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There are also disadvantages: (I) Tests will not reveal fixed-base natural frequencies if the system con- 
tains extensive viscous-type damping. This is not a serious limitation, however, since in the presence of 
large amounts of energy dissipation, natural freuqencies do not in any case represent the significant dynamic 
parameters. (2) Precise setting and alignment of the shaker is essential to avoid introducing unwanted com- 
plex responses. 

In summary, this paper presents a practical method to determine the fixed-base natural frequencies 
of a subsystem. If such frequencies exist, they are significant in current methods of structure analysis and 
design criteria involving dynamic loading. 
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ABSTRACT 

The fixed-base natural frequencies of a system are those natural frequencies the system 
would have if it were mounted on a base of infinite mass and stiffness. The main purpose of 
this investigation is to find a generalized analytical method for determining the fixed-base 
natural frequencies of an in situ or laboratory mechanical subsystem. The analysis will be 
based on an arbitrary n-degree-of-freedom undamped linear time-invariant system. The appli- 
cation of this analytical method is extended to cases with small viscous damping. Only one 
shaker is needed to obtain the required response measurements necessary to calculate the 
fixed-base natural frequencies of the subsystem. Gages to obtain these measurements should 
be placed at all supporting points of the subsystem being tested and one additional point 
located any other place on that subsystem. The analytical work reveals that the following 
advantages of this method are realized: 

1. No assumption other than linear time-invariant of the total system has to be 
imposed in the derivation. 

2. No detailed physical properties of the whole system have to be known although, 
by its very nature, the mobility of any element within the system depends upon,the physical 
properties of the whole system. In fact, acquiring detailed physical properties has’:&ays 
been the difficulty in calculating the fixed-base natural frequencies of a real complex, system. 

3. It is equally convenient to carry out the test in the field as well as in the laboratory, 
provided that the shaker is capable of generating enough mechanical energy to excite the 
subsystem. 

4. When conditions allow, many subsystems can be measured simultaneously. Con- 
sequently, based on the liberal choice of force application points, savings in~manpow,er; :t&, 
equipment, and money may be effected. 

There are also disadvantages: 

1. Tests will not reveal fixed-base natural frequencies if the system contains exten- 
sive viscous-type damping. This is not a serious limitation, however, since in the presence of 
large amounts of energy dissipation, natural frequencies do not in any case represent the 
significant dynamic parameters. 

2. Precise setting and alignment of the shaker is essential to avoid introducing, un. 
wanted complex responses. 
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In summary, this paper presents a practical method to determine the fixed-base natural 
frequenciesof a subsystem. If such frequencies exist, they are significant in current methods 
of structure analysis and design criteria involving dynamic loading. 

PROBLEM STATUS 
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SYMBOLS 

The symbols used in this report are defied as they appear within the text. The most 
important ones are listed below for reference. 

A dot over a variable in the text represents the differentiation of that variable with re- 
spect to time. 

A superscript T or -1 at the right corner of a matrix indicates the transpose or inverse 
of the matrix respectively. 
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{ I 

[II 
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Wi; 0 
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Qh 
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[Ml 

[RI 

[Kl 

row matrix 

column matrix 

square matrix 

non-square matrix 

identity matrix 

determinant 

absolute value 

matrix element of [A 1 at ith row and jth column 

Lagmngian 

kinetic energy 

potential 

kth generalized coordinate 

time 

mass matrix 

damping matrix 

stiffness matrix 
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w j 

Fh(t) 

Fk 

PI 

@kj 

<kj 

Wj 

-Gj 

LPI 

WI 

IZbl 

W,hl 

#tmijia) 

frequency of excitation 

jth fixed-base natural frequency of structure or substructure i 

force at location k 

amplitude of the sinusoidal force F&(t) 

Spatial force column matrix (or vector) 

relative phase angle of kth response with respect to the applied force Fj(t) 
at location j 

amplitude of the kth displacement response due to the,applied forceE;-(t) 
at location j 

kth spatial displacement component 

Spatial displacement column m&ix (or vector) 

flexibility matrix 

flexibility matrix element at ith row and jth column 

mobility matrix 

mobility matrix element at ith row and jth column 

cofactor of the flexibility matrix element Zji 

flexibility matrix of the equipment subsystem 

flexibility matrix of the support subsystem 

flexibility m&ii of the base subsystem 

coupling matrix between subsystem k and subsystem P 

Resonance function 
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DETERMINATION OF FIXED-BASE NATURAL FREQUENCY OF 
MULTIPLE-FOUNDATION MECHANICAL SYSTEMS BY SHAKE TEST, 

INTRODUCTION 

The theory explaining the small oscillation of a simple mechanical system has heen ex- 
perimentally validated for some time. The application of the theory to a real cgmplexsys- 
tern, however, is limited, where precise information concerning the coupling mech@sms 
among the elements of the system is lacking. Even when the exact physical constants are 
given, the numerical calculations m very cumbersome. As a general practice, c&a@ impor- 
tant constants can be extracted quantitatively from the experimental results. The shake test 
is often used to measure the vibrational responses. It was mentioned in the rep&t by Pet+k 
and O’Hara (1) that knowledge of the fixed-base natural frequencies of a system is essential 
in current methods of treating dynamic problems. Since Ref. 1, the method of determina- 
tion of fixed-base natural frequencies by shake test has been investigated at NRL. Simple 
cases were analyzed by Petak and Kaplan (2) for a one-dimensional linear chain, and by Petak 
and O’Hara (1) for a dual-foundation shipboard equipment. Experimental work on a,single 
support beam was reported by Remmers (3). This analytical method is proved to be,&/gen- 
eraliiation of the aforementioned special cases. 

This report includes the analytical presentation of this method, the physical interpreta- 
tion of the entities derived, the technical method suggested in taking and analyzing t&data 
and drawing conclusions, and the extension of its application to damped systems, which is 
of importance in engineering practice. Various computer simulations of a problem de&nad 
to illustrate the developed method are provided. Experimental confirmation of this method 
on a three-support beam mounted on a truss-like frame will be presented in a separate,report.* 

The experimental techniques in principle are essentially the same as described in Ref. 2, 
except that phase differences (or the relative phase) between the applied force and cones- 
ponding responses at points of measurement are necessary for a subsystem having three or 
more supporting points. By use of the resonance condition, the fixed-base natural frequencies 
can be calculated from the experimental data. In order to eliminate the extraneous &quen- 
ties inherent in this method of measurement, one additional shaking point on the equipment 
subsystem itself is required. Contrary to the speculation that many shakers with variable 
forces (both magnitude and phase) ought to be used in a multiple-foundation system, this 
method requires only one shaker at a time. The magnitude of the forces applied is irrelevant 
to the result, as long as the system is being excited to a measurable level. However, the phm 
differences between the forces and the responses are important. 

