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ABSTRACT 

Numerical procedures have been developed to calculate the 
frequency wave number dispersion relations for internal gravity 
waves in arbitrary density gradients. The basic properties of the 
differential equation governing these waves have been considered 
in developing these procedures. These procedures have been used 
to develop a set of Fortran subroutines, capable of computing, 
printing in tabular form, and producing line printer plots of the 
dispersion relations. Source listings of these subroutines and full 
descriptions of their use are given. To illustrate the accuracy of 
the system and to display the results of violating certain restric- 
tions involved in the numerical procedure, an extensive compari- 
son is made between numerical results and an analytic solution 
for the dispersion relations. The analytical model corresponds 
to a hypothetical fluid system which closely approximates the 
average water properties measured during field tests in Bute Inlet, 
British Columbia, a fjord-type estuary with a density structure 
characterized by a strong gradient between two nearly homoge- 
neous layers. 

PROBLEM STATUS 

This is an interim report work on this problem is continuing. 

AUTHORIZATION 

NRL Problem GOl-06 
Project A37-370/F08-125-703 

Manuscript submitted April 19, 1971. 
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NUMERICAL CALCULATION OF DISPERSION RELATIONS 

FOR INTERNAL GRAVITY WAVES 

INTRODUCTION 

A numerical method has been developed for determining the relationships between 
frequency and wave number (dispersion relations) which must be satisfied for the free 
propagation of small-amplitude internal gravity waves. These internal waves, which rely 
on an increase of the density in a body of fluid with depth are a common feature of the 
oceans. They are characterized by maximum amplitudes in the interior of the fluid and 
produce little vertical displacements of the free surface. As a result, unlike the tradi- 
tional surface water waves, internal waves are not directly observable. The presence of 
such waves, however, may be indicated by the organization of contaminant surface slicks 
into regular patterns (Ewing, 1950), by changes of the surface reflectance properties due 
to small slope changes in the ambient surface wave field (LaFond and Cox, 1962), or by 
other effects associated with the horizontal motions at the water surface resulting from 
an internal wave field (Ekman, 1906). 

The dispersion relations represent conditions which must be imposed on free-wave 
solutions of the hydrodynamic equations of motion under certain general restrictions. 
They are required in any simple mathematical treatment of the waves produced by a 
localized disturbance in the fluid. Such treatments essentially describe how, a complex 
waveform may be developed. These waveforms m ight be generated by the passage of a 
ship or by an explosion and are expressible mathematically as an infinite sum of basic 
free waves. A determination of the dispersion relations for internal waves in any given 
environment is thus a desirable computational step in the mathematical description of 
any wave field which m ight be expected in that environment. The purpose of this report 
is to describe one particular method for making that step. 

FORMULATION OF THE PROBLEM 

The basic problem considered was finding solutions to a differential equation which 
satisfy certain boundary conditions. The equation and boundary conditions must describe 
conditions in the real world reasonably accurate in most situations of interest. A basic 
governing equation for two-dimensional, small-amplitude harmonic waves within a hori- 
zontally homogeneous, inviscid, incompressible fluid in which there are no mean velocity 
distributions may be arrived at through various cross differentiations and combinations 
of the basic equations of fluid motion (see, for example, Phillips, 1966, pp. 161-162). One 
such equation, for a nonrotating fluid in which the Boussinesq approximation* is valid, is 

?tk$ + !? (N2 _ 
02 

d)w = 0 ) (1) 

* 
In the Boussinesq approximation, the density is considered as constant in the linearized momentum 
balance equations, except when it is multiplied by the acceleration due to gravity. 
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2 T. H. BELL, JR. 

where the vertical velocity of the fluid is the real part of W (x, Z, t) = W(Z) exp i (KX - ct), 
the z axis being taken as vertically upward. The parameters K and cr are the wave num- 
ber and frequency, respectively, of the wave motion and are equal to 2~ times the in- 
verses of the wavelength and the period of the motion. The speed of propagation of the 
waveform, or the phase speed c, is given by c = U/K. The function N(Z) = J(-g/p)(dp/dz) 
is commonly called the Brunt-W.is%ll frequency and is a measure of the stability of the 
fluid system, p(z) being the mean (undisturbed) density profile. From the equation of 
continuity for an incompressible fluid in two dimensions, the horizontal fluid velocity is 
given by the real part of U(x, z, t) = U(Z) exp i(Kx - crt) , where U(Z) q (i/K)(dw/dz) . 

The vertical displacement 7 of a fluid parcel from its equilibrium position, which satis- 
fies W = aq/at, is given by n( x, z, t) = [w(z)/ul exp i CKx-Crt t (1/2)vl. 

The application of Eq. (1) to naturally occurring fluid systems such as the ocean 
necessarily imposes certain restrictions on the scales of motion over which the model 
may be ‘expected to yield valid results. The assumptions of no-mean-velocity distribu- 
tions and horizontal homogeneity imply that, in the undisturbed fluid system, the vertical 
velocity and vertical variations in the horizontal velocity are negligible when compared 
with w (z), and that significant variations in the undisturbed density and horizontal veloc- 
ity fields (and the fluid depth) may occur over only horizontal distances which are large 
compared with the wavelength of the disturbing waves. Two dimensionality is a conven- 
ient restriction which implies that the coordinate system is set up with the x axis in the 
direction of wave propagation so that wave properties don’t vary in the y direction. If 
there is a nonsheared, basic horizontal current, the coordinate system must move with 
the component of flow in the direction of wave propagation. 

The linearity of Eq. (1) is a result of the small-amplitude assumption and requires 
that terms like w ( Z)/C be small compared with unity. Compressibility effects on gravity 
waves may be neglected if g/N is very much smaller than the speed of sound in the fluid, 
and the neglect of viscosity required that a Reynolds number R q W/KU, where’ v is some 
appropriate kinematic coefficient of viscosity, be large compared with one. If the fre- 
quency of the wave motion is large compared with the local inertial frequency (1.46~10’~ 
set x the sine of the latitude), then neglecting the earth’s rotation is justified. Also, if 
the ratio of the wavelength to the earth’s circumference is small compared with unity, 
the earth may be considered as locally flat and the cartesian coordinates are appropriate. 
The Boussinesq approximation is quite valid when dealing with internal wave motions of 
this type in the oceans or other similar bodies of water (see Phillips, 1966, pp. 14 ff). 

Although numerous, the restrictions listed above do not rule out the scales of motion 
which are of the greatest interest. When these restrictions are applied, the full nonlinear 
Navier-Stokes equations are condensed to a linear second-order ordinary differential 
equation involving two parameters (any combination from (T, K, and c). The problem is 
determining the parameter values that solve Eq. (1) by satisfying the appropriate bound- 
ary conditions. The correct upper boundary condition is continuous pressure across the 
free surface. However, as described by Phillips (1966, pp. 164-165), this dynamic con- 
dition may be replaced with a condition appropriate for a rigid surface, that is, one for 
which the vertical velocity vanishes at z = 0. The condition that w (-H) = 0, where 
z = -H represents the rigid bottom, completes the specification of the boundary value 
problem. 

GENERAL PROPERTIES OF THE SOLUTION 

The type of boundary value problem described above is fairly common in mathe- 
matical physics. It represents a Sturm-Liouville system in the parameter l/c2 = K2/a2 

for any particular value of ~~ , provided that N2(z) 2 0 everywhere in the fluid. Unfor- 
tunately, a general analytic solution of this type of problem is unknown. Certain general 
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properties of the solutions, however, which are of interest in the numerical calculation of 
the dispersion relations, are known. These general properties, listed below, are used to 
determine testing criteria and ranges of values for solving for the dispersion relations. 

A. For a given value of K2 > 0, an infinite number of values of 

l/c2(0 < 1/c; <1/c;. . .) 

and of positive values of c2 (G-~~ > c22 > us2 . . .) exist for which real solutions wl( z), 
wz(z), wg(z), - - a, which satisfy the boundary conditions, exist. These solutions have the 
property that the function wn( Z) has n - 1 zeros on the open interval 0 < z < -H (Ince, 
1956, section 10.61). The index n will be called the mode number of the solution, so that 
any particular modal solution or mode W,(Z) will be a function which vanishes at z = 0, 
-H, and at n - 1 intermediate depths. 

B. The maximum value of N2( z) is an upper bound on c2 (Groen, 1948). 

C. For any particular modal solution, (T is a monotonically increasing function of K 
(Groen, 1948). 

Normally, the distribution of the Brunt-V&s?& frequency will be recorded digitally, 
that is, as a series of values of N2 corresponding to a series of depths. In this case, the 
most straightforward method of solving Eq. (1) for c when K is given is to transform the 
differential equation (1) into an equation in finite differences of serial values of the ver- 
tical velocity function, together with the serial values of the Brunt-V&&i frequency.* 
The finite difference formulation may be considered as defining recursion relations 
among the serial values of W, from which the final values of w at the boundary z = -H 
may be determined for any particular wave number and frequency, if the initial value of 
w at the boundary z = 0 and the serial values of N are given. For any given wave num- 
ber, this system represents the final values of w as a function of frequency. The remain- 
ing problem is to determine the “zeros” of this function, that is, those values of (T for 
which a solution satisfying both boundary conditions exists for a given K. If the finite 
difference formulation is assumed to represent a good enough approximation to the 
original differential equation so that the general properties of its solutions listed above 
remain valid, these properties may be used to determine an effective method of finding 
the “zeros . It Determining these “zeros” for a range of wave number values will permit the 
construction graph of o as a function of K for each of the modes to be considered, that is, 
the construction of the dispersion curves. 

NUMERICAL METHODS 

Finite Difference Formulation 

To represent the differential Eq. (1) as an equation in finite differences, some ap- 
proximate form of d2w/dz2 in terms of serial values of w must be determined. One par- 
ticularly simple approximation is to assume a quadratic form for W(Z) in each depth in- 
terval spanning two increments of depth. If w = a0 t aIz t a2z2, then W” q 2a2, where 
primes indicate derivatives with respect to z, so that we need only determine a2 to ob- 
tain an approximate value for the second derivative of W. Writing 

c 
z 
E 
w 
w 
C 
T 
C 
rr: 
c 

*Since 0, K, and N all appear in the governing equation as squared quantities, all subsequent refer- 
ences to these quantities will be to their positive square roots for convenience; thus, we will con- 
sider only waves which propagate in the positive x direction period. Dispersion relations corre- 
sponding to waves propagating in the negative x direction are obtained by changing the sign of 0. 
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wi-l = aiO + ailziml + ailz:-I , 

wi = aio t ailzi + ai2zG2 , 

and 

2 
wi+l = aio + ailZi+l + aizZi+l f 

we have a set of three linear equations in the three unknown coefficients of the assumed 
quadratic form for w in the interval zi-1 L zi -> zi+l. Since the Z’S are all different, 
and since z”, zl, z2 are linearly independent, the determinant of the efficient matrix is 
nonzero, and the coefficients may be determined by Cramer’s Rule. 

