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Abstract: The rate of growth of meromorphic functions f, which are solutions of 
algebraic differential equations whose coefficients a(z) are arbitrary meromorphic func- 
tions, is investigated. By a method based on Nevanlinna’s theory of meromorphic functions, 
it has been shown that if f’/f has 00 as its Nevanlinna exceptional value, then the ratio 
T(r, f’/f)/T(r, a(z)), as i + m outside a set of r values of finite measure, is bounded for 
at least one of the coefficients a(z). 

INTRODUCTION 

We shall study the growth rate of certain meromorphic solutions of an algebraic differential 
equation of arbitrary order whose coefficients are meromorphic functions. However, along this 
line, by methods based on the Wiman-Valiron theory [ 1,2,3] which applies only to entire func- 
tions, some interesting results in certain classes of equations, especially the first-order algebraic 
differential equations (i.e., equations of the form P(z,w,w’) = 0, where P is a polynomial in z, 
w(z), and w’(z)), have been obtained. We mention here the following several results. 

Valiron [4] proved that any transcendental entire function which satisfies a first-order 
algebraic differential equation must be of finite order. (In fact, it must be of regular growth.) 
Later on, Bank [5] made a further study and extended the case to its coefficients which are entire 
functions of finite order. 

Another result, shown by Wittich [6; pp. 64-651, can be stated as follows: 

THEOREM A. Let P(z,w,w,,...wl) = angnl...nl(z)wnOwlnl...~lnL = 0 be an algebraicdiffer- 
ential equation where the anonI...nl(z) are polynomials and wi(z) = W(~)(Z) is the ith derivative 
ofw.LetN=no+nl+... + ru denote the dimension of the term w~~w~“I...w~~~. Then the above 
equation has no transcendental entire solution if only one term appears in the equation with a 
maximal dimension. 

Regarding meromorphic solutions, A. A. Goldberg (see [ 71) proved the following theorem. 

THEOREM B. Let P(z, w, w’) = 0 be a first-order diferential equation with all the coeficients 
which are polynomials; then all meromorphic solutions of P(z,w,w’) = 0 are ofjinite order. 

Later on, by using diflerent methods, Bank [7] obtained a stronger result as follows: 

THEOREM C. Let P(z,w,w’) = CatJz)wk(w’)j = 0 be a first-order differential equation 
with dimension No (i.e., No = max{k + j; akj # 0}, where akj is allowed to be an entire function 
of finite order if k + j < No, while if k + j = No, akj(z) is required to be a polynomial). Then a 
meromorphic solution of such an equation cannot be written as the quotient of two entire func- 
tions f/g, where f is of infinite order and g is of finite order. In particular, any meromorphic 
solution whose sequence of poles has a finite exponent of convergence (see, e.g., [8]) must be 
of jinite order. 
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All the ubove results indicated thmt for certuin speciul clusses of’ ulgebruic differentiul 
equution there exist close relutions umong (u) the growth rute of the coejlicients of the equation, 
(b) the density of the zeros or poles of’rr meromorphic solution of the eqrrution, rind (c) the growth 
rute of the meromorphic solution of the equution. 

The purpose of this report is to strengthen this indicution for certuin ulgebraic d&%rentiul 
equutions of any order. To be more specific, we shull sho\il that if the densities of both the zeros 
und the poles of a meromorphic solution f(z) of a generulized ulgebruic diflerentiul equution 
(the definition of which will be stuted in the next section) is much smuller than the growth rute 
of f’lf, then the rutio T(r, f’/f)/T(r, a(z)), NS r + CQ outside u set of r ttulues offinite meusure, 
is bounded for ut leust one coeficient u(z) uppeuring in the differential equation. In purticulur, 
if ull the coeficients u(z) in P(z,w,wl, . . . MQ) ure of jinite order and no greater than (Y, then 
T(r,f) = O(l)eru” us r -+ m for any given positive constant E. The proof of the above result 
will be bused on Nevunlinnu’s fundumentul theorems of meromorphic functions [9; chaps. I, 
2, and 31. 

DEFINITIONS, TERMINOLOGY, AND NOTATION 

Throughout the rest of the report when we say that a function is meromorphic, we mean 
that the function is meromorphic in the entire finite plane. 

Dejnition 2-Z: A generalized algebraic differential equation means a differential equation 
of the form 

P(al(z), az(z),~~. a,,(z), W(Z), Wl(Z)7**-wl(z)) = O (1) 

where P is a polynomial in w(z), w,(z),... WL(Z), and all the coefficients ai are meromorphic 
functions. 

