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ABSTRACT

Numerical procedures have been developed to calculate the
frequency wave number dispersion relations for internal gravity
waves in arbitrary density gradients. The basic properties of the
differential equation governing these waves have been considered
in developing these procedures. Theseprocedures have beenused
to develop a set of Fortran subroutines, capable of computing,
printing in tabular form, and producing line printer plots of the
dispersionrelations. Source listings of these subroutines and full
descriptions of their use are given. To illustrate the accuracy of
the system and to display the results of violating certain restric-
tions involved in the numerical procedure, an extensive compari-
son is made between numerical results and an analytic solution
for the dispersion relations. The analytical model corresponds
to a hypothetical fluid system which closely approximates the
average water properties measured during field tests in Bute Inlet,
British Columbia, a fjord-type estuary with a density structure
characterized by a strong gradient between two nearly homoge-
neous layers.

PROBLEM STATUS
This is an interim report work on this problem is continuing.
AUTHORIZATION
NRL Problem G01-06
Project A37-370/F08-125-703

Manuscript submitted April 19, 1971,
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NUMERICAL CALCULATION OF DISPERSION RELATIONS
FOR INTERNAL GRAVITY WAVES

INTRODUCTION

A numerical method has been developed for determining the relationships between
frequency and wave number (dispersion relations) which must be satisfied for the free
propagation of small-amplitude internal gravity waves. These internal waves, which rely
on an increase of the density in a body of fluid with depth are a common feature of the
oceans. They are characterized by maximum amplitudes in the interior of the fluid and
produce little vertical displacements of the free surface. As a result, unlike the tradi-
tional surface water waves, internal waves are not directly observable. The presence of
such waves, however, may be indicated by the organization of contaminant surface slicks
into regular patterns (Ewing, 1950), by changes of the surface reflectance properties due
to small slope changes in the ambient surface wave field (LaFond and Cox, 1962), or by
other effects associated with the horizontal motions at the water surface resulting from
an internal wave field (Ekman, 1906).

The dispersion relations represent conditions which must be imposed on free-wave
solutions of the hydrodynamic equations of motion under certain general restrictions.
They are required in any simple mathematical treatment of the waves produced by a
localized disturbance in the fluid. Such treatments essentially describé how a complex
waveform may be developed. These waveforms might be generated by the passage of a
ship or by an explosion and are expressible mathematically as an infinite sum of basic
free waves, A determination of the dispersion relations for internal waves in any given
environment is thus a desirable computational step in the mathematical description of
any wave field which might be expected in that environment. The purpose of this report
is to describe one particular method for making that step. :

FORMULATION OF THE PROBLEM

The basic problem considered was finding solutions to a differential equation which
satisfy certain boundary conditions. The equation and boundary conditions must describe
conditions in the real world reasonably accurate in most situations of interest. A basic
governing equation for two-dimensional, small-amplitude harmonic waves within a hori- '
zontally homogeneous, inviscid, incompressible fluid in which there are no mean velocity
distributions may be arrived at through various cross differentiations and combinations
of the basic equations of fluid motion (see, for example, Phillips, 1966, pp. 161-162). One
such equation, for a nonrotating fluid in which the Boussinesq approximation* is valid, is

dz;u k2 . v
XL (N2 w =0, (1
02 7 ¢ ) ‘ )

*
In the Boussinesq approximation, the density is considered as constant in the linearized momentum
balance equations, except when it is multiplied by the acceleration due to gravity.
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2 T. H. BELL, JR.

where the vertical velocity of the fluid is the real part of W(x, z, t) = w(z) exp i (xx - ot),
the z axis being taken as vertically upward. The parameters « and o are the wave num-
ber and frequency, respectively, of the wave motion and are equal to 27 times the in-
verses of the wavelength and the period of the motion. The speed of propagation of the
waveform, or the phase speed ¢, is givenby ¢ = o/«. The function N(z) = \/.;(—g/p)(dp/dz)
is commonly called the Brunt-VidisHl4 frequency and is a measure of the stability of the
fluid system, p(z) being the mean (undisturbed) density profile. From the equation of
continuity for an incompressible fluid in two dimensions, the horizontal fluid velocity is
given by the real part of U(x, z, t) = u(z) exp i(«xx - ot), where u(z) = (i/«)(dw/dz).
The vertical displacement 7 of a fluid parcel from its equilibrium position, which satis-
fies W = ?7n/2t, is given by n(x, z, t) = [w(z)/0] exp i [kx-ot+ (1/2)7].

The application of Eq. (1) to naturally occurring fluid systems such as the ocean
necessarily imposes certain restrictions on the scales of motion over which the model
may be expected to yield valid results. The assumptions of no-mean-velocity distribu-
tions and horizontal homogeneity imply that, in the undisturbed fluid system, the vertical
velocity and vertical variations in the horizontal velocity are negligible when compared
with w(z), and that significant variations in the undisturbed density and horizontal veloc-
ity fields (and the fluid depth) may occur over only horizontal distances which are large
compared with the wavelength of the disturbing waves. Two dimensionality is a conven-
ient restriction which implies that the coordinate system is set up with the x axis in the
direction of wave propagation so that wave properties don't vary in the y direction. If
there is a nonsheared, basic horizontal current, the coordinate system must move with
the component of flow in the direction of wave propagation.

The linearity of Eq. (1) is a result of the small-amplitude assumption and requires
that terms like w(z)/c be small compared with unity. Compressibility effects on gravity
waves may be neglected if g/Nis very much smaller than the speed of sound in the fluid,
and the neglect of viscosity required that a Reynolds number R = w/xv, where v is some
appropriate kinematic coefficient of viscosity, be large compared with one. If the fre-
quency of the wave motion is large compared with the local inertial frequency (1.46x10"4
sec X the sine of the latitude), then neglecting the earth's rotation is justified. Also, if
the ratio of the wavelength to the earth's circumference is small compared with unity,
the earth may be considered as locally flat and the cartesian coordinates are appropriate.
The Boussinesq approximation is quite valid when dealing with internal wave motions of
this type in the oceans or other similar bodies of water (see Phillips, 1966, pp. 14 ff).

Although numerous, the restrictions listed above do not rule out the scales of motion
which are of the greatest interest. When these restrictions are applied, the full nonlinear
Navier-Stokes equations are condensed to a linear second-order ordinary differential
equation involving two parameters (any combination from o, «, and c¢). The problem is
determining the parameter values that solve Eq. (1) by satisfying the appropriate bound-
ary conditions. The correct upper boundary condition is continuous pressure across the
free surface. However, as described by Phillips (1966, pp. 164-165), this dynamic con-
dition may be replaced with a condition appropriate for a rigid surface, that is, one for
which the vertical velocity vanishes at z = 0. The condition that w (-H) = 0, where
z = -H represents the rigid bottom, completes the specification of the boundary value
problem.

GENERAL PROPERTIES OF THE SOLUTION

The type of boundary value problem described above is fairly common in mathe-
matical physics. It represents a Sturm-Liouville system in the parameter 1/c? = «2/52
for any particular value of «2, provided that N2(z) > 0 everywhere in the fluid. Unfor-
tunately, a general analytic solution of this type of problem is unknown. Certain general
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properties of the solutions, however, which are of interest in the numerical calculation of
the dispersion relations, are known. These general properties, listed below, are used to
determine testing criteria and ranges of values for solving for the dispersion relations.

A. For a given value of «2 > 0, an infinite number of values of
1/c¢2(0<1/c 2 <1/c?...)

and of positive values of o?(o? > o2 > o ...) exist for which real solutions w,(z),
w,(2z), ws(z),..., which satisfy the boundary conditions, exist. These solutions have the
property that the function w_(z) has n - 1 zeros on the open interval 0 < z < -H (Ince,
1956, section 10,61). The index n will be called the mode number of the solution, so that
any particular modal solution or mode w,(z) will be a function which vanishes at z = 0,
-H, and at n - 1 intermediate depths.

B. The maximum value of N2(z) is an upper bound on o2 (Groen, 1948),

C. For any particular modal solution, o is a monotonically increasing function of «
(Groen, 1948).

Normally, the distribution of the Brunt-Viisala frequency will be recorded digitally,
that is, as a series of values of N? corresponding to a series of depths. In this case, the
most straightforward method of solving Eq. (1) for o when « is given is to transform the
differential equation (1) into an equation in finite differences of serial values of the ver-
tical velocity function, together with the serial values of the Brunt-Viisild frequency.*
The finite difference formulation may be considered as defining recursion relations
among the serial values of w, from which the final values of w at the boundary z = -H
may be determined for any particular wave number and frequency, if the initial value of
w at the boundary z = 0 and the serial values of N are given, For any given wave num-
ber, this system represents the final values of w as a function of frequency. The remain-
ing problem is to determine the ''zeros' of this function, that is, those values of o for
which a solution satisfying both boundary conditions exists for a given «. If the finite
difference formulation is assumed to represent a good enough approximation to the
original differential equation so that the general properties of its solutions listed above
remain valid, these properties may be used to determine an effective method of finding
the "zeros." Determining these ""zeros' for a range of wave number values will permit the
construction graph of o as a function of « for each of the modes to be considered, that is,
the construction of the dispersion curves, )

NUMERICAL METHODS
Finite Difference Formulation

To represent the differential Eq. (1) as an equation in finite differences, some ap-
proximate form of d?w/dz? in terms of serial values of w must be determined. One par-
ticularly simple approximation is to assume a quadratic form for w(z) in each depth in-
terval spanning two increments of depth. If w = ay + a;z + a,z?, then wv" = 2a,, where
primes indicate derivatives with respect to z, so that we need only determine a, to ob-
tain an approximate value for the second derivative of w, Writing

*Since o, «, and N all appear in the governing equation as squared quantities, all subsequent refer-
ences to these quantities will be to their positive square roots for convenience; thus, we will con-
sider only waves which propagate in the positive X direction period. Dispersion relations corre-
sponding to waves propagating in the negative x direction are obtained by changing the sign of o.
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Wiig T @50 + 852,07 + 85,25
W; = a;o t a;4z; + ai2z;2 ’
and
Wisr T a0 * 851%5e1 * 3592f4r
we have a set of three linear equations in the three unknown coefficients of the assumed
quadratic form for M in the interval z;.;, > z; > z;,,. Since the 2's are all different,

and since z% 2z!, 22 are linearly independent, the determinant of the efficient matr1x is
nonzero, and the coefficients may be determined by Cramer's Rule.

In matrix notation, we have

Uozio, ziog | |20 Wi-1
1 Z; 212 a1 |+ wy
1oz, z§+1 a2 Wit
Defining
det X; = (23,,2; - 2f2;.,) - (2, y23c -2} y200) + (25,22 - 2] 2,)

= zg_l(z“_l-.zi) + zi2(zi_l-zi+1) + Z§+1(Zi"zi-1) ’

we have, by Cramer's Rule,

i2 7 det X

1T
= det X Wi-1(zi+1‘zi) - Wi(ziu‘zi-l) + Wi+1(zi‘zi-1)] .