In matrix notation, we have 

Defining 

II 
aiO wi-l 

:I[ I 

ai1 = wi . 

ai witl 

det Xi = (zftIzi - z~z~+~) - (z~-~z~+~ - z~-~z~+~) t (zie1zi2 - zfmlzi) 

= zI-l(zi+l-zi) + z~(zi-l-Zi+l) t Z~+l(Zi-Ziml) , 

we have, by Cramer’s Rule, 

1 'i-1 wi-l 

ai2 
=A 1 

det Xi 'i wi 

1 'it1 witl 

1 
= det wi-l 'it1 ( - ‘i) - wi(zi+l - zi-l) t Witl(Zi - 

So that, at the depth z = zi, the differential Eq. (1) is approximated by the finite differ- 
ence relation 

2 
det X  wi-l 'itl- ( 'i) - wi(zi+l - zi-l) + Wi+l(Zi - Zi- 1)] t $ (Ni2 - cr') wi = 0 

or, defining Ai = zi - ziel, 

A itlwi-1 (N;’ - CY~) det Xi - Ai+, - Ai 
I 

wi t Aiwi+, = 0 . 
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The condition at the boundary z. = 0 requires that w. = 0. Since we are dealing 
with a homogeneous, linear differential equation with homogeneous boundary conditions, 
the solution W(Z) will be ambiguous to within a multiplicative constant, and we may set 
w1 q w(z1) = 1 without loss of generality. Thus, a recursion relation for the serial values 
of w is given by 

wit1 = (-l/A,) i < (Nt -u’) det Xi - Ai+l - Ai 
u I 

where w. = 0 and w1 = 1. The basic problem is to determine the value of u which will 
make wntl = w(zntl> = 0, where z,.,+~ represents the depth of the bottom, for any par- 
ticular value of K. Note that, in this formulation, the step lengths Ai need not be equal. 
Although the use of unequal step lengths introduces some complexity into the finite dif- 
ference equation over that corresponding to equal depth intervals, unequal steps permit 
the use of data in which observations of Brunt-V%is’Xl% frequency may be clustered around 
depths at which N2( Z) is changing rapidly. 

Calculation of the Frequency Corresponding to a Particular Modal 
Solution for a Given Wave Number 

By means of the recursion relation (2), successive values of w may be calculated in 
series, down to zntl = -H , for any given set of u and K. If w,+ 1 = 0, then the set (a, K) 
allows for a particular modal solution and represents a point on the dispersion diagram. 
The mode number of the solution is one more than the number of times which the vertical 
velocity function W(Z) passes through zero during the calculation. In general, however, 
an arbitrary choice of a pair ( (T, K) will not yield a solution with w(-H) = 0, so that some 
orderly method of determining that value of g which will yield a particular modal solu- 
tion for a given value of K is needed. 

From the general properties of the solution listed previously, we know, by proper- 
ties A and B, that for any wave number K the frequencies which will yield solutions satis- 
fying the boundary conditions must lie in the interval 0 = amin < (T < cmax = N,,, , where 
N is the maximum value of the Brunt-V&%.% frequency in the water column.* As a 
fF!lt approximation to c,,,, the frequency corresponding to the m-th mode solution, the 
m idpoint of the interval (ami”, c,,,,,,) may be taken. If, during the recursive calculation 
based on this approximation to a,,,, W(Z) changes sign more than m - 1 times, then by 
property A, we know that the approximation to c,,, is too low. The next approximation 
may be taken as the m idpoint of the interval (ff”i,, u,,,,,,), where Ornin is now the “too- 
low” approximation. If, on the other hand, the calculated value of w,+ 1 is nonzero and the 
number of zeros in w(z) in the open interval 0 < z < zntl = -H is less than or equal to 
m - 1, the approximation to o;n is too high, and the next approximation may be taken as 
the m idpoint of the interval (~~inl umaX), where u,,,~~ is the “too-high” approximation 
to o;n- 

The procedure of dividing in half the frequency interval on which the proper value of 
o,,, is known to lie may be continued with successive approximations until an acceptable 
solution is found. An acceptable solution should have the frequency interval as a small 
fraction of the value of c at the interval m idpoint if a “true” solution is known to exist, 
that is, a solution for which wntl = 0 and W(Z) go through zero m - 1 times, or for which 

WI-l+1 ) is small compared to 1. 

*BY ProPerQ 4 Omin Or urnmax may be replaced by the frequency corresponding to a solution for the 
i-th mode (i either less than or greater than III, respectively, where III is the mode number of the 
desired solution for the given value of K) if it is known. 
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Alternative Bottom Boundary Condition of Very Deep Water 

In some applications, the significant stability information, that is, large values of the 
Brunt-V~isHla frequency, may be restricted to a surface layer which is a small fraction 
of the total depth of the body of water. In such a case, it would be convenient to terminate 
the calculation of W(Z) at some intermediate depth; therefore, some alternative “pseudo- 
bottom” boundary condition is needed. 

If it is assumed that the water is homogeneous below a depth -D, and that the total 
body of water is very deep compared to -D, then the simple solution of Eq. (l), W(Z) = 
A exp KZ , for homogeneous water of infinite depth may be compared with the numerical 
solution at z,+ 1 = -D in lieu of expending the computation to the actual bottom. In this 
formulation, the bottom boundary condition of w,+ 1 = 0 would be replaced by the condi- 
tions that the numerical solution and its first derivative be equal to the analytic solution 
for homogeneous water and its first derivatives at the appropriate depth. These condi- 
tions reduce simply to the condition that wLtl = KW,t 1. If the ratio of wAtl to wntl is less 
than K, then the solution is not asymptotically approaching W(Z) = 0 fast enough, and, 
provided w(z) has passed through 0 exactly m - 1 times, the value of r used in the com- 
putation is too high. On the other hand, if the ratio is greater than K, then the solution 
is approaching zero too fast, and (T is too low. In practice, a small range of values cen- 
tered on (w’/w) = K should be considered as yielding an acceptable solution. 

The simplest approximation to w’ is given by the first difference of two values of w 
at consecutive depths; that is, (w,+ 1 - WJ/( z,+ 1 - zn) is the first approximation to W’ at a 
depth midway between Z, and z,.,+~. The approximate value of W(Z) at this depth is 
l/2 ( wnt 1 t w,-,), so that the ratio which should be compared with the wave number is 
2 (%I+ 1 - wn)/Rznt1- %>(%t 1+ %>I. 

Calculation of a Series of Points Along a Dispersion Curve 

In constructing a dispersion curve, the frequency which allows for a particular modal 
solution must be calculated for various wave number values. If a large number of points 
along such a curve is to be calculated, then some systematic method of employing pre- 
viously calculated information should be used. One simple method for this type of cal- 
culation relies on the choice of n = 2P + 1, where p is an integer and n is the number of 
values of K for which frequencies are to be calculated.* If the series of wave numbers 
is arranged in ascending order and indexed ( K1 < K2 < . . . <K,, n = 2* + l), then property 
C described previously may be used to calculate the corresponding values of 
o(u1 < u2 < . . . un) for a particular mode. First, u1 is calculated using a frequency in- 
terval (Urnin, u ,,,), as discussed in the previous subsection, where 

umin 5 u1 < . . . < un 5 urnax . 

Then, u,., is calculated using the frequency interval ul < un -< amax. The third frequency 
to be calculated is ucnt 1),2, using the interval (ul, 0,). The frequencies corresponding 
to the median values of K in the two subseries K1, . . . , K(n+l)/2 and K(,+I jl2, . . . , K,, 

each of which contains one plus a power-of-two values of wave number, are then calcu- 
lated, using the frequency intervals (alI a( n+l )12) and (a(,, 1),2, 0,). This procedure 
of dividing up the wave number series into equal subseries continues until all n = 2P + 1 
values of the frequency have been calculated. Figure 1 is a schematic diagram which 

*A wave number series containing an arbitrary number of points can always be “factored” into a 
number of subseries with overlapping endpoints, each of which contains one plus a power-of-two 
VaheS Of K. 
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Fig. 1 - Schematic illustration of the order 
in which to calculate frequencies for a series 
of nine wave number ( Ki ) VdUeS for the 
case in which there is initially no previously 
calculated information about the frequencies, 
that is, it is only known that all frequencies 
lie between CJ = 0 and (T = Nmsx, the maxi- 
mum value of the Brunt-Vaislil’a freqeuncy. 
The order of calculation proceeds from left 
to right, and the brackets indicate the fre- 
quency interval o;ni,., < oi < cmex which is 
to be used in calculating each oi. 

Nmax 

ORDER OF 
CALCULATION 

CORRESPONDING 
WAVE NUMBER KI KS  K5 K3 

1 az 

5 6 

‘(7 ‘5~ 

7 6 9 

‘(4 KG b 

illustrates the order of calculation of the u values for a wave number series containing 
z3 t 1 = 9 Values Of K. Starting with n = 2P + 1 values of K insures that the procedure 
can be continued unaltered until the series of wave numbers has been exhausted. 

FORTRAN SUBROUTINES FOR THE CALCULATION OF 
DISPERSION RELATIONS 

Subroutine Descriptions 

A set of six Fortran subroutines (DISPER, DIFFER, SERIES, CALSIG, PRIDIS, and 
PL@DIS) were written for use on the NRL CDC 3800 computer. The subroutine DISPER, 
which relies on DIFFER, SERIES, and CALSIG for its operation, is based on the tech- 
niques discussed in the previous section and is designed to calculate the frequency/wave 
number relations for a set of mode numbers of free, progressive internal waves for an 
arbitrary distribution of Brunt-V%s%l& frequency. PRIDIS and PLODIS are “output” sub- 
routines designed to print out or produce a line printer plot, respectively, of the ca.lcu- 
lated dispersion relations. The source language listings for these subroutines constitute 
Appendix A of this report. 

Utilization of Subroutines 

The Fortran Statement 

CALL DISPER (NM, MN, NX, X@,XF, M , Z, ZN, BB, EPS, RES, NER, L) 

causes the array of frequencies S (I, J), I = 1, . . . , NM; J = 1, . . . , NX to be calculated. 
This array is stored in common with DISPER in the common block SIGMA, which contains 
2500 computer words; therefore, a C@MM@N declaration (C@MM(Z)N/SIGMA/S (10,250)) 
is required in the calling program. The parameters involved in the call to DISPER are: 
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NM- the number of modes for which the calculations are to be made (NM 5 10). 

MN - an integer array (MN(l), . . . , MN (NM) containing the mode numbers for 
which calculations are to be made. The mode numbers need not be consecu- 
tive but must be listed in ascending order. 

NX- the number of wave number values for which the calculations are to be made 
(1 5 NX 5 250). 

xgl - the lowest wave number value for which the calculations are to be made. 

XF - the highest wave number value for which the calculations are to be made. 

M- the number of observations of Brunt-VKis?il% frequency squared (M 5 200). 

z- the array of depths (Z(l), . . . , Z (M), positive numbers) to which the observa- 
tions of Brunt-V%is’&l~ frequency squared correspond. The depths must be 
listed in increasing order, The array of depth (Z) must be dimensioned to 
M + 1 in the calling program. 

ZN - the depth (Positive number) at which the bottom boundary condition is to be 
evaluated (ZN > Z (M)). 

BB - the array (BB (l), . . . , BB (M)) of observations of Brunt-V&% frequency- 
squared corresponding to the depths Z (I). 

EPS - the allowable fractional error in the calculated frequencies. 

RES - the allowable fractional error in evaluating the bottom boundary condition in 
the calculations. A “valid” solution is one for which either the EPS or RES 
condition is satisfied. 

NER - an integer array (NER (l), . . . , NER (NER (2) + 5)) of error returns. If 
NER (1) f 0, an error in calculation has occurred. See the source listings 
of DISPER (Appendix A) for an explanation of this array. Dimension the 
array NER to 30 in the calling routine. 

L- an integer variable which determines the bottom boundary condition. 

If L = 0, ZN is the depth of a rigid bottom. 
If L = 1, ZN is the depth at which the calculated distribution of vertical 
velocity is to be compared with that for homogeneous water. 

The Fortran Statement 

CALL PRIDIS (IDENT, NUNITS, X0, XF, NX, NM, MN) 

causes the array of frequencies calculated by DISPER to be printed out in tabular form. 
The frequency array is stored in the common block SIGMA. The parameters are: 

IDENT - an integer array (IDENT (l), . . . , IDENT (10)) containing 10 eight-character 
alphanumeric words, to be used as an identification field which will be 
printed above the table. 
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NUNITS - an integer variable composed of a six-character alphanumeric word, to 
be used to specify the units of depth (and thus of wave number), for ex- 
ample, FEETAA, CMAAAA, or METERS (A’S  indicate blank spaces). 

