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ABSTRACT 

The Helmhcltz or scalar wave equaticn(V* +.kaj# = 0 is separable 
in both orolate and &late soheroidal coordinates TJ. E, d with solutions 
$I = S(h, vjR(h, 5) Q(+) and 4 =8(ih. v)R(ih. -ic)CQ), respectively. Here 
h = kd/Z , where d is the interfocal distance. A Fortran computer program 
called ANGLFN has been devised to evaluate numerically the angle solu- 
tions s(h, 7) and S (ih, v,). The printed output from ANGLFN cansists of angle 
functions of the first kind, S(i) (h, vj and S(i) (ih, ?), and their first and 
second derivatives with respect to % This report first describes the input 
data cards and the output format. The theory of the spheroidal wave functions 
is then discussed. A description of the principal internal features of ANGLFN 
is then given. Finally, a computer listing of ANGLFN is attached as an 
appendix. 

PROGRAM STATUS 

This is an interim report on a continuing NRL problem. 

AUTHORIZATION 

NRL Prcblem Sol-29 
Project RR 102-08-41-5225 

Manuscript submitted July 15, 1970. 
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A FORTRAN COMPUTER PROGRAM FOR CALCULATING THE PROLATE 
AND OBLATE ANGLE FUNCTIONS OF THE FIRST KIND 

AND THEIR FIRST AND SECOND DERIVATIVES 

INTRODUCI’ION 

The Helmholtz or scalar wave equation for steady waves (02 + I?)$ = 0, where 
k = 27i/h and h = wavelength, is separable in both prolate and ablate spheroidal 
coordinates (5, 71, 4). The factored solution is written as $ = R(h, c)S(h, 7,) o(b) 
in prolate coordinates and as $J z R(i h, -i 5) S(i h, ‘7) 0 (+) in ablate coordinates. Here 
h = kd,:! , where d is the interfocal distance of the elliptic cross section of the spheroid. 

The angle function of the first kind, S(l’(h, 7) or S”‘(ih, T), is one of the two in- 
dependent solutions to the ordinary differential equation in the angle coordinate v, where 
-1 L 1) 5 1, arising from the separation of variables. These solutions are charac- 
terized by the four entities m, h, 4, and TJ (represented by the Fortran variable names 
M, H, L , and ARC, respectively). M is the integer separation constant relating to the 
solution for the rotational angle 6. For each choice of ARC, M , and H a set of solutions 
exists to both the prolate and ablate angle equations, each solution characterized by a 
SeparatiOn COnStaCt or eigenvalue A. These eigenvalues are ordered in an ascending 
sequence and labeled with integers L, beginning with L = M for the smallest eigenvalue 
and continuing with L = M + I, L = M +‘J, etc. 

The computer program ANGLFN (ANGLe FUN&ion) calculates numerical values for 
the angle functions of the first kind S$j (h. 7) and S,,,$ (I) (‘h, TJ) and their first and second f 
derivatives with respect to 7 using expansions in associated Legendre functions. 

The user of ANGLFN inputs desired values for the parameters M, H, L, and ARC. 
Operationally, the program is divided into several parts. In the first part, M and ARC 
are set, and the associated Legendre functions are calculated. In the second part, H is 
chosen, and the eigenvalues and the expansion constants are obtained for each choice of 
L. Finally, the expansion constants and the associated Legendre functions are com- 
bined to give the angle functions and their first and second derivatives. Two different 
normalizations of the angle functions are available. This procedure is followed for both 
prolate and ablate spheroidal geometry. 

INPUT 

The input consists of five data cards: 

Data Card 1: 

Data Card 2: 

Format xl- This card contains the integer variables 1001P and NRM, 
where 100lp = 0 for ablate, 1 for prolate, and NRM = 2 for Flammer 
normalization, 3 for Morse and Feshbach normalization (see section 
on Angle Functions of the First Kind for an explanation of these nor- 
malizations). 

Format 315 - This card contains the integer variables Ml, IDM , and NM, 
where Ml = the initial value of M desired, IDM = the increment in M 
used to generate other values of M , and NM = the number of values of 
M that are desired. 

1 



2 KR?G AND VAN BUREN 

Data Card 3: Format 2D2o.10, I5 - This card contains the variables HI, DH, and 
NH, where HI is the initial double precision value of H , DH is the 
double precisibn increment in H , and NH is the integer number of 
values of H that are desired. 