*NRL F&port 7362 
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2 NI AND SKOP 

THEORETICAL ANALYSIS OF A LINEAR TIME-INVARIANT MECHANICAL SYSTEM 

It is intended to develop a steady-state method for determining fixed-base natural fre- 
quencies of anin situ or laboratory mechanical subsystem. In this analytical treatment, gen- 
eralized coordinates qk in configuration space, Lagranglan mathematical formulation, and 
linear space matrix representation will be used to clarify the physical contents of the mathe- 
matical formulation. Since it is understood that the main goal of this investigation is to deter- 
mine fixed-base natural frequencies, the result is confined. to linear time-invariant systems, 
or to systems behaving approximately so. 

Undamped System 

Equation of Motion-The Lagrangian formulation describing an ndegree-of-freedom 
dynamical system can be found in many books on mechanics (4, 5). Since this formulation 
is not our main interest here, only the result will be introduced. Suppose L(q,G;t) denotes 
the Lagrangjan of the system, T(G; t) the kinetic energy, and Y(q;t) the potential energy of 
the system; then by definition, 

L = T($t) - V(q;t) (1) 

T(kt) = $ &WI(i) w 

VW) = + @l(q) . 

From the variational principle, the equation of motion of a free system can be derived as 

d aL .3L 
dt a& a4k 

= 0. 

When there are applied forces, the constitutive equation may be written as 

d 2L aL 
-7 -- 
dt%k %k 

= Fk (t) 

The explicit expressions in matrix form of Eq. (4) and (5) are 

[Ml(i) + WI(q) = (0) 

Wl{G) + tKl{q) = b-V)) 

(51 

respectively. 

For the particular purpose of natural frequency determination, the applied forces F(t) 
on the right side of Eq. (7) have to be limited to being sinusoidal, so as to provide a single 
input with a well-defined driving frequency w to the system. Let 
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F(t) = Fsin wt . (8) 

Here the phase of the force F(t) is assumed to be zero. This assumption will not lose its gen- 
erality in the analysis, if a relative phase is assigned to the responses. Then the steady-state 
solution of the set of n simultaneous linear differential equations, Eq. (7), has the general 
form of 

(4kj) = { qhiSin (wt + ‘$kjhj)} (9) 

where @kj = nn , n = 0, 1,2, . . . for undamped cases. Substituting Eq. (8) into Eq. (7), the 
set of n simultaneous linear diiferentii equations is reduced to a set of n simultaneous alge- 
braic equations, which has the following general form 

(-wwfl + IKl){~} = {fl) (10) 

where 

-ww41 + [Kl = El (11) 

is defined as the flexibility matrix of the system, and (l/w)[Z] is normally defined as me- 
chanical impedance matrix (1). 

Linear Space-In order to simplify the mathematical manipulation and help to shed 
light on the physical insight of the formulation, Eq. (10) can be written in the following form: 

[21{c7} = {F}. (12) 

If one views Eq. (12) as a mapping or transformation between two linear spaces, then [Zl is 
just an operator which maps the force space onto the coordinate space. Here [Z] is assumed 
to be nonsingular; this is true for most real physical systems, and the mapping is in+ one-to- 
one correspondence. When the inverse of [Z] exists, one can apply operator [Z]-1 to Eq. 
(12) to obtain 

or 

[Zl-l[Zl{q} = [Zl-l(F) , (13) 

(4) = Lw{F} , 

where the identity equation 

[Zl-lIZI = [II (14) 

is used. The matrix [Z]-1 is often defined as the influence matrix. The mobility matrix is 
defined in terms of the influence matrix as 
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tn1 = o.IZl-1. WG 

For the convenience of discussion, the linear spaces (q) and (3’) are divided into sub- 
spaces. In doing so, a few definitions are necessary. Any physical system may be described 
as three main parts: 

Equipment: The subsystem under investigation 
Support: The subsystem supporting the equipment 
l%StX The remaining part of the total system other than the equipment 

and support. 

Correspondiigly, these three parts can be defined as three subspaces (@I, (qs). {p*) ~ in the 
coordinate space (q), and three subspaces (Fe), (Pf, {Fb} , in the force space(F). Then 
Eq. (12) can always be arranged to have the partitioned form 

or by matrix multiplication 

fZ”l(cP) + (c:)(P) = @‘I > (17) 
(c,~)~{P} + W l(qs} + {+$I~} = (FBI , m 

(c;)‘($) * IZbl(qb) = (Fb) 

It is apparent that there is no direct coupling between the equipment and base subsystems be- 
cause of the definition of the support subsystem. In the analysis as well as tests, the three 
subsystems (or subspaces) must be defined without ambiguity. 

Resonance Condition-The resonance condition for the equipment subsystem requires 

[Z@l(qe) = 0 . wt 

Consequently, this requires 

(C:>{P} = (Fe} . wt 

Theoretically, there is a definite solution for Eq. (21) if the rank of (C~)equals the dimen- 
sion of 1 4s) for a given set of (Fe) _ But this does not usually occur in practical applications. 
However, the applied forces are arbitrary and under our control. Therefore one may set 
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{Fe) = { >. 0 , that is, there are no forces which can be applied to the equipment, and still 
have the resonance condition satisfied. Equation (21) becomes 

{c,e&p} = 0 . (22) 

SinCe {C:} # (01, the support-displacement response vector must vanish at the fixed-base 
natural frequencies of the equipment subsystem. Now let us examine the set of simultane- 
ous equations, Eqs. (17), (18), and (19), under the resonance condition discussed previously. 
The system can be described by the following equations: 

rzel{qe} = 0 , (23) 

{c,e}T{qe} + {C;Xqb) = {FS) 9 (24) 

[Zbl{qb} = {Fb} . (25) 

It can be explicitly shown that the solution of Eqs. (23), (24), and (25) does contain the in- 
formation we need to know about the fixed-base natural frequencies of the equipment sub-, 
system. This information is in agreement with the computer simulation of a one-dimensional 
linear chain structure reported in Ref. 3. In the present report, we have shown analytically 
that it is true for all undamped linear time-invariant systems in general, no matter what the 
forces are. 