X0, XF, NX, NM, and MN are the same as in DISPER. 

The Fortran Statement 

CALL PLODIS (IDENT, NUNITS, x0, XF, NX, NM, MN) 

causes the array of frequencies calculated in DISPER (and stored in the common block 
SIGMA) to be graphed on a line printer plot. The symbols used in the plot are the appro- 
priate mode numbers. If the separations between frequencies for various modes for a 
certain wave number are smaller than the size of the symbols, the lowest mode takes 
preference, and plotting of higher modes in the same location is not attempted. Only 
modes 1 through 9 can be plotted, since only one-character symbols are employed. If 
mode numbers higher than 9 are inadvertently specified, a comment to that effect is 
printed and only those mode numbers I 9 are plotted. NX must be greater than one; 
otherwise, no restrictions are made on the number of points to be plotted. If, inadvert- 
ently NX = 1, a comment to that effect is printed, and no plot is produced. The param- 
eters are the same as those in PRIDIS. 

The number of lines output by this subroutine is determined by RX. If NX 5 50, the 
number of plotted lines is 5 100, and for RX > 50, the number of plotted lines is equal 
to Nx. 

A sample calling program which uses the’above subroutines is included as Appendix B, 
along with the sample outputs produced by calls to PRIDIS and PL@DIS. 

Storage Requirements (Exclusive of Computer System Library Functions) 

DISPER 

unique storage: 1272 octal (695 decimal) locations 
common blocks (all real variables): 

C@MM@N/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations 
C@MM@N/BLK/BB (200), Z  (201), DEL (201), DET (201), W  (202) length 1755 octal 

(1005 decimal) locations 

DIFFER 

unique storage: 321 octal (153 decimal) locations 

SERIES 

unique storage: 476 octal (318 decimal) locations 
common blocks (all real variables): 

C@MM@N/BLK/BB (200), Z  (201), DEL (201), DET (201), W  (202) length 1755 octal 
(1005 decimal) locations 

CALSIG 
unique storage: 474 octal (316 decimal) locations 
common blocks (all real variables): 

COMMON/BLK/BB (200), Z  (201), DEL (201), DET (201), W  (202) length 1755 octal 
(1005 decimal) locations 
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PRIDIS 

unique storage; 404 octal (260 decimal) locations 
common blocks (all real variables): 

C@MM@N/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations 

PLODIS 

unique storage: 1465 octal (821 decimal) locations 
common blocks (all real variables): 

C!@MM@N/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations 

Timing 

The test routine of Appendix B (together with the subroutines) required 42.87 seconds 
for compilation and assembly. The call to DISPER required 15.69 seconds, and the calls 
to PRIDIS and PL@DIS required a total of 2.14 seconds.. Table 1 gives times for calls to 
DISPER under various conditions, using the Brunt-VZisHl% distribution of Fig. 2. 

Table 1 
Times Required for Calls to DISPER for Various Values of the 

Parameters NM, NX, M, EPS and RES* 

Time Per Time Per 
Distribution Point 

NMNXM EPS RES Total Time Dispersion 
(se4 Point Per Observation 

(millisec) of B/V Freq. 
(millisec) 

7 26 28 lo+ 1O-6 15.69 75.29 

3 10 28 1O-3 1O-3 1.144 38.13 

3 30 28 1O-3 1O-3 2.932 32.58 

3 10 200 10-S 10-S 6.308 210.3 

3 30 200 10-S 10-S 16.025 178.1 

*Times are based on programs run on the NRL CDC 3800 computer. 

2.688 

1.362 

1.163 

1.051 

0.890 

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL 
RESULTS; SOURCES OF ERROR 

The numerical procedure for calculating dispersion relations described in the pre- 
ceding sections was compared with analytic solutions of Eq. (1) for the case in which 
N2(z) = 0.0032825 exp (-0.341642 z) for 0 2 z 2 -10 and N2 (z) = 1.6/(z + 6)2 for 
-10 zz z 2 -co (Fig. 2). There are two reasons for the choice of this particular distribu- 
tion of Brunt-VHis?ilZ frequency as a test case. The first reason is that it closely approxi- 
mates the average conditions at a location in Bute Inlet, British Columbia (50”35.5’N, 
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Fig. 2 - Distribution of density and Brunt-V&ala 
frequency used in test solution 

125”53’W; actual depth, 2000 ft)* where field exercises were held in the-summer of 1969. 
The numerical procedure was originally developed for making estimates of internal wave 
properties in these waters. The second reason is that it is an excellent distribution for 
testing the accuracy of the numerical calculations in that it provides a test for errors 
introduced into the numerical solution by the use of the pseudo-bottom boundary condi- 
tions at low frequencies and by the strong curvature in the distributions of the vertical 
velocity function’with depth at frequencies approaching the maximum Brunt-VZiis%.lilL fre- 
quency. 

Use of the pseudo-bottom boundary condition is strictly justified only when both the 
square of the ratio of the wave frequency to the Brunt-VBisPlP frequency below a certain 
depth and the product of the wave number and the remaining fluid depth are large com- 
pared to unity. If either of these conditions are violated, calculated dispersion points 
may be expected to deviate from their true values. The wave number restriction is es- 
sentially the “deep-water” surface gravity wave assumption and is simply a statement that 
tanh Kh’ = 1, where h’ is the depth of water below the pseudo bottom. A violation of this 
wave number assumption will, in general, be accompanied by a violation of the frequency 
assumption, but not vice versa. For this reason, only errors introduced by violations of 
the frequency assum-nxxplored in the comparison testing. 

The dispersion points calculated numerically and those obtained from the evaluation 
of analytic solutions of Eq. (l)? are compared in Figs. 3 and 4. Dispersion points for two 
different numerical solutions are shown. The “coarse-iteration” solution was obtained 
using values of the Brunt-V%sZl’Ei frequency at 1-ft intervals from 0 to 25 ft, and at 30, 

*The particular functional forms for N (z) represent an optimum choice for “solvability” and repro- 
duction of the form of the observed average distribution. The choice of the numerical values of the 
parameters in the functions involved optimizing the reproduction of the observed average distribu- 
tion of Brunt-VCisaBi frequency and the total density variation over the depth of the inlet. 

TSee Appendix C for a development of the analytic solution. 



T. H. BELL, JR. ’ 

WAVE NUMBER (RAWFT) 

Fig. 3 - Dispersion relations for low wave numbers for the first 
three internal modes, obtained from analytical and numerical 
solutions of Eq. (1) for the Brunt-VPisZhi frequency distribution 
of Fig. 2. Points were calculated to a nominal 0.1% accuracy. 

0 

WAVE NUMBER (RADIFT) 

Fig. 4 - Dispersion relations for high wave numbers for the first 
three internal modes, obtained from analytical and numerical solu- 
tions of Eq. (1) for the Brunt-VUsLhi frequency distribution of 
Fig. 2. Points were calculated to a nominal 0.1% accuracy. 
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35, and 40 ft, with the pseudo-bottom condition imposed at 45 ft. This sequence of, depths 
was used for one of the comparisons because it corresponds to the sequence of depths at 
which the bulk of observations of water properties were made by Bute Inlet. The “fine- 
iteration” solution involves values of N2 at half-foot intervals from 0 to 200 ft, with the 
“pseudo bottom” at 200.5 ft, representing a finer recursion step interval and a lower 
Brunt-VCiisXlP frequency at the pseudo bottom than in the “coarse iteration.” 

The comparison was made over two ranges of wave numbers (low, 0 to 0.1 rad/ft 
and high, 0 to 1.0 rad/ft) to illustrate the systematic deviation of the numerical dispersion 
points from those of the analytic solution for the coarse iteration. At low wave numbers 
(and hence low frequencies), the numerically determined points fall below the analytic 
solution curve as a result of the use of the pseudo-bottom boundary condition at 45 feet 
in violation of its underlying high-frequency assumption. For high wave numbers, the 
deviation is reversed as a result of the inability of the finite difference formulation for 
w (z) to closely approximate the strong curvatures in the vertical velocity function. The 
result at low wave numbers of extending the numerical solution to a greater depth (200 
feet, where N2 (200) is 3% of N2 (40)) and at high wave numbers of employing a finer re- 
cursion interval (l/2 ft instead of 1 ft in the area of importance) is illustrated by the 
close adherence of the fine iteration points to the analytical solution curve. Percent 
deviations of the numerically calculated frequencies from those obtained from the ana- 
lytic solution are shown as a function of wave number in Figs. 5 and 6 for the fine-iteration 
and coarse-iteration solutions, respectively. The effect or m isuse of the pseudo-bottom 
boundary condition is well illustrated, and for purposes of comparison, the wave numbers 
for which the wave frequency is equal to the Brunt-V’ais~l’a: frequency at the last iteration 
step are marked on the wave number scale for each mode. 
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Fig. 5 - Percent deviation of fine-iteration dispersion points from 
the analytic curves of Figs. 3 and 4. Wave numbers above which 
the wave frequency is greater than the Brunt-VZLis%lS frequency at 
the pseudo bottom are indicated on the wave number scale for 
three modes. 
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The reason for the low-frequency deviations associated with the m isuse of the pseudo- 
bottom boundary condition is illustrated in Fig. 7. This figure is a comparison between 
the analytical vertical velocity function and the function calculated in the coarse-iteration 
solution at wave numbers for which the wave frequency is less than the Brunt-V&SE 

_ frequency at the last iteration step (N(40) = 0.03720 rad/sec). The pseudo-bottom bound- 
ary condition requires that the numerical solution appear to approach the W(Z) = 0 axis 
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Fig. 6 - Percent deviation of coarse-iteration dispersion points 
from the analytic curves of Figs. 3 and 4. Wave numbers above 
which the wave frequency is greater that the Brunt-VkiisM fre- 
quency at the pseudo bottom are indicated on the scale for the 
three modes. 

- ANALYTICAL SOLUTION 
I NurdmcnL (COARSE) 

SOLUTION 
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L 
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1 1 
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X 

W(Z), ARBITRARY SCALE 

Fig. 7 - Comparison between analytical vertical velocity function and that 
calculated in coarse iteration solution at low wave numbers, Vertical 
velocity scale is arbitrary, and solutions are matched at 1 ft. First mode: 
K = 0.007644 rad/ft; D = 0.01796 rad/sec (analytic), 0.01761 rad/sec (nu- 
merical). Second mode: K = 0.01101 rad/ft; (5 = 0.01123 rad/sec (analytic), 
0.00964 rad/sec (numerical). Third mode: K = 0.009897 rad/ft; 0 = 0.00683 
rad/sec (analytic), 0.00521 rad/sec (numerical). 
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with an exponential decay, which requires that the vertical velocity and its second deriva- 
tive be of the same sign. As can be seen from Eq. (l), if N2 > a2, then the vertical veloc- 
ity and its second derivative must be of opposite sign, resulting in a convex curvature 
rather than the concave curvature required by the pseudo-bottom boundary condition. 
This curvature results in a numerical solution which approaches the W(Z) = 0 axis too 
rapidly, that is, one which oscillates more rapidly than the true solution, and ‘corresponds 
to a frequency which is lower than the correct wave frequency. In the extreme, m isuse 
of the pseudo-bottom boundary condition may actually result in confusion between modes. 
For example, the analytical vertical velocity function for the third mode in Fig. 7 indi- 
cates that W’/W = 0.0099 at z = -23 ft; that is, a numerical solution invol ring a pseudo 
bottom at 23 ft would faithfully reproduce the vertical velocity function for the third mode 
at a wave number of 0.0099 rad/ft and a frequency of approximately 0.0068 rad/sec but 
would identify this frequency with the second mode of oscillation. 