Data Card 4: Format 315 - This card contains the integer variables LI, IDL, and 
ML , where Ll = the initial value of L desired, IDL = the increment 
in L, and NL = the number of values of L that are desired. 

Data Card 5: Format 2~20.10, 215 - This card contains the variables ARGl, DARG, 
NARG , and KTP , where ARGI is the double precision initial value of 
ARG , DARG is the double precision increment in ARG, NARC is the 
integer number of values of ARG that are desired (NARG 5 20)) and 
KTP is an integer equal to 0 if the input for ARG is in terms of 77 
(-1 5 ARG I 1) and equal to 1 if the input for ARG is in terms of 
ad q in degrees (0” I ARG 5 180’). 

OUTPUT 

The output from ANGLFN consists of numerical tables, as shown in Appendix A. 
Numerical values for the angle function Of the first kind, S, and its first and second 
derivatives with respect to v, SD and SDD , respectively, are provided for particular 
choices of M, H, L , and ARG. Only 11 significant figures are printed in the tables, 
although 26 figures are used in the computation. 

PARAMETER RANGES AND ACCURACY 

Within the following ranges, the angle functions and their derivatives are believed to 
be accurate to at least 8 significant figures, assuming calcv.lations are performed by a 
computer that has a word length of 26 digits, e. g. , the Control Data Corporation 3800 
computer at NRL using double precision arithmetric: 

M<L<M+49 

PROLATE 

I 0.1 -1.0 IH < ARG < 20.0 I 1.0 I 20.0 0 L /ARG/ < H 1’350 c 0.99, IARGI = 1.0 I 0 35.0 I jARGli0.9 < H 5 40.0 

OBLATE 

1 0.11H130.0 -1.0 I ARG I 1.0 i 30.0 0.2 I~ARCI C H14O.O I 1.0 

COMPUTATION TIME 

The following example is representative of the computation time for ANGLFN on the 
CDC 3800 computer at NRL: 
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PROLATE 

M = O(l)3 

H = .5(. 5)S.O 
Time * 4.5 minutes 

L = M(1)M + 3 

ARC = O"(10")1800 

The average computation time for a line of output decreases as more parameter 
combinations are requested. This is to be expected, since the Legendre functions and 
the eigenvalues are not functions of all four parameters and need not be calculated for 
every combination of M. H, L, and ARG. Neither the choice of prolate or ablate, nor 
the choice of input for ARC (degrees or pure numbers), nor the choice of the normali- 
zation (Flammer or Morse and Feshbach) significantly affect the computation time. 

SOLUTION OF THE HELMHOLTZ EQUATION IN SPHEROIDAL COORDINATES 

The prolate and ablate spheroidal coordinate systems can be formed by rotating the 
two-dimensional elliptic coordinate system, consisting of confocal ellipses and hyper- 
bolas, about the major and minor axes of the ellipses, respectively. It is customary to 
make the z axis the axis of revolution in each case. 

The prolate spheroidal coordinates c,rl, and 4 where -1 I ?j s -1, 1 < 6 < m, 0 I 4 < 2~ 
are related to the rectangular coordinates x, y, z by the transformation 

x = y (1 - 72) (52 - 1) cos 4, 

y +,1 - 72) (52 - 1) sin 4. (1) 

where d denotes the interfocaldistanceof the generating ellipse. The surfaces of con- 
stant 5, 7). and 4 are illustrated in Fig. 1. 

The ablate spheroidal coordinates 6, 7, and 4 where -15 7 < I, o < 6 < m , 0 < + < 2 v 
are related to the rectangular coordinates x, y. z by the transformation 

x = p(l- 72) (52 + 1) =os 4, 

Y  =~J(1-+)(52+l)sin+. (2) 

The surfaces of constant f. q, and + are illustrated in Fig. 2. 

The prolate and ablate spheroidal coordinate systems are two of the 11 orthogonal 
systems of second degree in which the Helmholtz scalar wave equation, 

(v* + kz)$, = 0, (3) 
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Fig. 1 - The three orthogonal sur- 
faces which determine 8 point in 
prolate spheroida, geometry 

is separable. The Helmholtz equation, when expressed in prolate spheroidal coordi- 
nates is 

c a~(‘-~~)+$(&l)$* (a) 5 + fw - &]4 = 0, (4) 

and when expressed in ablate spheroidal coordinates is 

62 t ?q 2 + h2(t2 + 
tf* f 1x1 - v2) a& 

$,2, 
I 

$ = 0, (5) 

where h = kd/2 Note that Eq. (5) can be obtained from Eq. (4) by the transformation 
f--if, h-ih. 