Resonance Function-A resonance function is defined in this section because of its par- 
ticular importance in fixed-base natural-frequency determination. It contains information 
about the resonance frequencies of the equipment subsystem. All extraneous natural fre- 
quencies of the base and support subsystems are excluded. The graphical representation of 
the function shows peaks at the fixed-base natural frequencies of the equipment subsystem. 
The resonance function is also a function of the mobility entities of the mobility mat& of 
the total system. These entities are the characteristic and invariant properties of the total 
physical system, and their measurability is of key importance in this investigation. 

Before we proceed to derive an explicit expression of the resonance function, it seems 
essential to recall the linear space transformation in matrix form. The harmonic solution has 
shown that the mobility matrix is defined as in Eq. (15). The entities of the mobility matrix 
can be expressed as 

where zjk is the adjoint of the flexibility matrix [Z] , which corresponds to the flexibility 
matrix element Zkj Physically there is a difference in meaning between the mobility matrix 
and the inverse of the flexibility matrix; the mobility matrix is an operator to map the gen- 
eralized velocity vector onto the generalized force space, while the inverse flexibility matrix 
is an operator to map the generalized coordinate vector onto the generalized force space. In 
our particular case, generalized coordinates and generalized velocities are related by a scalar 
multiplier w , the frequency of excitation. It is immaterial which one is used in this analysis. 
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However, in order to avoid ever increasing confusion in terminology, the mobilities are used 
throughout the derivation. 

We consider a system composed of an Q degree-of-freedom equipment subsystem, an 
m-Q degree-of-freedom support subsystem, and an n-m degree-of-freedom base subsystem. 
The explicit form of the set of simultaneous equations, Eq. (13), describing the total n 
degree-of-freedom dynamic system, is the following, when there is no force acting on the 
equipment subsystem: 

wql = rnl~t~F~+~ + .I. + ml&m + . . . + mlnFn , 

wq2 = rr~~~+lF~+~ + . . . + mzmFm c . . . + m2,,F,, , 

wqn = mp a+lF~+l + . . + mp mF,,, + . . + mp .F, , 

wqp+l = mp+l P+~FP+I + . I ‘ + ++I m Fm + . . + me+1 nFn , 

wq, = in,,, Q+~FQ+~ + .I. + m, ,,,F,,, + . . + m, .Fn , 

wm+l = mm+1 P+IFQ+I + . . + n~,,,,~ m F, + . . . + mm,1 nFn , 

wq, = m,P+lFg+l + . . . + m,,F, + . . . + m,.F, . 

In applying the resonance condition, we single out the part containing the generalized coor- 
dinates of the support subsystem from Eq. (27) and set them equal to zero; that is, 

q!2+1 = &+2 = ” = 4m = 0 1 (28) 

or 

mp+l P+I&+I + ‘.. + ma+1 mFm c . . . + mp+lnFn = 0, 

m+2 P+IFQ+I + . . . + v~~+~,,,F~ + I.. + mp+znF,, = 0 , 

m, P+lFP+l + . . . + m, ,,, F, c . . + m,,, ,,F, = 0 . 

Equation (29) is a set of simultaneoushomogeneous algebriac equations. In general n - P > 
m - Q ; that means an infinite number of solutions can be developed for various given forces. 
In other words, the solution is indefinite. However, once again one may tie advantage of 
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the fact that the applied forces are under our control during the measurement. If one limits 
the total number of forces applied, one at a time, to be equal to the degree of freedom of the 
support subsystem m -!2, then a nontrivial solution exists. This solution requires that the 
determinant, consisting of the mobility entities associated with the applied forces, vanishes. 
For example, if all the forces are applied at the support points, then 

m+l P+I . . m+l m 

mQf2 a+1 . . . my+2 m 

m, p+1 ... mm m 

= n.(w) . (30) 

It is equally true for any other combination of m - P forces. In other words, the forces can 
be applied on the support subsystem, on the base subsystem, or on the combination of,both. 
This liberal choice of application points offers great flexibility in application of this particular 
method. 

It is important to show explicitly that Eq. (30) does contain information about the, fixed- 
base natural frequencies of the equipment subsystem. Recall the matrix Eq. (14). The flexi- 
bility matrix and its inverse are commutative. The matrices in Eq. (14) may be partitioned 
and written in the following form: 

L -IL 
If one replaces the inverse flexibility matrix by If one replaces the inverse flexibility matrix by 

J 

one has 

[Z’l 

:-- 

I@, I?) 
{c,’ I’ --- ;p: 231 

I_ {o} / {cqT / Ebl 

[II ’ . 
l _“““/y _ --- 

(01 ’ 
-- i-i- 

(0) ; “’ mnm/, 

-rr- 

II 
[II ’ ,“A “I/_” 1’ J (0) 
(01’ -- I_ - -L _ _I (OL 
{o}/ ” ‘rn,,/, / [II 

= 

- [Z”l k! ; (01 - -,- 
{c,‘}’ ;Ly ; i;, --- _-_ 
{o} ; (0) ; [zbl 

(31) 

1. 
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Taking the determinant of both sides of Eq. (31) and applying the identical equation 

i[Al[BIi = ![A11 l&l! 

results in 

If21lw‘J) = IZ”JlZ”JW”--Q I 

or 

St(w) = lrzell lIzbllwm-n 
NZlI . 

Equation (33) shows that CL(w) = 0 not only carries information about the fixed-base natural 
frequencies of the equipment subsystem, that [Zq = 0, but also the fixed-base natural fre- 
quencies of the base subsystem as well as the natural frequencies of the total system. These 
extraneous frequencies can be eliminated by constructing another determinant having an 
order of m - P + 1. It is done physically by adding another force applied at one of thi eqtip- 
ment points. If we designate this determinant as G’(w), then 

mpp ... m. m 

mP+lP+l . 

m,* ... mm m 

= e(w) . 

Following the same procedure in deriving CL(w), one has 

a’(w) = lrZ=‘ll ltz~ll ,m-a+l 
IlZll 

In general, l[,Y’]I does not vanish at the fixed-base natural frequencies of the equipment sub- 
system unless the determinant IIZdll and the determinant ][Z”]j do have common factors. 
This will be discussed later. 