In order to give a quantitative measure relating the growth of a meromorphic function 
f(z) and the density of its zeros or poles, the notation of Nevanlinna characteristic T(r,f) and 
the counting function N(r,f) are employed. It is therefore assumed that the reader is familiar 
with the fundamental concept of Nevanlinna’s theory of meromorphic functions and its standard 
symbols such as T(r,f), N(r,f), m(r,f), etc. * In what follows, the notation f will always denote 
a nonconstant meromorphic function. The Nevanlinna deficiency of a value c for f is defined as 

6(c,f) = lim 
-(+T)= l _ lim N(r+d 

rym T(r,f) r+m T(r,f) ’ 

We note that 0 s 6(c,f) s 1. 

Dejinition 2-2: We shall call a number c in the extended complex plane a Nevanlinna excep- 
tional value off if S(c,f) = 1. We shall denote by S(r,f) any quantity satisfying 

S(r,f) = o{T(r,f)I 

as r + 00 outside a set E of finite measure. 

Dejnition 2-3: A differential polynomial P,,(f) is used to denote a polynomial in f and its 
derivatives of degree, at most, n whose coefficients a(z) are meromorphic functions satisfying 

T(r,a(z)) = s(r,f ). (2) 
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The general term of Pll(f) has the form a(z)(f)nO(fi)nl...(h)ne where fi is the ith derivative 
off. 

PRELIMINARY LEMMAS 

Our main results will be the easy consequences after we quote and establish the following 
lemmas: 

LEMMA 1. Let P.(f) = fn(z) + P,,-I(f); then m(r,P,(f)) 2 n m(r,f) -t S(r,f). 

Proof. We may write 

where 

Pdf) =fn(z) + P,-l(f) 

=fn(z) (1 ++)+y+ . . . +Z), 

ai = a,lo...~lb (z) (~)no(y...(~)n” (3) 

and the a,,o...,Zr(z) are coefficients of P,,-,(f) with no + nl + . . . ne = n -i. By conditions (3) 
and a result of Milloux’s [see 9; p. 551 we conclude that 

m(r,ai(Z)) = S(r,f), i = 1, 2 ,... n. (4) 

Now on the circle ]z] = r we set 

A(z) = Max{Iai(z)]l’i}, i= 1, 2 ,... n. (5) 

Let El be the set of 0 in the interval [0,27r] for which If (reie) I > 2A (reie), and let Ez be the 
complementary set. On E 1 we have 

Thus 

A’(z) A”(z) 
> 

If”(z) I 
- (2A(z))2”’ - (2A(z))” 

=- 
2n ’ 

n m(r,f) = m(r,fn) 

(6) 
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= m(r,P,I(f)) + II log 2’+ S(r,f). (7) 

It follows that 

m(r,Pdf )) 2 n m(r,f) + S(r,f). 

This completes the proof of Lemma 1. 

We shall need the following definition before we state Lemma 7.. 

DejSzition 3-1: To each function A(r), positive, continuous, and nondecreasing on 0 < 
r < ~0, we associate the class Fx of functions f satisfying the conditions that 

(a) f is meromorphic in the whole finite plane 
(b) T(r,f) = O{h(r)}; as r + 00. 

In order to deal with our problem, we ask that condition (b) holds for any set values of r 
of infinite measure. 

From this we immediately have that a meromorphic function f 4 Fh, and then it is necessary 
A(r) = S(r,f). 

It has been shown [ 1 l] that FA is algebraically closed in the field of all meromorphic func- 
tions. 

With all the above definitions, one can obtain the following: 

LEMMA 2. Let f(z) be a meromorphic solution of the equation 

fn(z) + P,-,(f) = 0 G-9 

where all the coeficients of Pndl(f) belong to F A. Furthermore, assume that N(r,f) = S(r,f) 
holds; then f also belongs to Fh. 

Proof. Assume that f is a meromorphic solution of Eq. (8) and that f B F; then we would 
have T(r,b(z)) = S(r,f) for all the coefficients b(z) in P,-,(f). Adding a nonzero constant c to 
both sides of the equation we obtain 

f” + P,+*(f) + c = c. 

