)y5 = 0,

2
Ly — Lg\(Lg).. L - Ly-L
i e 6)(.&:)”2 ' [Ma(ri) ' M“]ya * Ko - Ko o ?)s

Lg— L
- Ko(*2"2)ys = 0,

2
Li1-L v Ly — La\fLA\ .. Li1-L
Ms(—-—1 7) yq + Ms(—l-———z)(—?)% - Kyy1 - Kz( L 3)3*2

Ly L1 Ly Iq

p) 2
Li-L Ii-L
+ I:Kl + Kz( lL 3) + K4:|y4 + Kz( ! 3) ys — Kgy7 = 0,
1 In o
M (Ll jL?)(_{z_z 5o+ M Ly 2 + M Lo~ Lg 20 + M Lg—Lg Lg
6 i I Y4 5 I 6 Lo ) Y5 6 Iy 3-2*?6
L1~ L3 Ly — Lg /L1 - L3\?
- KZ(T)ZYZ - Ks( yg + Kz( I, ) Ya

2 2 2 ‘
L;-L Lo-L Ly - L
e e R (R = LT

1

L2"L3)<L3).. Lg\2 ) Ly—L
M (‘_—— —1ys + | M (-—) + M - K ( 8)
S\ Ly /\Lp/7® 617, 7|96 = Kol =" )ys
2 2
Ly~ Lg Ly - Lg
Ly - Lg\® L1 - Lo\ /L
Mg + ? 1~ Lo\ [Lg\.. _ _
Ll‘L9)(L9)~ (Lg) (Lz—L 2 Ly - Lo\ /L
M ('_'4__ — + | Mgl=—= + M 0) Va + M ( 2 0){£0\.
N1 L y7 NI, 10\~ Vs w =N, Vg

- Kgys + (K5 + Kg)yg = 0,

2

(E5 Con’t.)
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2
Lg — Lo\ [/Lg\.. Ly
Mg |20V 20Vs & Lo
m( Lo )(Lz)ys [Mm(ffz)

We try a solution as the real part of

+ Mn}ig —~ Kgyg + (Kg +Kglyg = 0. (ES)

= il

y; = yie't, where ¥; = {¥ile’®. (E6)

From straightforward substitution of Eq. (E6) into Eq. (EB), the influence matrix {Z] can be
determined.

Z11 o Z19

Lzl-

Zg e Zgg

The elements of the [Z) matrix are real, in this case, and symmetric.

Z11 = Ky - wz[Ml + (M)Mg} ,
Lg
L~ L L
= = — ,2 purk: A A Y e
Ziz = Zn “ Mg( L3 )(Ls) ’

Ziz = Z31 = Zip = Zp1 = Zie = Ze1 =417 =&y =Zig =Zgy = Z1g =29 = 0,

Zig = Zay = Ky,

Li—L
Zgy = —Kz(-';"——i) ,

Zog = Zey = Loy = Zqg = Zgg = Zgg = Zgg = Zgg = 0,
9
Zss = K3 - wz[Mg(-%@—) + m} ,
4

Zay = Zsg = Zgy = Zqg = Zgg = Zgg = Z3zg = Zoz = 0,
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In calculating the natural frequencies, the numerical values of the physical constants are
assigned:

My = Mg = Mg =1,

]

M4=M5 Mﬁzza

Ky =Kg =1,
K7 =2,
Kg = Eg = 3.

The natural freqguencies of the total system are calculated by setting

I{Z1: = o.
The results are:
wi = 0.3631 ,
wy = 0.4802 ,
wy = 0.7801 ,
wl = 0.9196 ,

= 1.0266 ,

wa"
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wj = 1.2656 ,
w7 = 1.4065 ,
wy = 1.4890 ,
wi = 21373 .

