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ABSTRACT

The energy flux in gravity-capillary wave spectra has been
obtained using Hasselman (1962) perturbation analysis for a
homogeneous Gaussian sea. Viscous dissipation has not been
included in order to simplify the analysis. As expected the
exchange of energy is a second-order effect; energy is trans-
ferred from two active wave components to a third passive
component. The energy transfer satisfies the requirements of
conservation of energy and conservation of momentum.
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NONLINEAR ENERGY TRANSFER IN GRAVITY-CAPILLARY
WAVE SPECTRA

INTRODUCTION

The nonlinear interactions of surface gravity waves are weak (of third order), and their
dynamics have been investigated by Phillips (1960), Longuet-Higgins (1962), and Benney
(1962) among others. The energy transfer in gravity wave spectra is of fourth order and has
been obtained by Hasselmann (1962, 1963a, and 1963b) for a homogeneous and stationary
Gaussian sea by means of a fifth-order perturbation analysis. The energy transfer principally
redistributes the energy from intermediate-wavenumber gravity waves toward low- and high-
wavenumber gravity waves.

For gravity-capillary waves the w = w(k) dispersion relation connecting the radian fre-
quency X and the wavenumber k becomes concave when surface tension becomes important,
at which time the resonant interactions among gravity-capillary waves can occur at second
order. Energy is exchanged among a triad of waves; the dynamics of these interactions have
been investigated in detail by McGoldrick (1965, 1970) and Simmons (1969) by the varia-
tional method.

Wave-tank measurements of slope spectra by Cox (1958) and Wright and Keller (1971),
and open seas height-spectrum measurements by Valenzuela et al. (1971) for light winds,
have shown a dip in the spectrum for waves in the neighborhood of 1.7 cm, which have the
minimum phase velocity. To investigate whether this dip in the spectrum is a result of the
dynamics of nonlinear wave-wave interactions, we have applied Hasselmann's (1962) inviscid
formulation to obtain the energy transfer in gravity-capillary wave spectra by introducing
surface-tension effects. To simplify the mathematics we have not included viscosity, which
should be important for participating waves in the capillary region. Fortunately McGoldrick
(1965) has shown that viscous dissipation may not be significant for a moderate range of
wavenumbers.

The formulation preserves the assumption that the linear approximation for the random
process (undisturbed free surface) is homogeneous, stationary, and Gaussian. These condi-
tions may be a great deal more difficult to justify for gravity-capillary waves than for gravity
waves; for gravity-capillary waves the interactions are stronger, which would tend to destroy
these properties faster if they ever existed. However, if we restrict the energy transfer ex-
pression obtained with these assumptions to apply for gravity-capillary waves of small
slopes, the results may shed light into the energy flux of gravity-capillary waves in the initial
stage of development of the spectrum.

The analysis here is basically quite similar to Hasselmann's (1962) and uses a number of
results given in detail in his original paper; in particular the present report uses the asymptotic
formulas for the solutions of harmonic differential equations which are encountered in the
development.
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My understanding of the dynamics of nonlinear wave-wave interactions has been greatly
helped by conversations with Dr. K. Hasselmann, to whom I am very grateful.

PERTURBATION ANALYSIS

The analysis that follows is similar to the original formalism given by Hasselmann
(1962). For convenience we will adopt the same notation and we will tend to emphasize
the points in the analysis which are different. The analysis applies for irrotational motion
for a horizontally unbounded fluid of infinite depth with a free surface at z = (x, y; t)
where x, y, and z denote Cartesian coordinates, with the z axis directed vertically upward.

The velocity potential ¢(x, y, z; t) and surface deviation t are determined by the fol-
lowing nonlinear system of equations, and initially we include surface tension.

* The continuity equation:

V2q5= 0,forz <. (1)

* The equation for the kinematical boundary condition at the free surface:

a _ aa + V V =, (2)
at a

where

a ay

* The equation for the dynamical boundary condition at the free surface:

atg + 2(V)2- (, V(3V )tV¢at 2 NN3 i

where T' is the surface tension, p is the water density, g is the acceleration of gravity,

(a a-,)andN= [1 (a )2 + (a)2]1/2
The appropriate initial conditions for 0 and at t = 0 were given by Hasselmann (1962).