Now we are in position to construct the resonance function $(??Tkj;Ld) in explicit form. 
This is defined as 

$(mfzj;w) = ll$$ll =/I $$l/cc . (35) 

Here, the double line designates absolute value. The use of the absolute values in the reso- 
nance function evaluation essentially converts the zero-crossing points of function IIZbf\ = 0 
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to minima. For a physical system, l[Z”‘]l is finite for finite w. The singularities of $(m~;w) 
corresponding to ][Z’]l = 0 gives the fixed-base natural frequencies of the equipment sub- 
system. 

As for the identification of the detected resonance frequencies concerned, the extrane- 
ous frequencies of the base subsystem and the total system are eliminated. As pointed out 
before, when there are decoupled subsystems within the equipment subsystem, ambiguity 
arises due to the fact that ][Z”‘]l and IIZe]l have common factors. In turn, the resonance 
function $(mkj,‘W) does not reveal all the resonance frequencies as expected. The remedy’ 
for such ambiguities is to take one or two more force application points on the equipment 
subsystem for cross-check purposes. 

Although the derivation of the resonance function is based on the assumption that the 
m - P forces are applied to the supporting points, the actual locations of the application 
points of the forces are irrelevant as long as they are kept away from the equipment subsys- 
tem. The aforementioned fact is not obvious, because the extraneous frequencies induced in 
the derivation of the functions a(w) and Q.‘(w) depend upon the force-application points. 
However, those induced extraneous frequencies are common factors of a(w) and a’(w). As 
a consequence, the resonance function remains unchanged. A mathematical proof for this 
liberal choice of force application points will be given in the next paragraph. 

To prove the above statement of liberal choice of force-application points, we,refer to 
Eq. (31), in which the matrix replaced the inverse flexibility matrix haying its physical sig- 
nificance. In that matrix, one noticed that the mobility entities were replaced by unity or 
zero, except those lying in the m - f columns. Those columns correspond to the locations 
where forces are applied and include the eigenvalue function n(w) for the resonance condi- 
tion of the equipment subsystem under investigation. In this particular case, the resonance 
condition is 

i&+1 = F&+2 = . . 4, = 0 

with forces applied at the supporting points qr+r, ~&+a, . . om. Now suppose one of the ap- 
plication points, say gW, is to be changed to a point on the base subsystem, say at ga, where 
P < w < m, and m < u < n, the corresponding matrix change is as follows: 

I 

[II I 
ml P+I~ . ml dw . . ml dw 

I 

(01 i -- I----------------- 
l . . . 

(01; 
1 mn ~+a . . . mn dw’ . mn dw 
I 

I 
I 
I 
I 
i- 
I 
L 
I 
I 
I 

(01 

{ii-- -- 

[II 
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to 

I ’ 

111 ; 
ml ww . . . ml hh . . . ml lu+llw * . . ml m,w ; 0,. .rnlvfm . ..O 
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The determinant of thii new matrix is also an eigenfunetion Q(w) corresponding to the same 
resonance condition as stated before, but with the difference that one of the applied forces 
is changed to a new location at qrr on the base subsystem instead of at qw on the support 
subsystem. If one makes the corresponding change in Eq. (31) and designates the new matrix 
as [v] , one will have the following matrix equation: 

I - 

( 

- 

.Z”l 

.--- 

:GT 

.--- 

(01 

I 
I 
t- 
I 
I 
I 

I 
I 
I 
I 
I .- 
I 
1 

1’ 

I 
I 

(0) .-------__ 
1 o...cp+lu..-o 

1 
I. 

cw ” 
I. 

‘1 
1 

I 
I 
t- 
I1 
i 
I 
I 
I 
:. 
I 
I 

I’ 

I 
I 

o...c,+1 .***(I 

%I ” 

V4 -___-------------- 
%+1 *t1 . . . J&2+1 61 0 Q!+l"+l ... 

-----_____________ 

%n+lm+l'~~4+1~1 0 &,lu+l'.‘ 

1 

0 

ji 
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Taking the determinants on both sides of Eq. (36), one has 

m!2+1 P+l/w .' ~P+I w-~lw ~Q+I w+~b . mp+l dw ~P+I "/w 

lbll 

%nP+l/w . ' ~%I w-l/w %z w+l/w ' ' ' mmnt/a %zv/w 

5” ” cw in+1 

b Cm+1 u Cm+lm+l 

G-1" &lm+l 

b 
Cv+l " &+l m+l 

% ” 
b 

%I m+1 

= 1w11 ( 

or simply 

.qw) = s . I[zb’]l‘p-9 , 

where [Zb’] represents the matrix 

cur ” C"Jm+l . . %J "-1 %J u+1 . . %J II 

b b Cm+l"Zm+lm+l"'~m+l u-l&+1 "+l"'Z,+1 n b 

b 
Gl" Zl+1m+l b b b 

"'~lelU-1 Z,lu+l "'G-in 

b b b b 
cu+1 ” %+1 m+l . . Zv+l u-1 z,+1 “+I . ‘Z”,l n 

‘Cl” "-1 %J v+1 

~&I"-1 2-l u+1 

b b 
'*"+l u-1 Zu+l "+I 

b 
'% u-1 

b 
*?I u+l 

“Cl” n 

b 
"Zm+ln 

.&l n 

b 
. 'Zu+l " 

b 
“Z,n 

(37) 

(33) 

cn ” 
b 

zn m+l 
b 

. 2” L-1 
b 

% u+1 
b 

t 2, n 



12 NI AND SKOP 

The indices w and u are rather arbitrary within the limit of Q < w < m, and m < v < n . This 
procedure can be repeated to interchange the force-application points between the support 
subsystem and the base subsystem as desired. When each additional application point of the 
forces is changed to another location, Eqs. (37) and (33) show that the difference in the 
eigenfunction n(w) is limited to the induced extraneous frequency function [Zb] alone, but 
not to the absolute value of the ratio of the determinant i[Z”]f and the determinant i[Z]l. 
This means that such exchange of force-application points will not alter the information of 
the fixed-base natural frequencies of the equipment subsystem. Nevertheless, the solutions of 

I~Zbli = 0 and l~Z*‘li = 0, 

in general, will not be identical. Therefore the remaining task is to show that the extraneous 
frequency function, l[Zs]] = 0, will remain unchanged if an additional force is applied to the 
equipment subsystem. Attention is called to the fact that the flexibility matrices I Z”] and 
[Zbl of the subsystems are merely artificial designations for the convenience of diicussion. 
They are physically equivalent, in reality; choice of one or the other is dependent on which 
part of the system is of interest in the particular investigation. Because of this equivalence 
between the equipment and base subsystems, one may conclude, without repeating the mathe- 
matical manipulation, that one additional shaking point on the equipment subsystem will not 
change the determinant IIZbll, but will change the determinant ItZ”ll. This is the property 
being used in constructing the resonance function $(mkj;w) to assure that ah the induced ex- 
traneous frequencies are eliminated. 

