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A FUZZY CLUSTERING AND SUPERCLUSTERING SCHEME
FOR EXTRACTING STRUCTURE FROM DATA

1. INTRODUCTION

The problem considered in this report is to find structure in emitter reports from experimentally
obtained inorganic sensor data. The measurement system reports data about emissions from radar
units aboard both ships and aircraft. Fuzzy clustering is the approach that is considered.

Clustering is an operation that allows data to be grouped into classes defined by a similarity
measure. By definition [1], given K objects the algorithm forms N clusters such that, with respect to
the similarity measure, members of each cluster have a greater similarity to each other than to
members of any other cluster.

This report describes a fuzzy clustering algorithm. This algorithm determines a quantity for each
point and each cluster, the quantity known as the grade of membership. The grade of membership
provides a measure of confidence as to how well the data are clustered. The algorithm also provides a
fuzzy cluster center that represents a reduced noise value of the measured quantities. An extension of
the fuzzy clustering algorithm, known as superclustering, allows the number of emitters present in the
data to be determined without a priori information.

The algorithm must function in an unsupervised fashion. In other words, it requires no
intervention on the part of the operator. The algorithm combines an initial operation of fuzzy
clustering (FC), which creates a prespecified number of fuzzy clusters. The algorithm then uses an
operation called superclustering (SC) to recombine the existing clusters, using fuzzy measures, into
superclusters. The number of superclusters is optimally the number of targets. The superclusters
provide data-point assignments appropriate to the targets. Superclustering has the advantage that the
number of targets need not be known a priori, eliminating the need for operator intervention or
interpretation. The full two-component algorithm is referred to as the fuzzy clustering and
superclustering algorithm, or FCSC. Results are presented for both simulated and measured data.

The data consist of vectors, the elements of which represent measurements of various quantities:
an indication of the radar type aboard the ship or aircraft being tracked (ID), pulsewidth (PW), radio-
frequency (REI), pulse repetition interval (PRI), type of PRI (PRI-type), and time of intercept of the
measured information. The data may include: the emitter's latitude, longitude, ellipse semi-major
axis, and ellipse semi-minor axis. These data provide the input for FCSC.

Figure 1 is a histogram of real ship data with fixed ID, PW, and PRI-type as observed by an
inorganic sensor system. There were 202 observations over 25 hours. Most of the observations, 90%,
occurred over a 13.3-h time window. The minimum separation between non-simultaneously reported

Manuscript approved November 8, 1996.

1



James F. Smith III

5-

co)a

0
6 2-z

of IIII 1LI XH

0 500 1000 1500
Detection Time in Minutes

Fig. I - Number of ships of fixed ID, PW, and PRI-type detected by the inorganic sensor system in a 25-h time window

observations is 1 min; the maximum is 76 min, and the average is 4 min. The maximum number of
observations in any minute within this window is 6. The sparsity of data found in this figure and the
next is characteristic of the inorganic sensor system.

Figure 2 is a histogram of observations made by the same inorganic sensor system for an aircraft.
There were 26 observations with the same ID, PW and PRI-type over a little more than 12 h. Most of
the observations, about 90%, occurred over 7 h. The minimum separation between non-
simultaneously reported observations is 1 min; the maximum, 111 min; and the average, 19.48 min.
The maximum number of observations in any minute, within this window is 2. The highest
concentration of- the data are in a 4-h subwindow that contains more than 70% of the observations.
Once again, data are found to be extremely sparse.

The relatively low observational density per unit time found in Figs. 1 and 2 seems to imply that
data should be accumulated for seconds or minutes, at least, before beginning the analysis. The
algorithm developed in this paper is discussed in terms of its batch-mode characteristics.
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Fig. 2- Number of aircraft of fixed ID, PW, and PRI-type detected per minute
by the inorganic sensor system over about 12 h

The fuzzy clustering algorithm used here is a least-square cost function-based algorithm (Section
2.3). The cost function is minimized, resulting in the determination of the grade of membership of
each data point in each fuzzy cluster and also the fuzzy cluster center. The minimization is carried
out subject to the constraints that the cluster sum over grades of membership equal unity, and the
related data point sum is bounded.

Clustering algorithms, including the fuzzy clustering algorithm, generally require a specification
of the final number of clusters. If the data being clustered represent ships, aircraft, missiles, etc., this
implies a priori knowledge of the number of targets. Obviously, the number of targets will not
generally be known before processing. So it is desirable that a technique be developed to determine
from the data the appropriate number of clusters, i.e., the number of targets. Such a technique, known
as superclustering, has been developed that provides a solution to this problem.