So that, at the depth z = z;, the differential Eq. (1) is approximated by the finite differ~
ence relation

2 2
det X [wi-l(ziﬂ"zi) - Wi(zi+1' 21 Fwiy (2 ‘21-1)] t—3 (Niz—cr"’)wi =0

or, defining 4, = 2z, - z,_,,

1 1

1 1

1 &2
Ai+lwi°1 +[?;~2- (N,2_o-2) det X; - Ai+1 - Ai]w. + Aiwi+1 =0,
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The condition at the boundary 2z, = 0 requires that w, = 0. Since we are dealing
with a homogeneous, linear differential equation with homogeneous boundary conditions,
the solution w(z) will be ambiguous to within a multiplicative constant, and we may set
w; = w(z,) =1 without loss of generality. Thus, a recursion relation for the serial values
of wis given by

1
Wit < ('I/Ai) {[5 ) (Ni2 - o) det X; = Bjeq - Ai]wi + Ai+1wi-1} ) (2)

where w, = 0 and w; = 1. The basic problem is to determine the value of o which will
make w,,; = w(z,4,) =0, where z_,, represents the depth of the bottom, for any par-
ticular value of «. Note that, in this formulation, the step lengths A; need not be equal.
Although the use of unequal step lengths introduces some complexity into the finite dif-
ference equation over that corresponding to equal depth intervals, unequal steps permit
the use of data in which observations of Brunt-Viisilid frequency may be clustered around
depths at which N2(z) is changing rapidly.

Calculation of the Frequency Corresponding to a Particular Modal
Solution for a Given Wave Number

By means of the recursion relation (2), successive values of w may be calculated in
series, down to z,., = -H, for any given set of o and «. If w,.; = 0, then the set (o,«)
allows for a particular modal solution and represents a point on the dispersion diagram.
The mode number of the solution is one more than the number of times which the vertical
velocity function w(z) passes through zero during the calculation. In general, however,
an arbitrary choice of a pair (o, «) will not yield a solution with w(-H) = 0, so that some
orderly method of determining that value of o which will yield a particular modal solu-
tion for a given value of « is needed.

From the general properties of the solution listed previously, we know, by proper-
ties A and B, that for any wave number « the frequencies which will yield solutions satis-
fying the boundary conditions must lie in the interval 0 = o ;, <o < oy, = Ny, Where
Npay iS the maximum value of the Brunt-Viis#ld frequency in the water column.* As a
first approximation to o,, the frequency corresponding to the m-th mode solution, the
midpoint of the interval ( Omins Omax) May be taken. If, during the recursive calculation
based on this approximation to o,, w(z) changes sign more than m - 1 times, then by
property A, we know that the approximation to o, is too low. The next approximation
may be taken as the midpoint of the interval (o.;,, Omax)s Where o, ;  is now the "too-
low'" approximation. If, on the other hand, the calculated value of w,,, is nonzero and the
number of zeros in w(z) in the open interval 0 < z < z,,, = -H is less than or equal to
m - 1, the approximation to o, is too high, and the next approximation may be taken as
the m1dp01nt of the interval (o,;n, onax), Where o, .. is the "too-high'" approximation

to o .

The procedure of dividing in half the frequency interval on which the proper value of
o,, is known to lie may be continued with successive approximations until an acceptable
solut1on is found. An acceptable solution should have the frequency interval as a small
fraction of the value of o at the interval midpoint if a "true"” solution is known to exist,
that is, a solution for which w,,,; = 0 and w(z) go through zero m - 1 times, or for which
|w,+,] is small compared to 1.

*By property A, o,;, Or 6,,, may be replaced by the frequency corresponding to a solution for the
i-th mode (i e1ther less than or greater than m, respectively, where m is the mode number of the

desired solution for the given value of «) if it is known.
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Alternative Bottom Boundary Condition of Very Deep Water

In some applications, the significant stability information, that is, large values of the
Brunt-Viisild frequency, may be restricted to a surface layer which is a small fraction
of the total depth of the body of water. In such a case, it would be convenient to terminate
the calculation of w(z) at some intermediate depth; therefore, some alternative "pseudo-
bottom" boundary condition is needed.

If it is assumed that the water is homogeneous below a depth -D, and that the total
body of water is very deep compared to -D, then the simple solution of Eq. (1), w(z) =
A exp «z, for homogeneous water of infinite depth may be compared with the numerical
solution at z_ ., = -D in lieu of expending the computation to the actual bottom. In this
formulation, the bottom boundary condition of w,,,; = 0 would be replaced by the condi-
tions that the numerical solution and its first derivative be equal to the analytic solution
for homogeneous water and its first derivatives at the appropriate depth. These condi-
tions reduce simply to the condition that wj.+; = kw,ey. If the ratio of w),, to w,., is less
than «, then the solution is not asymptotically approaching w(z) = 0 fast enough, and,
provided w(z) has passed through 0 exactly m - 1 times, the value of o used in the com-
putation is too high. On the other hand, if the ratio is greater than «, then the solution
is approaching zero too fast, and o is too low. In practice, a small range of values cen-
tered on (w'/w) = « should be considered as yielding an acceptable solution.

The simplest approximation to w’ is given by the first difference of two values of w
at consecutive depths; that is, (w,., - w,)/(z,+, - 2,) is the first approximation to w’ at a
depth midway between z,, and z,,,. The approximate value of w(z) at this depth is
1/2 (wn+1 +wn), SO that the ratio which should be compared with the wave number is
2(Wgeq - wn)/[(zn+1 =z (W t Wn)] .

Calculation of a Series of Points Along a Dispersion Curve

In constructing a dispersion curve, the frequency which allows for a particular modal
solution must be calculated for various wave number values. If a large number of points
along such a curve is to be calculated, then some systematic method of employing pre-
viously calculated information should be used. One simple method for this type of cal-
culation relies on the choice of n = 2P + 1, where p is an integer and n is the number of
values of « for which frequencies are to be calculated.* If the series of wave numbers
is arranged in ascending order and indexed («; <x,<...<xk,, n = 2P + 1), then property
C described previously may be used to calculate the corresponding values of
o(oy <oy <...0p) for aparticular mode. First, o, is calculated using a frequency in--
terval (onin: omax)s as discussed in the previous subsection, where

Lo, <.,... <o L0

‘, 1 n max *

min -
Then, o, is calculated using the frequency interval o; < o, < o,,,. The third frequency
to be calculated is o(+,)/,, using the interval (o, 0,). The frequencies corresponding
to the median values of « in the two subseries «y, ..., K(nt1y/2 A0A K(nryy/as oee s Kn,
each of which contains one plus a power-of-two values of wave number, are then calcu-
lated, using the frequency intervals (oy, o(n+1y/2) and (0(n+1y/2, 95). This procedure
of dividing up the wave number series into equal subseries continues until all n = 2P + 1
values of the frequency have been calculated. Figure 1 is a schematic diagram which

*A wave number series containing an arbitrary number of points can always be "factored" into a
number of subseries with overlapping endpoints, each of which containg one plus a power-of-two
values of «.
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Fig. 1 - Schematic illustration of the order
in which to calculate frequencies for a series
of nine wave number («;) values for the
case in which there is initially nopreviously
calculated information about the frequencies,
that is, it is only known that all frequencies
lie between ¢ =0 and o = N_,,, the maxi-
mum value of the Brunt-Viisild freqeuncy.
The order of calculation proceeds from left
to right, and the brackets indicate the fre-
quency interval o, ;, < o; < o, which is

to be used in calculating each o;.
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o 7
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illustrates the order of calculation of the o values for a wave number series containing
23 +1 =9 values of «. Starting with n = 2P + 1 values of « insures that the procedure
can be continued unaltered until the series of wave numbers has been exhausted.

FORTRAN SUBROUTINES FOR THE CALCULATION OF

DISPERSION RELATIONS

Subroutine Descriptions

A set of six Fortran subroutines (DISPER, DIFFER, SERIES, CALSIG, PRIDIS, and
PL@DIS) were written for use on the NRL CDC 3800 computer. The subroutine DISPER,
which relies on DIFFER, SERIES, and CALSIG for its operation, is based on the tech-
niques discussed in the previous section and is designed to calculate the frequency/wave
number relations for a set of mode numbers of free, progressive internal waves for an

arbitrary distribution of Brunt-VHis#l4 frequency. PRIDIS and PL@DIS are "output' sub-

routines designed to print out or produce a line printer plot, respectively, of the calcu-

lated dispersion relations. The source language listings for these subroutines constitute

Appendix A of this report.

Utilization of Subroutines

The Fortran Statement

CALL DISPER (NM, MN, NX, X@, XF, M, Z, ZN, BB, EPS, RES, NER, L)

causes the array of frequencies S(1,J),I=1,...,NM; J =1, ..., NX to be calculated.

This array is stored in common with DISPER in the common block SIGMA, which contains

2500 computer words; therefore, a CGMM@N declaration (CGMM@N/SIGMA/S (10,250))
is required in the calling program. The parameters involved in the call to DISPER are:

AITITSSYTIND



MN

X¢
XF

ZN
BB
EPS

RES

NER
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the number of modes for which the calculations are to be made (NM = 10).

an integer array (MN (1), ..., MN (NM) containing the mode numbers for
which calculations are to be made. The mode numbers need not be consecu-
tive but must be listed in ascending order.

the number of wave number values for which the calculations are to be made
(1 = NX = 250).

the lowest wave number value for which the calculations are to be made.
the highest wave number value for which the calculations are to be made.
the number of observations of Brunt-V&isil#d frequency squared (M =< 200).

the array of depths (Z (1), ..., Z (M), positive numbers) to which the observa-
tions of Brunt-Viisild frequency squared correspond. The depths must be
listed in increasing order. The array of depth (Z) must be dimensioned to

M + 1 in the calling program.

the depth (positive number) at which the bottom boundary condition is to be
evaluated (ZN > Z (M)).

the array (BB (1), ..., BB (M)) of observations of Brunt-V&isild frequency-
squared corresponding to the depths Z (I).

the allowable fractional error in the calculated frequencies,

the allowable fractional error in evaluating the bottom boundary condition in
the calculations. A '"valid'" solution is one for which either the EPS or RES
condition is satisfied.

an integer array (NER (1), ..., NER (NER (2) + 5)) of error returns. If
NER (1) = 0, an error in calculation has occurred. See the source listings
of DISPER (Appendix A) for an explanation of this array. Dimension the
array NER to 30 in the calling routine.

an integer variable which determines the bottom boundary condition.

If L = 0, ZN is the depth of a rigid bottom.

If L =1, ZN is the depth at which the calculated distribution of vertical
velocity is to be compared with that for homogeneous water.

The Fortran Statement

CALL PRIDIS (IDENT, NUNITS, X¢, XF, NX, NM, MN)

causes the array of frequencies calculated by DISPER to be printed out in tabular form.
The frequency array is stored in the common block SIGMA. The parameters are:

IDENT - an integer array (IDENT (1), ..., IDENT (10)) containing 10 eight-character

alphanumeric words, to be used as an identification field which will be
printed above the table.
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NUNITS - an integer variable composed of a six-character alphanumeric word, to
be used to specify the units of depth (and thus of wave number), for ex-
ample, FEET An, CMaaan, or METERS (A's indicate blank spaces).