Comparisons at higher wave numbers for which the wave frequencies are greater 
than N (40) are shown in Fig. 8. The first- and second-mode solutions show a good agree- 
ment between numerical and analytical results. The third-mode solution, for which the 
ratio of wave frequency to Brunt-V&&la frequency at 40 ft is 1.16, shows some of the 
“too-low” type deviation of Fig. ‘7. Of course, this “too-low” type low wave number 
deviation is a result of the m isuse of the pseudo-bottom boundary condition and will not 
be present in situations in which the appropriate bottom boundary condition is that of a 
rigid plate. 

1, 
i 
0 

I 

- ANALYTICAL SOLUTION 
x rwf~4ERicAL (~0A~ts.5 . 

SOLUTION 

: FIRST MODE SECOND MODE 

i 
W(Z), ARBITRARY SCALE 

‘HIRD MODE 

Fig. 8 - Comparison between analytical vertical velocity function and that 
calculated in coarse iteration solution at intermediate wave numbers. 
Vertical velocity scale is arbitrary, and solutions are matched at 1 ft. 
First mode: K = 0.09645 rad/ft; D  = 0.1263 rad/sec (analytic), 0.1273 rad/ 
set (numerical). Second mode: K = 0.1025 rad/ft; (5 = 0.05943 rad/sec 
(analytic), 0.05975 rad/sec (numerical). Third mode: K = 0.1003 rad/ft; 
G= 0.04214 rad/sec (analytic), 0.04239 rad/sec (numerical). 
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The underlying problem in the high-wave-number deviations is shown in Fig. 9. At 
high wave numbers, the strong curvature of the vertical velocity function changes rapidly 
over distances comparable to the iteration step length. Because of this, the quadratic 
approximation of derived in the section on “Finite Difference Formulation” loses its 



16 T. H. BELL, JR. 

effectiveness, and incorrect frequencies are predicted. This effect is reduced by going 
to smaller-step intervals, as can be seen from a high-wave-number comparison of Figs. 
5 and 6. The extreme condition would be realized if the recursion interval were greater 
than the distance between successive nodes in the vertical velocity function. If the step 
length used in calculations for the third mode in Fig. 9 were 4 ft, computations would be 
made at depths of 4, 8, 12, 16 ft, etc., and the negative portion of the actual vertical ve- 
locity function would be skipped over entirely, resulting in a search for zero crossings 
at other depths, which would tend to make for large deviations from the correct third- 
mode frequency in the computed value. Since numerical solutions involving this type of 
high-wave-number deviation oscillate less rapidly than their theoretical counterparts, the 
numerically determined frequencies will generally be higher than those corresponding to 
the correct solutions. 

FIRST MODE 

-25 
0 

0 

- ANALYTICAL SOLUTION 
NUMERICAL (COARSE) SOLUTION 

0 
W(Z). ARBITRARY SCALE 

1 THIRD MODE 

0 

Fig. 9 - Comparison between analytical vertical velocity function and that 
calculated in coarse iteration solution at high wave numbers. Vertical 
velocity scale is arbitrary, and solutions are matched at 1 ft. The diver- 
gence of the numerical points below 15 ft is a general high-frequency result 
and contributes less than 1.0% to the frequency deviation. First mode: 
K = 0.9084 rad/ft; (T= 0.2444 rad/sec (analytic), 0.2500 rad/sec (numerical). 
Second mode: K = 0.9315 rad/ft; (J = 0.1807 rad/sec (analytic), 0.1826 rad/ 
set (numerical). Third mode: K = 0.9802 rad/ft; D = 0.1559 rad/sec (ana- 
lytic), 0.1624 rad/sec (numerical). 

The divergence of the points in the bottom portion of Fig. 9 is a general tendency 
which is enhanced by the high wave numbers involved. In this region, the wave frequency 
is much higher than the Brunt-V&%1X frequency at the last iteration step (for the first 
mode, c2/N2 (40) = 43.6), and the frequency condition for the applicability of the pseudo- 
bottom boundary condition is satisfied quite well. The problem is that two linearly inde- 
pendent solutions exist for 02/N2 >> 1, one is the desired exponential decay, and the 
other is an exponential increase. Only for an exactly correct frequency will the exponen- 
tial increase be eliminated, so that, when calculating to any finite accuracy, the exponen- 
tial increase will enter into the calculated vertical velocity function at some depth. The 
frequencies in Fig. 9 were calculated to 0.1% accuracy, and a higher accuracy in cal- 
culation would have suppressed the exponential increase to a greater depth. Since the 



NRL REPORT 7294 17 

solutions vary as exp (k KZ), this effect is more pronounced at the higher wave numbers 
and, hence, is not observed in Figs. 7 and 8. This divergence has no adverse effect on 
the accuracy of computed frequencies and in fact requires that frequencies be calculated 
to a higher degree of accuracy than for lower wave numbers. 

SUMMARY 

Relatively fast (nominal 1 m illisecond per point per observation of Brunt-V%is%i 
frequency) and accurate calculations of the dispersion relations for internal gravity 
waves for arbitrary distributions of BrunLVEis2si frequency can be made using a set of 
Fortran subroutines which has been developed, provided that certain restrictions are not 
violated in the numerical procedure. In the numerical procedure, the basic integration 
of the governing equation for smail-amplitude internal gravity waves is accomplished 
through a finite difference recursion formulation, and efficient calculation of a number 
of points on the dispersion curves is accomplished by making use of previously calculated 
information at each step in the computation. The accuracy of the calculations depends on 
the degree to which two basic assumptions are satisfied. One condition is involved only 
in calculations for fluid environments with an effective infinite depth, that is, those in 
which the significant stability information (large values of the Brunt-V&Xl% frequency) 
is confined to a surface layer whose depth is small compared to the total depth of the 
fluid. This condition requires that the wave frequency be large compared to the Brunt- 
VtiisW frequency at the bottom of the stability layer, where the numerical integration is 
terminated. Violation of this assumption results in computed frequencies which are lower 
than the correct wave frequency. For situations in which the computation extends to the 
rigid bottom of the fluid system, this condition is irrelevant. 

The other condition is that the changes in curvature of the vertical velocity function 
be small over distances comparable to the iteration step length involved in the finite dif- 
ference procedure. Violation of this condition results in computed frequencies which are 
higher than the correct wave frequencies. A convenient rule of thumb for this condition 
m ight be that the quantity Kdm be small compared with unity, where K is the wave number, 
d is the iteration step length in the region of maximum Brunt-V%s’Xa frequency, and m 
is the mode number. 
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Appendix A 

SOURCE LISTINGS OF SUBROUTINES cr: 
cr; C 
T 

The source language listings of the subroutines DISPER, DIFFER, SERIES, CA&SIG, F 
PRIDIS, and PL@DIS as produced by the NRL CDC 3800 computer on compilation are re- c 
produced on the following pages. 

19 
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01/13/71 FTNSrSA 

DIMENrjION A(250) rMN(NM) ,NEX(25) eNEH(30) sy(M) cBV(MI 
C THIS SURROUTINE CALCULATES THE FREQUENCIES (S(I~J!)CORRESPONDING TO 
c THE NX EQIJALLY SPACE0 WAVE NUMBERS X KHICH LIE ON THE CLOSE0 INTERVAL 
C XO.r.xF FOR THE NM MODES MN(l) .r.MN(NM) WHICH AHE ARRANGED IN 
c INCREASING ORDER. I = l,..,rNM ANO J = l~.~r,NXo. 

E 
THE FREQUENCY ARRAY IS STORED IN COMMON WITH THE CALLING HOUTINE 

IN THE COMMON BLOCK SIGMA* WHICH CONTAINS 2500 COMPUTER WOROS. 
C THE SUBROUTINES SERIES AND CALSiG ARE USE0 BY-THIS SUBROUTINE, 
C M IS THE NUMBER OF (INPUT) VALUES OF BRUNT-VAISALA FREQUENCY 
c SQUAREO (138(I)) FOR THE DEPTHS Z(I)c ZN BEING THE OEPTH AT WHICH 
c THE BOTTOM BOUNDARY CONOITION IS TO BE EVAL&JATEO. THE INPUT Z(I) ANO 
c ZN ARE POSITIVE NUMBERS , BEING THE MAGNITUDE OF THE VERTICAL POSITION 
c RELATIVE TO THE NAVIFACE. 

THE FORMAL PARAMATER LIST CONTAINS THE VARIABLES Y AND BV INSTEd 
: OF Z AND aB( IN ORDER THAT THE COMMON DECLARATION MAY BE USED, THF: 
c VARIABLE MAMES ARE SET STRAIGHT IN THE DO LOOP TERMINATING WITH 
C STATEMENT IO. 
C THE SUBROUTINE OIFFER IS CALLED TO CONVERT THE Z(1) INTO TRUE 
C POSITION RELATIVE TO THE NAVIFACE, +Z BEING TAKEN As VERTICALLY UP* 
c AND To FORM THE ARRAYS DEL AN0 DET OF FINIIE OIFFERENcE OPERATIONS 
C IN THE Z(I). 

DEL AND DET ARE ARRAYS OF FINITE DIFFERENCE OPERATIONS WITH THE 
E Z(I) AND ARE USED IN THE CALCULATION OF THE VERTICAL VELOCITIES OF 
; THE WAVES (THE W(I*III IN CALSIGI 

BBrZ,DEL,DETv AND W ARE SHAREI) IN COMMON WITH THE TWO OTHER SUB- 
c ROUTINES WHICH DISPEW RELYS ON (SWIES AND CALS1.G) IN THE COMMON 
c BLOCK BLK, WHICH CONTAINS 500 COMPUTER WORDS* 
C A VALID SOLUTION IS ONE FOR WHICH 

E 
A. THE INTERVAL SL..? SM WITHIN WHICH S cf; KNOWN TO LIE HAS BEEN 

REDUCED TO I00”EPS PERCENT OF SW 
C R* IF L80 (REAL RIGID BOTTOM1 THE VERTICAL VELOCITY W AT THE 

4 
ROTTOM IS WITHIN RES OF LtRO 

IF L=I (PsEUOO BOTTOM) THE RATIO OF DK/DZ TO W AT THE PSEUDO 
C ROTTOM IS WITHIN I00*RES PERCENT OF THE WAVE NUMBER X9 THAT 

IS9 THE SOLUTION t3ELOW THE DEPTH &IN) CLOSELY APPKOXIMATES 
THAT FOR A HOMOGENEOUS FLUID! 

C NER IS AN ARRAY OF ERROR RETURNS, DESCRIBED BELOK. 

z 
DO IO I-IrM 
Z(I)=YII) 

10 BH(I)=RV(I) 
NERfl)=0 
N=M+ 1 
CALL DIFFER(N,Z*ZN,DEL,DET) 

c SET THE INTERVAL SL,I.SM WITHIN WHICH THE 5 ARE KNONN TO LIE. SM IS 
c EQUAkLT; THE MAXIMUM BRUNT-VAISALA PREOUENCY. 

SM:O: 
DO 15 I=l,M 

15 IF (RR(I) .GT.SM) SM=BB(I) 
SM=SORT (SW) 

c BREAK THE SERIES OF NX EQUALLY SPACED VALUES OF X INTO NS SUB-SERIES 
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C OF EQUALLY SPACED (SPACING DELX) VALUES OF Xr EACH CONTAINING A POKER 
C OF TWO (NEx( J) ) J=lqNS) PLUS 1 VALUE OF X (THE ENDPOINTS OF THE SUB- 
c SERIES ARE ALL SHARED EXCEPT FOK THE ORIGINAL X0 AND XF SPECIFIED IN 
c THE CALLING PROGRAM)* 
c NXP IS AN INTERMEDIATE VALUE OF NX, AND REPKESENTS THE NUMRER OF 
c ELEMENTS REMAINING AFTER EACH SUCCESSIVE SUB-SERIES HAS BEEN DETERMINE 
c EDI THE PROGRAM IS SET To RETURN AN ERKOR IF MORE THAN 2s SUB-SERIES 
c ARE REQUIRED TO MAKE UP NX (THAT IS, NER(L)-SET To -1). 