Now we note that the TumuralClunie Theorem [see 9; p. 691 still holds when the condition: 
N(r,f) = S(r,f) is replaced by N(r, f) = S(r,f). Thus by applying the theorem, we conclude that 

(f + a(z))” = c 

where a(z) is a meromorphic function satisfying T(r,a(z)) = S(r,f). 

This will lead to a contraditior, and the lemma is thus proved. 

LEMMA 3 [9; p. 731. Suppose f(z) is meromorphic in a domuin D and let F(Z) = f’(z)/ 
f(z); then for n 2 1, M’e have 

f(n) n(n- 1) -=F”i- 2 
f 

Fn-2F’ + a,,Fnd3F” + b,Fne4F12 + P,l-J(F). 

= F” + Pn-I(F) 

where a,, = (l/6) n(n - l)(n - 2), b,, = (l/8) n(n - l)(n - 2)(r~-3),undP,-1(F)isudifler- 
entiul polynomial in F with constant coeficients which vanishes identically for n = 3 and had 
degree n - 3 when n > 3. (Remark: The original proof of Lemma 3 was due to Tumuru [ 121.) 
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MAIN RESULTS 

THEOREM 1. Let P(aI(z), a,(z) ,... apt(z), w(z), WI(Z) ,... WL(Z)) = 0 be a generalized ulge- 
braic diflerential equation of dimension No (where No 3 1). Assume that P has the form 

p z We + Pn-I(aI(z), . ..an(Z). W(z), . ..Wl(z)) = O* (9) 

Suppose that f(z) is a transcendental meromorphic solution of Eq. (9) such that the 

T(r,ai(z)) = S(r,f) (10) 

are satisfied for all the coeficients ar(z) in P,-1. Then S(w,f) = 0. In particular, we obtain 

COROLLARY 1. Given a generalized algebraic differential equation which has the form 

wn(~) + Pn-I(aI(z), a*(z), . . . a,(z), W(z), W(z)7 ...we(z)) = O. (11) 

Then if a transcendental entire function f(z) be a solution of Eq. (1 I), it is necessary that at 
least one of the conditions (10) fails to hold. 

Proof of the theorem. Assume that f is a meromorphic solution of Eq. (11); then for a 
constant c (c # 0) we have 

f” + P,-l(al(z), a2(z), . . . a,,(z), f(z), fi(z), . ..fi (z)) + c = c. 

By Lemma 1, we get 

(12) 

m(r,fn + P,,-I + c) 3 nm(r,f) + S(r,f). 

However, from Eq. (12) we should have 

m(r,fn + P,,-I + c) = m(r,c) = O(1) 
= S(r,f). 

(13) 

(14) 

Therefore Eqs. (13) and (14) yield 
m(r,f) = S(r,f). 

It follows that G(a,f) = 0. 
THEOREM 2. Let P(z, w, WI,... wl) = 0 be u generalized algebraic diferential equation 

of the form 

P = wn(z) + P,,-I(Z, w, WI ,... WL) = 0. (15) 

Assume thut P,,-* contains a term a(z) which is of zero dimension and is not identically zero. 
Then S(O,f) = 0 for any transcendental meromorphic function f(z) which is a solution of Eq. 
(1.5) such thut the conditions (10) are satisfied. 

Proof. Simply by setting f(z) = 1 /g(z) and substituting into Eq. (15), we get 

g”(z) + Q,+~(z, g, gl,...gt) = 0. 

According to Theorem 1, we conclude that S(w,g) = 0, which is equivalent to S(O,f) = 0. 
We now state and prove our main theorem. 

c: 
=2!: 
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THEOREM 3.Let 

(16) 
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be (I generulized trlgebruic d~~~~rcntiul cqnution of dimension No. The generul term has the 
.fi)rm a,,,,,,, ...,,L(~)~no(~~)n’ . . . (we)nL, where a,,,,,r, . ,,1 (z) ure meromorphic functions und belong 
to FA. Let MS denote 

,iiANi (z) = x a,r,,,r, ,I (z) (Ni s PO, ji 3 0) (17) 

where Ni = no + rot + . . . + nf und ji = nl + 2nz + . . . + an, =Max {nl + 2nz + . . . + ant, 0}, 
und ussume thut ut leust one of the ,iiANi(z) is not identicully equal to zero. 