Separation of variables in Eq. (4) and Eq. (5) yields 

‘kg Chlf, 7)r 4) = R,& (h. 5) Smc 01, ~1 am ‘,+I (61 

and 
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Fig. 2 .- The three orthogonal surfaces 
which determine a point in ablate aphe- 
roidal geometry 

respectively, where the dependence of the ablate solution on h and 5 is represented as ih 
and -iE in order to show the correspondence between ablate and prolate spheroidal geom- 
etry. 

The five functions ?,J. (h, T,), R& (h, c), S,& (ih, 71). R,$ (ih, -ic), and a, (+) 
satisfy the following ordmary differential equations: 

and 

&;[(I - ?)+_e(h. v,] + k&h) - 6’ -&]Q,h 7) = 0, (8) 

$kf2 - l)$ Q,h E)] - b&(h) - h’f* + f&] R”,.&h. 5) = 0, (9) 

&El - $$S~(ih, q)] + b&(ih) + h2v2 -&jd(ih, q) = 0, (10) 

$kf2 t l)$$,~(ih, -if)] - b,,&ih) - h2c2 - c-]R&(ih, -if) = 0, (11) 

d2 
2 y#) + m2Qmm(4) = 0, (12) 

in which m and A,&(h) or &t (ih) are the two separation constants or eigenvalues occur- 
ing in the separation of variables. In physical problems where it is necessary that the 
field be periodic and unique over the entire range of the azimuthal coordinate +, it is 
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required that m be an integer. when h - 0, Eq. (8) and Eq. (10) reduce to the standard 
differential equation for associated Legendre functions with separation constants given 
by A&,= 4(& + 1) , where Z, = m, m f I, When h # 0, the values of the separation con- 
stant A& for which nontrivial convergent solutions exists to Eqs. (8) through (11) will be 
a function of n and h. It is convenient to order these values in an ascending sequence 
and label them with integers & beginning with 4 = m for the smallest eigenvalue, .f,zm+ 1 
for the next one, etc. The eigenvalues obtained for Eq. (8) and Eq. (9) will not be equal 
to the eigenvalues for Eq. (ICI) and Eq. (11). 

The two independent solutions of Eq. (8), Eq. (9), Eq. (IO), and Eq. (11) define the 
foilowing eight functions, 

Szi (h, 7). prolate angle functim of the first kind, 

$1 (h, v), prolate angle function of the second kind. 

R’l’ mt (h, c), prolate radial function of the first kind, 

RL$ (h, e), prolate radiai function of the second kind, 

Sti (ih,?), &late angle function of ttx first kind, 

Szi i ( h, I)), ablate angle function of the secmd kind, 

Rzj (ih, -ic), ablate radial fulctim of the first kind. 

$2 (ih. ic), obl a e t radial functim of the second kind. 

This report concerns the cs.Iculatton of Ss (h, q) and s$&(ih, 1) . The calculation of 
prolate and ablate radial functions of both the first and second kinds is discussed in pre- 
vious reports (l-4). 

ANGLE FUNCTION6 OF THE FIRST KIND 

The behavior of Eq. (6) sad Eq. (10) as h-0 suggests that the angle functions of the 
first kind car? be expanded in a series of associated Legeadre functions, 

fi (h, 7)) = 2 d, (h!d) P:+n(v), 
“XC, I 

and 

Szj W ri) = 2 dn (ihid) I$+, (rl), 
“a?,,1 (14) 

where the d,‘s are expansion constants, and the F& (7)‘s are associated Legendre 
functions of the first kind. The prime sign on the sum indicates that n = 0, 2. 4, if 
I,-miseven, andn=1,3,5...if~-misadd. 
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The derivatives of the angle functions are then given by 

“fi (h. ?,) = 2’ dn (hi& $I’:+” (q). d7 n=O, 1 

“Szi (ih, 7) = 2 dn (ihlm4) $Pz+” (7). 
dv n=0.1 

&#) 
dT* ,’ 

(h, TI) = 2 do (hlm4) $P~+.(v)~ 
n=0.1 

and 

ml 

&SC0 (ih, 71) = c dn(ihlm&) -??-P~+,(T) 
d$ ,’ “=‘I.1 d+ 

(15) 

(1’3) 

(17) 

(18) 

The following discussion will be restricted to the prolate expansion constants 
d, (hi&), but it is recognized that the resulting formulas apply equally well to the oblate 
expansion constants d,(ih/m&) when the transformation h-ih is made. 