Superclustering allows an improved data-point assignment and the number of emitters to be
determined without operator intervention. It does this by using a fuzzy distance measure, which is the
distance between fuzzy cluster centers normalized by the maximum fuzzy standard deviation for the
clusters involved. There are a variety of steps, which are discussed later.

r
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Those readers eager to see the result of applying the fuzzy clustering and superclustering
algorithms to real electronic support measures (ESM) data and less interested in theory or simulation
can proceed to Section 4. When the results of fuzzy clustering and superclustering of data are
displayed in the bearing-time plane, the clusters appear as track-like graphs. The track-like nature of
the clusters encourages comparison of the clustering results with other techniques that also produce
tracks, like an Interacting Multiple Model (IMM) Kalman filter. For this reason, Section 4 also
contains a plot of tracks produced by processing the same ESM data using an IMM Kalman filter.

Section 4 also discusses and illustrates a technique called product space formation subclustering.
Product space formation subclustering allows results from clustering in lower dimensional parameter
spaces to be used to recluster data as the parameter space dimensionality increases. This is useful for
associating sensor data from multiple sensor types on different platforms. This technique allows
apparent ambiguity between two emitters to be eliminated and can contribute to the recursive
extension of the current batch algorithm. Product space formation subclustering should contribute to
processing efficiency.

In Section 2, the concepts of hard clustering, fuzzy set theory, fuzzy clustering, defuzzification,
and superclustering are introduced. Section 3 discusses fuzzy clustering results for simulated data and
examines the performance of the fuzzy clustering and superclustering algorithms. Section 4
examines clustering results of data measured by ESM and national sensor systems. Section 5 provides
conclusions. Finally, Section 6 discusses future extensions.

2. THEORETICAL FOUNDATIONS FOR CLUSTERING, FUZZY SET THEORY,
AND RELATED TOPICS

2.1 Clustering, Hard and Otherwise

When experimental data are taken, relevant structural information should be extracted.
Frequently, the underlying process that causes a spread in the data are not fully understood, so some
unsupervised procedure for decomposing the data into significant subsets is desirable. Clustering
represents a class of methods for solving this problem.

Clustering finds applications in many fields, and the algorithms take on many forms. Currently,
powerful and popular forms of clustering use neural networks, optimization techniques, etc. This
report compares two types of clustering algorithms. The first is a simple Euclidean algorithm that has
proved to be useful [2]. The second algorithm is more sophisticated. It is an intuitive procedure based
on fuzzy set theory that is described in more detail in subsection 2.2.

Figure 3 is a flow chart of the Euclidean clustering algorithm. The Euclidean clustering algorithm
is a very simple heuristic algorithm based on the Euclidean metric. As a first step in understanding
the algorithm, input and output requirements must be established. The input consists of the data to be
clustered:

Nmin the minimum number of potential clusters;
Nmax the maximum number of potential clusters;
ro - the initial cluster radius;

4
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and

Ar - the incremental amount the radius is increased each time the algorithm uses Nmax

clusters without fully covering the data.

n=no. of cluster under consideration
f(n)=indsx of cluster center
m= no. of data vectors
p(i)=index of cluster containing i-th

data vector
nmax=max. no. clusters considered
rho=cluster radius for current iteration
x(r,:)=r-th data vector
d=norm of difference of vectors

Fig. 3- Flow chart of the Euclidean clustering algorithm

When selecting the input parameters, some trial and error may be required. If, for example,
clustering is to be conducted on radio frequency (RF) and pulse repetition interval (PRI) parameters,
the final cluster radius is generally within a factor of three of the root-mean-square-error, A(RF, PRI),
which is defined as:

{[ A(RF) 2 F A(PRI) ]2 /2

A(RF, PR L s(RF) L s(PRI) J
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where

A(RF) resolution limit of RF for detector,
A(RF) resolution limit of PRI for detector,
s(RF) RF scaling parameter,

and

s(PRI) PRI scaling parameter.

The quantities A(RF) and A(PRI) are generally provided by the manufacturer of the sensor system.

When RF and PRI are independent Gaussian random variables, the root-mean-square error is the
root-mean-square cluster radius. Thus, most of the data would be expected to fall within three
standard deviations from the mean, as is observed in the simulated and measured cases considered in
Section 3. The scaling parameters s(RF) and s(PRI) are used to place RF and PRI on the same scale.
For the simulated and experimental cases of Section 3, s(RF) and s(PRI) are the standard deviations
of the RF and PRI data values, respectively.

In practice, a value equal to one-tenth of A(RF, PRI) has been found effective for r0 and Ar.
Selecting small values of rO, and Ar relative to A(RF, PRI) will increase the algorithm's run time. It is,
however, generally a safer procedure, since the clustering algorithm is designed to select the smallest
cluster radius and the smallest number of clusters that cover the data. If r0 and Ar are selected much
larger than A(RF, PRI), then the number of clusters that the algorithm determines to be correct may
be considerably less than the number of objects being tracked. If r, and Ar are selected too small
and Nmax is initially sufficiently large, then each data vector will fall into its own cluster.