X@, XF, NX, NM, and MN are the same as in DISPER.
The Fortran Statement
CALL PL@DIS (IDENT, NUNITS, X@, XF, NX, NM, MN)

causes the array of frequencies calculated in DISPER (and stored in the common block
SIGMA) to be graphed on a line printer plot. The symbols used in the plot are the appro-
priate mode numbers. If the separations between frequencies for various modes for a
certain wave number are smaller than the size of the symbols, the lowest mode takes
preference, and plotting of higher modes in the same location is not attempted. Only
modes 1 through 9 can be plotted, since only one-character symbols are employed. If
mode numbers higher than 9 are inadvertently specified, a comment to that effect is
printed and only those mode numbers =9 are plotted. NX must be greater than one;
otherwise, no restrictions are made on the number of points to be plotted. If, inadvert-
ently NX = 1, a comment to that effect is printed, and no plot is produced. The param-
eters are the same as those in PRIDIS.

The number of lines output by this subroutine is determined by NX. If NX = 50, the
number of plotted lines is = 100, and for NX > 50, the number of plotted lines is equal
to NX.

A sample calling program which uses the above subroutines is included as Appendix B,
along with the sample outputs produced by calls to PRIDIS and PL@DIS.

Storage Requirements (Exclusive of Computer System Library Functions)
DISPER

unique storage: 1272 octal (695 decimal) locations
common blocks (all real variables):
C@MMON/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations
C@MM@N/BLK/BB (200), Z (201), DEL (201), DET (201), W (202) length 1755 octal
(1005 decimal) locations

DIFFER
unique storage: 321 octal (153 decimal) locations
SERIES

unique storage: 476 octal (318 decimal) locations
common blocks (all real variables):
C@MM@N/BLK/BB (200), Z (201), DEL (201), DET (201), W (202) length 1755 octal
(1005 decimal) locations

CALSIG

unique storage: 474 octal (316 decimal) locations
common blocks (all real variables):
COMMON/BLK/BB (200), Z (201), DEL (201), DET (201), W (202) length 1755 octal
(1005 decimal) locations

GITITSSVIOND
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PRIDIS

unique storage; 404 octal (260 decimal) locations
common blocks (all real variables):
C@MMQ@N/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations

PLODIS

unique storage: 1465 octal (821 decimal) locations
common blocks (all real variables):
C@OMMON/SIGMA/S (10,250) length 4704 octal (2500 decimal) locations

Timing

The test routine of Appendix B (together with the subroutines) required 42.87 seconds
for compilation and assembly. The call to DISPER required 15.69 seconds, and the calls
to PRIDIS and PL@DIS required a total of 2.14 seconds.. Table 1 gives times for calls to
DISPER under various conditions, using the Brunt-V&disild distribution of Fig. 2.

Table 1
Times Required for Calls to DISPER for Various Values of the
Parameters NM, NX, M, EPS and RES*

. Time Per
Total Time 1')rilsn$:r1;§;‘n Distribution Point
NM NX M EPS RES (sec) Point Per Observation
(millisec) of B/.V'Freq.
(millisec)
7 26 28 10-¢ 106 15.69 75.29 2.688
3 10 28 10°3 10-3 1,144 38.13 1.362
3 30 28 10-3 1073 2.932 32.58 1.163
3 10 200 1073 10-3 6.308 210.3 1.051
.3 30 200 10°8 1073 16.025 178.1 0.890

*Times are based on programs run on the NRL CDC 3800 computer.

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL
RESULTS; SOURCES OF ERROR

The numerical procedure for calculating dispersion relations described in the pre-
ceding sections was compared with analytic solutions of Eq. (1) for the case in which
N2(z) = 0.0032825 exp (-0.341642 z) for 0 = z = -10 and N2 (z) = 1.6/(z + 6)2 for
-10 = z = - (Fig. 2). There are two reasons for the choice of this particular distribu-
tion of Brunt-Viisili frequency as a test case. The first reason is that it closely approxi-
mates the average conditions at a location in Bute Inlet, British Columbia (50°35.5'N,
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Fig. 2 - Distribution of density and Brunt-Vaisili
frequency used in test solution

125°53'W; actual depth, 2000 ft)* where field exercises were held in the summer of 1969.
The numerical procedure was originally developed for making estimates of internal wave
properties in these waters. The second reason is that it is an excellent distribution for
testing the accuracy of the numerical calculations in that it provides a test for errors
introduced into the numerical solution by the use of the pseudo-bottom boundary condi~
tions at low frequencies and by the strong curvature in the distributions of the vertical
velocity function with depth at frequencies approaching the maximum Brunt-V#isild fre-
quency.

Use of the pseudo-bottom boundary condition is strictly justified only when both the
square of the ratio of the wave frequency to the Brunt-V&disilid frequency below a certain
depth and the product of the wave number and the remaining fluid depth are large com-
pared to unity. If either of these conditions are violated, calculated dispersion points
may be expected to deviate from their true values. The wave number restriction is es-
sentially the '"deep-water' surface gravity wave assumption and is simply a statement that
tanh «h' = 1, where h’ is the depth of water below the pseudo bottom, A violation of this
wave number assumption will, in general, be accompanied by a violation of the frequency
assumption, but not vice versa. For this reason, only errors introduced by violations of
the frequency assumption are explored in the comparison testing.

The dispersion points calculated numerically and those obtained from the evaluation
of analytic solutions of Eq. (1)T are compared in Figs. 3 and 4. Dispersion points for two
different numerical solutions are shown. The ""coarse-iteration' solution was obtained
using values of the Brunt-Viis#ld frequency at 1-ft intervals from 0 to 25 ft, and at 30,

* The particular functional forms for N (z) represent an optimum choice for "solvability" and repro-
duction of the form of the observed average distribution. The choice of the numerical values of the
parameters in the functions involved optimizing the reproduction of the observed average distribu-
tion of Brunt-Vaisilad frequency and the total density variation over the depth of the inlet.

Tsee Appendix C for a development of the analytic solution.

dITITSSYTIND
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Fig. 3 - Dispersion relations for low wave numbers for the first
three internal modes, obtained from analytical and numerical
solutions of Eq. (1) for the Brunt-Viisald frequency distribution
of Fig. 2, Points were calculated to a nominal 0.1% accuracy.
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Fig. 4 - Dispersion relations for high wave numbers for the first
three internal modes, obtained from analytical and numerical solu-
tions of Eq. (1) for the Brunt-Viisdli frequency distribution of
Fig. 2. Points were calculated to a nominal 0.1% accuracy.
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35, and 40 ft, with the pseudo-bottom condition imposed at 45 ft. This sequence of depths
was used for one of the comparisons because it corresponds to the sequence of depths at
which the bulk of observations of water properties were made by Bute Inlet. The "fine-
iteration" solution involves values of N2 at half-foot intervals from 0 to 200 ft, with the
""pseudo bottom™ at 200.5 ft, representing a finer recursion step interval and a lower
Brunt-V#isild frequency at the pseudo bottom than in the "coarse iteration."

The comparison was made over two ranges of wave numbers (low, 0 to 0.1 rad/ft
and high, 0 to 1.0 rad/ft) to illustrate the systematic deviation of the numerical dispersion
points from those of the analytic solution for the coarse iteration. At low wave numbers
(and hence low frequencies), the numerically determined points fall below the analytic
solution curve as a result of the use of the pseudo-bottom boundary condition at 45 feet
in violation of its underlying high-frequency assumption. For high wave numbers, the
deviation is reversed as a result of the inability of the finite difference formulation for
w(z) to closely approximate the strong curvatures in the vertical velocity function. The
result at low wave numbers of extending the numerical solution to a greater depth (200
feet, where N2(200) is 3% of N2(40)) and at high wave numbers of employing a finer re-
cursion interval (1/2 ft instead of 1 ft in the area of importance) is illustrated by the
close adherence of the fine iteration points to the analytical solution curve. Percent
deviations of the numerically calculated frequencies from those obtained from the ana-
lytic solution are shown as a function of wave number in Figs. 5 and 6 for the fine-iteration
and coarse-iteration solutions, respectively. The effect or misuse of the pseudo-bottom
boundary condition is well illustrated, and for purposes of comparison, the wave numbers
for which the wave frequency is equal to the Brunt~Viisdld frequency at the last iteration
step are marked on the wave number scale for each mode.

10

fo] =3 —
g T I
by — —
Q ~
-4 -~
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3 o ~
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- ———— SECOND MODE
o e THIRD MODE
Z 20|
s
<
>
L
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I 2 3
1 Il 1 | 1 | It £
000! 0002 0005 00 0.02 0.0 [»2] 02 05 10

5
WAVE NUMBER (RAD/FOOT)

Fig. 5 - Percent deviation of fine-iteration dispersion points from
the analytic curves of Figs. 3 and 4. Wave numbers above which
the wave frequency is greater than the Brunt-Vaisila frequency at
the pseudo bottom are indicated on the wave pumber scale for
three modes. .

The reason for the low-frequency deviations associated with the misuse of the pseudo-
bottom boundary condition is illustrated in Fig. 7. This figure is a comparison between
the analytical vertical velocity function and the function calculated in the coarse-iteration
solution at wave numbers for which the wave frequency is less than the Brunt-Viis3ild
. frequency at the last iteration step (N(40) = 0.03720 rad/sec). The pseudo-bottom bound-
ary condition requires that the numerical solution appear to approach the w(z) = 0 axis
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Fig. 6 - Percent deviation of coarse-iteration dispersion points
from the analytic curves of Figs. 3 and 4, Wave numbers above
which the wave frequency is greater that the Brunt-Viisili fre-
quency at the pseudo bottom are indicated on the scale for the
three modes.
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Fig. 7 - Comparison between analytical vertical velocity function and that
calculated in coarse iteration solution at low wave numbers. Vertical
velocity scale is arbitrary, and solutions are matched at 1 ff. First mode:
k = 0,007644 rad/ft; o = 0,01796 rad/sec (analytic), 0.01761 rad/sec (nu-
merical). Second mode: « = 0.01101 rad/ft; o= 0.01123 rad/sec (analytic),
0.00964 rad/sec (numerical). Third mode: « = 0.009897 rad/ft; o = 0.00683
rad/sec (analytic), 0.00521 rad/sec (numerical).
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with an exponential decay, which requires that the vertical velocity and its second deriva-
tive be of the same sign. As can be seen from Eq. (1), if N? > o2, then the vertical veloc-
ity and its second derivative must be of opposite sign, resulting in a convex curvature
rather than the concave curvature required by the pseudo-bottom boundary condition.
This curvature results in a numerical solution which approaches the w(z) = 0 axis too
rapidly, that is, one which oscillates more rapidly than the true solution, and corresponds
to a frequency which is lower than the correct wave frequency. In the extreme, misuse
of the pseudo-bottom boundary condition may actually result in confusion between modes.
For example, the analytical vertical velocity function for the third mode in Fig. 7 indi-
cates that w'/w ~ 0.0099 at z = -23 ft; that is, a numerical solution invol7ing a pseudo
bottom at 23 ft would faithfully reproduce the vertical velocity function for the third mode
at a wave number of 0.0099 rad/ft and a frequency of approximately 0.0068 rad/sec but
would identify this frequency with the second mode of oscillation.