Damped System 

The computer simulations in the “Example Problem” demonstrate the soundness of the 
developed fixed-base natural-frequency determination method for a onedimensional multiple- 
foundation undamped system. It is of both theoretical and practical interest to ask whether 
this method can be used in studying damped systems. In order to answer this question, an 
analytical approach is necessary for two reasons: fist, the extension of this method to apply 
to damped systems is not trivial; second, damping does exist in all physical systems. In other 
words, this analysis is intended to show the applicability and limitation of the fixed-base 
natural-frequency determination method on damped systems on the one hand, and the in- 
trinsic properties of the damped system on the other. Either of the aforementioned interests 
requires proper understanding of the experimental results. Such understanding cannot be 
achieved merely from the measured dynamic responses. The exact manner of acquiring the 
test data sometimes is the determining factor to accomplish the purpose. It is known that 
the shake test has been used to measure impedance, mobility, and natural frequency of a 
mechanical system directly or indirectly through response measurements. Those quantities 
are immensely useful in structure analysis and design criteria where dynamic loadings are 
involved. The purpose of this analysis is to provide a better understanding of real complex 
systems, so that use of test data will be more confident. 

Equation of Motion-A damped system involves dissipation of energy. In numer- 
ous experimentally justified cases, the dissipative forces in a mechanical system are indeed 
proportional to velocities and referred to as viscous damping. For such a system, one may 
use the Rayleigh dissipation function, which is defined as 
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R = &pl@} 

where r(j are the elements of the damping matrix [R 1, which are real and positive. 

The corresponding constitutive equation of motion in the Lagrangian fonmilatiori 
becomes 

aL + 2 = Fk(t) 
aPk 

or, written in explicit matrix representation of the governing differential equations, 

hl4l{ii} + [R](4) + m(q) = {F). (41) 

A great number of structures also exhibit energy loss during motion, with the dissipa- 
tive forces proportional to displacements known as coulomb damping. It is equally possible 
that energy losses due to dissipative forces proportional to acceleration may have a sizable in- 
fluence on the system in motion. However, these latter cases may be described by Eq. (41), 
if we regard the mass matrix [Ml and the stiffness matrix [K] as effective mass matrix and 
effective stiffness matrix accordingly. Therefore, Eq. (41) may be used to study damped 
linear time-invariant systems in general. 

Closed Form Mathematical Solution-In an idealized shake test, a shaker pro&l&g a real 
sinusoidal force is assumed in a mathematical model. Such a force may be expressed& 

F(t) = Fsin wt. 

The steady-state solution of the governing differential equation, Eq. (41), is supposed,to 
exist, in which the whole system vibrates at the unique frequency w of excitation. There- 
sponses can be expressed in the following general form: 

{qk} = {ik sin cut + #kj)} 

= {& cos wt + 6k sin wt} , 
(42) 

where & = & COS e&j, bk = ?k sin ~kj, and in general ~kj # nn , n = 0, 1,2, . . . for cases in 
which viscous damping is involved. It is evident that in a damped system, two components are 
needed to describe a single response, i.e., either (& ,ekj) or (ck, bk). Taking the time deriva- 
tives of Eq. (42) and substituting them into Eq. (41), one has 

-wQfl{cisinwt + bcoswt} + w[Rl{cTsinwt - bcoswt} 

+ [Kl{asin wt + b cos wt} = {Fsin wit} . 
(43) 
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Since sin wt and cos wt are independent, Eq. (43) may be written as 

-uw-l(iT) - dRl(ii) + m1{ti-) = (F) ) 
-wwfl(~}- wIRl(b) + ra{a> = (0) . 

By rearrangement of the terms in Eqs. (44) and (451, and writing them in a compact form, 
we have 

[ ml - wufl1 -dRJ 63 m --~----~-----~ wlR I ; [I(] - o2[Ml ]ir f 6) = {o) . 1 
Theoretically, the problem is solved once a set of forces along with the physical properties 
[Ml, [K], and [R 7 of the system are given. A closed-form solution can be worked out from 
Eq. (46) by any computer means. However, the application of Eq. (46) in practical measure- 
ment is not trivial. With this closed-form solution in mind, an approximate solution for a 
shake test will be developed in the next paragraph. 

Approximate Solution For Shake Tes~Equation (46) tells us: 
undamped, i.e., when [RI = [Cl], (C)and {b) 

(a) when the system is 
are not coupled (the solution will be identical 

to the solution of E . (10) if {a}is replaced by (4); and (b) when the system is damped, or 
[RI + I6j,{&mdq-) b are coupled. Then the phase factor becomes important, and a set of 
2n liiear simultaneous equations has to be solved. In general, the semi-analytical determina- 
tion of fixed-base natural frequencies of such a system is complicated. 