Substitution of Eq. (13) into Eq. (8) and use of standard recursion formulas for the 
associated Legendre Functions lead to the following three-term recursion formula in the 
unknown expansion constants d,: 

(Zm + n + 2) (2m + n + 1) 
(2m + 2” + 3) (h + 2” + 5) 

h2 dn+2 

+ (m + n) (m + n + 1) - Am4 (h) + 
[ 

2(m + n) (In + ” + 1) - 22 - 1 h* 
(2m + 2n + 3) (2m + 2n - 1) 1 d” 

n(n - 1) 
+ (Zm + 2n - 3) (2m + 2x7 - 1) hZdn3 = 0. 

(19 

If the choice of h is arbitrary, solutions given by Eq. (13) with constants d, determined 
by Eq. (19) may be divergent either at 7) = tl or 7 = -1. 

(I) 
Nowever, in physical applica- 

tions it is necessary that sm4 (h, 7) be finite at both of these points. This requires that 
the separation constants A,& be chosen SO that d,+a/d, - 0 as n - m 
are the characteristic values (eigenvalues) of Eq. (8). 

These A,tvslues 
Use of these values leads to 

successful expansions for &, (h. +) of the form given in Eq. (13). 

The d, constants obtained using Eq. (19) will be unnormalized since this equation is 
homogeneous. The normalization is determined by requiring that the resulting angle 
functions S,d(h, 7) have scans special form at 71 = 1 or at 77 = 0. The normalization 
used by Morse and Feshbach (5) requires that 

[(l - ?*‘* *:A (h, $],=, = [Cl - ?-m’2 P; (v)]~=~. cm 
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This requirement leads to the normalization for the d, constants, 

“z, v! dn(i&4,)= (2; 

The normalization used by Flammer (6) requires that 

S$ (h, 0) = P; (0). 4 - m even, 

[ & S:;(hs ~1-j;~ =[& ~(n)]n=o. 4 -mocki 

The Flammer d, constants (denoted dn,F) are related to the Morse and Feshbach d, con- 
stants (denoted d,,Mp) by the formulas 

d n, F =d”,~~[~~~~!/~~:;‘~~~~~::,:)~). dr,MF]s cm&d. 

(24 

Before obtaining the d, constants, it is necessary to obtain the charaeteristie values 
A,$. An accurate first approximation for Ame is obtained by a matrix method. Here an 
equation similar to Eq. (19) is derived by using normalized associated Legeadre func- 
tions. Written in matrix form the equation reduces to 

LB] (vi = Aivi. (95) 

where iv} is one of the characteristic vectors, A is one of the A,$ characteristic num- 
bers, and LB1 is an n x n square symmetric matrix with elements constructed from 
modified forms of the coefficients in Eq. (19). The problem of determining A-4 is re- 
duced to the problem of diagonalizing the matrix [BI. The eigenvalues then appear as 
the resulting diagonal elements when ordered numerically from lowest to highest. Al- 
though the exact determination of the eigenvalues would require a matrix of order in- 
finity, good first approximations are obtained using matrices of modest proportions. 
Details of this matrix method are given in Ref. 7. 

The eigenvalues obtained above are now used as starting values in a variational 
procedure devised by Bouwkamp (8) and Blanch (9). The three-term recursion formula 
Eq. (19) is rewritten in two forms: 

N; = 
-0,” 

,n12, (26) 
y,” - Am4 (h) + N:+z 

and 
m 

N “’ n+* =-yn”tA,Jh)-5 , “22. (27) 
Nm n 
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where 

ym=(mtn)(mtnt1)+;h2 " (28) 

P,” = n(n - 1) (h + n) (2m + n -1)h4 Bn>2, 
(2rnf 2n -l)~(Zm + 2n -3) (2m + zn + 1) (2% 

Nz = (2m+n)(2m+n-l) h2 &, “,* 
(2m + Zn -1) (2m + 2" + 1) d,, 

Requiring that d./dW2- 0 as n-m is equivalent to requiring that NE - 0 as n - m. If the 
sequence N.” is terminated at a~reasonably large value for n, say “,, Eq. (26) can be 
written as a continued fraction where any Nr, ntn,, is obtained in terms of Ye? y&, 
m:+4, . . . . P.“I Q. P&. , anct A,4 (h) . Similarly, Eq. (27) can be written in a continued 
fractionexpressing N: in terms of ~“-2, ~“-4. ~“-6, , Pn--2, P,-4, Fn-,, . . . . and 
A,&(h), using the fact that NT= -$’ + A,,,& and NT = -$ + Am 4 to terminate the sequence. 