NS=l 
NXP=NX 
XFP=XF 
IF (NX.EQ.l) GO To 35 
QELX=(XF-XO)/(NX-1) 

DO 27 NS=1t25 
17 I=0 
20 :~;J;p,LT.(2**1 + 1)) 60 TO 25 

GO TO 20 
25 NEX (NS) =I-1 

NxP=NXP-2*“(1-1) 
27 IF 1NXP.EQ.l) Go TO 30 

NER(l)t-1 
RETURN 

C THE FREQUENCIES (S(IIJ), I=lva*.vNM* J=l*..f*2**NEX(1)+l) FOR THE 
C FIRST SUB-SERIES ARE NOW CALCULATEO BY CALLING SERIES FOR EACH MODE* 
c NXP IS THE NUMBER OF ELEMENTS IN THE SUB-SEKIEsc NEX(~) BEING ITS 
c POWER OF Two. XFP IS THE UPPER LIMIT OF X FOK THE SUB-SERIES~ AND SMP 
C IS AN INTERMEDIATE VALUE OF SMI WHICH OECKEASES AS ItIE SET OF FREQUEN- 
C CIES FOR EACH MODE Is CALCULATED, A(J) IS AN ARRAY TO RETURN THE 
c S(IrJ) FROM SERIES, NEKR IS AN EKROK RETURN FPOM SEKIES. 
30 NXP=2**NEX(l)+l 

XFP’XOtfNxP-lb*DELX 
35 SMP=SM 

K=l 
DO 40 I=lrNM 
CALL SERIES(MN(I)~XOIXFP,NXP~NEX(~)~~,N~SL,SMP~EPS~RES,A,NERR,L) 
IF (NERR.NE.0) GO TO 200 

DO 38 J=l.NXP 
3B S(IIJ)=A(J) 
40 SMP=A(NXP) 

IF (NS.EQ.1) RETURN 
C THE FREQUENCIES FOR THE REMAINING NS-1 SUkbSkRIES AHE NOW CALCULATED, 
c USING THE LAST FREQUENCY OF THE PREVIOUS SUB-SEKIES FOR SL, AND XFp OF 
c THE PREVIOUS SUB-SERIES FOR XOP, NXX IS THE IOTAL NUMBER OF PREVIOUSLY 
C CALCULATED FREQUENCIES FOR EACH MOUE. THE CALCULATED FKEQUENCIES ARE 
C TRANSFERRED FROM THE ARKAY A TO S(I*J)r J= NXX*lq.,*,NXX+NXP. 

NXX=NXP 
00 100 K=2,NS 
NxP=p**NEX(K)+l 
XoprXFP 
XFP=XOP+(NXP-l)f iDELX 
SMP=SM 

DO 60 I=lrNM . 
CALL SERIES~MN~I)~XOP~XFP~N~P~NE~~K),O,NIS~I~NXX)~SM~~EPS, 

1 RES,A,NERRvL) 
IF (NERReNE.0) GO TO 200 

21 c= 
z 
c, 
j;; 
VI 
cr. 
C  
cr 
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F; 
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DO 50 J=2rNXP 
SO S(I,(NXX+J-l))=A(J) 
60 SMP=A(NXP) 
100 NXX=NXX+NXP-1 

RETURN 
C THE ERROR RETURN SEQUENCE 
C NER(I), I = lg...,NS+S IS AN INTEGER ARRAY WHICH CONTAINS ERROR TNFDR~ 
c MATION TO RE WETURNEU TO THE CALLING PROGRAM? IF AN ERROR IN THE 
C CALCULATION OF A FREQUENCY (SEE CALsIGI HAS UCCURREU, SERIES RETURNS 
C NERRe WHERE A(NERR) IS THE FREQUENCY CALCULATION WHICH ENCOUNTERED 
c DIFFICULTY. NER(1) = THE SUB-SEHIEs NUMBER WITHIN 4HiCH THE OIFFICULTY 
C OCCURRED (EXCEPT IN THE CASE NEH(1) = -1, SEE STATEMENT NUMBER 27 DF 
C THIS SUBROUTINE), NER(2) IS THE TOTAL NUMBER OF SUB-SERIES, NER(3) IS 
c THE NUMBER OF ELEMENTS IN THE SUB-SERIES, NER(41, THE MODE NUMBER, 
c NER(S), THE INDEX WITHIN THE Sue-SEHIES (NERRI, AND NER(b)r.~rkER(5+NS) 
c ARE THE EXPONENTS CORRESPONOING To EACH SUB-SERIES WHICH HAS BEEN SET 
c UP IN THIS SUBROUTINE. 
200 NER(l)=K 

NER (2) =NS 
NER(3) =NXP 
NER(4)=MN(I) 
NEW (5) =NERR 

DO 220 L=l,NS 
220 NER(S+L)=NEX(L) 

RETURN 
END 
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SUBROUTINE DIFFER(NIZ,ZNIDEL,DE~) 
DIMENSION Z(N) *DEL(N) ,OET (N) 

C THIS SUYRDUTINE CONVERTS THE DEPTHS (THE L(I) AND ZNV POSITIVE 
C NUMBERS) INTO TRUE VERTICAL DISTANCE RELATIVE TO THE NAVIFACE, *z 
c BEING TAKEN AS VERTICALLY UP, AND SETS up THE ARRAY? DEL AND DET OF 
c FINITE DIFFERENCE OPERATIONS IN THE Z(I). N  iS THE TOTAL NUMBER OF 
C DEP;H$INCLUDING 2N WHICH IS HETURNED AS Z(N). 

Do= ; I-1rM 
5 Z(I)=-Z(I) 

Z(N)=-ZN 
DET(l)=Z(l)oZ(2)“(Z(2)32(l)),o?S 
DEL(l)=Z(l) 
OEL(2)=Z(Z)-Z(I) 
Do 10 1=2rM 
DEL(I+l)=Z(I+1)-E(I) 

10 DET~I~=O.S~~Z~I~l~~Z~I~l~~D~L~I+l~+t(I~9Z~I~~~Z~I~l~~Z~I+l))+ 
1 Z(I*l)aZ(r+1)9r~EL(I)) 

RETURN 
END 
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E z E 
: E 
E 
C 
C 
C 
C 

: 
C 

: 
C 

E 
C 
C 
C 

“c 
C 
C 

E 

: 

: 
C 
C 

z 
C 
C 

: 
C 

E 

: 

: 
C 

SUBROUTINE SERIES(MN,XO~xF,NX~NEXtM~N~SL,SMIEPS,AES~S*NERR,L) 
COMMON/RLK/RB~200~r~(2Ol~~OEL~2Ol~~DET~2Ol~~W~2O2~ 
DIMENSION S(NX) 

THIS SUBROUTINE SYSTEMATICALLY CALCULATES THE NX FREQUENCIES 
(S(I)...S(NXl) WHICH CORRESPONO To THE NX EQUALLY SPACED WAVE Nut+ 
BERS WHICH ARE CONTAINED IN THE CLOSE0 INTERVAL XOoooXF FOR THE MN-TH 
MODE. NX YUST BE A PoWER OF TWO PLUS 1, THAT IS, NX = 2+“NEX + 1. 
DELX IS THE EQUAL SPACING BETwEEN THE WAVE NUMBERS* THE ACTUAL 
CALCULATIONS ARE PERFOHMEO BY CALLING THE suBRouTINE CALSIG. 

N-l IS THE NUMRER OF OBSEHVATIoNs OF BHUNI-VAISALA FREQUENCY 
SQUARED (HR(I)) AS A FUNCTION OF OEPTH (2(1,)1~, Z(N) IS THE DEPTH AT 
WHICH THE BOTTOM ROUNDARY CONOITIUN IS TO BE EVALUATED. THE Z(I) ARE 
ACTUALLY NEGATIVE NUMBERSI +2 BEING TAKEN AS VERTICALLY UP. DEL AND 
DET ARE ARRAYS OF OIFFERENCt OPERATIONS WITh THE Z(I,)g AND MUST BE 
SET UP IN THE CALLING PROGRAM* THE W(I+l) ARE THE VERTICAL VELOCITIES 
CALCULATED BY THE SUMROUTINE FOR THE OEPTHs 2(I). l3t3, 29 DEL* DETo 
AND w ARE ALL SHAREI> IN COMMON WITH THE CALLING PROGRAM IN ‘THE COMMON 
RLOCK RLKr WHICH CONTAINS 500 COMPUTER IOAf&. 

THE FREOUENCIES S(I) ARE KNOwN TO BE GREATER THAN SL AND LESS 
THAN SM. INITIAL VALUES OF SL AND SM MUST BE INPUT. 

M = 0 SIGNIFIES THAT THE FIRST ELEMENT OF THE SERIES s(l).,.s(NXl 
IS EOUAL To SL* ANO THAT ONLY NX-1 FREQUENCIES NEEO BE CALCULATED. 
A VALID SOLUTION IS ONE FOR WHICH 

A, THE INTERVAL SL . ..SM WITHIN WHICH S IS KNOWN TO LIE HAS BEEN 
REDUCED To loo#EPS PERCENT OF $9 OR 

R* IF L=o (REAL ~41~10 BOTTOM) THE VERTICAL VELOCITY W AT THE 
ROTTOM IS WITHIN RES oF ZERO 

IF ~=l (PSEUDO ROTTOM) THE RATIO OF uw/uZ TO W AT THE PSEJJDO 
BOTTOM IS WITHIN 100”HEs PERCENT OF THE WAVE NUMBER XI THAT 
IS* THE SOLUTION tlELOW THE DEPTH L(N) CLOSELY APPROXIMATES 
THAT FOR A HOMOGENEOUS FLUID* 

NERR IS AN ERROR RETURN WHICH IS SET EWUAL TO THE INDEX (I) CORRE- 
SPONDING To THE FIRST FREQUENCY (S(I)) CALCULATION WHICH IS IN ERROR 
(SEE CALSIG). 

THE SYSTEMATIC CALCULATION IS ACCO~@LISHEU BY BREAKING THE SERIES 
S(I) OF FYEQUENCIES To RE CALCULATED INIO NEX GHOUPSv EACH CONTAINING 
SUCCESSIVELY HIGHER POWERS OF Two ELEMENTS, IHE ELEMENTS OF A GROUP 
(IcE. THE S(I) WITHIN THE GROUP) ARE CALCULATED USING LIMITS (SL 
AND 94) HASEO ON THE ELEMENTS OF GROUPS WnICti HAVE WEEN PREVIOUSLY 
CALCIJLATED~ AS IS ILLUSTRATED EiELUw FOR THE CASE Nx=Sg NEX=3. THE 
NlJMERALS INDICATE THE ORDER IN WHICH THE ELEMENTS (THE S(I)) ARE 
CALCULATED. THE SI-S IN PARENTHESES AHE THL PREVIOUSLY CALCULATED 
ELEMENTS YHICH ARE USEo AS SL AND SM. 

S(1) 1. (Sl) (Sl) (51) (Sl) 

S(2) 68 

S(3) 4* (53) 

S(4) 7. 