Comparisons at higher wave numbers for which the wave frequencies are greater
than N (40) are shown in Fig. 8. The first- and second-mode solutions show a good agree-
ment between numerical and analytical results. The third-mode solution, for which the
ratio of wave frequency to Brunt-VHisild frequency at 40 ft is 1.16, shows some of the
""too-low" type deviation of Fig. 7. Of course, this "too-low' type low wave number
deviation is a result of the misuse of the pseudo-bottom boundary condition and will not
be present in situations in which the appropriate bottom boundary condition is that of a
rigid plate.

T

ANALYTICAL SOLUTION I
X  NUMERICAL (COARSE)
SOLUTION

=10 |~

Z(FT)

FIRST MODE SECOND MODE THIRD MODE

0 0 0
W{Z), ARBITRARY SCALE

Fig, 8 - Comparison between analytical vertical velocity function and that
calculated in coarse iteration solution at intermediate wave numbers.
Vertical velocity scale is arbitrary, and solutions are matched at 1 ft.
First mode: « = 0.09645 rad/ft; o = 0.1263 rad/sec (analytic), 0.1273 rad/
sec (numerical). Second mode: « = 0.1025 rad/ft; o = 0.05943 rad/sec
(analytic), 0.05975 rad/sec (numerical). Third mode: « = 0.1003 rad/ft;
o= 0.04214 rad/sec (analytic), 0.04239 rad/sec (numerical).

The underlying problem in the high-wave-number deviations is shown in Fig. 9. At
high wave numbers, the strong curvature of the vertical velocity function changes rapidly
over distances comparable to the iteration step length. Because of this, the quadratic
approximation of derived in the section on "Finite Difference Formulation" loses its

ATITSSYIOND
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effectiveness, and incorrect frequencies are predicted. This effect is reduced by going
to smaller-step intervals, as can be seen from a high-wave-number comparison of Figs.
5 and 6. The extreme condition would be realized if the recursion interval were greater
than the distance between successive nodes in the vertical velocity function. If the step
length used in calculations for the third mode in Fig. 9 were 4 ft, computations would be
made at depths of 4, 8, 12, 16 ft, etc., and the negative portion of the actual vertical ve-
locity function would be skipped over entirely, resulting in a search for zero crossings
at other depths, which would tend to make for large deviations from the correct third-
mode frequency in the computed value. Since numerical solutions involving this type of
high-wave-number deviation oscillate less rapidly than their theoretical counterparts, the
numerically determined frequencies will generally be higher than those corresponding to
the correct solutions.

0 T
—— ANALYTICAL SOLUTION
I X  NUMERICAL {COARSE) SOLUTION
-5 |
|
|
! X
=~
Iy
N
b
X
-20 - X
b
FIRST MODE SECOND MODE THIRD MODE
—25
) 0 o

W(Z), ARBITRARY SCALE

Fig. 9 - Comparison between analytical vertical velocity function and that
calculated in coarse iteration solution at high wave numbers. Vertical
velocity scale is arbitrary, and solutions are matched at 1 ft. The diver-
gence of the numerical points below 15 ft is a general high-frequency result
and contributes less than 1.0% to the frequency deviation. First mode:
k = 0.9084 rad/ft; o= 0.2444 rad/sec (analytic), 0.2500 rad/sec (numerical).
Second mode: « = 0.9315 rad/ft; o = 0.1807 rad/sec (analytic), 0.1826 rad/
sec (numerical), Third mode: « = 0.9802 rad/ft; o = 0.1559 rad/sec (ana-
Iytic), 0.1624 rad/sec (numerical).

The divergence of the points in the bottom portion of Fig. 9 is a general tendency
which is enhanced by the high wave numbers involved. In this region, the wave frequency
is much higher than the Brunt-V&isili frequency at the last iteration step (for the first
mode, o2/N2(40) = 43.6), and the frequency condition for the applicability of the pseudo-
bottom boundary condition is satisfied quite well. The problem is that two linearly inde-
pendent solutions exist for o2/N? >>1, one is the desired exponential decay, and the
other is an exponential increase. Only for an exactly correct frequency will the exponen-
tial increase be eliminated, so that, when calculating to any finite accuracy, the exponen-
tial increase will enter into the calculated vertical velocity function at some depth. The
frequencies in Fig. 9 were calculated to 0.1% accuracy, and a higher accuracy in cal-
culation would have suppressed the exponential increase to a greater depth. Since the
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solutions vary as exp (+ «z), this effect is more pronounced at the higher wave numbers
and, hence, is not observed in Figs. 7 and 8. This divergence has no adverse effect on
the accuracy of computed frequencies and in fact requires that frequencies be calculated
to a higher degree of accuracy than for lower wave numbers.

SUMMARY

Relatively fast (nominal 1 millisecond per point per observation of Brunt-Viisdld
frequency) and accurate calculations of the dispersion relations for internal gravity
waves for arbitrary distributions of Brunt-V#is&ld frequency can be made using a set of
Fortran subroutines which has been developed, provided that certain restrictions are not
violated in the numerical procedure. In the numerical procedure, the basic integration
of the governing equation for small-amplitude internal gravity waves is accomplished
through a finite difference recursion formulation, and efficient calculation of a number
of points on the dispersion curves is accomplished by making use of previously calculated
information at each step in the computation. The accuracy of the calculations depends on
the degree to which two basic assumptions are satisfied. One condition is involved only
in calculations for fluid environments with an effective infinite depth, that is, those in
which the significant stability information (large values of the Brunt-Viis#li frequency)
is confined to a surface layer whose depth is small compared to the total depth of the
fluid. This condition requires that the wave frequency be large compared to the Brunt-
VHisild frequency at the bottom of the stability layer, where the numerical integration is
terminated. Violation of this assumption results in computed frequencies which are lower
than the correct wave frequency. For situations in which the computation extends to the
rigid bottom of the fluid system, this condition is irrelevant.

The other condition is that the changes in curvature of the vertical velocity function
be small over distances comparable to the iteration step length involved in the finite dif-
ference procedure. Violation of this condition results in computed frequencies which are
higher than the correct wave frequencies, A convenient rule of thumb for this condition
might be that the quantity «dm be small compared with unity, where « is the wave number,
d is the iteration step length in the region of maximum Brunt-Vaisilid frequency, and m
is the mode number.

AATITSSYTIOND
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Appendix A

SOURCE LISTINGS OF SUBROUTINES

The source language listings of the subroutines DISPER, DIFFER, SERIES, CALSIG,
PRIDIS, and PL@DIS as produced by the NRL CDC 3800 computer on compilation are re-
produced on the following pages.

19
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FTNS,5A 01/13/71
SUBROUTINE DISPER(NMyMNeNX9XO9XF9MeYsZNsBVIEPSsHESINERL)
COMMON/BLK/BB (200) 9Z (201) ¢DEL (201) ¢DET(201) 4% (202}

COMMON/STGMA/S(104250)
DIMENSTON A(250) ¢MN(NM) yNEX (25) sNER(30) 9Y (M) 9BV (M)

THIS SURROUTINE CALCULATES THE FREQUENCIES (S(IsJ))CORRESPONDING TO
THE NX EQUALLY SPACED WAVE NUMBERS X WHICH LIE ON THE CLOSED INTERVAL
XOeeeXF FOR THE NM MODES MN(1)ee¢sMN(NM) WHICH ARE ARRANGED IN
INCREASING ORDERes I = lseeetNM AND J 2 loeeesNXe '

THE FREQUENCY ARRAY IS STORED IN COMMON WITH THE CALLING ROUTINE
IN THE COMMON BLOCK SIGMAs WHICH CONTAINS 2500 COMPUTER WORDS,

THE SUBROUTINES SERIES AND CALSIG ARE USED BY THIS SUBROUTINE,

M 1S THE NUMBER OF (INPUT) VALUES OF BRUNT=VAISALA FREQUENCY
SQUARED (RB(I)) FOR THE DEPTHS 2(I)y ZN BEING THE OEPTH AT WHICH
THE 80TTOM ROUNDARY CONDITION IS TO BE EVALUATED. THE INPUT Z(I) aND
ZN ARE POSITIVE NUMBERS, BEING THE MAGNITUDE OF THE VERTICAL POSITION
RELATIVE TO THE NAVIFACEs

THE FORMAL PARAMATER LLIST CONTAINS THE VARIABLES Y AND BV INSTEAD
OF Z AND BBy IN ORDER THAT THE COMMON OECLARATION MAY BE USED. THE
VARIABLE NAMES ARE SET STRAIGHT IN THE 00 LOOP TERMINATING WITH
STATEMENT 10.

THE SUBROUTINE DIFFER IS CALLED TO CONVERT THE Z(1) INTO TRUE
POSITION RELATIVE TO THE NAVIFACEs +2 BEING TAKEN AS VERTICALLY UP»
?ND TO FORM THE ARRAYS DEL AND DET OF FINITE DIFFERENCE UPERATIONS

N THE Z(1).

DEL AND DET ARE ARRAYS OF FINITE DIFFERENCE OPERATIONS WITH THE
Z(1) AND ARE USED IN THE CALCULATION OF THE VERTICAL VELOCITIES OF
THE WAVES (THE W(le))) IN CALSIG.

RBeZsDELWDETe AND W ARE SHARED IN COMMON WITH THE TWO OTHER Suge
ROUTINES WHICH DISPER RELYS ON (SERIES AND CALSIG) IN THE COMMON
BLOCK BLKy WHICH CONTAINS 500 COMPUTER WORDS.

A VALID SOLUTION IS ONE FOR WHICH
Ae THE INTERVAL SLeeeSM WITHIN WHICH S IS KNOWN TO LIE HAS BEEN
REDUCED TO 100%EPS PERCENT OF Sy OR
Re IF L=0 (REAL RIGID BOTTOM) THE VERTICAL VELOCITY W AT THE
BOTTOM IS WITHIN RES OF [eRO
IF L=1 (PSEUDO BOTTOM) THE RATIO OF DW/DZ TO W AT THE PSEUDO
ROTTOM IS WITHIN 100*RES PERCENT DF THE WAVE NUMBER Xo THAT
1Ss THE SOLUTION BELOW THE DEPTH £(N) CLOSELY APPROXIMATES
"“THAT FOR A HOMOGENEOUS FLUIDs
NER 1S aN ARRAY OF ERROR RETURNSs DESCRIBED BELOW.