The starting value for the eigenvalue A,,,$ is inserted into the two continued fractions, 
one with diminishing subscripts and one with increasing subscripts. N,&+2 is calculated 
using both expressions. A correction to the eigenvalue is now obtained m terms of the 
difference between the two values for N2-m+2. The process is repeated until A,J, is ob- 
tained to a desired accuracy. 

When the values of A,#, have been accurately determined, the numbers N: are avail- 
able to determine the ratios d,/d,, . The individual d, constants are then obtained using 
the normalization condition given in Eq. (21). The prolate angle functions calculated 
using these d, constants in Eq. (13) will satisfy Eq. (20). Angle functions normalized 
according to Eq. (22) can be obtained by multiplication by the conversion factor given in 
Eq. (23) or Eq. (24). Similarly, oblate angle functions can be calculated using Eq. (14) 
and oblate expansion constants d, (ihimt). 

DESCRIPTION OF THE COMPUTER PROGRAM ANGLFN 

The Fortran IV computer program ANGLFN used to calculate the prolate and ablate 
spheroidal angle functions of the first kind and their first and second derivatives is 
listed in Appendix B. ANGLFN was written in double precision arithmetic for the 
Control Data Corporation 3600 computer at NRL. Here double precision numbers have 
26 decimal digits and an exponent range of -307 to + 307. A description of the input and 
output for ANGLFN has already been given. Some details of the program are given 
below. 

Special Functions 

Two special functions are required: the factorial function and the associated 
Legendre functions of the first kind. 

1. The first 170 integer factorials are calculated in lines 90 through 110 and stored 
in the array FACT(N), where FACT (N + 1) = N!. 
scaled by lO-=O, 

The first 275 integer factorials, 
are calculated in lines 120 through 140 and stored in the array FBCT(N), 

where FBCT (N + 1) = lo-z50 N! . These scaled factorials are necessary to prevent 
exponent overflow during the calculation of the associated Legendre functions. 
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2. The associated Legendre functions of the first kind P$ (~0s 6) and their first 
and second derivatives with respect to cos 6 are calculated in subroutine POLY. Sub- 
routine POLY is called in line 580 for fixed M and cos 8, 0 I cm 0 < 1, and returns 
values for N = 0. 1, 2,. , 120. P,” (MS 8) is calculated using 

P,” (cos ‘9) = cnMe 
ZNM-‘(ZM - I)! ! 

I 

[I R-M- 1 l/21 
c 

(2N-ZM-1)!!(2M+ZP-l)!! ms I(N-M-2P)B1 

P=o 
P!(N--M-P)! 

0. N-Modd a 
+ 

(NtMt l)!! 

21(N-M)/21!2 
, N-Yeven, 

I 

where I(N-M-1)/21 means the greatest integer less than or equal to (N-M-1)/2, and where 
@N-l)!! = 1, 3. 5, , (2N - 1) with (-l)! ! being defined equal to unity. Special formulas 
are used for cos e= 0, 1 (Ref. 10). Values for negative argament, -I I rr)s 8 < ot 
are obtained using the relation P,” (-COG B) = (-I)~+M P{ (COS 0). 

An eqmx.l number of first and second derivatives of P: (CW 6) are calculated using 
the remrsion form&s, 

& P,” (COS e) = 1m~26[@‘+N)Pi-t k’=+NmsB~(mse)], (32) 

~#(cos6)= l 
1 
2mse 

dp,” (a 8) 
t MZ 

dtoS82 l-cos2e d-0 I-cos2e 
- N(N t 1) 9d-s 8) . (33) 

I I 

When 12 ~0~ e > (1 -lo-IO), cos 0 is approximated by unity. Limiting forms for 
the associated Legendre functions and their first and second derivatives are obtained 
using the definition 

P," (03s e) = sinM e dM 
-P,(-0) 
dmsBM 

and the special formula 

See Ref. 11 for a derivation of Eq. (35). 

Eigenvalues, Expansion Constants, and Conversion Factors 

Starting values or numbers agreeing to at least two places with the correct values 
are obtained for the eigenvalues by the diagonalization of a matrix @I, as explained 
above. The size of the matrix is determined in lines 630 through 640. The matrix ele- 
meats are calculated in lines 710 through 830. 
the matrix, is called in line 840. 