As customary, and are expanded in perturbation series,

=10 + 2+ 30 + . (4)
and

t=1 + 9S + + X(5)
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where the index numbers indicate the order of the perturbation terms. Also, the boundary
conditions are expanded in a Taylor series about z = 0; and ¢ can be eliminated from one of
the equations by operating on Eq. (2) with -(g - V 2) and by taking a/at from Eq. (3) and
adding the resulting equations. We find n• satisfies

a2 + zJ)n { V [V ~v2...P1 a"2\ [~~ a 1v 2v ¢ > ¢1
t2 = - at (p - 1)! azP-lat Po

+ VI12.. P 2 ap-2 (V 0. 
2(p - 2)! azP-2 YViP- * VP

+(g-TV 2 ) 1 apvpk

V ~~V ap-2 - V 2 P-2 (V __ ) (vvp)l}
(p -2)! 'p-__ a- 2 VPj

L at 1 =

where T T'/p and co = gk + Tk 3 , and we find n satisfies

(g + Tk2)j + Pitn = [ V2... VP-l ap

+ VI>2 ... VP- 2 ap- 2 (V V 02 (p - 2 )! aD5-2 (vP-1 V

-T E . VP) at z = 0. (7)
1 p

The first summations in Eqs. (6) and (7) are taken over all combinations of index groups
= (v1, V2, ... , p) with 2 < p < n and P= 1 vj = n; the second sums in these equations are

terms of third order and higher, and since these terms will not contribute to the energy trans-
fer in gravity-capillary waves, they have been noted only in symbolic form.

Since the n must satisfy the linear Laplace equation V2,, = 0 for homogeneous initial
random wave fields, n> and n are expected also to be random and homogeneous and thus
expandable in approximating Fourier sums:

n=E nk (t)ekzeik x (8)
k

3
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and n = nZk(t)eik x,
k

where the nk and Zk are statistically independent random variables for different wave-
numbers. Furthermore, since no and J are real,

nk (nO-k)*
and

nZk =(nZ-k)*,

where the asterisk means the complex conjugate value.

For n = 1 we have the familiar differential equations

and

(a2 + o 2 0=0

(g+ Tk2)1 + a1 = 0_
at

Substituting Eqs. (8) and (9) into Eqs. (12) and (13), we find that the solution of these
equations for each k are given by

1fk = 1I1ke iCkt + keiWkt
and

(14)

(15)Zk = Z'e-iCkt + 1Zkei(kt,

where lZ+ and 1+ are related according to

kg+ Tk2 k

At second order (n = 2) we find that 2k and 2 Zk must satisfy the differential equa-
tions

(10)

(11)

(12)

(13)

a2+ )2k-2
(a t2 xk2) 2k = E

kl+k 2=k
S1 ,S2

(g+ Tk2)2Zk = a 20k + 2
kl+k 2=k
S1,S2

DsXS2 si 1jIS2 e(s1wk1+S2wk2)t (16)

Es1XSk2 1 FSI( 4DI2 e i(S&kl+S2Wk2)t, (17)

(9)

and
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where

Dklk2 {(W1 + 2 )(k 1 k2 2) + 1W2(C01 + 0 2) ( g k2 f (~~~~~~~g +Tk 1 +

-(g + Tk2 ) 2(k +k *k2) + 2(k +kik 2 )1
(g ) L (g + Tkl2) (g + Tk2) jj

and

inwhich12 = S and k k 1 +J2 1 2 1 2)
ES1, 2 =1 [k 2 (g + Tk 2 )(g + Tk-2)

in which co =I Cj k 1 C2 = 2CUk 2 and =Ik 1 + k 

(18)

(19)

Gravity-capillary waves, unlike gravity waves, can have resonant interactions at second
order, so that k1 + k2 = k and W1 + (02 = o are satisfied simultaneously, which is treated in
detail by McGoldrick (1965) and Simmons (1969). Consequently the solution of Eq. (16) in
Hasselmann's (1962) notation is

2>k 21 D~kl'(s122 1 1V2 1(okj+k2, SICk1 S2Wk2; t),
kl+k 2 =k
S1,S2

(20)

where £f (co, o'; t) is the solution of the differential equation

d21 + W24 = eiw't

for = d4/dt = 0 at t = 0.