S(5) 3r ISS) (S5) 

S(6) 80 
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L 

c S(9) 2. (S9) (59) (S9) 
C 
C GROUP 1 2 3 NUM8ER OF GROUPS r: NEX 
C NO.EL. (YE) 
C SUCCESSIVE GROUP1 

2 4 NUMBER OF ELEMENTS OOUBLES FOR EAChj 

C INDEX JUMP BETWEEN SUCCESSIVE ELEMtNTS OF THE 
C GROUP (IJ) (8) 4 2 
C INDEX OF FIRST “ft$ER OF PREVIOUS 
C GROUP (INOP) 5 3 INOP IS USE0 TO OESIGNATE SM FOR THE 
C CALCULATIONS ON THE FIRST MEMBER OF A GROUP 
C S(IL) AND S(IM) ARE THE FREQUENCIES CORRESPONDING TO SL AND S# FOR 
C ANY PARTICULAR CALCULATION 

IF (M.EQ.0) 10920 
10 S(l)=% 

GO TO 30 
20 CALL CALSIG(MN,XO,N,SLISM(EPSIHES,S~~),N~~RR,L) 

IF (NERR.EQ.1) GO TO 200 
30 IF (NX.EQ.1) RETURN 

CALL CALSIG(HN*XFINIS(~),SM,EPS*RES,S(NX)*NERR~L) 
IF (NERR.EQ~~) GO TO 210 
IF (Nx.EQ.2) RETURN 
OELX=(XF-XO)/(NX-1) 
NE=1 
I J=NXml 
INDP=NX 

DO 100 I=l,NEX 
X=XO+XJQDELX/2. 
IND=INOP-JJ/2 
IL=1 
IM=INOP 
INDP-INO 

00 SO J=lrNE 
CALL CALSIG(MN~XINIS(IL)~S(IM)~EPS,HES~S~INO)~NERK~L~ 
;; ;b$RR.EO.I) GO TO 220 

IM&X J 
IND=IhD*IJ 

50 X=X+IJQOELX 
IJ=IJ/2 

loo NE=YE++2 
RETURN 

200 NERH=l 
RETURN 

210 NERR-NX 
RETURN 

220 NFHR-INO 
RETURN 
ENO 
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: 
C 
C cc 
C 

: 

: 

: 

: 

cc 

E 

: 

: 

et 
e 
C 

COMMON/BLK/RB(2OO~~t(2Ol~~OEL(2Ol)~D~T(2o~~,w(2O2) 
THIS SUI~ROUTINE CALCULATES THE p@#NCY 5 CORRESPONDING TO THE 

MN-TH MoOE OF OSCILLITION FOR THE WAVE NUMBER x, 
N-1 IS THE NUMBER OF OBSERVATIONS OF BRUNT-VAISALA FREQUENCY 

sQU4RED (RBtI)) AS A FUNCTION OF O$PTH (Z(I)lr Z(N)’ IS TH~.oEPTH 4T 
WHICH THE BOTTOM BOUNDARY CONDITION is TO BE EVALUATED, THE Z(I) ARE 
ACTUALLY NEGATIVE NUMBERS9 +Z BEING TAKEN AS VERTICALLY’ -UP, DEL, ANO 
DET ARE ARRAYS OF OIFFERENC~ OPERATIONS WITH THE-Z(f), AN(j MUST BE 
SET UP IN THE CALLING PROGRPM, THE W(I+l, ARE’TWE VERTICAL VELOCITIES 
CALCULATED BY THE SUBROUTINE FOR THE DEPTHS Z(I), BBc Z, DEL, ()ET, 
AN0 W ARE ALL SHARED IN COMMON WItH.THE CPLLING PROGRAM IN-THE COMMON 
BLOCK BLK, WHICH CONTAINS 500 COMPUTER-WORDS, 

THE FREQUENCY S IS KNOWN TO BE GRi4fER THAN SL ANI) LESS THAN sM 
INITIAL VALUES FOR St. AND SM MUST-BE f,NPUTr A VALID SOLUTION 1s O& 
FOR WHICH EITHER 

40 THE INTERVAL SL*.osM WITHIN WHICH S IS KNOWN TO LIE HAS BEEN 
REDUCED TO lOO*EPS PERCENT OF S, OR 

B. IF L-0 (REAL RIG10 BOTTOMi THE VERTICAL VELOCITY w AT THE 
BOTYOM IS WITHIN RES bF ZERO- 

IF L=l (PSEUDO BOTTOM) THE RATIO OF DW/DZ TO w AT THE PSEUDO 
BOTTOM IS WITHIN lOO*RES PERCENT OF THE WAVE NUMBER xc THAT 
ISs THE SOLUTION BELOW THE DEPTH Z(Nj CLOSELY APPROXIMATES 
THAT FOR A HOMOGENEOUS FLUID? 

THE INTEQER V4RIABLE J KEEPS TA4CK Of THE NUMBER OF ZERO CROSSINGS 
IN THE DEPTH SERIES OF We NEAR IS AN ERROR RETURN WHICH IS EMPLOYED 
IF A SOLUTION IS NOT OBTAINEO AFTER 50 INTEGR&TIONS (NERdal), 

THE INITIAL VALUES OF sb AND SM ARE RETURNED TO THE CALLI& 
PROGRAM, 

NERRMO 
IF (X*Z(Nl .LT.-0.00628) GO TO 10 
S=Or 
RETURN 

10 4=SL 
RmSM 
XXmX*X 
WOO, 
W(2)=1r 
00 400 K=1,50 
S=O,S”(SM+SL) 
IF ((SM-SLI rLE. 
ss=s*s 

(EPS@S)) GO TO 500 

J-0 
PO 100 1=2vN 
1Ia1 
W~I*1~=~~1./OEL~I~l~~*~~XX~DET~II1)*(BB~I~~~~SS-l,~~ 

1 DEL(I) - DEL(I-l))*W(I) 
IF(((-l)**J*W(I+l)).GT.O.l 

* DiL(I~*W(I.l~) 

IF (J,GE,(MN-1)) GO TO-115 
GO-To 95 

J=J+l 
95 CONTINUE 
100 CONTINUE 

IF (J,LT,(MN-1)) GO TO 105 
IFtL.EQ.1) GO TO 110 
IF (ARSF(W(N*l) 1 .LE,RES) GO TO 500 

10s SMmS 
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110 

115 

125 

130 
390 
400 

500 

GO TO 390 
IF( ((0l)**J*W(N) 1 ,LE.O.) GO TO 130 
BBC=2,*(W(N*l)-W(N))/(i.jELiN)*(W(bl)*W(N)))-X 
IF (BBCeGT,(RES*X)) GO TO 125 
IF (9BBC~GTr(RES*X)) GO TO 130 
GO To 500 
IF(L.EQ,l,OR,II.NE.N) GO TO 125 
IF (ABSF(W(N+l)).LE.RES) 60 TO 500 
SL=S 
GO To 390 
SM*S 
CONTINUE 
CONTINUE 

ZRF’ l 
GB 
RETURN 
EN0 

27 c 
z 
6 
cc; 
cc; 
CI 
CT 
“- 
l-r 
c 
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SURROUTINF PRIOIS(IDENT,NUNITS,XO,XF,NX,NM,MN) 
COMMON/SIGMA/S(~OI~~O) 
DIMENSION IDENT(lO),MN(NM) 

THIS SURROUTINE PRINTS THE CALCULATE0 FREQUENCIES CORRESPONDING TO 
: THE NX EQUALLY SPACED WAVE NUMBERS (X0, l .,XF) FOR THE NM MOOES (MN(I) 
C (NM MUST BE LESS THAN OR EQUAL TO 10) IN TABULAR F~+I. IDENT IS AN 
C RO CHARACTER IDENTIFXCATION , NUNI?S IS A SIX CHARACTER WORD OES- 
C IGNATING THE UNITS OF LENGTH. 
c THE FREQUENCIES ARE SHARED IN COMMON BLOCK SIGMA WITH THE CALLING 
C ROUTINE. 

PRINT 1000,IDENT 
1000 FORMAT (lWl,lOAs) 

PRINT 20OO,NUNITS~(MN(I),I=l~NM) 
2000 FORMAT (GlHGDISFERSION RELATIONS m FREQUENCIES (HAD/SEC) CORRESPON 

IDING To WAVE NUMBERS (RAD/,A6,2%ll FOR THE SPECIFIED MGI)ES//lX, 
2l lHMODE NUMRER,9(5X,I2~5x)) 

PRINT 3000 
3000 FORMAT (20(4X,lH*)/lxv12HWAVE NUMBER") 

IF (NX.GT.1) GO TO 100 
PRINT 4000, XO*(S(Jll)tJ=l,NM) 
RETURN 

100 OELX*(XF-XO)/(NX-1) 
x=x0-OFLX 

00 200 I=lrNX 
x=x*oELx 

200 PRINT ~OOO,X,(S(JII)PJ=~~NM) 
4000 FORMAT (lX,E10,3,2H *g9(E10F3e2X)) 

RETURN 
END 
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SUBROUTINE PLOOIS(IDEN~~NUNITS,XO~XF~NX,NMM,MN) 
COMMON/SIGMA/S(10~250) 
DATA ((IS~I),I=l,q)rlHl,~H2,1H~,1H4~~H~~l~6~~H7~~H8~lH~~, 

1 (IBLK=~H ) 
DIMENSION IDENT(lO~.MN~NMM~~ISIG(9~,LINEo,IS~9~~SCA~E~ll) 

THIS SUBROUTINE WILL PRODUCE A LINE PRINTER PLOT TO THE DISPERSION 
CURVES, FREQUENCY (s(I,J), I = MODE NUMBERS J = THE INDEX CORRE- 
SPONDING TO WAVE NUMHER. THE ARRAY S(I*J) IS STORED IN COMMON WITH 
THE CALLING PROGRAM IN THE COMMON BLOCK SIGMA, WHICH CONTAINS 
2500 COMPUTER WORDS) AS A FUNCTION OF WAVE NUMBER (X9 NX EQUALLY 
SPACED VALUES ON THE CLOSED INTERVAL XO...XF) FOR THE NMM MODES 
MN(I). THE SYMBOL FOR A PLOTTED POINT Is THE MODE NUMBER. 

IDENT IS AN 80 CHARACTER IDENTIFICATION FIELD* WHICH Is l3ROKEN UP 
10 G-CHARACTER ALPHANUMERIC WORDS. NUNITS 1s A SIX CHARACTER WORD 
SPECIFYING THE UNITS OF LENGTH. 