(10(30(30(50(50¢70{10(36(10(30(’Of’ofﬁﬂf)nf?ﬂ‘?ﬁlﬁﬂ(ﬁﬂ()n

DO 10 I=14M
Z(1)y=Y(1)
BB(I)=RV(I])
NER(1)=0
Nz=M+]
CALL DIFFER(NyZ+ZNyDELIDET)
C SET THE INTERVAL SLeesSM WITHIN WHICH THE $§ ARE KNOWN TO LIEe SM 1S
C EGUAL TO THE MAXIMUM BRUNT=VAISALA FREQUENCYe
SL=0.
SM=0,
DO 15 I=1¢M
15 IF (BR(1)+GTeSM) SM=BBI(I)
SM=SQART (SM) .
¢ BREAK THE SERIES OF NX EQUALLY SPACED VALUES OF X INTO NS SUB=SERIES

s
<
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NS.5A 01713/71

OF EQUALLY SPACED (SPACING DELX) VALUES OF X» EACH CONTAINING A POWER

OF TWO (NEX(J)y J=14NS) PLUS 1 VALUE OF X (THE ENDPOINTS OF THE SUR=
SERIES ARE ALL SHARED EXCEPT FOR THE ORIGINAL XO AND XF SPECIFIED 1IN
THE CALLING PRQOGRAM),
NXP IS AN INTERMEDIATE VALUE OF NXs AND REPRESENTS THE NUMBER OF
ELEMENTS REMAINING AFTER EACH SUCCESSIVE SUB'SERIES HAS BEEN DETERMIN=
EDe THE PROGRAM IS SET TO RETURN AN ERROR IF MORE THAN 25 SUB=SERIES
ARE REQ?IRED TO MAKE UP NX (THAT ISs NER(1) SET TO =l).
NS=
- NXP=NX
XFP=XF
IF (NX.EQ.1) GO TO 35
DELX= (XF=X0)/ (NX=1)
DO 27 NS=1425
1=0
IF(NXP,LT.(24#] « 1)) GO TO 25
I1=1+1
GO TO 20
NEX(NS)=]=1
NXP=NXP=2#8 (Ja])
IF (NXP.EQel) GO TO 30
NER(]l) ==}
RETURN
THE FREQUENCIES (S(IsJ)s IZlvesetNMe UB19ea002%#NEX(1)+]1) FOR THE
FIRST SUB=-SERIES ARE NOW CALCULATED BY CALLING SERIES FOR EACH MODEe
NXP IS THE NUMBER OF ELEMENTS IN THE SUB-SERIES. NEX(1) BEING ITS
POWER OF Tw0. XFP IS THE UPPER LIMIT OF X FOR THE SUB=SERIESy AND SMP
IS AN INTERMEDIATE VALUE OF SMy WHICH ODECREASES AS THE SET OF FREQUEN=
CIES FOR EACH MODE IS CALCULATED. Aaly) IS aN ARRAY TO RETURN THE
S(IsJ) FROM SERIESs NERR IS AN ERROR RETURN FROM SERIES,
NXP=24#NEX (1) ¢l
XFP=X0+ (NXP=1)#DELX
SMP=SM
K=1
CALL SERIES(MN(I) sXOoXFPoNXPINEX (1) 91 oNySLISMPIEPSIRESsAINERRSL)
IF (NERR,NE.0) GO TO 200
DO 38 Js=leNXP
S(led)=A(J)
SMP=A (NXP)
IF (NS,EQ.1) RETURN
THE FREQUENCIES FOR THE REMAINING NS=)] SUB-SERIES ARE NOW CALCULATED.
USING THE LAST FREQUENCY OF THE PREVIOUS SUB=SERIES FOR SLs AND XFP OF
THE PREVIOUS SUB=-SERIES FOR XOPe NXX IS THE TOTAL NUMBER OF PREVIOUSLY
CALCULATED FREQUENCIES FOR EACH MOUE. THE CALCULATED FREQUENCIES ARE
TRANSFERRED FROM THE ARRAY A TO S(IeJ)e J= NXX¢lreaetNXX+NXP,
NXX=NXP
DO 100 K=29NS
NXP=2##NEX (K) +1
XOP=XFP
XFP=XOP+ (NXP=1) #DELX
SMP=SM .
DO 60 I=19NM
CALL SERIES(MN(I)oXOPsXFPeNXPyNEX(K) 90sNoeS(IoNXX) 2sSMPIEPS,
1 RESsAyNERRyL)
IF (NERReNE«0) GO TO 200

AITATSSYIOND
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FTNS.54A 01/13/71

5
6

1

NDOOODODODOHOOOOODOD

2

PO S0 J=2.NXP
0 S(Ie(NXX#¢J=1))=A(J)
0 SMP=A (NXP)
00 NXX=NXX+NXP=1
RETURN
THE ERROR RETURN SEQUENCE
NER(I)e I = loeeesNS+5 IS AN INTEGER ARRAY WHICH CONTAINS ERROR INFOR=
MATION TO RE RETURNED TO THE CALLING PROGRAMe IF AN ERROR IN THE
CALCULATION OF A FREQUENCY (SEE CALSIG) HAS UCCURREDs SERIES RETURNS
NERRy WHERF A(NERR) IS THE FREQUENCY CALCULATION NHICH ENCOUNTERED
DIFFICULTY, NER(1) = THE SUB=SEKIES NUMBER WITHIN WHICH THE OIFFICULTY
OCCURRED (EXCEPT IN THE CASE NER()) = =]» SEE STATEMENT NUMBER 27 oOF
THIS SUBROUTINE)s NER(2) IS THE TOTAL NUMBER OF SUB=SERIESy NER({3) IS
THE NUMBER OF ELEMENTS IN THE SUB=SERIESs NER(4)s THE MODE NUMBER, -
NER(S)y THE INDEX WITHIN THE SUB=SERIES (NERR) s AND NER(6) ¢ e eNER(5eNS)
ARE THE EXPONENTS CORRESPONDING TQ EACH SUB-SERIES WHICH HAS BEEN SET
UP IN THIS SUBROUTINE,
00 NER (1) =K
NER (2) =NS§
NER(3) =NXP
NER(4)=MN(1)
NER (5) =NERR
DO 220 L=1eNS
20 NER(S+L)=NEX (L)
RETURN
END



NRL REPORT 7294

FTNS.5A 01/13/71
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SUBROUTINE DIFFER(NyZsZNsOELyDET)
DIMENSTON Z(N) sDEL (N) »DET (N)

THIS SUBROUTINE CONVERTS THE DEPTHS (THE Z(I) AND ZNy POSITIVE
NUMBERS) INTO TRUE VERTICAL DISTANCE RELATIVE TO THE NAVIFACE, +Z

8EI

NG TAKEN AS VERTICALLY UPs AND SETS UP THE ARRAYS DEL AND DET OF

FINITE DIFFERENCE OPERATIONS IN THE Z(I)s N IS THE TOTAL NUMBER oF
DEPTHSy INCLUDING 2ZN WHICH IS RETURNED AS Z(N),

1

M=Nwl

DO S5 I=1¢M

2{D)==72(1)

Z(N)==2ZN

DET(1)=Z(1)#Z(2)#(Z(2)=Z(1))#0+5

DEL(1)=2(1)

DEL(2)=Z(2)~2(1)

DO 10 I=24M

DEL(T+¢l)=Z(1+1)=Z(])

DET(I)=045#(Z(I=1)87 (]~ 1)“DEL(I’1)‘Z(I)*Z(I)“(Z(I =1)=2(I+1))+
Z(I+)#Z(T+1)#DEL(I))

RETURN

END

23
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FTNSe5A 01/13/71

SUBROUTINE SERIES (MNaXOeXFoNXsNEX9MeNsSLeSMeEPSsRESesSeNERR,L)
COMMON/RLK/RB(200)9Z2(201) sDEL (201)sDET(201) 9W(202)
DIMENSTON S(NX)

THIS SUBROUTINE SYSTEMATICALLY CALCULATES THE NX FREQUENCIES
(S(1)eesSI(NX)) WHICH CORRESPOND TO THE NX EQUALLY SPACED WAVE NUMw
RERS WHICH ARE CONTAINED IN THE CLOSED INTERVAL XOoeoXF FOR THE MN-=TH
MODEs NX MUST BE A POWER OF TWO PLUS 1y THAT 1ISs NX = 2##NEX + 1,
DELX IS THE EQUAL SPACING BETWEEN THE WAVE NUMBERS THE ACTUAL
CALCULATIONS ARE PERFORMED BY CALLING THE SUBROUTINE CALSIG,.

N=1 IS THE NUMBER OF OBSERVATIONS QF BRUNT=VAISALA FREQUENCY
SQUARED (BB(I)) AS A FUNCTION OF DEPTH (Z(I))e ZIN) 1S THE DEPTH AT
WHICH THE BOTTOM ROUNNARY CONDITION IS TO BE EVALUATEDe THE 2(1) ARE
ACTUALLY NEGATIVE NUMBERSs #Z BEING TAKEN AS VERTICALLY UP, DEL AND
DET ARE ARRAYS OF OIFFERENCE OPERATIONS WITH THE Z(I)s AND MUST gf
SET UP IN THE CALLING PROGRAM, THE W(I+¢l) ARE THE VERTICAL VELOCITIES
CALCULATEN 8Y THE SUBROUTINE FOR THE DEPTHS Z(I)e B8y Zs DELs DET,
AND W ARE ALL SHARED IN COMMON WITH THE cALLlNG PROGRAM IN THE COMMON
ALOCK BLKs WHICH CONTAINS 500 COMPUTER WORDS.

THE FREQUENCIES S(I) ARE KNOWN TO gE GREATER THAN SL AND LESS
THAN SM. INITIAL VALUES OF SL AND SM MUST BE INPUT,.

M = 0 SIGNIFIES THAT THE FIRST ELEMENT OF THE SERIES S(1)eeeS(NX)
IS EQUAL TO SLes AND THAT ONLY NX=] FREQUENCIES NEED BE CALCULATED,

A VALID SOLUTION IS ONE FOR WHICH
As THE INTERVAL SlLeeeSM WITHIN WHICH S IS KNOWN TO LIE HAS BEEN
REDUCED TO 100#EPS PERCENT OF S» OR
Be IF L=0 (REAL RIGID BOTTOM) THE VERTICAL VELOCITY W AT THE
ROTTOM IS WwITHIN RES OF ZERO
IF L=1 (PSEUNO ROTTOM) THE RATIO OF DW/0Z TO W AT THE PSEUDO
BOTTOM IS WITHIN 100#KES PERCENT OF THE WAVE NUMBER Xe THAT
1Sy THE SOLUTION BELOW THE DEPTH Z(N) CLOSELY APPROXIMATES
THAT FOR A HOMOGENEOUS FLUID.

NERR IS AN ERROR RETURN WHICH IS SET EQUAL TO THE INDEX (I) CORRE=
SPONDING TO THE FIRST FREQUENCY (S(I)) CALCULATION WHICH IS IN ERROR
(SEE CALSIG) .