Similarly at third order, we find that the potential must satisfy the differential equation

(a 2 + CJ2 )
at2 k, 3 Ok

- D5,2s3 I23 s1 JS2 4DS3ly. kl,k2,k3 kl >k2 lk 3 j(Ck2+k3, S2Wk2 S3C0k3; t)eisl~klt
k l+k 2 +k 3 =k
S 1,S2,S3

+ noncontributing terms,

5
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where

| 01 (072 + C3)2 22
CA _____________________ + W 1 0 k2+k3

Dslss233 =)i (1 +0C2+0 +3 12 k2] g + Tk2+) k3 k +k _12k 1,k 2,k 3g+ Tk2)(g +Tlk 2+k3I2 (gT~(~ 2+k3I

+ D3) 2 (o~-(o2 + 3) 1 (T)) ok 2 + k312
k2 + k3 ) (g+ Tk2)(g+ Tk 2 + k312)J - +kk2) J T)

+ (CO2 + 3)kl wik1 .(k2 +k3) + (W2 + Oakl(k2 +k)lD 2,sS
(g +Tlk2 + k 12) (g +Tk2) ( + TJk2 +k3 12 ) k 2k 

(22)

in whichk2 = k1 +k 2 +k312

Since resonances occur for k1 + k2 + k3 = k and + 2 + 03 = w, the solution of
Eq. (21) expressed again in Hasselmann's notation is

k 1 +k 2 +kk3 =k
S1,S2,83

Dskl k2k3 1 1 2 1(k3

+ noncontributing terms, (23)

where 92 (o, o', 0", "'; t) is the solution of the differential equation

d2 4 + o02 4 = eico t J1 (", "' ; )
dt2

for initial values 4 = dV,/dt = 0 for t = 0.

It is worthwhile to note at this point that the coefficient given by Eq. (22) can be ex-
pressed in the form

(24)DS,S 2 ,S3 = 2DW1,W2+ 0O3 DS2,S3

,k2,k 3 k 1,k2 +k3 k2 ,k3'

THE ENERGY TRANSFER

For gravity-capillary waves McGoldrick (1965) has shown that the average energy per
unit projected area in a wave system is given by

6
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E = p (70)2 d + p + T'[( + V-)l -1,(25)

where the bars denote ensemble means. For homogeneous random wave systems and using
Leibnitz' theorem, Eq. (25) can be transformed into

2 P + 2pg2 + T [( + (26)

Substituting for 0 and t the perturbation expansions given by Eqs. (4) and (5) re-
spectively, expanding Eq. (26) in a Taylor series about z = 0, and collecting terms of the same
order to obtain

E = 2E + 3E + 4E + 5E + .................. , (27)

we get 3E = 5E= ... = because of the Gaussian assumption and

2E~ = a1 Pg ~ 2+ '-= az / 2 1 + 2 (V J-7v) (28)

and

4E=2 (2 z)+2 ( az )+2 ( az)

P ~-2 - '+ - 92 +Pg1J 3~T+ 2 (v2 -V2 0) + T' (V1tV 3 ). (29)

Substituting in Eq. (29) the Fourier approximating expansions for no4 and J, we find
that

2E 2p k I l2=2p (g + Tk2),4Z+12

k k

and

4 E =2E { k[I 20k12 + 2 1 e(10 , k 3 ,k)]

+ (g + Tk2 )[I2 Zk 2 + 2Re(lZ k 3Zk)]}J (31)

As in the case for gravity waves, which was treated by Hasselmann (1962), the non-
stationary contributions to the energy components from the terms involving the potentials
are identical to the nonstationary contributions coming from terms involving the displace-
ment amplitudes; thus in obtaining the energy transfer we only need to form the covariance
products for the potentials.