Subroutine EIGEN, which diagonalizes 
The resulting diagonal elements are used as starting 

values for the variational procedure, which is programmed in lines 860 through 1400. 
Convergence is assumed when the relative contribution of the correction is less than 
lo-*? Using fhe corrected eigenvslues the d, constants are evaluated in lines 1410 
through 1650 and stored in the array DLIST. These dn eonstants are normalized to satisfy 
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the Morse and Feshbach normalization. If the normalization of Flammer is desired, a 
Flammer-Morse and Feshbach conversion factor, as programmed in lines 1680 through 
1840. is used. 

Angle Functions 

The angle function of the first kind S(l) and its first and second derivatives are 
obtained by combining the d, constants and the associated Legendre functions. Here 
Eqs. (13), (15), and (17) for the prolate case or Eqs. (14), (16), and (18) for the ablate 
case, as programmed in lines 1860 through 2470, are used. The series are terminated 
when the relative contribution of the last term is less than lo+. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
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L 

: 

i 

: 
1 

: 

: 

i 

i 
1 

: 

: 

: 
L 

: 

; 

: 
2 

: 

: 

: 

i 

: 



LISTING IN FORTRAN Iv, 
APROGRAMTOCALCULATE PROLATEANDOBLATE 

SPHEROIDAL ANGLE WAVE FUNCTIONS 

100 
$80 
LEO 
130 
140 
150 
160 
170 
reo 
190 
200 
220 
220 

250 
EC.0 
270 
PBO 

z 
310 
380 
330 

z: 
360 
370 

z: 
400 
410 
42-3 
430 
440 
450 
460 
4-m 
980 
490 
5100 
510 
580 
530 

14 
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‘G-s = N?GI + ~IN.4--II*rJARG 
IF ,‘..RG.LT.O.D, ARG - -A!?G 
IF ~e+?G.GT.PO.D, ARG . *BO.DO-ARG 
IF IKTP.EO.1, ARG i DCO5,.0174538925199438957692369OX~\FlG, 

t t6.u POL”(,NI\.M,lro.nnc.P.Po.PDDI 
DO 2 INH . I .NH 
w I PI, l ~,NH-,,+m 

LCK . 0 
IW . w 

Y . MIXOF(S0.50+(,“-5,/e, 
IF <N.GT.80, N  . 80 
w.0 . H+H 
IF , IOOLP.EO.O, H5-a = -ws(1 

DO r IL i ,.NL 
L = LI + cIL-l>*,DL 
‘F (LCK.E(I.,, GO TO 4 

LCK = 1 
DO J - 31 1.N 
DO 3, I i , .N 

3, a,,.>, = 0. 
DO I 9 32 ,.N 
I - I--I.+EM 

32 A11,1, - Y*~Y+~.I+C1S~~e.*~*,~+*.,-E+EM*EM--I.,,~~8.*U-*.,*~2.*Y+3. 
1,) 

NW = N-2 
DO 33 I . I .NMB 
1 . *-L.+EM 
‘,lrl+*, . ~HS~,~E.*W+3.,,*OSOFIT~~~W+~.+E”,+~U+l.+EM,*LY+Z.-E*,*,W 

l+l.-~:*,,1(12.t”+5.,~,~.*~+,.,,, 
33 AcI+P.Il . eic,.,+2, 

CALL E lGm IA.EIG.N.NBL, 
4 CL . EIG,L+,-M, 

rw = <L-f‘,/2 
rx . L-M - 2.1Y.s 
ISC 5 2 + tx 

LlMl . 278 
J-1 
DO 13 I.ISC*LI*I.Z 
EYE .I 
se. . Z.D*Et‘+B.D*E”E  
BLIST,JI . ~E”E*IEYE-I.D1*~E‘--EMI*LE‘--EIE-I.D,*HS~*nSQ1,~,En-I.D, 

I*~E‘-l.D,t,E~-~.O,*,~‘~,.~,, 
13 .Js.l+, 

.I=, 
IDE, . ISC-, 
LlM,,.LIH*+, 
cm 14 f.fD~,.L,M,,,2 
E”E.I-*.D 
EA  . E M  + EYE 
GLISTCJI . EI*(E*+I.D,+O.5D*HS~*~,,.~,-~~.~*~~*~~-~.~,,,~.~.~~~~-,. 

ID,‘te.D*El+3.D,,, 
14 J=J+, 

IFC.0 
IBL,” i ,39 - IX 
ItL,M=,BL,M+* 
*mo=1\16+* 
111 i I”*+? 