THE SYSTEMATIC CALCULATION IS ACCOMPLISHED 8Y BREAKING THE SERJIES
S(1) OF FREQUENCIES TO RE CALCULATED INTO NEX GROUPS, EACH CONTAINING
SUCCESSIVELY HIGHER POWERS OF TWwO ELEMENTSs THE ELEMENTS OF A GROUP
(1.Ee THE S(I) WITHIN THE GROUP) ARE CALCULATED USING LIMITS (SL
AND SM) RASED ON THE ELEMENTS OF GRUUPS WHICH HAVE BEEN PREVIOUSLY
CALCULATEDy AS IS ILLUSTRATED BELOW FOR THE CASE NX=9y NEX=3, THE
NUMERALS INDICATE THE ORDER IN WHICH THE ELEMENTS (THE S(I)) ARE
CALCULATED. THE SI=S IN PARENTHESES ARE THE PREVIOUSLY CALCULATED
ELEMENTS wHICH ARE USED AS SL AND SM,

S(1) le (S1) (S1) (S1) (SD)

5(2) 6
S(3 4 (53)
S(4) Te
$(5) 3. (S5) (S5)
S(6) Be

OO OO OO DDONODNOOODOOAONNDNDNODONDNOOHOODHONANODDNNOOOOHDOHD
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c str) S5¢ (ST)
c
C S(8) Qe
c
C S(9) 2« (S9) (S9) (59)
C .
C GROUP 1 2 3 NUMBER QF GROUPS = NEX
C NOJEL (NE) 1 2 4 NUMBER OF ELEMENTS OOUBLES FOR EACH
¢ SUCCESSIVE GROUP
C INDEX JUMP BETWEEN SUCCESSIVE ELEMENTS OF THE
C GROUP (1D (8) 4 2
C INDEX OF FIRST MEMBER OF PREVIOUS
C GROUP (INDP) (%) 5 3 INDP IS USED TO DESIGNATE SM FOR THE
C CALCULATIONS ON THE FIRST MEMBER OF A GROUP
C S(IL) AND S(IM) ARE THE FREQUENCIES CORRESPONDING TO SL AND SM FOR
C ANY PARTICULAR CALCULATION
IF (M,EQ.0) 10920
10 S(1)=si :
G0 TO 30
20 CALL CALSIG(MN¢XOyNySLySMyEPSsRES,S(1) 4NERRyL)
IF (NERR.EQe1l) GO TO 200
30 IF (NX4EQel) RETURN
CALL CALSIG(MNsXFoeNeS(1) 9SMIEPSIRESS(NX) sNERRyL)
IF (NERR.EQ.1) GO TO 210
IF (NX4.EQ,2) RETURN
DELX= (XF=X0)/ (NX=1)
NE=]
TJsNX=1
INDP=NX
D0 100 I=1eNEX
X=X0Q+ TJRDELX/2
IND=INOP=TJ/2
IL=1
IM=INDP
INDP=IND
DO 850 Js=1lNE
CALL CALSIG(MNsXeN9eS(IL) oS(IM)IEPSIRESsS(IND) oNERR,L)
IF (NERReEWM.1) GO TO 220
IL=IM
IM=IMeT Y
IND=IND+IJ
50 X=X+ T S#DELX
1Jd=14/2
100 NE=NE#2
RETURN
200 NERR=1
RETURN

210 NERR=NX

RETURN

220 NERR=IND

RETURN
END

25
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10

95
100

105

SUBROUT INE CALSIG(MNsXoNsSLeSMIEPSYRESySyNERRyL)

COMMON/BLK/BB(200)92(201) ¢DEL (201) sDET (201) W (202)

THIS SUBROUTINE CALCULATES THE FREQUENCY § CORRESPONDING TO THE
MNeTH MODE OF OSCILLATION FOR THE WAVE NUMBER X,

Nel IS THE NUMBER OF OBSERVATIONS OF BRUNTeVAISALA FREQUENCY
SQUARED (BB(I)) AS A FUNCTION OF DEPTH (Z(I))e Z(N) 1S THE DEPTH AT
WHICH THE BOTTOM BOUNDARY CONDITION IS TO BE EVALUATED. THE 2(I) ARE
ACTUALLY NEGATIVE NUMBERS, +Z BEING TAKEN AS VERTICALLY UP, DEL AND
DET ARE ARRAYS OF DIFFERENCE OPERATIONS WITH THE Z(1)s ANO MUST BE
SET UP IN THE CALLING PROGRAM. THE W(I+1) ARE THE VERTICAL VELOCITIES
CALCULATED BY THE SUBROUTINE FOR THE DEPTHS 2(I1)s BBy Zs DELs DET,
AND W ARE ALL SHARED IN COMMON WITH THE CALLING PROGRAM IN THE COMMON
BLOCK BLKy WHICH CONTAINS 500 COMPUTER WORDS.

THE FREQUENCY S IS KNOWN TO BE GREATER THAN SL AND LESS THAN SM,
INITIAL VALUES FOR SL AND SM MUST BE INPUT, A VALID SOLUTION IS ONE
FOR WHICH EITHER

Ay THE INTERVAL SLeeeSM WITHIN WHICH S IS KNOWN TO LIE HAS 8EEN
REDUCED TO 100#EPS PERCENT OF Sy  OR
Be 1IF Ls0 (REAL RIGID BOTTOM) THE VERTICAL VELOCITY W AT THE
ROTTOM IS WITHIN RES OF Z2ER0 ‘
IF L=1 (PSEUDO BOTTOM) THE RATIO OF DW/DZ TO W AT THE PSEUDO
BOTTOM IS WITHIN 100#RES PERCENT OF THE WAVE NUMBER X, TWAT
ISy THE SOLUTION BELOW THE DEPTH Z(N) CLOSELY APPROXIMATES
THAT FOR A HOMOGENEQUS FLUID.

THE INTEGER VARIABLE J KEEPS TRACK OF THE NUMBER OF ZERO CROSSINGS
IN THE DEPTH SERIES OF W. NERR IS AN ERROR RETURN WWICH IS EMPLOYED
IF A SOLUTION IS NOT OBTAINED AFTER 50 INTEGRATIONS (NERR=1),

THE INITIAL VALUES OF SL AND SM ARE RETURNED TO TWE CALLING
PROGRAM '

NERR=g

IF (X®Z(N)oLTe=0+00628) GO TO 10

S=0. i v

RETURN

A=SL

RuSM

XXmX#y

w(l)=p,

W(2)=1,

DO 400 K=1,450

S=0e5% (SMeSL)

IF ((SMeSL) 4LE, (EPS#S)) GO TO 500

SSuSus : :

Jsg ’
DO 100 I=2,N
1i=7y
W(Iel)=m(=14/0DEL(Im1))#((XXSDET(Iw1)®(8B(Iw])/SS=1,)=

1 DEL(I) = DEL(I=1))%W(I) ¢ DEL(I)®W(lal))
IF(((ml)ea)8W (1e1))4GTe0s) GO TO 95
IF (JsGE,(MNe1)) GO TO 115
JRJe :
CONTINUE .
CONTINUE

IF (J.LTe(MN=1)) GO TO 105

IF(L.EQ.1) GO TO 110

1F éABSF(H(NOl))oLE.RES) GO TO 500

SM=
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60 To 390_
110 IF(((el)®uJuW(N)) LELOs) GO TO 130

118
125
130
390
400

500

BBCH2,# (W(N¢1)=W(N))/(DEL(N)#(W(NsLl)aW(N)))mX
IF (BBCW#GT,(RES®*X)) GO TO 128

IF (=BRC.GTe+ {(RES*X)) GO TO 130

60 TO 500

IF(LeEQe1,ORII,NEsN) GO TO 125

IF (ABSF(W(N+1))+.LE,RES) GO TO 500
SL=S

60 T0 390

SM=S

CONTINUE

CONTINUE

NERR=]

SL=A

SM=B

RETURN

END

037297171

27
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SURROUTINE PRIDIS(IDENToNUNITSeXO9XFaNXoNMyMN)
COMMON/SIGMA/S(104250)
DIMENSION IDENT (10) ¢ MN(NM)

THIS SURROUTINE PRINTS THE CALCULATED FREQUENCIES CORRESPONDING TO
THE NX EQUALLY SPACED WAVE NUMBERS (XOseeoXF) FOR THE NM MODES (MN(I)
(NM MUST BE LESS THAN OR EQUAL TO0 10) IN TABULAR FORM, IDENT IS AN
80 CHARACTER IDENTIFICATIONy NUNITS IS A SIX CHARACTER WORD DES=-
IGNATING THE UNITS OF LENGTH,

THE FREQUENCIES ARE SHARED IN COMMON BLOCK SIGMA WITH THE CALLING

ROUTINE,

PRINT 10009 IDENT

1000 FORMAT (1H1,10A8)

PRINT 2000 9NUNITSy (MN(I)9I=loNM)

2000 FORMAT (8}HODISFERSION RELATIONS w» FREQUENCIES (RAD/SEC) CORRESPON
I1DING TO WAVE NUMBERS (RAD/sA6+25H) FOR THE SPECIFIED MODES//1X,
211HMODE NUMBER99(S5Xs1295X))

PRINT 3000
3000 FORMAT (20(4Xs1H®)/1X912HWAVE NUMBER®)
IF (NX4,GT+1) GO TO 100
PRINT 40009 XOs (S(Js1)eJ=1eNM)
RETURN
100 DELX= (XF=X0)/ (NX=1)
X=XO0=nELX
DO 200 I=1sNX
X=X+0EL X
200 PRINT 40009X9s (S(Je1)eJ=]1sNM)
4000 FORMAT (1X9EL04392H #99(E104342X))
RETURN
END

OOOOOO0OO0
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SUBRROUTINE PLODIS (IDENToNUNITS¢X0¢XF aNXoNMM9MN)
COMMON/STGMA/S(10,250)

DATA ((IS(1)9I=199)=1HlolH291H391lH4slHEe1H691HTyIHBI1HG),
1(18LK=1H )

DIMENSTON TDENT(10) ¢MN(NMM) 9 ISIG(G) sLINE(101)91IS(9)9SCALE(1])

THIS SUBROUTINE WILL PRODUCE A LINE PRINTER PLOT TO THE DISPERSION
CURVESs FREQUENCY (S(IsJ)s 1 = MODE NUMBERs J = THE INDEX CORRE=
SPONDING TO WAVE NUMARER. THE ARRAY S(IesJ) IS STORED IN COMMON WITH
THE CALLING PROGRAM IN THE COMMON BLOCK SIGMAy WHICH CONTAINS
2500 COMPUTER WORDS) AS A FUNCTION OF WAVE NUMBER (Xs NX EQUALLY
SPACED VALUES ON THE CLOSED INTERVAL XOeeoXF) FOR THE NMM MODES
MN(I)e THE SYMBOL FOR A PLOTTED POINT IS THE MODE NUMBER.

IDENT 1S AN 80 CHARACTER IDENTIFICATION FIELDes WHICH IS BROKEN UP
10 8=CHARACTER ALPHANUMERIC WORDSe NUNITS IS A SIX CHARACTER WORD
SPECIFYING THE UNITS OF LENGTH.