7
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From Eq. (20) and by means of symmetry considerations in forming the contributions
by two-conjugate pairs, we find that

120kI2 = 22
kl+k 2=k
81,S2

Dk 1 2 |1' 2 1 2l,k2 1IV 2 f

X •1(0k, SlCkl -S2Wk 2; t) gl(k, SlOkl + 
82Wk2; t)

+ stationary terms. (32)

Separating the nonsteady components according to their direction of propagation and
using Hasselmann's (1962) asymptotic identity, given by his Eq. (3.5), we find that

2 =t 21,
kl+k 2=k
91,S2

|2 I2 | Dkl,2 2 2 5(COk +SlCOkl +S2Wk2)

The other covariance product contributing to 4 E can be obtained from Eq. (23), and
again invoking symmetry considerations we find that

2Re(_k 3k) = 8Re DF DsOklSCOk+Slkl Ds's12Re~l4~k~t~ik)S~e-kl,k+kl k,k 1
k 
Ss

|1 I| 1 2 12

X eisCkt g2(Wk,Sl k1, Wk +kl ,Sk S10 k1; )
+ noncontributing terms. (34)

Using Hasselmann's (1962) asymptotic identity given by his Eq. (3.14) and separating
components according to their direction of propagation, we find

2Re(IO7-k 3k) t Y
ki
S1

114+|2 2)sl 2

ED-sl+ D+,sl 21T6(ok+k 1 k S10kI)
I -klk+kl k,kl Ok(Wk +Sl kl)

+ D-sl,- D+,sl 27rb(Ok+kl + k +SlCkl) 1-klk+kl k,kl Ok(Ok +SIkl) J (35)

8
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A The energy of the sea can be expressed in terms of the two-dimensional energy spectrum,
F(k):

0o

A~~~~~~~f 

E= ffF(k)d2k + E, (36)
-00

where AE contains stationary and noncontributing terms to the energy transfer.

Without going into all the detail given by Hasselmann (1962), we expand F(k) into a
perturbation series and we separate components according to their direction of propagation.
Then keeping only terms F(k) propagating in the positive direction, we find that (for the
linear approximation)

00

2F(k)d2k =2p + 2 (37)
-of k-00 k

and from the second approximation 4 E we find

00

J 4 F(k) d2k = 2p k[124kl2 +2Re(lrk 3¢k)]. (38)
-00 k

Substituting Eqs. (33) and (35) into Eq. (38) and using Eq. (37) as the definition for
the linear energy spectrum, we find that

-k= fff E 7r (g+Tk' 2)(g+Tk" 2)j Ds'',s" 2
-Fk t - 4',, 2p (g + Tk2 )w2,w2, k k

-0 IS itS 

X 6(Wk + SWk' + S"Ok " 2F(s'k')2 F(s"k")dk'dk'

- fJf i (g + Tk' 2 ) Ds s
-00 s P k (Ctk +S'Ok')Ok -k ,k+k k'k

X 6 (Wk + SWk' -S Wk+k') 2F(k) 2F(S k)dkXdky, (39)

where F(k) includes only contributions from waves propagating in the positive k direction.

For gravity-capillary waves resonant interactions are possible for the case in which
k =k, + k2 and o = 01 + 2 are both satisfied. Then the energy transfer in gravity-capillary
spectra can be expressed in the form (at this point we will drop the indices in the spectra,
keeping in mind that this is a second-order energy transfer).

9
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00

aF(k) = JJF(k) F(k )

-oof

-F(k) F(k') T2(k, k') dk'dk,,

where

7r (g+Tkl)(g+Tk2)
Tl(kl,k 2 ) 2p (g+Tk2) oj2 02

k 1 k 2

[IDklk 2 J2 6()

|1 Dki2-k 2 (C]k -k]2 + ~kI C~k2)]

[ k-k k -k 1,k -k -k -k )
( Ck k ( Dk 

+ Dk: 1 Dkkl,-k 6(ok + k 1 - k+kl)]
COk (Jk + Ok 1 )

(42)