Separate cases will be taken into consideration.
Case 1 — General Illustration of the Applicability of the Proposed Method with Forces
Applied at the Supporting Points
Define the subsystems:
¥1. ¥2, and y3 span the subspace of the equipment subsystem (Fig. 2),
Y4, ¥5, and yg span the subspace of the support system,

¥7, ¥8, and yg span the subspace of the base subsystem.

o Ls Yi Lg
[ 1
Fig. 2 - Configuration of the eguipment substructure L L ®—’r
for illustration case 1, with forces applied at its
supporting points y4, y5, and yg and at point y3 on
the equipment Ki 2Kz
e, bes

In order to test the method, the fixed-base natural frequencies of the equipment subsystem
are first calculated by setting:

Z11 Z1z  Zy3
Z¢]l = 0 =129y Zgg Zog

Z31  Zaz Zgz

The results are:

w; = 0.7816 ,
wy = 0.8774,
wh = 1.2794 ,
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Then apply the resonance condition
Y4 = ¥5 =¥ = 0,

with forces f3, {4, f5, and fg applied, one at a time, at the equipment and supporting points
¥3, ¥4, ¥5, and yg respectively, The resonance function yi(m;;;w) may be written as:

M1y M4 M5 Mg
M4i1  M4q  M4p M46

msy Mmay mss mg7

me1 M4 mgs Me6

P(myiw) =
maq  My5  Myg

med meh mgg

where

Zji  _ wyij

izl fi

ﬂ’r‘.jj':t’.d

and Zj; is cofector of z;; in Z. The result of the digital computer simulation is shown in Fig.
3. The peaks occur right at the frequencies 0.786, 0.8774, and 1.2794.

Case 2 — Iilustration of the Actual Physical Location of the Equipment Subsystem Being
Immaterial
In this case, the attempt is made to show that the actual physical location of the equip-
ment subsystem is immaterial, wherever response devices can be positively secured, and meas-
urement can be taken. The systems in this case are redefined as:
¥4, ¥5, and yg span the subspace of the equipment subsystem (Fig. 4),

¥i, ¥2,¥3, ¥7, yg., and yg span the subspace of the support subsystem.

The rest belong to the base subsystem.
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Fig. 3 - Resonance function—frequency plot for digital
computer simulation of illustration case 1
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Fig. 4 - Configuration of the equipment substrue- 3%
ture for illustration case 2, with forces applied at Ye
its supporting points 1, ¥9, ¥3, ¥7.¥8, and yg,and _T
at point yg on the equipment H
K¢
Lo N
r— T Bl
tre Hes - e

Again solve for the fixed-base natural frequencies by:
Zaa 245
I[Ze]I =0 = 254 Z55
Zes Zes

The following listed are the calculated frequencies:

w] = 1.0712 ,
ws = 1.3015 ,
w§ = 1.9682 .

Z4s
Z56

Zge
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The resonance conditions are:
¥1 = Y2 =Y3 =¥7 =Yg =¥g =0,

with forces f1, fa, f3, 7, fs, fo, and fg applied, each at a time, at the points y1, ¥2, ¥3, ¥7,
¥8, Yo, and yg respectively.

The resonance function is:

mge M1 Mgz MmMe3z Me7  Mgs Mgy
mig M1 M1z Mg M7 Mg May
mMgg  Mp) Mgz mWMgy Mgy Mgy Mag
migg Mgy Mgz  may maq  Mag m3g
m7g Mq1 Wz Myy Wy Mgg Mg
Mgg Mgl Mgz Mgy Mgy Mg Mgy
mgg Mgl Mgy Mgy gy Mgy Mgy

v{mgj;w) = )
miy M1z M1z  Mi7 Mg Mig

mai Mmaz ma3 mav niag mag
msay M3z m3s may m3g Mi3g
mT1 mny mr3 ma7 mrqg mag

may mga majs mgy nigy mgg

mgy g3 Mgz mao? mag Nag

The mobility elemenis are defined as before. The result of the digifal computer simulation
shows that the peaks cceurring in the graphical representation truly coincide with the cal-
culated values, which are shown in Fig. 5.