The selection of Nmin and Nma, generally also requires some trial and error. If the clustering
algorithm alone were successful in extracting tracks from data, simulated or experimental, there
would be one and only one track per cluster, in which case,

Nmin = Nmax = Ntracks,

where Ntracks is the true number of objects being tracked.

This can be understood by again considering RF and PRI to be independent Gaussian random
processes. In this case, an ideal clustering algorithm, capable of establishing cluster centers at
(mean(RF), mean(PRI)) for each track and also capable of suppressing outliers, could cover most of
the data with Ntracks clusters of radii equal to 3 A(RF,PRI).

Rarely is clustering successful in uniquely determining the number of tracks. As such, in practice,
Nmin and NmaX selected, so that

Ninin << Ntracks <« Nmax

The final output of this process is clustered data. The algorithm is robust under selection of different
values of Nmn and Nmax, with the number of clusters varying by at most one. Also, the assignment of
data points to clusters is not changed for most points. For lower dimensional cases, one to three
dimensions, results can be displayed graphically.
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Having described the input and desired output, the actual operation of the program can be
examined. As an initial step in the clustering operation, the first data vector in the input file becomes
the center of a ball, of radius equal to the initial cluster radius. This ball is the first cluster. If the next
data vector lies within this ball, it is classified as part of the same cluster. Otherwise, the algorithm
forms another closed ball, centered on the second data vector. The same radius is maintained during
this process. Each time the algorithm is about to form a new cluster it makes sure that the maximum
number of clusters has not been exceeded. If this occurs, it creates another cluster, with the previous
unclassified data vector as its center. If the maximum number of clusters has been reached, the
algorithm starts over with the minimum number of clusters, first increasing the cluster radius by Ar.
The algorithm continues in this fashion until all points have been classified.

In Fig. 4, the Euclidean clustering algorithm is applied to a simple example to illustrate the
procedure. The left-hand column lists the maximum number of clusters that are involved in that stage
of the operation. The right-hand side shows the evolution of a simulated clustering process. Clusters
are shown as large circles, and there are six objects to be clustered. For this example, there is a
minimum of three clusters and a maximum of four clusters. In the first step of the process, for the
minimum cluster radius, the algorithm attempts to cluster by using the minimum number of clusters.
The algorithm is not successful is clustering with three clusters and the given cluster radius, as can be
observed, from the three points that are not covered. Having failed to cluster with three clusters, the
algorithm increases the number of clusters to four, with the same cluster radius, and tries to cluster
again. Again, the points are not clustered completely. Four is the preset maximum number of clusters
for this example, so the algorithm again uses three clusters and increases the cluster radius by a preset
amount. With this larger cluster radius, the algorithm is successful in covering the data.

No. of Clusters

3 0

0*0
40

3 .0
Fig. 4 - An application of the clustering algorithm to the case of
six data points to be clustered, for a minimum of three clusters and
a maximum of four clusters

7



James F. Smith III

2.2 Fuzzy Set Theory

This section provides a basic introduction to the ideas of fuzzy set theory. Fuzzy set theory allows
an object to have partial membership in more than one set. It does this through the introduction of a
function known as the membership function, which maps from the complete set of objects X into a set
known as membership space. More formally, the definition of a fuzzy set [3] is

If X is a collection of objects denoted generically by x,
then a fuzzy set A in X is a set of ordered pairs:

A= {(x,,ItA(x))xe X} .

JLA(x) is called the membership function or grade of membership (also degree of compatibility or
degree of truth) of x in A, which maps X to the membership space M. (When M contains only the two
points 0 and 1, A is nonfuzzy and uAW(x) is identical to the characteristic function of a nonfuzzy set.)
The range of the membership function is a subset of the nonnegative real numbers whose supremum
is fnite. Elements with a zero degree of membership are normally not listed.

2.3 Fuzzy Clustering

The approach to clustering developed in Subsection 2.1, Euclidean Clustering, is an example of
hard clustering. Fuzzy clustering differs from hard clustering in that fuzzy clustering requires a
membership function to be defined, so that the grade of membership of each point within a fuzzy
cluster can be established. The grades of membership will be established by minimizing a functional.
This functional can be found in many places in the literature of fuzzy sets and fuzzy clustering [4,5].
It is defined below after some preliminary notation is established.

Let X be any finite set; Vcn is the set of real cxn matrices; c is an integer with 2•c •n, and n is
the number of data points. The fuzzy c-partition space for X is the set

c n

Mfc = [U E Vcn I uik E [O,l]Vi,k;ujik = lVk;0 < E uik < nVi} .
i=l k=l

Row i of a matrix U E Mfc exhibits (values of) the ith membership function (or ith fuzzy subset) Ui
in the fuzzy c-partition U of X. Stated less formally, uij is the grade of membership of data point j in

fuzzy cluster i.