Assume thut f(z) is u meromorphic Ji~nction which is u solution of Eq. (16) such thut the 
conditions 

T(r,a jro...nl(~)) = S(r,f) (18) 

ure sutisjed for ull the coeficients, und ussum? that the-distinct zeros und poles off satisfy 
N(r,f’/f) = S(r,f’/f) which is equivalent to N(r,f) + N(r,f/f) = S(r,f), then T(r,f’/f) = 
O{T(r,a ,ao... ,,,(z))}, us r + 00 outside a set finite measure forcoeficient a,,,... nl(z) in P(z,w, . . . 
WL). In other words, f’lf also belongs to Fh. 

Corollary 2. In addition to the hypotheses of Theorem 3, if we assume that all the coefi- 
cients anon, nl( ) z are meromorphic functions of Jinite order, then for meromorphic function 

f which is a solution of Eq. (16) with its zeros and poles satisfying N(r,f’/f) = S(r,f’/f), und 
supposing that the multiplicities of all the zeros and poles off are bounded, we have 

T(r,f) = 0( l)era+’ 

where (Y is the maximal order among all the coeficients in P,(z,w,wI, . . . wl) and E is an arbitrary 
positive constant. i 

Proof. According to Theorem 3 we have 

T 

as r + 00 outside a set of finite measure, for some coefficient 

arro...nl(z) in P(z,w, . ..w). 

From this and a result of Hellerstein’s [ 131 we conclude that 

(19) 

(20) 

as r + 00 for any given positive constant. Combining this with the assumption on the multiplic- 
ities of the zeros and poles, and the results of [9; p. 261, we conclude that the exponent con- 
vergence of both the zeros and the poles of f are no greater than (Y. Hence we may write 

hi(z) 
f(z) = h2(~) eg(Z) 

where h,(z) is the canonical product of genus nl(s CX) formed with zeros of f(z), and hz(z) is 
the canonical product of genus n2( s CZ) formed with the poles of f(z); g(z) is an entire function. 
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By taking logarithmic derivative on both sides of Eq. (2 1) we obtain 

f’(z) hi(t) Id(z) -- 
m=hl(z) h%(Z) +s’(z) 

7 

cm 

or 

h;(z) h;‘(z) f’(z) 
-g’(z) =hl(z)-h2(Z)- f(Z) * 

Thus by a result of Whittaker’s [see 141, we can readily obtain 

Since E can be artitrary small, we conclude that the order of g’ (hence g) is no greater than 
(Y, and our assertion follows from this. 

COROLLARY 3. In addition to the hypotheses of Theorem 3, if we assume that all the coefi- 
cients are rationcrl functions, then any possible meromorphic solution f, llith N(r,f’/f) = S(r, 
f ‘If), is necessarily of3nite order and has the form 

where the pi(z) (i = 1, 2, 3) are polynomials. (Thus it turns out that in this case the Nevanlinna 
exceptional value 00 of f ‘/f is, in fact, Picard exceptional values of f.) 

Proof. In this case we have T(r,f ‘If) = O{log r}. The results follows from this. 

COROLLARY 4. Let f(z) be a meromorphic solution of Equation (16) whose coejicients 
are assumed to be rational functions. Suppose that for some ratio& function R(z), we have 
NCr,f) + N( r, l/f-R) = S(r, f’-RI/f-R) then f must be of finite order and has the form 
F(z) = R(z) + (~I(z)/Pz(z)) ePstz). 

Proof. By considering the function F(z) = f(z) - R(Z), the result follows from this and 
Corollary 3. We omit the details here. 

Before we proceed to prove Theorem 3 we shall give an example to show that the assump- 
tion on ,jiAsi(z) (conditions (17)) are crucial. 

Example [6; p. 701: The equation 

P(z,w,w, . . . we) = (w”w)2 - 2 w”(w’)2 w + (WI)4 + (w’w)2 - w4 = 0 

has an entire solution w(z) = e sin% which is of infinite order and satisfies N(r, w’/w) =S(r, WI/W). 
However, the function w’/w is of finite order and nonconstant. 

Proof of Theorem 3. By combining terms of the same dimenstion in P(z,w,w,, . . . wt) 
we obtain 

c at, o*‘102 . ..., o,,i (2) (w)“ol...he )“OkO + .a.* 
‘,01+1102+...‘10~;0=.~o 
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%I ni2 
. . . + 

lx alli,...~lik, ( (2) (w) (WI) . ..(Wyki + . . . = 0 (23) 
,,il+“i2+...+“i,;j=Ni 

where No 3 NI 3 N:!... . 
Now assume that f is a meromorphic solution of Eq. (16) which satisfies conditions (18) 

and N(r, f’/f) = S(r, f’/f). By the fact that T(r, f’/f) s T(r,f’) + T(r,f) + O(1) G 2T(r,f) + 
T(r,f) + S(r,f) [9, p. 551, it follows that 

Y(r,f)+Z(r,$)=S(r,$)=S(r,f). 