Case 3 — INustrations of Frequency Shift Due to Change of Loading Condition and of Pos-
sible Ambiguity Due to Coupled {or uncoupled) Subsystems within the Equipment
Subsystem

This case is designed with the intention of showing that any detachment, addition, or
rearrangement of loading condition within the eguipment subsystem could cause a large shift
in the fixed-bage natura! frequencies of that subsystem. (Actuaily it will effect all the natural
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wi=1.0712 w3=1.3015 w3 9682,

70

-10] od

o
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Fig, 5 - Resonance function—frequency plot for digital
computer simulation of illustration case 2

E-3
L=
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RESONANCE FUNCTION ¥ (m;;;w)
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FREQUENCY w ‘

frequencies of the total system. Here emphasis has been put on the equipment subsygt.gm,‘
because it is the main concern in this case.) ‘

Everything remains the same as in Case 1, except that the mass M 2 which couples y4
and y 2 is removed (Fig. 6). The fixed-base natural frequencies calculated by setting Mo = 0
are:

w3 = 1.000 ,
wy = 0.786 ,
wg = 2.938 .

When M3 is set equal to zero, it physically decouples ¥ and ¥2, which causes the existence of
uncoupled subsystems within the equipment subsystem. Caution must be exercised to clear
the ambiguity expected by the theoretical analysis. In order to reveal all the fixed-base
natural frequencies of this partially decoupled equipment subsystem, more than one point.on
the equipment must be shaken. More specifically, we start with the influence matrix of the
equipment, When Mg =0, Z15 = Zo1 =0,

[z¢]= 0 Zos Zagz |,
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Lz Ly

¥y l ¥, ] Ls I Y3
A
Loptin " 1 .
¢ W3 {irs Fig. 6 - Configuration of the equipment subsiructure
for illustration case 2, with forces applied at its
supporting points y4, ¥5, and yg, and gt either point
K Kz Ks ¥3 or point ¥ on the equipment
He, thes Hre
where
Zy = Ky - w¥My,

" Zyg =Z31 =0,

Ly - Lg\2
Zgg = Kg -~ szg(——-———4 6) ,
Ly
L;—-L L
= = 2 it S, 3 ¥ ek -
Zog = Z33 @ MS( I, )(L4)'
Ler2
Zag = K3 ~ w? Mg(—g) + Mgl .
Ly

When the shaking point on the eguipment is at vg,

. (Zn 0
[z2 .1 =
(¥3) 0 Zo

the resonance function becomes

Vi 0) ] () “ Tz
1Z11Zg0]l + w - VALY w
1Z211(Z22Z35 ~ Z5)l  11Z29Z33 ~ 25,1

which will show peaks at the frequencies

0.786 ,

£
)
li

wh = 2.938 ,

and miss the one w3 = 1.000 (Fig. 7).
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When the shaking point on the equipment is at yg, the result will be the same as shaking
at y3, because in the resonance function, only the numerator changes from Zgs to Z33, and
it will not affect the frequency values corresponding to the peaks. However, if the shakmg
point on the equipment is at y1, then

[z ] Zg2 Zy3
zZ! =
(71)

Z32 Za3
The resonance function in this case is:

2
Z¢ w (|Z9eZ33 — Za3ll w
Vmigi0) _ollilzy I 22233 2l
FiLzey 1Z11(Z22Z33 — Z3) 1Z11 1l

The corresponding computer simulation is shown in Fig. 8, which reveals only one of the
fixed-base natural frequencies w € and loses the other two. The complete information has to
be the combination of these two. The important points illustrated here are the following:
first, the frequency shift due to change of loading condition (Fig. 9); and second, the possible
ambiguity which may arise from a decoupled equipment subsystem. To the second point, it
appears to be a good practice to take one or two more shaking points on the equipment for
checking purposes,