Since numerous small viscous damped mechanical structures do exist, it is well worth 
while to continue the investigation of these systems. In order to establish the justification 
to extend the developed method to such cases, we recall Eq. (46). In Eq. (46), one sees that 
when damping is small, the real part of the response {c?) is weakly coupled with its correspond- 
ing imaginary part (F}, and Eq. (44) approaches Eq. (10) as damping decreases towards zero. 
Consequently, the solution of the real part of Eq. (46), i.e., {z}, also approaches the responses 
19) of the undamped system in Eq. (lo), which is real. Therefore for a slightly damped sys- 
tem, the solution may be approximated by using Eq. (46) for shake-test analysis. To be more 
specific, we rewrite Eq. (46) in the following form 

pL-;:II, f;;) = {;;I , (47) 

where [21 is the flexibility matrix of the very same system, but with no damping. Then the 
real part of the solution of Eq. (47) may be regarded as the approximate solution of a slightly 
damped system. To show this, we suppose that the system under study is not excessively 
damped; the real part of Eq. (47) may be approximated as the solution of the system. In 
solving for the responses in terms of applied forces 



NRLREPORT7300 

where -1 . 
The explicit expression of the real part is 

15 

(48) 

(4% 

{ii} = {4COS$} 
= [I] + w2t21-1tRl[21-1tR1)-~~21-~~~~ 

( (50) 

EC ([I] + ( t?llltRl)2)-1t~l-1{~~ 

where the matrix w [21-l is the mobility matrix [ YII I. When [II I is smell, the following ap- 
proximation may be made: 

(m + (~tRI[Rl)y *‘m-1 = [II , (51) 

because the elements of the matrix [ 11 I[R I, mijrjh, are much smaller than the damping ma- 
trix elements rij, which are in general small. Then Eq. (50) becomes 

{SCOS$} z t21-l(F) (52) 

It is exactly the form of Eq. (14), except that the responses involve a phase factor cos e. 
Therefore, the developed method can be applied to slightly damped system as well. , 

EXAMPLE PROBLEM AND DIGITAL COMPUTER SIMULATION 

A specifically designed sample is in order to illustrate the applicability of the developed 
method. Also some comparisons were made to bring out the ambiguity which could arise due 
to negligence. A simple, but still general, undamped one-dimensional system of nine degrees 
of freedom as shown in Pig. 1 will be treated. The equations of motion for free vibration 
may be derived from 

whereL=T-V, 
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Fig. 1 _ Configuration of the nine-degree-of-free- 
dom, one-dimensional, undamped composite strut- 
ture for digital computer simulation 

T = ;M1,,’ + ;M2 
t 

,, c 

+ ; M&32 + ;Mb 

+ ; M&+ +M&+ ;M9 
I 

,, + 
L1-Lg . 

L1 (Y7 -id 2 
1 

+ ;Jf10 
I 
;, + 

&2 - ho 
(53 - &?I 2 

Lz 1 + +‘I~Y: , 
v = $G(Yl -y4? + + ~2 - 

I 
Ll -L3 

L1 (3% +Y*) 2 1 
+ iK3y3- 

1 
LZ-LB 
7 (3% +a) 

I 
2 + $&(~a -YT)’ + $wY5-Yd3 

+ $w6 - Yd2 -i- $K7yj2 + 1 K3y3’ 
2 

+ 1K9y; . 2 

For this particular system, the kinetic energy T is coordinate independent and the potential 
energy is velocity independent; thus the Lagmngian equation has the form 
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~~ differentiation of T and V, the equations Of motion are: 

[Mu + ~2(““E,““)~51 + M2(L3L3L5)($2 + K1Y1-K1Y4 = 0, 

43;3L5)(351 + [M2($r + M3(L4,“6)j92 + M3(““;49($3 

+ K2y2 - &(L1;lL3)y4 - K2(L1LIL3)Yb = O, 

M3p;4L6)($2 + b3($ + ,419, + K3Y3 - K3?;29yf m 

- K3 3’6 = 0, 

+lLiL7)(5))i4 + [M5(z)2 + Mf2;?)+ + M.(L2;29(&3 

- K2(LIilL3)y2 - K3(L;;9y3 + K2(L1;lL3)2y4 

+ [K2(“1;;3)’ + K3(L2;$)2 + K6]y6 +K3(L2;:)2y6 -‘Key6 =,O> 

M~(&~)($ + [M6(&$ + Ml]& - K3(L2;39Y3 

+ K3(L2;2L8)2y6 + [ K3jC2;:)’ + K6jY6 - &Yg = 0, 

[Mu + ~~(llhlg)]ir + Mg(L1;;g)($)ji3 - K4~4 + (K4 +K7)y7 = 0, 

Mg(Ll;lL9)(&$7 + kg(&)’ + Ml&;o)‘l.+3 + Mlo~$“)($jfg 

- Kby5 + (K5 + KS)YE = 0, 

(E5 Con%.) 



18Mloi”2~~o)~3~8 + [Mlo(F!fANDsj”: + Ml1 Yg - K6Y6 f (K6 +K9)rS = 0. (=) 

We try a solution as the real part of 

yi = gwt where yi = Ij;ilf? ‘@. W) 

From straightforward substitution of Eq. (E6) into Eq. (IS), the influence matrix 121 can be 
determined. Zll .. . a9 

Czl= I c ‘r 291 ‘.. z99 

The elements of the [Zl matrix are real, in this case, and symmetric. 

211 = Kl - &[nll f (L3;3L5)M2] , 

Z12 = Zzl = -wZM~~~;~~~)($), 

213 = 231 = 215 = 251 =&j = z61 = 217 =z71 = 218 = zal = z19 = &1 = 0, 

214 = z41 = -K1 , 

Zz2 = Ii2 - u$M2($ + M3?;:7 , 

223 = 233 = -,3M,~;4L”)($) , 

224 = 242 = -K3 

225 = 252 = - K3 

226 = z‘32 = 227 = 272 = 228 = 282 = z29 = zg2 = 0 , 

Z33 =K3 - u3b3($f +M4], 

234 = z43 = 237 = 273 = 233 = Z63 = z3g = 293 = 0 , 
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Z 35 = 253 = -X3 

19 

Z36 = 263 = -K3 

Z44 = KI + K2 + K4 - o3Mh 

Z 2 _ 
45 = 254 = K2 w~M~(L~;~~~)(~) > 

246 = 264 = 248 = 284 = z&) = 294 = 0 , 

247 = z74 = -K4 . 

z55 = K2(L1ilL3)Z + K3(v)’ + & - a2[&($ + M6(“2,“a)~’ 

Z 56 = Z65 = KS - w~M~(L';~L~)($, 

Z 57 = 275 = z59 = z95 = 0, 

258 = 285 = - K5 , 

Z66 = KS r2;2L8)2 + K6 - cqz[M6($r + M71 , 

267 = 276 = Z68 = 266 = 0 , 

Z 69 =z96 =-Kg, 

Z 77 = K4 + K7 -w2b3 + Msrl;lLg)P]. 