NM=NMM
PRINT 500, IDENT
500 FORMAT (1lHl,10A8)
IF (NX,GT.1) GO TO 100
PRINT 1000
1000 FORMAT (63HOONLY ONE WAVE NUMBER SPECIFIEDs THEREFORE NO PLOT WILL
1 RE MADE)
RETURN
100 IF (MNI(NM),.LE.9) GO TO 125
NMaNM=1
IF (NM,GT.0) GO TO 100
PRINT 1050
1050 FORMAT (77HoALL MODE NUMBERS CONTAIN 2 OR MORE DIGITS AND CANNOT BE
1E PRINTED ON THE GRAPH)
RE TURN
125  IF ((NMM=NM)+EQe0) GO TO 150
IsNMMaNM
PRINT 1100, I
1100 FORMAT (1H0,12+473H MODE NUMHBERS CONTAIN 2 OR MORE DIGITS AND CANNOT
' 1T BE PRINTED ON THE GRAPH)
150  SM=S(),NX)
AE]l.
Xx]eo
NE=0
IF (SM=X) 20192089202
201  X=041%X
NE=NE+)
IF (SM=X) 201+208+204
202  X=1049X ’
NEsSNE=1
IF (SMeX) 20342089202
203 Xx0ol®X

OO0

NE=NE+]
206 A=2e

IF (SMa2,4X) 20842084205
205 Asb e

IF (SMe4 ,#X) 208,20849206
206 A=S,

IF (SMaS#X) 20892084207
207 NE=NE=1
A=)e0

AITATSSYTIOND
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208 Az0e1#A

SCALE(]1)=0,0
DO 300 T=2.11
300 SCALE(I)=SCALE(I=])+A
PRINT 2000¢NEsNUNTTSy (MN(I)oI=]oNM)
2000 FORMAT(STHODISPERSION CURVES =~ FREQUENCY (RAD/SEC) TIMES 10 To THE
1 +13541H POWER AS A FUNCTION OF WAVE NUMBER (RAD/Z+A6¢1H)/11H FOR M
20DES 99(1291H))
PRINT 30009¢SCALE
3000 FORMAT(1MO916X911(F3,1e7X)/18BX010(1H+99(1lHe))slH*)
C210%# (NE*1) /A
MX=10
IF(NX4LEL10) GO TO 350
MX=4
IF (NXoLE+25) GO TO 350
MX=2
IF(NXsLEe50) GO TO 350
MX=1
350 DELXZ(XFaX0)/ (MX#(NX=]))
R=X0
JJ=0
DO 375 I=1eMX
IF(BoLE« (0S*DELX)) GO TO 400
375 B=B=DEL X
PRINT 4000
4000 FORMAT(17X91H/e4(/17Xe1lH/))
LP=0
1Q=0
KP=0
B=X0
GO TO 450
400 B=0+0
PRINT 4100
4100 FORMAT(6X9sSHO«0009s6X92H+19100Xs1He)
KP=l
LP=l
10=0
IF (1.6T41) GO 7O 410
JJuMX
TasMX+1
1Q=)
410 IL=]=2
DO 420 J=1.1IL
LP=LP+1]
420 PRINT 4200
4200 FORMAT(17XelHe9101X91He)
659 NNXEMX# (NX=1) = j e P
DFLX=10#DEL X
DO 500 I=1,101
500 LINE(I)=I8LK
DO 600 T=LPeNNXsMX
10=1Qe1
DO 510 KI=1yNM
IKI=NM=KI*1
ISIG(KTI)=CHS(IKIe1Q)+]
IF (ISIG(KI)eGTe101) ISIG(KI)=101
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8510

5100

515
5200
820
517

5300

535
5350
538
540
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LINE(ISIG(KI))=IS(MN.(IKI))
IF((1/10=KP)+LT40) GO TO 516
KP=KP+]

B=R+NELX

PRINT 51004BsLINE
FORMAT(5X9E10e3¢2XglHes101A191He)
GO TO S20

PRINT 5200,LINE

FORMAT (17X91Hee101A101H,)

DO 517 J=1lsl01

LINE (J) =18LK

JUsT1+MX =2

DO 540 J=xleJdJ

IF((J/710~KP)sLT40) GO TO 535
KP=KP+1

R=B+NELX

PRINT 5300,4B
FORMAT(SX9E10a342X91H4s101Xg1He)

GO 10 538

PRINT §350

FORMAT (17X91lHes101Xe1Hs)
CONTINUE

CONTINUE o~

600 CONTINUE
PRINT 6000+SCALE

6000 FORMAT (18Xe10(1H459(1He)) 91He//17Xs ) (F3als7X))

RETURN
END

01/13/71
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Appendix B
SAMPLE CALLING PROGRAM, DATA, AND OUTPUT
To illustrate the use of the subroutine set for computing internal wave dispersion
relations, the source listing of a sample program which employs calls to DISPER,

PRIDIS, and PL@DIS is reproduced on page 33. Sample input data and the resultant out-
puts from PRIDIS and PL@DIS are included as Figs. Bl, B2, and B3, respectively.

32
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1000
2000
3000
4000

s00

5000

$50
6000
$99

PROGRAM TESTIY

DIMENSJON JDENT(10),MN(10),NER(30),2(204),BV(200)
COMMON/SIGMA/S(10,250)

READ 2000, (IDENT(I),1%31,310)
FERMAT(10A8)

READ 2000¢/NUNITS:EPS,RES,NX,X@)XF

FERMAT (A6,2F10,5,13,2F10,5)

READ 3000, NM, (MN(I),1m3,NM)
FERMAT(11]3)

READ 4000sM,ZN,C(Z(1),BV (1) it ™)
FERMAT(]3,F10,5/(5(F6,1,F30,5})))

CALL Dl PER‘NHQMN.NX.XQ,XF."'ZI ZN'BVOERSIRESONERO,.’
JFINER(L)yNE, Q) GO YO 900
CALL'PRLDIS(IDENT.NUN{TS,XG,!FDNX'NM'"N)
CALL PLEDISCIDENT NUNTITS»XOsXFrNXsNMsMN)
Ge 18 999

IFINER(1),EQ,=1) GO TO 950

1jaNER(2)+5

PRINT 8000, (NER(I), Is4,I])

FERMAT(19% ERROR RETURN,; NER3,;3013)

66 T8 999

PRINT 6000

FERMAT (15H ERROR [N SETUR)

CENTINVE

END

33
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CARD NOe { =~
TEST SET EXPe AND INV,SQUAREs RES=DEL=10%%-6 (7 JAN 71)

CARD NOs 2 -
FEET 0000001 0.000001 26 0,00 010

CARD NO. 3 -~
7 1 2 3 4 5 6 8

CARD NO. 4 -
28 45.0

CARD NOs & -
140 04004619 2¢0 064006501 3¢0 06009148 440 0e01287 Se0 0e01812

CARD NOe« 6 -
640 0.02549 740 0.03588 860 0605049 9.0 0607105 1040 0.10000

CARD NOs 7 -
110 006400 1240 0e¢04444 1340 0403265 1440 0402500 1540 001975

CARD NOe. 8 -
1640 0401600 1740 0401322 1840 Oe01111 19,0 04009467 20.0 0,008163

CARD NOe 9 -~
2140 04007111 2240 0006250 2360 00005536 240 00004938 250 04004432

CARD NOe 10 -
3040 04002778 35.0 0,001902 40.0 0,001384

Fig. B1 -~ Input data for sample calling program



TEST SET EXP, AND INV,SQUARE. RES=DELE10%%=6 (7 JAN 71)

CISPERSION RELATIGNS = FREQUENCIES (RAUD/SEC) CORRESPONDING Y@ WAVE NUMBERS (RAD/FEET
MODE NUFBER

WAVE NUMBERw

0,000+000
‘l°00'003
8-000'003
1.,200-002
1,600-002
2+000-002
2,400-002
2,800-002
3,200-002
3.600-002
4,000-002
4,400-002
4,800~002
5.200‘002
5,600-002
6,000~002
6,400-002
4,800-002
7.200-002
7,6800-002
8,000-002
8,400-002
8,800-002
9,200-002
90600‘002
1,000-004

LR BE BN 2 2R BE N BE BN B NE B BE B BE BN OB BN BE BN BN N BN SR B

1

» *

0,000¢000
$,5117003
1'837*002
?,664-002
3,439=002
‘0167!002
4,8952-002
5,498=002
6,109-002
¢,686=002
7,234»002
7,754%002
£,249=002
R,719e002
90198’002
9,596-002
1.000-001
1,039=001
1,077=001
1,113=004
1,147=-001

1,1802001

1|211’°°1
1,241-001
1,270%001
1,298-001

2

L L]

0,000«000
3,649«003
7.131!003
1,045.002
1,362=002
1,665-002
1,954<002
2,231-002
2,497=0Q2
2,752+002
2.996’002
3,232-002
3,459=002
3,679=002
3,891e002
4,096.002
4,2962002
4,489«002
4,678«002
4,861-002
5,040%002
5,215+002
5,385«002
5,552=002
5,715=002
5,875-002

3

« *

0.000e000
2,13065003
4,2265003
6,2845003
8,3045003
1.029=002
1.223:00?
1.413#002
115992002
10781'002
1.9598002
2,134002
2.304500?
2,474s002
2,634g002
2,794z002
2,9503002
3,104900?
3:2543002
3,4015002
3.:545350902
3,687500?
31826:002
3,963z002
4,097;002
4,2295002

4
»

0,000+000
1,588-003
3,163+003
4,723=003
6,268+003
7,796003
9,306=003
1,080-002
1:227+002
10372'002
1,515-002
1,655=002
1,794«002
109309002
2,064-002
2,195+002
2,3249002
2|451'002
2,5876=002
?2,6990002
2,849-002
2,937=002
3,0544002
3.166'002
3,280.002
3,391~-002

5

] ]

0,000+000
1,260-003
2‘513'003
3,758=003
4,994-003
6,221-003
7.437=003
8,642-003
9.835-003
1.101=002
1.218-002
1,333=002
1,447-002
1,559-002
1.670+-002
10779'002
1.886-002
1,994«002
2.095=002
2,197=002
2,297-002
2,396-002
2,492.00?
2.,588-002
2,681-002
2,773~002

6
. .

0,0004000
1,020-003
2,038=003
3,052=003
4,062%003
5,0682003
6,070003
7.,068%003
8,060%003
9.047=003
1,003+002
1,100e002
1,197=002
1,293-002
1,389-002
1,483-002
1,577=002
1,670=002
1|762'002
1,853«002
1,943«002
2,032=002
2,120+002
2,207=002
2,293=002
2,378»002

Fig. B2 - Output produced by call to subroutine PRIDIS

) FOR THE SPECIFIED M@DES

8
L] »

0,000000
74719=004
1,542-003
2,310=003
3,075~003
3:838'003
4,598-003
5:355-003
6,109-003
6,8592003
7,607003
8,351-003
92,092=003
9,829-003
1,056-002
1.129«002
1,202~002
1,274=002
1,346-002
1,418+002
1.,489-002
1,560-002
1,630-002
1:700=002
1,770-002
1,839~002

¥63L LHOdHY TUN
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TEST SET EXP, ANL INV,SQUARE, RES=DEL®10#9=6 (7 JAN 71)

DISPERSION CURVES = FREQUENCY (RAD/SEC) TIMES 10 Te THE

FOR MODES 1y 2+ 3) 4, 5, 6, 8,

0.000

2,000-00?