17 EM?~I,=CL--CL,*T,*, 
DO ,B 1.,.,Y.s 

540 
150 
560 
570 
580 
590 
600 
610 
620 
630 
b40 
650 
660 
b-m 
680 
690 
700 
710 
720 
730 
740 
790 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
8-m 
880 
es0 
900 
910 
920 
930 
990 
950 
900 
970 
980 
990 

1000 
1010 
1020 
,030 
,090 
IO50 
LO60 
,070 
lOB0 
1090 
1100 
tllo 
I120 
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*e Eh*III*‘I---BLIS~~I,/ENR,II--G‘,ST,I+,,+CL 
ENI‘IBLIM,=-BCIST(IBLI*I/(GLIST(*GLI*I,--C‘, 
wIS=IsL1M-, 
lP=lWl +1115 

00 19 I’lYl . ,YlS 
IPI-IP-I 

19 EIQIIPI,.-~LIST~*PII/~GLIST~IPl+,,-CL+ENR,,P,+,,, 
ENRC.-~LI55LIRIOI,LO‘IS~I*0*0+*~-~t~I19,~+*,1 
DE  . ENRC*EIQC/BL1sT,1n*o, 
CORB . DE  
00 so 1 . lY‘.lFILIM 
DE . ENnrt;rElvnrl,/~l~~,~,*~~ 
cow . CoIlB + OE 
IF IDI*SIDE,CDRB).~T.,.0--27, GO TD 23 

20 COClTINvE 
23 CODA . I.0 

M  . I.0 
DO 26 I . 1.IW.b 
DE . BL*ST,,RIO-,,,,EN~,I~IO-I,*ENR,,~)IO--I,,*DE 
CrxIll = CO!? + DE 
IF IO*BS,OE,=COR‘,.CT.I.o-e~r GO TO 27 

28 tm‘T*NuE 
27 DL . (E~=-ENFI(IRIOII,(CORl(+CORBI 

tL.*L+tL 
SF (O*8*10C,tC1.LT.~.OD-24, GO TO 29 
IFc=IFc+I 
‘F <,Ft.CT.Eo, GO TO *‘I 

22 EIG<CIL44, = cc 
DO t1.5 I . ,.I%,” 
am . II A  ._“.l 

. 2.D+EM + 2.0*ARR ,re %oc,, . ,~‘-t.~,I~E*+t.D,*~~L,,/I,EFI-~~~,*IE~-‘~-I.D~+~~~ 
DN<,> . DMIO<II 
DO ,*9 J = n.i&t‘ 

‘19 O*(<JI = DNLm<.J1*DN~,-f, 
lY2, - etlBLI* 

YZB = c.0 
IYY . 0 

It30 
,140 
1,510 
I %60 
117rJ 
*a*0 
l lP0 
1i?no 
1210 
,220 
I 230 
le.0 
*Es* 
,260 
**-I* 
L ~~80 
Iem 
,330 
1310 
1320 
I330 
4340 
3330 
12460 
I350 
1380 
1390 
MOO 
,410 
,420 
*43(! 
19.0 
f 450 
a460 
,470 
1480 
,490 
‘500 
1510 
t 5.20 
,530 
t 5.0 
ISis0 
i-0 
1570 
1580 
1sm 
,*m 
m m  
I6EO 
IdJo 
1e.w 
lb50 
,660 
1s70 
*em 
IbPO 
l-m0 
1710 
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,NX - 1 
,F (#.RG.GE.O.DI GO TO 40 
INX I -, 
mc, = -m?t 
GO TO 4, 

90 IF , IRG.LE.PO.DI GO TO 41 
INX I -* 
ARG = I*O.DO-m?G 

.I IF ,KTP.EO.II  ram? = 0t05,.01745329e51994~~~~,~~~~~~~*~~~, 
IF (D~85(,.DO-~RG,.LT.,.~-,~, AFIG = ,.D 

“lb4 = L--*+,0 
J=E+,X+M 
us* 
5 - O.D 

,720 
,730 
,740 
I750 
1760 
,770 
1780 
,790 
la00 
,a,0 
1820 
,830 
,840 
,850 
,860 
,870 
IS80 
,890 
1900 
,910 
,920 
,930 
,940 
,950 
1960 
,970 
,980 
1990 