Also by Nevanlinna’s estimate on logarithmic derivative [ 10; p. 63 [, we have 

T(r,$)=m(r,$)+N(r,$) 

= S(r,f) + S(r,f) 

= S(r,f). 

Setting f ‘(z)/f (z) = h(z) and using Lemma 3 we have 

f %) - = h”(z) + P,-l(h). 
f(z) 

or 

f’“’ = (h”(z) + P,,-l(h))f(Z), n = 1, 2, 3 *.* * 

(24) 

(25) 

(26) 

Substituting these into Eq. (16) we obtain 

(joA.\rO(Z) hj” + Q.j,-l(h)) fNo+ (iIAN, hj’+ Qj,-l(h)) f”’ 

+ ji Ni . . . + (jiANi(Z) h + Q,ji-l(h)) f $- ..a = 0 (27) 

where Q,ji(h) are differential polynomials in h with coefficients bniOniI...niki(~) which are linear 
combinations of the coefficients u,~~~~~~...,~~~~(z) in P(z,w,w~,...w~). 
Set 

,jiA.vi(Z) hji + Q,j-l(h) = Bi(z). 

We note from Eq. (25) and Ref. 3, p. 55, that 

T(r,h(“)) = S(r,f). 
Then 

1c T( r, afliOni,...niki (2)) = S(r,f), i = 1, 2 . . . . 

(28) 

Hence from conditions (24) and Lemma 2, we conclude that Eq. (27) holds only if 

Bi(2) = 0 (29) 
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for all the i’s. That is, 

jiAA\ri(z) hj’ + Qji-l(h) = 0, i = 1) 2 *a* * 

Now since not all the jizdNi are identically zero, at least one of the Eq. (29) is not identically 
zero unless, again by Lemma 2, 

(31) 

as r + 00 outside a set of values of r of finite measure for some coefficient b,, iO...niki(~) appearing 
through the Q’s in Eq. (28). This implies that 

T(r,h) = O{T(r, aniO”il...niki(Z))} (32) 

for some coefficient a~iO~~i,...niki(z) in P(z,w, . . . wl) since the bltiOnil...niki(~) are linear com- 
binations of anio...niki(z). 

This completes the proof of our theorem. 

Let us denote by H.v the homogeneous differential polynomial of degree N in Eq. (16). 
Assume that f is a meromorphic solution of Eq. (16), such that the conditions (18) and (24) 
are satisfied. Then in view of Eq. (29), f necessarily is a solution of H,, = 0 for all N G No. 

Thus is H,v contains only one term for some N C No, then the solution of f of HN = 0 will 
be a polynomial and hence the condition that N( r, f ‘If) = S( r,’ f ‘If) will not be satisfied. So 
we have the following: 

COROLLARY 5. Let P(z,w,w,, . . . wl) = 0 be an nth-order generalized algebraic dijferential 
equation with dimension No. Suppose that in P, for some N (N s No), HN is a single term. Then 
to any f which is a meromorphic solution of P = 0, and non-constant we have either 6(0, f ‘If) < 
I or 6(w, f’/f) -=c 1. 

Finally we wish to add that, after the present work had been undertaken, it was brought 
to the author’s attention by Professor Steven Bank that he had done some work on the same 
problems. In fact, by using the same tool-Nevanlinna’s theory-with a slightly different ap- 
proach he [ 151 established a sufficient condition that a meromorphic solution of an nth-order 
algebraic differential equation, having arbitrary coefficients, necessarily be a solution of each 
homogeneous part of the equation. 

Using this result and the main result of Ref. 5, he treated algebraic differential equations 
of second order and obtained a conclusion similar to what we have accomplished in Theorem 3. 
Nevertheless, the methods we used here can be applied to serve certain algebraic differential 
equations of any order. 

In the meantime, we would like to point out that the assumption we made in Theorem 3, 
that some ,jiA.vi(z) is not identically zero, is very similar to the condition imposed by Wittich on 
the class of equations he treated in his analysis of entire solutions (see 6; pp. 71-72) and it also . reveals why sometimes the growth rate of certain meromorphic solutions is too large in compari- 
son with the coefficients of the equation. 
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