Next we find that the conservation of energy condition, namely,

f a atF(k3) d2 k3 = 0,

is satisfied for the case in which k1 + k2 = k3 and 0 + 2 = W3 (where now C01 02, and
03 are taken to be positive) when

k3 D-
0l)3 -k 1,-k 2

= k2 D+,-
2 k 3,-k 1

(43)+ k D+,-k;

and we find that the conservation of momentum conditions, namely,

00

H aF(k3,)
3 d2k3 = 0,

0J3

requires that

k3 k3 D = k2 k2 + + k k (+44
03 03 -kl,-k2 02 02 k3 ,-kl 01 1 k3,-k2 '

(40)

and

T2 (k,kl1) = ,ir Cg + h2kj

(41)

10
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Equations (43) and (44) are three homogeneous equations with three unknowns, so
that only the ratios of the coefficients are known; these ratios are given by

k3 D-,- = k2 D,' - k1 457J2 -kl,-k 2 2 k3 ,-k 1 0Z2 k3 ,-k 2 ' (45)c3 2 1 3- 

which can be checked directly using Eq. (18). Expressions similar to Eqs. (43) and (44) can
be derived for difference interactions k2 - k, = k3 and 2 -C1 = w3; these expressions
are related to Eqs. (43) and (44) by an exchange of the indices only.

The final form for the energy transfer expression is given by

aF(k 3 ) -irk 3 IFD.3k24 2 o3[w3F(k)F(k2) - 2 F(k)F(k3)at 2pco fJ k~k

- W1 F(k 2 )F(k3 ) &(Wk 3 - Wk 2 - Wk 1) dkxldky 1

Irk 3 ID +kj'- 212 3 [w3F(k)F(k 2 ) 2 F(kI)F(k 3)

+ o1 F(k2)F(k3)] 6 (C0k3 -k2 + kl) dkxldkyl, (46)

where the first two-dimensional integral is the contribution from the sum interactions to the
energy transfer in which k + k2 = k3 and 1 + 2 = 3 and the second two-dimensional
integral is the contribution from the difference interactions in which k 2 -k = k3 and
02 - 1 = 03.

INTERPRETATION AND DISCUSSION

The main result of this investigation is Eq. (46), which yields the energy transfer
in gravity-capillary wave spectra; and as expected from earlier investigations energy is trans-
ferred from two active components to a third passive wave component. Two types of inter-
actions participate: sum resonant interactions in which k + k2 = k3 and 1 + 2 = 3
are simultaneously satisfied and difference resonant interactions in which k 2 -k = k3 and
W2 - 01 0 W3 are simultaneously satisfied. Our result is an inviscid result; thus viscous dis-
sipation, which should damp the components in the capillary region, must be considered in a
more exact formulation.

As obtained by Hasselmann (1962) for gravity waves, the energy transfer also vanishes
for gravity-capillary waves when the linear approximation for the spectrum is white and
isotropic.

Our result for the energy transfer in gravity-capillary wave spectra should shed light on
the initial growth of a wave spectrum. McGoldrick (1965) has pointed out that immediately
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after the initial development of waves by a turbulent wind starting with the prominent
ripples at a 1.7-cm wavelength as described in Phillips' (1957) wind-wave resonance theory,
the nonlinear wave-wave interaction mechanism in transferring this wind-induced energy to
other waves might contribute more energy to those waves than the wind contributes. A dip
in the spectrum in the neighborhood of 1.7-cm waves found by Cox (1958) and Wright and
Keller (1971) may be evidence supporting McGoldrick's statement. For example, in Wright
and Keller's spectra the dip is present for wind speeds smaller than about 6 to 7 m/sec, and
above this wind speed the dip disappears abruptly. Thus, if the nonlinear wave-wave inter-
action is the explanation for this dip in the spectrum for wind speeds below 6 to 7 m/sec,
the energy removed from the 1.7-cm waves is greater than the energy gained from the wind,
and when the winds are above 6 to 7 m/sec, there should be somehow an energy balance
between the energy flux from these two processes.

A more detailed study of this point will be made in a forthcoming publication in which
numerical evaluation of the energy transfer expression for gravity-capillary wave spectra will
be given.
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