278 = 287 = -u2Mgfq)(2) > 

z.jg = zg7 = 0 , 

Z 88 = ~~ + K8 - u2kg(2r + MIO(L~;~~~)~] ’ 

zsg = Z98 = -w~MIo(L~;~~')($ 7 

zgs = Krj + KS - 4~43 + ‘11x1] WY 
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In calculating 
assigned: 

WI AND SKOP 

the natural frequencies, the numerical values of the physical constants are 

Ml = M2 = M3 = 1 , 

M4 = MC = MB = 2 , 

n/r, = 1 , 

M3 = Mg = Ml0 = 3 , 

M ‘- 11- 4, 

351 = 3, 

L3 = L4 = 4 ) 

L3 = Lg = 2 , 

Lg = L7 = L3 = Lo = 1 ) 

Lfi = 2.5 I 

Kl = K2 = 1 , 

K3 = K4 = 1.5 , 

K5 = K, = 1 , 

K7 = 2, 

KS = Kg = 3 

The natural frequencies of the total system are calculated by setting 

l[ZlI = 0. 

The results are: 

UT = 0.3631 , 

a; = 0.4802 , 

cd,’ = 0.7801 ) 

u; = 0.9196 , 

cd,’ = 1.0266 ) 
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a; = 1.2656 , 

w; = 1.4065 , 

a,’ = 1.4890 , 

a; = 2.1373 . 

Separate cases will be taken into consideration. 

Case 1 - General IIIustration of the Applicability of the Proposed Method with Forces 
Applied at the Supporting Points 

Define the subsystems: 

yl, ye, and y3 span the subspace of the equipment subsystem (Fig. 2), 

y4, y5, and ye span the subspace of the support system, 

y7, ys, and ye span the subspace of the base subsystem. 

Fig. 2 - Configuration of the equipment substructure 
for illustration ease 1, with forces applied at its 
supporting points ~4. ~5, and y6 and at point y3 on 
the equipment 

it Fq it F. ‘II F6 

In order to test the method, the fixed-base natural frequencies of the equipment subsystem 
are fist calculated by setting: 

IIZell = 0 = 

Zll 212 213 

z21 z22 223 . 

z31 z32 233 

The results are: 

a; = 0.7816 , 

w; = 0.8774, 

0; = 1.2794 . 
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Then apply the resonance condition 

Y4 = Y5 = Y6 = 0, 

with forces f3, f4, f5, and f6 applied, one at a tie, at the equipment and supporting points 
~3, ~4, ~5, and ys respectively. The resonance function ~(mij;w) may be written as: 

ml1 ml4 ml5 ml6 

m41 m44 m45 m46 

m51 m54 m55 m57 

m61 m64 w5 fmxi 
$(mij;wJ = 

m44 m45 m46 

a54 m55 m56 

m64 m65 m66 

where 

Z,, WYij 
mij=~&j = fi 

and Zji is cofector of Zij in Z. The result of the digital computer simulation is shown in Fig. 
3. The peaks occur right at the frequencies 0.786,0.8774, and 1.2794. 

Case 2 - Illustration of the Actual Physical Location of the Equipment Subsystem Being 
Immatetial 

In this case, the attempt is made to show that the actual physical location of the equip- 
ment subsystem is immaterial, wherever response devices can be positively secured, and meas- 
urement can be taken. The systems in this case are redefined as: 

~4, ~5, andy6 span the subspace of the equipment subsystem (Fig. 41, 

~1. ~2~ ~3, ~7. ~8, and yg span the subspace of the support subsystem. 

The rest belong to the base subsystem. 
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80 I I I 1 

Fig. 3 - Resonance function-frequency plot for digital 
computer simulation of iUustmtion case 1 

CUT = 0.7816 w;.wv74 1.2194 u:= 
70. 

3 60. 
E ; so- 
g 
; 40. 
8 a so- z :: E 20. 

10 - 0 ic, 
0.5 1.0 I.5 FREPVENC” Y 

Fig. 4 - Configuration of the equipment substruc- 
ture for illustration case 2, with forces applied at 
itssupportingpointsyl,~2, YS ~7.~8.andyg,and 
at point ye on the equipment 

Again solve for the fixed-base natural frequencies by: 

I[Zell = 0 = 

244 z45 z46 

254 z55 z56 . 

z64 z65 Z66 1 

The following listed are the calculated frequencies: 

4 = 1.0712 , 

0; = 1.3015 , 

w; = 1.9682 
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The resonance conditions are: 

y1 = yz = y3 = y1 = ya = Fg = 0 , 

with forces fl, fp+, f3, f7, fg, fg, and fg applied, each at a time, at the points yl. y& .Ya, ye, 
~8, ~9, and yg respectively. 

The resonance function is: 

Jl(mij;U) = 

m66 m61 m62 m63 m7 mm m69 

ml6 mr ml2 ml3 ml7 ml6 ml9 

m26 m2.l m22 m23 m27 m-28 m29 

m36 m31 m32 m33 m37 m38 m39 

m76 w ml2 m73 m77 m m79 

m86 msl m82 ma3 7m37 m88 m89 

m36 ml m92 m93 m97 m98 mss 

w ml2 ml3 ml7 ml8 ml9 

m21 m22 m23 m27 m28 m29 

m3l m32 m33 m37 m38 m39 

m-0 m72 w3 mw m78 ws 

ml m32 w33 m87 m88 *89 

w m92 m93 m97 m98 m99 

The mobility elements are defined as before. The result of the digital computer GmuIation 
shows that the peaks occurring in the graphical represent&ion truly coincide with the cal- 
culated values, which are shown in Fig. 5. 

Case 3 - Illustrations of Frequency Shift Due to Change of Loading Condition and of Pos- 
sible Ambiguity Due to Coupled (or uncoupled) Subsystems within the Equipment 
Subsystem 

This case is designed with the intention of showing that any detachment, addition, or 
rearrangement of loading condition within the equipment subsystem could cause a large shift 
in the fixed-base natural frequencies of that subsystem. (Actually it will effect a81 the natural 
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Fig. 5 - Resonance function-frequency plot for digital 
g 
: 4. 

computer simulation of illustration case 2 : 
Y 
5 30 
i 
m 

20 

frequencies of the total system. Here emphasis has been put on the equipment s+bs&prn,’ 
because it is the main concern in this case.) ,.,, 

Everything remains the same as in Case 1, except that the mass M2 which couples y1 
and y2 is removed (Fig. 6). The fixed-base natural frequencies calculated by setting MS = 0 
are: 

c&l; = 1.000 , 

cd; = 0.786 , 

4 = 2.938 . 