2000 
2010 
EC320 
2030 
2040 
20% 
2060 
2070 
2080 
2090 
2100 
El lO 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
8200 
2210 
2220 
2830 
2240 
2250 
8260 
2270 
2280 
8290 
2300 
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IF 3.9 ,“.EO.O, 
3 PI,, . ,.D 

nn i 2 
GO TO I 

9”A.M 
I 00 7 N = M8.l.N 

P,Nt,,l F~CI,N+*,,IFelCT~,N+H,,Z,*F~CTIIN-MI/*+L,~Z.D**~N-*~~ 
,Fl~*,~n+N,,2,.NE.~“+N,I P#N+l,=O.D 

7 IF ,E+(,N-“,,4,.NE.(N-M)/e) P<N+I,.--PIN+I, 
GO TO 1. 

10 P<bw> II W*tM*FICTletM+I,,,F~~~~~“,*~.~**~, 
II DO 13 N-“H*LN 

5 = O.D 
IN m  ,N-M-1,12 
DO 12 t P  1,.1N 

12 s - S*FICT,B*n+e*,+,,+Fs~,,~*~-~*,+,,*”~~-~-~*,+,,,~*.~** 
,~“+N,*F~CTILI-I+,,.~~~~,~“+,,~~~~~~I+l,*F~tTIN--M-l+ll, 

P,N+l,= SNt*nlF~CT,nM,,,F~CT~~*~+,,*~.~**~~-~~~-,,,*~ 
13 IF ,.?*~~wuN),r,.EO.“+N, PIN+*l’P,N+ll+*N**M+~~~,,~~,~~~~~,,~+~~,, 

*,FICT,,N+“,,2*,,+f~~,I~N-H,,*+,,,,*’E,~F~CT~B*M+I~*P.D**,~*N-M,, 
GO TO 14 

B  IF tANGLE.NE.O.D, A% i -1.0 
,4 DO I5 I = ,I*LN 
15 P,~rNA,LDN-r, = PCLNN-II 

PIIINI\,,, - 0.0 
IF ,ARG.EO.,.O, 40.41 

40 IF (H-1, EO.21.22 
20 PBIINA.2, = 0.0 

P2,lN/\.3, * I.0 
P311NA.2, - P3#,NA*Jt = O.D 
00 30 I = MZ,LN 
Pzcwu..i+23 = c~+I.D)**~.D 

JO P3,1NL.*+2, - FdCTlI+3,/(s.D*FICTII-,,, 
2, REIIRN 
22 II= CM.EO.21 23.24 
23 DO 3, I = M.LN 

P2llNA,*+2, - -F~CT,lc3,,14.00+FIC,,*-,,, 
P,tINI.,+2, - P2,*NA;1+2, 

31 Il=~I.GT.EI P3<*NA.1+2, i PLcINA.*+E, - F1CT~l+4,,~1Z.DtF~tT(I-Z)) 
RETW 

24 DO 32 I - “.LN 
32 P2<*NA.I+2, = 0.0 

IF (H.EO.31 I?CTw?N 
IF ‘M.E0.41 25.26 

25 DO 33 I I M,LN 
33 P3,1NI,*+ZI = F~CT(I+5,,(4B.D*FICTrl-3)) 

RET”Rt4 
26 DO 34 1 = **LN 
24 Fade.“” = O.D 

41 ZP - I.o,II.DO--Im~+ARG, 
DO I.5 JX - M2.LDN 
PP,,NI..IY, - ZP*,(M+JX-E,*PIIIN~.~~-,,-~~~-~,~~~=~~,,IN*.JXII 

I6 P311NI,JX, . ZP*IE.Dtl \RGIP2(1N~,JXlt lZPXMXM-o’,~~-,,, 
,.PI,INb.JX,, 

RETWN 

2870 
2880 
2890 
2900 
2910 
2920 
2930 
2940 
2950 
2960 
29-m 
2980 
2990 
3000 
3OLO 
WE0 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
31.M 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
325.0 
3260 
3270 
3280 
32% 
3300 
33LO 
3320 
3330 
3340 
3350 
3360 
.33-/o 
3380 
33% 
3400 
3410 
3480 
3430 EN) 
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GO TO re 

3*e* 
3470 
3480 
3490 
3500 
3510 
3520 3x5(1 35ao 35zm 
:z 
zz 3600 1610 36.20 3630 
z: 3640 3670 
iz: 37000 
3710 
3720 
3730 
37.0 
3750 
3760 
3710 
3180 
37PO 
3800 
3aro 
3820 
3830 
3240 
3850 
3860 
2.870 
3880 

22 
3910 
3920 
3P3.3 