500 

1000 

100 

1050 

125 

1100 

150 

201 

202 

203 

204 

205 

206 

207 

NM=NMM 
PRINT 5009 IDENT 
FORMAT (l~l~lOA8) 
IF (Nx.GT.1) Go TO 100 
PRINT 1000 
FORMAT (6SHOoNLY ONE WAVE NUMBER SPECIFIEDI THEREFORE No PLOT WILL 

1 RE MAOE) 
RETURN 
IF (MN(NM) .LE.9) GO TO 125 
NM=NM- 1 
IF (NM.GT.o) GO TO loo 
PRINT 1050 
FORMAT (77HOALL MODE NUMBERS CONTAIN 2 OR MORE DIGITS ANO CANNOT BE 

IiE;;:;TED ON THE GRAPH) 

IF ((NM+NM) l EO.Ol GO TO 150 
ItNMMINM 
PRINT 1100, I 
FORMAT (l~oqI2r73~ MODE NUMtiERs CONTAIN 2 OR HOAL DIGITS AND CANNOT' 

1T RE PRINTED ON THE GRAPH) 
SM=S(lrNX) 
A=10 
x=1* 
NE=0 
IF(sM-X1 201tZOA~202 
x=0,1*x 
NE=NE* 1 
IF (W-X) 201,20He204 
x=1o**x 
NEoNE-1 
IF (W-X) 203,208,202 
x=0.1*x 
NE=NE+l 
A=20 
IF(SM-2.*X) 208q208rZOS 
A=4e 
IF(Sbb4.*X) 20Ae208,206 
A=S. 
IF(SM-5.o~) 2089208r207 
NE=NE- 1 
A=1 *Cl 
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208 A=Oe 1”A 
SCALE(l)=O,O 

DO 300 T-2911 
300 SCALE(I)=SCALE(I*l)+A 

PRINT 200O,NE~NUNITS,(MN(I),Itl,NM) 
2000 FDRMAT(57HODISPERSION CURVES - FREUUtNCy (RAU/SkC) TIMES 10 TD THE 

1 ,13r41H POWER AS A FUNCTION OF WAVE NUMt3ER ~HAD/~A~~~II)/~~H FOR Y 
2ODES ,9(12,1Hq)) 

3000 

350 

375 

4000 

400 

4100 

410 

420 
4200 
450 

500 

PRINT 3000rSCALE 
FORMAT~1HOtl6X,1l~F3.l~7X~/l~X~lO(lH+r9~lH.~~~lH+~ 
z;lf;*(NE+l)/A 

IFfNX.LE.10) GO TO 350 
MXr4 
IF(NX.LE.25) GO TO 350 
tdX=E 
IF(NX.LE.50) GO TO 350 
MX=l 
DELXI(%F-XO)/(YX*(NXII)) 
RIXO 
JJ=O 

DO 375 I=lvMX 
IF (B.LE. (O.S@DEL X) 1 GO TO 400 
BmB.DELX 

PRINT 4000 
FORMAT(17X,lH/r4(/17X*lH/)) 
LP=O 
IQ=0 
KP=O 
9=X0 
GO To 450 
B=OeO 
PRINT 4100 
FORMAT(~X,~HO.OO~I~X~~H*~~~~~X~~H+) 
KPn1 
LPll 
IQ=0 
IF (I.GT.l) GO TO 410 
JJ=MX 
I=MXtl 
IQ=1 
IL=X-2 

Do 420 J=lrIL 
LP=LP* 1 
PRINT 4200 

FORMAT~17X,lH.rlOlX~lH~) 
NNX=YX*(NX-1).JJ+LP 
DFLx=lo*DELX 
00 SO0 1=1*101 
LINE(I)=IRLK 

DO 600 I=LPINNXIMX 
IQ=IQ*l 

DO 510 KI=l,NM 
IKI-NM-KI+l 

ISIG(KI)=C*S(IKIrIQ)tl 
IF (ISIG(KI) .GT.lOl) XSIG(KI)=lOl 
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510 

5100 

515 
5200 
520 
517 

5300 

535 

3 
540 
600 

6000 

LI~lE(ISIG(KI) )=IS(MN.(IKI) 1 
IF((I/lO-KP1.LT.O) GO TO 515 
KP=KPtl 
R=BtI)ELX 
PRINT 5100,R1L1NE 
FDRMAT(5X,ElO.3,2%,1Ht~~O~Al,1H+) 
Go Tc) 520 
PRINT 5200,LINE 
FOR~AT(17%11H.r10lAl~lH.) 
00 517 J-1,101 
LINE(Jl=IBLK 
JJ=I tMX-2 
DO 540 J=ItJJ 
IF( (.J/lO-KP) .LT.O) GO TO 535 
KPtKPt 1 
A=BtDELX 
PRINT 5300tB 
FORM4T(5X,E10.3r2X,~Ht~~O~X.~Ht) 
Go To 53B 
PRINT 5350 
FOR~AT(17X,1H.,lO1X~lH~) 
CON1 TNIJE 
CONTINUE c 

CONTXNIJE 
PRINT OOOOISCALE 
FOR~AT~~AXrlO(lHtr9(~H.)~,~Ht//17X~~~~F~~~,7X)) 
RETURN 
END 

r- 
* 
v, 
CF; 



Appendix B 

SAMPLE CALLING PROGRAM, DATA, AND OUTPUT 

To illustrate the use of the subroutine set for computing internal wave dispersion 
relations, the source listing of a sample program which employs calls to DISPER, 
PRIDIS, and PL@DIS is re reduced on page 33. Sample input data and the resultant out- 
puts from PRIDIS and PL 8 DIS are included as Figs. Bl, B2, and B3, respectively. 

32 



NRL REPORT 7294 

FTA5,5A 

1000 

2000 

3000 

4000 

900 

5000 

950 
6000 
999 

PRBGRAM TESTIT 
DIM~NSI@N 1DENT~10~,HN~~O~~N~R~30)rZ~2Ol~~~~~~D~~ 
C6MkdN/SISMA~S(lOa250~ 
READ 1OQWt IIDENT(I),I*1,SO) 
F@RMA?($OA8, 
REAg 2000rNUNITS,EPS,RES,YXIXB,XF 
FBRMAT (A6,2Fi015,13,2F10,5) 
READ JOOOt N"',(MN(1),1ml,NH) 
FGRMATt.$l13) 
READ ~O~OIH,ZN,(Z(I),BV(I~~I~~~~) 
F@RMAT( J,F10,5/(5(F4,l,PaO,S))1 

1 emu PI~PSR(N~,HN,NX,X~,XF,M,Z,Z~ZN,~~,~~S,R~~~~ER,~~ 
jFfWlf$)INE.O) 08 t@ 900 
CAL& PRZDIS(IDENT,NUNITS,X~,XF,NX,NM,HN) 
CALL PL~DISIIDENTINUN~TS,XB,XC,NX~NM,YN) 
06 18 999 
!FfNERf$)~k$iIv~l) OQ T@ 95D 
jlrNER(2)+5 
PRINT 5000, fkER(I),I=l,II) 
;P@RMATtiW ERROR RETURN, NERs,3013! 
06 ye 999 
PRINT 4000 
PGRMAT (15Y ERRBR IN SETUP) 
CLN]INUE 
kh‘D 
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CARD NO. 1 - 
TEST SET EXP. AND INV.SQUARE* RES=DEL=lO++6 (7 JAN 71) 

CARD NO. 2 - 
FEET 0.000QOl’ 0.000001 26 0.00 OelO 

CARD NO. 3 - 
7123456F1 

CARD NO. 4 - 
28 45.0 

CARD NO. 5 - 
190 Oa004619 2.0 0.006501 3.0 0*009148 4.0 0.01287 5.0 0*01812 

CARD NO. 6 - 
6.0 0.02549 7.0 0.03588 6.0 Ob05049 9.0 0*07105 10.0 oa 10000 

CARD NO. 7 - 
11 l o 0.06400 12.0 OS04444 13.0 Om03265 14.0 0*02500 15.0 0*01975 

CARD NO. 8 - 
16.Q 0~01600 17.0 OeO1322 18*0 0*01111 19.0 Oa009467 20-O 0.008163 

CARD NOa 9 - 
21 l o 0*007111 22.0 O-006250 23.0 0 8005536 24.8 OaO04930 25.0 Oa004432 

CARD NO. 10 - 
30.0 0.002778 35.0 0.001902 40.0 0*001384 

Fig. Bl - Input data for sample calling program 



TEST SET EXP, ARD lNVISQU~Rf~ Rfs=DE~=lo**-6 (9 JAN 71) 

CISP~~RSION RELATI@hS 8 FREQUENCIES (RADISEC) C@RRESP@MDING T@ WAVE NUI~BER~ (RAD/FEE~ ) F@R 714~ SPECIFIED ~~JDES 

&DDE Nu~tlfR 1 2 
* * * * * I c 

kAVE NUt'BER* 
o,ooo+ooo * o,ooo*oou 
4,ouo-003 * 9,511~003 
8,000-003 l 1,837*002 
$rZuO-002 * 3,664q002 
1,600-002 * 3.439-002 

3 
* * 

4 
I) * + 

o,ooo*ooo 
1,588-003 
3,163.003 
4,723~003 
6,268*003 
7,996.003 
9,306~003 
11080~002 
1,227-002 
1,372-002 
1,515.002 
1,655*002 
1,794.002 
1,930~002 
2,064*002 
2,195.002 
2,324*002 
2,451-002 
2,576-002 
2,699-002 
2,8I.9*002 
2,937-002 
3,054,002 
3,16A-002 
3,280.002 
3,391~002 

5 
* l 

6 8 
* * * * * l 

i?tOUO-002 * 4,167=002 
2,400-002 * ~.852~002 
2,800-002 l 5,4?8*002 
3,200-002 * h,lU9-002 
3,600-002 l f,686~002 
4,000"002 l 7,234~002 
4,400-002 * 7,754rOOZ 
4,800-002 * R.249~002 
5,2UO-002 * R,7i9~002 
5.600-002 * 9.168*002 
6;OilO-Oi2 l 9;5ti6~002 
6,4UO-GO2 I 1,000*001 
6,800-002 * 1,039=001 
7,2UO-CO2 * 11077rOOl 
7,6UO-002 * 1.113*001 
8.000-002 * 1,147~001 
8,400-002 ’ 1,18ur001 
8,800-002 l 1,211~001 
9,200-002 * 1,243rOOl 
9,600-002 * 1,270*001 
l,OOO-001 * 1,298-001 

0,000~000 
3,649+003 
7,131*Oll3 
1,045~0t,)Z 
1,362rno2 
1,665*0U2 
1,954*002 
2,231-002 
2,497vOQZ 
2,752rooZ 
2,996~002 
3,232~002 
3,459rOOZ 
3,679-002 
3,891+002 
4,096.002 
4,296,002 
4,489rOOZ 
4,678*002 
41861*o02 
5,040*002 
5,215.002 
5,385.002 

o*noo+ooo 
2,13oso03 
4,2260003 
6,284s003 
8,304sOO3 
1,029=002 
1,223sOO3 
~,413~0U2 
1,5990002 
1,78lmOO? 
1,9590002 
2,1340002 
2.364~002 
2,471sOo2 
2,634eoo2 
2,794eOOZ 
2,950aOOZ 
3,1040(103 
3;2540002 
3,4OlaOO2 
3;545so02 
3,6870002 
3,826cOOZ 
3,963;002 
4,097GOO2 
4.229~002 

yu;+;m; 

2:513:003 
3,758aOO3 
4.994-003 
6.221-003 
7.439-003 
8,642.003 
9.835-003 
1.101-002 
1.218-002 
1.333.002 
1.447-002 
1.559-002 
1.670-002 
1.779.002 
1.886-002 
1.991-002 
2.095*002 
2.197-002 
2.297-002 
2.396-002 
2,492~002 
2.588-002 
2.681-002 
2.773-002 

0,000~000 
1,020~003 
2,03R=OO3 
3,052*003 
4,062-003 
5,068-003 
6,070.003 
9,068r003 
8,060=003 
9,047,003 
1,003-002 
1,10n-002 
1,197*002 
1,293~002 
1,389-002 
1,483-002 
1,577~002 
y;-;w2 

1:853:002 
1,943-002 
2,032*002 
2,120-002 
2,207~002 
2,293-002 
2,37Rw002 

0,000~000 
7,719*004 
1,542~003 
2,310=003 
3,075*003 
3,838,003 
4,598-003 
5,355-093 
6e109*003 
6,859=003 
7,607*003 
8,351-003 
9,092-003 
9,829~003 
1,056.002 
1,129-002 
1,202-002 
1,274-002 
1,346~002 
114189002 
1,489*002 
1,560*002 
1,630-002 
1,700-002 
1,770-002 
1,839~002 

Fig. B2 - Output produced by call to subroutine PRIDE3 

W 
ul 



TEST SET EXP, ASC INV,SOUARE. RES=DELClO**-b (7 JAN 711 

DISPERSIBN CUEVES = fRtOUENCV (RAD/SECI TIMES 10 18 W E  1 P9WER AS A FUNCTION Bf UAVE NUMBER ~RAD/FEET I 
FBR ‘IBDES 1, 28 3, 41 5, 6, .S, 

010 012 0.4 0.6 0.8 100 1.2 1*4 la6 1,e 2.0 

0.000 l 1  

2.000-001 i 064 3  2  
I 

054 3  2 
I 

0654 3  2  

05 43 2  

0654 3  2  

4.000-002 : 

;42 1  
?  
,0432 1  

; 543 2  1  

f 0543 2  

? 