4.000-002

6,000-002

8.600+007

1,000-00%

0,0

»
N

84
5
8
8

- = le 1m e e e #le e le e m aie e lm Gw ke e im e w m e e e iem mim e e lm e glem be le e e e w e &
* R

1 POWER AS A FUNCTION 8F WAVE NUMBER (RAD/FEET

1!6

1.8

0,2 0.4 0.6 g.8 1,0 1,2 1,4
MM NN N TN,
1
32 1
432 1
543 2 1
64 § 2 1
8% 3 2 1
8654 3 2 1
85 43 2 1
8654 3 2 1
8 654 3 2 1
865 4 3 2 1
86 54 3 2 1
8654 3 2 1
66 5 4 3 2 1
8654 3 H 1
86 5 4 3 2 i
865 4 3 2 1
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Appendix C

ANALYTICAL SOLUTION FOR THE TEST CASE

The test distribution of the Brunt-Viisild frequency is divided into two regions

N2(z) = 0.0032825 ¢~0-341642z . _10 < 7z <0 (Cla)

and

N2(z) = 1.6/(z+6)%; -w <z <-10 . (Clb)
The analytical solution of Eq. (1) for such a distribution is obtained by determining solu-
tions in each of the regions (wg(z) corresponding to the exponential distribution and
wg(z) for the inverse square distribution) which will satisfy the conditions

wg(0) = 0 (C2a)
wp(-10) = wg(-10) _ (C2b)
wg(-10) = wg(-10) (C2¢)
lim wg(z) = 0, (C24d)

z=p—®
where primes indicate derivatives with respect to z.
In the upper layer (Eq. (Cla)), Eq. (1) has the form

2
wh + S (A2e7202-02) wp = 0, (C3)
o

where A = 0.05729 and « = 0.170821. If a new independent variable { = («xA/do) exp (-0z)
is introduced, we have, defining X (1) = wg(2),

' dg [
wg(z) = - X'(D)
a2 ary
Wi(z) = — X'(0) + (d—z-) X"(2)
272
= %‘ e”%ZX'(L) + "a: e~ 2%2X"({)

where primes indicate derivatives with respect to the appropriate independent variable.
The governing equation becomes

317

AITATSSVIONN



38 T. H. BELL, JR.

KIA? —daaxw g GKA maaye < (A2e720z_ 52y X = O
0_2 o 0,2
or simply
£2X" + X'+ [£2 - (/)X =0, (C4)

which is a standard form of Bessel's equation. Two linearly independent solutions of

Eq. (C4) are the Bessel functions of the first and second kind of order v = «/a, J,({),

and Y,(!). Using the notation of Abramowitz and Stegun (1964), any linear combination

of these two solutions will be designated by C,(¢). Thus, in the upper region, the vertical
velocity function is given by

wg(z) = @K/a(ag e'“’) , (C5)

which is subject to the appropriate boundary conditions. Since the first derivative of
wg(z) is involved in the matching condition at z = -10, we note that, since

Co(l) = =€,y (1) + § e, (D

(Abramowitz and Stegun, 1964, p. 361),
esgeg oo o) wine o
or
W= Do, (< eor) - e (£ emes). (1)
O(' .

In the lower layer, the governing equation is

2
w§+——f-li(——A—-—-0'2:|ws=0, (cT)

o? z—zo)2

where A% =1.6 and z, = -6, Making the changes of variable { = «(z,-2z) and
wg(z) = (£/x)/2X({), we have that

wyo = o & [(%)szm] - -1 (%)m X(2) - («DY2X'(D)
v = b 4 [(%)1/2X<;)]+ (j—ﬁ)ﬁ f;[(é)l/zuo}

1/2 172
=K2ﬁ[%(:lg) x<g>+(§) x'<z>}

= k372 (1/2 [X”(C) + = 7 X' - —g— X(Z.)]
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Therefore, the governing Eq. (C7) is transformed to

1/2

K3/2€1/2(x"+%x‘—$x>+§;(AZ:2_U2)(%> X=20

or simply

23X + (X' - \}'2 +(% - Kz[:z)}x =0, (C8)
o

which is again identifiable as a form of Bessel's equation, whose solutions are the modi-

fied Bessel functions of pure imaginary order » = ip = i V(x2A2/02) - (1/4). The modi-

fied Bessel function of the second type, X;,(!), is the appropriate solution, since it ap-

proaches 0 as exp (-{) for large {, as is evidenced by the asymptotic expansion

(Abramowitz and Stegun, 1964, p. 378)

a1/ =L _ 1+ 4u2 (1 +4p2)(9+4u?) _
Ki,u(g) 2 e l:l Sg + o1 (8&)2 cee + .. . (Cg)

There is a problem in the solution, however, in that K;,({) must be evaluated for
small values of {. Formally, we would express K;,({) in terms of the modified Bessel
functions of the first kind (Abramowitz and Stegun, 1964, p. 375)

Io;,(0 - 1,00
=1 ikl it . C10
Ki#(c) ) W( sin (ium) > ( )

However, the standard series expansion for I,({) is not well suited for considering
purely imaginary orders and yields complex-valued functions when v = iy, For this
reason, we employ the series expansion for solutions of Eq. (A8), which was suggested
by Boole (1884, p. 238). The basic solution is of the form

X(%) = Bo, (L) = ¢,(L) cos (plnl) + (L) sin (p1nl) , (Clla)
where
- - 2n . _Pan-, - by (C11b)
8.0 Zo 207 g =
i nb__, + pa_.
= b g2, p =Pt a7l (Cl1e)
¥, (0 Zo L o (e

The second linearly independent solution is simply

X (L) = Bo_, (1) = ¢.,(L) cos (=p1nl) + ¢, (0) sin (-pInl)

Y, (1) cos (w1nl) = ¢, (L) sin (uInl) . (C11a)

To express K;,({) in terms of these real-valued functions, we must determine some
relationship between the real-valued Bo.,({) and the complex-valued I.;,({). We note
that the I,;,({) must have the same real part, since K;,({) is a real-valued function.
The standard series expansions for I,;,({) are given by (Abramowitz and Stegun, 1964,
p. 3175)
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i © 1,5\
L = (3 g)t ’ Zomr((“%m | (€12)

Since I'(n+2) = (n-1+2z)(n=-2+2) ... (1+2z) ['(1+2z) (Abramowitz and Stegun, 1964,
p. 256), Eq. (C12) may be written in the alternative form

cos (p. 1n %—) t i sin (;,c 1In l) (013)

I;;.(0 = T : i) (cos (uinl) £ i sin (1)) S,;, (L) »
where
2 3 -
Syiu(8) = |1+ ¢ + : +oaa | (C14)
® 1V 2201 +ip) 2! 2%(1 +ip)(2 tip)
Multiplying out the terms in Eq. (C13), we obtain
5,:,.(D
I, (0 = r'(tl—li;ﬂ—) [#, cos (u1n{) + B, sin (uln Q)] i
_i8, (D)
+Fﬁf2§ (B, cos (w1nl) - @, sin (u1n D] ,
where
@ =cos (g ln 1) re (F(1+iw)] + sin{ u In L) 1 [(C(1+ip)) (C16a)
» 2 2
B, = sin (,u In %) Re [(1+iwp)] - cos( ¢ 1n %) Im [C(14ip)] (C16b)

with the symbols Re and Im denoting real and imaginary parts, respectively. Term-by-
term comparison of the series expansions for I.;,({) and Bo,,({) yields the result that

I5,(0 = % {[(0‘#-,3#) ti(a,+B,)] Bo, (L) + [(a,+8,) F i(e,-8)] Bo_p(C)} , (C17)
so that the series expansion for K;,({) may be expressed by
Kin(D) = 5 [(8, = B,) Bo_ (D) = (0 +4,) Bo, (D] . (C18)

Thus, the solution in the lower region is given by

(20 -2)'"" (C19)
we(2) = = {(#, = B,) Bo_, [k (2o = )] = (&, +8,) Bo,[x(z0-2)]} ,

where u = («2A%/c2) - (1/4).

Since our expression for K,(l) is designed for purely imaginary orders v = ip, the
standard cylinder function recurrence relations among derivatives of functions and func-
tions whose orders differ by +1, one of which was used in obtaining an expression for
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dwg(z)/dz, are not applicable if one desires to retain purely imaginary orders in the ex-
pressions for the functions and their derivatives. The expression for dwg(z)/dz is there-
fore obtained by formally taking the derivative of Eq. (C19). We have that

1/2

d - (z4-2) _ '
wgiz) _ 2(201_ 5 Ws(2) + 2o 2; - & 5% (2= B Bo_, (D) = (2, +8,) Bo, (D)
—wg(z)  w(zg-2) , , (C20)
S 2(z,-2) 2% [(“#‘,3#) Bo_,(0) - (“#+,3#)B°p(§)]
where
dBo ()
—r = §BoL, (D) + #L(D) cos (lnl) + Yi(D) sin (lnl) (C21a)
dBo_, ()
—— = -7 Bou(D) + YD) cos (w1nl) - #i(D) sin (ulnl) (C21b)
with
$u(L) = Zl Ina 0 = 7 Zo na {20 (C22a)
YD) = D 2mb g2t = 3 np g0, (C22b)
n=1 n=0

Since wg is constructed to asymptotically approach O at large depths, the conditions
which must be satisfied for the complete solution are

A
wg(0) = CIJK/Q<§5>+ C2YK/0L<%)= 0 (C23a)
wg(-10) = C1JK/a(Z—2 e-1°°‘> + C2YK/OL(% e'1°“> = wg(~10) . (C23b)
wi(-10) = fo—A e 10u {CIJEH (% e‘1°°‘)+ C¥y, (g—g e'1°°‘)}- rwp(-10) = wi(-10) , (C23c)
o o

where C; and C, are arbitrary parameters. If the conditions (C23a) and (C23b) are used
to evaluate C; and C,, Eq. (C23c) will be satisfied only if the proper choices of « and o
are made. The conditions (C23i) represent, of course, a highly transcendental equation
system for determining the dispersion relations and must be evaluated numerically. The
error involved in a numerical evaluation will depend on the accuracy to which the various
functions are computed. In computing the dispersion relations which correspond to this
analytic solution, standard program library subroutines which have a high degree of ac~
curacy were used to evaluate the gamma and regular Bessel functions. The modified
Bessel functions of imaginary order were evaluated using the series expansions for
Bo:,({) and Bo:,({) described in the text and were, in general, computed to a theoretical
accuracy of much better than 0.01% based on the convergence of the series. In practice,
the analytical dispersion curves were computed for the wave number « as a function of
phase speed c = o/« by specifying a phase speed c and determining the values of « for
which Eq. (C23c) was satisfied, with C, and C, determined by (C23a) and (C23b).
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