When M2 is set equal to zero, it physically decouples y1 and y2, which causes the existence of 
uncoupled subsystems within the equipment subsystem. Caution must be exercised to &ear 
the ambiguity expected by the theoretical analysis. In order to reveal all the fixed-base 
natural frequencies of this partially decoupled equipment subsystem, more than one p,oint,on 
the equipment must be shaken. More specifically, we start with the influence matrix of, the 
equipment. when 442 = 0,212 = 221 = 0, 
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Fig. 6 . Configuration of the equipment aubstmctura 

where 

When the shaking point on the equipment is at ~3, 

-%l 0 
wg3,1 = o ( ) 222 

the resonance function becomes 

$(mij;Cd) = __ 

I II 

sz’(w) _ 11 XqJ3,11 11 . w 

0 (4 H l[Z”ll 11 

llZ1122zll . w 11~2211 
= ~~~11(~22~33 - z&)li = 11222233 - z;311 . * 

which will show peaks at the frequencies 

a; = 0.786 , 

w; = 2.938 , 

and miss the one W; = 1.000 (Fig. 7). 
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6.0 - 

3 
:~; 5.0 - 
E 
3 

7 - Resonance functian- 5 4.0 - Fig. 
frequency plot for digital com- 
puter simulation of illustration 

g 
case 3-110 force applied at y1 ; 3.0 - 

z 
z 2 2.0. IL 

w i= 0.786 

When the shaking point on the equipment is at y3, the result will be the same as shaking 
at y3, because in the resonance function, only the numerator changes from 233 to 233, and 
it will not affect the frequency values corresponding to the peaks. However, if the shaking 
point on the equipment is at ~1, then 

The resonance function in this case is: 

The corresponding computer simulation is shown in Fig. 8, which reveals only one of the 
fixed-base natural frequencies we and loses the other two. The complete information has to 
be the combination of these two. The important points illustrated here are the following: 
first, the frequency shift due to change of loading condition (Fig. 9); and second, the possible 
ambiguity which may arise from a decoupled equipment subsystem. To the second point, it 
appears to be a good practice to take one or two more shaking points on the equipment for 
checking purposes. 

Case 4 - Illustration of the Irrelevancy of the Physical Location of the Shaking Points,and 
its Key Rule 

This case is designed to show that the shaking points can be on the base points. With 
the same definition of the subsystems (or subspaces) in Case 1, the influence matrix of the 
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equipment subsystem remains the same. The theoretical analysis predicts that the resonance 
function is independent of application points of the forces although, in practice, one meas- 
ures different mobility entities, i.e.; 
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ml1 ml7 ml8 ml9 

m41 m47 m48 m49 

m51 m57 m68 mm 

ml w m68 m69 
ti(Wj;w) = 

m47 m48 m49 

m57 m58 m59 

m67 m68 m69 

This time the shaking points are at y,, y8 , and yg , The computer simulation of this caye is, 
shown in Fig. 10. One notices that they exactly coincide with the result obtained by apply- 
ing forces at y4. ~5, and ye. The same result will be achieved by applying forces at the com- 
bination of support and base points. Duplication of another computer simulation will not be 
necessary. The key roles for the force application points are: 

1. Keep the shaking points away from the equipment subsystem. 

2. The number of shaking points is equal to the number of supporting points 
plus one. 

T--- 70 
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T 60 
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Fig. 10 _ Resonance function-frequency plot for digi- Fig. 10 _ Resonance function-frequency plot for digi- 
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DISCUSSION 

The theoretical analysis of this problem is rather general, as long as the dynamic system 
under consideration is undamped or slightly damped linear time-invariant. It should be under- 
stood that a rehable result in actual measurement can be expected only if the test is being 
carried out according to this condition. The proposed mechanical-resonance frequency. 
measurement method applied to a multiple-support equipment system is quite powerful, 
because the current difficulties-for instance, the requirement of force ratio of the shakers 
(both magnitude and phase), physical location of the shakers, and sire of the object to be 
tested- removed, or their limitations are lifted partially or entirely. The method suggests 
indirect mobility measurements through response measurements by shake test. The neces- 
sary measuring points are limited to only a few, namely the support points and one or two 
points on the equipment subsystem, depending on each individual case. Furthermore, de- 
vices and techniques to perform such tests are currently avaihable, and results can be acquired 
in a rather routine manner. 

The theoretical analysis has been proved correct by computer simulation. A vast group 
of mechanical systems and structures in reality can be treated by this analysis as if they are 
linear time-invariant. Therefore, there is no reason why it should not be feasible to determine 
the fixed-base natural frequencies semi-analytically. We have been talking about resonances, 
but in practice, we use the resonance properties only to deduce the fixed-base natural fre- 
quencies without actually exciting the resonance modes. It is a great advantage in determin- 
ing the fixed-base natural frequencies, because in reality only in scarce cases may one excite 
a resonance mode of a complex subsystem unless “inner resonance” or “beating” exists. it 
is simple to illustrate: in the analysis of the text, we define the superstructure, base structure, 
and substructure on an arbitrarybasis. There is no difference in reality between the super- 
structure and the substructure, both physically and mathematically. The so-called super- 
structure requires the base points to be stationary while it vibrates at its fixed-base natural 
frequency, but the substructure demands otherwise; therefore they interfere with each other. 
That is, the substructure prevents the superstructure from vibrating at its own fixed-base 
natural frequency. There is only one condition under which both the superstructure and the 
substructure have the common fixed-base natural frequency. This condition is what is called 
“inner resonance,” or “beat” phenomena. It is also said that the system is degenerate. 

SWARY AND CONCLUSION 

It is realized that fixed-base natural-frequency analysis of a mechanical system is of im- 
portance in the dynamic design and dynamic behavior study. A resonance function has been 
derived for an n degree-of-freedom system to measure the fixed-base natural frequencies of 
the equipment subsystem. The analysis is based on a linear time-invariant system. 

The resonance function is an explicit function of mobility entities, which is composed 
of intrinsic properties of the total system with vibrational frequency as a parameter. It is 
clear that as long as the dynamic distortion, or disturbance, remains within the linear limit, 
this function remains invariant with respect to its input, output, and time as well. Thii in- 
variant feature, besides the advantageous facts pointed out in the discussion, makes the pro- 
posed method more desirable than currently available methods. 
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