1 
1 

6.000-002 : 
1 

1 

1.000-001 i 

1 

1  

0  654 3  2  

065 4  3  2  

06 54 3  2  

0654 3  2  

0654 3  2  

0654 3  2  

0654 3  2  

1 
1  

1  
1  

1  

1  
1  

1  
1  

1  
065 4  3  2  1  

0654 3  2  1  

065 4  3  2  1  

065 4  3  2  1  

0654 3  2  1  

065 4  3  2  1  

0 65 4 3 2 1  

0654 3  ?  1  

0654 6  2  1  

*r.1~~1,..+,.,.,....*....~.*..*,.,.....,*.........+......,..~,.,..,,..*....,....*......,.,~,......~,*’ 
DID 0.2 0.4 0.6 0.8 la0 1.2 1.4 1.6 1.0 2.0 

Fig. B3 - Output produced by call to subroutine PL@DIS 



Appendix C 

ANALYTICAL SOLUTION FOR THE TEST CASE 

The test distribution of the Brunt-V&&.%-a frequency is divided into two regions 

N2(z) = 0.0032825 e-o*3416422 ; -10 < 2 < 0 W-4 

and 

N2(z) q 1.6/(zt6)2 ; --OD < z 5 -10 . @lb) 

The analytical solution of Eq. (1) for such a distribution is obtained by determining solu- 
tions in each of the regions (wE( Z) corresponding to the exponential distribution and 
ws( Z) for the inverse square distribution) which will satisfy the conditions 

WE(O) = 0 

wn(-10) = ws(-10) 

wg-10) = wg(-10) 

lim ws(z) = 0 , 
z-Pm 

where primes indicate derivatives with respect to z. 

In the upper layer (Eq. (Cla)), Eq. (1) has the form 

K2 w; t- (A2e-2az-,2) wE = 0 , 
CT2 

where A = 0.05729 and CI = 0.170821. If a new independent variable 5 
is introduced, we have, defining X (5) = wE( z), 

w;(z) = 2 X’(5) 

2 

w;(z) = 2 X’(5) t 2 

2 

( 1 
X”(C) 

C~KA z---e 0 
-c-x’(c) + !$! e-2azxn(c) 

CW 

(C2b) 

WC) 

(C24 

(C3) 

(KA/‘k) exp (42) 

c 
zz 
c: 
l- 
a- 
CR 
v: 

T 
C 
l-r 
c: 

where primes indicate derivatives with respect to the appropriate independent variable. 
The governing equation becomes 

37 
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__ e-2azxn + !%!I K~A? 

u2 c 

or ,simply 

c2x” t cx’ t [c2 - (K/a)‘]] = 0 , (C4) 

which is a standard form of Bessel’s equation. Two linearly independent solutions of 
Eq. (C4) are the Bessel functions of the first and second hind of order v = K/a, J,(C), 
and YV( 5). Using the notation of Abramowitz and Stegun (1964), any linear combination 
of these two solutions will be designated by C,( 5). Thus, in the upper region, the vertical 
velocity function is given by 

wE(z) = eKja(e ewaz) , 
which is subject to the appropriate boundary conditions. Since the first derivative of 
wz( z) is involved in the matching condition at z = -10, we note that, since 

qxs, = -q+,(5) + ; qA5) 
(Abramowitz and Stegun, 1964, p. 361), 

dWE d5 dX KA -a= -m-=---e 
-= dz dc dz c 

or 

w; q 
KI! Fe-az~21($ e-u’) - Ke,( $ @2-az) . 

a 

In the lower layer, the governing equation is 

I 
ws - 

-0, 

where A2 = 1.6 and z. = -6. Making the changes of variable 5 q K (z. - Z) and 
ws( z) = ( [/K)“2 X (<), we have that 

w;(z) = d, d7 d5 d [($2x,,,] = -; (fi” X(C) - (Kc)“2x’(c) 

= K2 &[;(-$j'2X(cl + ($'x'([)] 

(C5) 

((33 

CJ) 

= KS'2 51'2 
[ 
X"( 5) t ; X'( 5) - -L X( 5) 

4c2 1 ( 
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Therefore, the governing Eq. (C7) is transformed to 

l/2 
K3/2 cl/2 - Lx) +p$- d)(5) x= 0 

4c2 

or simply 

(2X” + CX’ - [i+-~)]x=o ( 

c= 
39 Ez c: 

6 c1 
Qr; 
C 
-r C 
s 

03) 

which is again identifiable as a form of Bessel’s equation, whose solutions are the modi- 
fied Bessel functions of pure imaginary order v = i,u = i J( ,Y~A~/cT~) - (l/4). The modi- 
fied Bessel function of the second type, KiP( 5)) is the appropriate solution, since it ap- 
proaches 0 as exp (- 5) for large 5, as is evidenced by the asymptotic expansion 
(Abramowitz and Stegun, 1964, p. 378) 

Ki,( <) ~ +-z 1 _ A+ + (I+ yo;;);4p2) - . . . + . . * I - (CQ) 

There is a problem in the solution, however, in that Ki~( 5) must be evaluated for 
small values of 5. Formally, we would express Kip( 5) in terms of the modified Bessel 
functions of the first hind (Abramowitz and Stegun, 1964, p. 375) 

Kip(5) = ?j n 
I -i,(t) - Iip,(t> 

sin (ip37) 
K m  

However, the standard series expansion for Iy( 5) is not well suited for considering 
purely imaginary orders and yields complex-valued functions when v = i/l. For this 
reason, we employ the series expansion for solutions of Eq. (A8), which was suggested 
by Boole (1884, p. 238). The basic solution is of the form 

X(5) = Bo,(5) s +p(5) 00s (P In 5) + &<t;) sin (P In 5) , (Clla) 

where 

4/m  = f .42” ; a, = na,-l - Irb,-, 
n=o 4n(n2tp2) 

$,Jr;) = -f bnc2n ; b, = nbn-l + pan-1 . 
I-c= 0 4n(n2tp2) 

(Cllb) 

(Cllc) 

The second linearly independent solution is simply 

X( 5) = Born/,( 5) = 4--,( 5) cos C-p In 5) + k,(5) sin (--jL In 5) 

= $,+(t;) ~0s (P ln 5) - $(t) sin (P In 5) - (Clld) 

To express K~~( 5) in terms of these real-valued functions, we mUSt determine Some 
relationship between the real-valued bktlL( 5) and the complex-valued I *i~( 5). We note 
that the I*i~( 5) must have the same real part, since Ki~( 5) is a real-valued function. 
The standard series expansions for I,+ (5) are given by (Abramowitz and Stegun, 1964, 
p. 375) 
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Since r(ntz)= (n-ltz)(n-2tz) . . . (1 t z) r ( 1 +’ z) (Abramowitz and Stegun, 1964, 
p. 256), Eq. (C12) may be written in the alternative form 

I *i,(C) q 

cos (p In +) f i sin(p In i) 
(Cl3) 

r(l f ip) 
[COS (p In 5) f i sin (p In <)I S*ip( 5) , 

where 

‘*i,(5) = ’ + 
[ 

l2 cl3 
l! 22(1 kip) 

t 
2! 24(1 *ip)(2 fip) 

t... . 
3 

Multiplying out the terms in Eq. (C13), we obtain 

I *i@(t) = 
'*ip( 5) 

r(l +P2) 
[up cos (pin 5) t Pp sin (pin 5)l 

(Cl41 

(Cl51 
iS 

T 
*ip([) 

w+2) 
[pp cos (~1135) - ap sin (ph5)l , 

where 

Re [r(ltip)l t sin(p lni)Im [r(ltip)l (C16a) 

Pp - sin(p ln i) Re [r(lt ip)l - cos( p In $) Im [r(lt ip)] (Cl 6b) 

with the symbols Re and Im denoting real and imaginary parts, respectively. Term-by- 
term comparison of the series expansions for I *iP( 5) and Bo,,( 5) yields the result that 

‘*i,(5) = $ {[(“pm Pp> f i(ap+Pp)l Bo+,(!Z) + [(ap+Pp) T i(~,-P,>lBo-,(5)} + (cl71 

so that the series expansion for Ki,( 5) may be expressed by 

Kin+(C) = & [(up - Pp) b-p(C) - (a- +Pp) &p(C)] * ((38) 

Thus, the solution in the lower region is given by 

czo - z> 
I/2 

w,(z) = 2P 
{(a,-,B,)BO-,[K(z~-z)I - (~,+,Bp)Bop[~(zO-z)l} , @“) 

where P = ,/(K~A~/o~) - ( l/4). 

Since our expression for K,( 5) is designed for purely imaginary orders v = ip, the 
standard cylinder function recurrence relations among derivatives of functions and func- 
tions whose orders differ by *l, one of which was used in obtaining an expression for 
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dWE( z)/dz, are not applicable if one desires to retain purely imaginary orders in the ex- 
pressions for the functions and their derivatives. The expression for dwS( z)/dz is there- 
fore obtained by formally taking the derivative of Eq. (ClQ). We have that 

dws(z> -1 
- = 2(zo _ z) w&z) + 

czo - z> 
l/2 

dz 2/J P/p+ 5) - cap + P/J Bq5>1 

-w&z> K(Zo -Z> l/2 

= 2(zo-z) - 2P [(a,-PJ % ,(5> - @ ,+P,)Bo;(l)] 

where 

dBo,( 5) 
d5 q F k,(5) + $( 5) cos (p In 5) t $J;( 5) sin (p In 5) 

dk,(S) 
d5 

q -$ Bop( 5) t $J;( 5) cos (,u In 5) - d$( 5) sin (P In 5) 

with 

$L((,) = f 2na,c2”-’ q f 2 na,[2n 
l-l=1 I-t=0 

$J;([) = 2 2nb,c2”-l = 2 nb,,[2n . 
II=1 n-o 

(C21a) 

(C22a) 

(C22b) 

Since ws is constructed to asymptotically approach 0 at large depths, the conditions 
which must be satisfied for the complete solution are 

W E (O) = ClJ,/a $ ( 1 t C2YK,, g = 0 ( 1 

~~(-10) = ‘lJK/a rc (KA Pa) t C2YK,,($ .-a) = ws(-10) L (C23b) 

wL(-10) = $ e- loa {C’Jx+I (g e-1oa) t C2YE+, (g c?‘,,)- ~~(-10) = w;(-lo)., (c23c) 

where C, and C, are arbitrary parameters. If the conditions (C23a) and (C23b) are used 
to evaluate C1 and C,, Eq. (C23c) will be satisfied only if the proper choices of K and o 
are made. The conditions (C23i) represent, of course, a highly transcendental equation 
system for determining the dispersion relations and must be evaluated numerically. The 
error involved in a numerical evaluation will depend on the accuracy to which the various 
functions are computed. In computing the dispersion relations which correspond to this 
analytic solution, standard program library subroutines which have a high degree of ac- 
curacy were used to evaluate the gamma and regular Bessel functions. The modified 
Bessel functions of imaginary order were evaluated using the series expansions for 
Bo*,( 5) and Bo;,( 5) described in the text and were, in general, computed to a theoretical 
accuracy of much better than 0.01% based on the convergence of the series. In practice, 
the analytical dispersion curves were computed for the wave number K as a function of 
phase speed c = U/K by specifying a phase speed c and determining the values of K for 
which Eq. (C23c) was satisfied, with Cl and C, determined by (C23a) and (C23b). 
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