Case 4 — Illustration of the Irrelevancy of the Physical Location of the Shaking Points and
its Key Rule

This case is designed to show that the shaking points can be on the base points. With
the same definition of the subsystems (or subspaces} in Case 1, the influence matrix of the
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equipment subsystem remains the same. The theoretical analysis predicts that the resonance
function is independent of application points of the forces although, in practice, one meas-
ures different mobility entities, i.e.,
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miy myy mig m1g
myy myy mag myg
mgy mg7 mgsg ms9

me1 meg7 mgg meg

y(mg,w) =
mg7 Mg M4g

ms7  Mpg Ms9

me7 ngg mgg
This time the shaking points are at y, yg, and yg. The computer simulation of this case is
shown in Fig. 10. One notices that they exactly coincide with the result obtained by apply-
ing forces at ¥4, ¥5, and y¥g. The same result will be achieved by applying forces at the com-
bination of support and base points. Duplication of another computer simulation will not be
necessary. The key rules for the force application points are:

1. Keep the shaking points away from the equipment subsystem.

2. The number of shaking points is equal to the number of supporting point_s
plus one. B
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DISCUSSION

The theoretical analysis of this problem is rather general, as long as the dynamic system
under congideration is undamped or slightly damped linear time-invariant. If should he under-
stood that a reliable result in actual measurement can be expected only if the test is being
carried out according to this condition. The proposed mechanical-resonance frequency-
measurement method applied to a multiple-support equipment system is guite powerful,
bacause the current difficulties—for instance, the requirement of force ratio of the ghakers
(both magnitude and phage}, physical location of the shakers, and size of the object to be
tested—are removed, or their limitations are lifted partiaily or entirely. The method suggests
indirect mobility measurements through response measurements by shake test. The neces-
sary measuring points are limited to only a few, namely the support points and one or two
points on the equipment subsystem, depending on each individual case. Furthermore, de-
vices and techniques to perform such tests are currently available, and results can be acquired
in a rather routine manner,

The theoretical analysis has been proved correct by computer simulation. A vast group
of mechanical systems and structures in reality can be treated by this analysis as if they are
linear time-invariant. Therefore, there is no reason why it should not be feasible to determine
the fixed-base natural frequencies semi-analytically. We have been talking about resonances,
but in practice, we use the resonance properties only fo deduce the fixed-base natural fre-
guencies without actually exciting the resonance modes. 1t is a great advantage in determin-
ing the fixed-base natural frequencies, because in reality only in scarce cases may one excite
a resonance mode of a complex subsystem unless “inner resonance” or “‘beating” exists. It
is simple to illustrate: in the analysis of the text, we define the superstructure, base structure,
and substructure on an arbitrary basis. There is no difference in reality between the super-
structure and the substructure, both physically and mathematieally. The sco-called super-
structure requires the base points to be stationary while it vibrates at its fixed-base natural
frequency, but the substructure demands otherwise; therefore they interfere with each other.
That is, the substructure prevents the superstructure from vibrating at its own fixed-base
natural frequency, There is only one condition under which both the superstructure and the
substructure have the common fixed-base natural frequency. This condition is what is called
“inner resonance,” or “beat” phenomena. It is also said that the system is degenerate.

SUMMARY AND CONCLUSION

14 is realized that fixed-base natural-frequency analysis of a mechanical system is of im-
portance in the dynamic design and dynamic behavior study. A resonance function has been
derived for an # degree-of-freedom system to measure the fixed-base natural frequencies of
the equipment subsystem. The analysis is based on a linear time-invariant system.

The resonance function is an explicit function of mobility entities, which is composed
of intrinsic properties of the total system with vibrafional frequency as a parameter. Itis
clear that as long as the dynarnic distortion, or disturbance, remains within the linear limit,
this function remains invariant with respect to its input, output, and time as well, This in-
variant feature, besides the advantageous facts pointed out in the discussion, makes the pro-
posed method more desirable than currently available methods.
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