Definition: Let Jm: Mfc x RCP 4 R+,

n c
Jm(Uv) = XXir(uik)m(dik)

k=1 i=l

where RCP is the collection of possible p-dimensional vectors with real elements taken c at a time

andR+ is the real interval [0, -);

UeMfc

8
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is a fuzzy c-partition of X;

V=(VI,v 2 ,...,Vc)ERcP with v, eRP

is the cluster center or prototype of u,, 1 •i < c;

(dik) 2 = =1xk-vi 112 and 11 ii

is any inner product induced norm on RP; and

Weighting exponent m E [1, cc)

Since each term of Jm is proportional to (dzk)2, Jm is a square-error clustering criteria. The solution of
the fuzzy clustering problem consists of minimizing Jm as a function of U and v subject to the
constraints imposed in the definition of Mf,. Stated more formally, solutions of

min {Jm (U V) }
Mfc X RCP

are least-square error stationary points of Jm.

The goal of the fuzzy clustering algorithm is to determine fuzzy cluster centers vi that represent

the average value of quantities in the fuzzy clusters, and the grade of membership of the kth data
point in the ith fuzzy cluster for all data points-k and clusters-i. The algorithm determines these
quantities by minimizing a least-square cost function where each term is weighted by a power of the
grade of membership. Each term of the cost function simultaneously measures the distance of the
data point from a cluster center and is weighted by the point's membership in that cluster. The
minimization is conducted subject to the constraints that the sum of the grades of membership over
clusters for a particular data point must equal unity, and the sum of grades of membership over data
points must be bound between 1 and the number of data points for each cluster.

As input, the fuzzy clustering algorithm requires the data to be clustered, the number of
anticipated clusters, and an estimate of the grades of membership or the fuzzy cluster centers. The
output consists of:

* high quality estimates of the grades of membership; these quantities provide a measure of
confidence of how well the data were clustered and a means of making an optimal data-point
cluster assignment; and

* the fuzzy cluster centers that will represent reduced noise values of the measured quantities.

2.4 Picard Algorithm

The cost function Jm is minimized over Mfc x RCP by using Lagrange multipliers and taking

derivatives. This gives rise to a coupled iterative system of equations. When the Cauchy criterion is
applied to the values of the fuzzy partition matrix, the coupled system and the Cauchy criterion are
referred to as the Picard algorithm. The Picard algorithm is guaranteed to converge to a local
minimum [4]. This particular type of fuzzy clustering is referred to as a c-means algorithm [5]. The

9
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relationship of the local minimum to- truth depends on how much intuition the operator puts into the
cost function, optimization constraints, and pre-clustering.

The system of equations resulting from the minimization represents a coupling between the fuzzy
cluster centers and the fuzzy partition matrix; an initial estimate of either quantity is all that is
required to initialize the iteration process. Thus, an initial estimate of the fuzzy cluster center by one
class of sensors could be used to cluster data measured by another sensor system.

Another procedure for initializing the iterative process is to initially estimate the fuzzy partition
matrix, i.e., the grades of membership, using some other clustering algorithm. Since the Picard
algorithm is guaranteed to converge to a local minimum, if the fuzzy clustering algorithm is
initialized using a good but not perfect clustering algorithm, it can frequently improve clustering
results because of its ability to deal with ambiguous data-point cluster assignments.

2.5 Defuzzification

Once the data have been clustered by the fuzzy clustering algorithm, the output will be a partition
matrix consisting of the grade of membership of each data point in each fuzzy cluster and the
coordinates of the fuzzy cluster centers. The grade of membership gives a measure of the confidence
in the data point cluster assignment and is especially useful for assigning points that fall on the
boundary of two or more hard clusters. The cluster center coordinates give a convenient way of
conveying the position of the fuzzy cluster. For many applications it is necessary to extract from the
clustering algorithm a nonfuzzy, i.e., crisp, statement of the assignment of each point. The process of
taking fuzzy results and extracting definite, i.e., crisp, data point-cluster assignments is known as
defuzzification.

The current approach to defuzzification consists of making a definite data point assignment to
the cluster for which the data point has the largest grade of membership. If a data point has equal
grades of membership for more than one cluster, that point, in the simplest form of defuzzification, is
assigned to the first cluster that is encountered. This is obviously arbitrary, a potentially better
approach is discussed next.

2.6 Superclustering

Clustering algorithms, including the fuzzy clustering algorithm, generally require a specification
of the final number of clusters. If the data being clustered represent ships, aircraft, missiles, etc., this
implies a priori knowledge of the number of targets. Obviously, the number of targets will not be
generally known before processing. Therefore, a technique must be developed for determining the
appropriate number of clusters, i.e., the number of targets. Such a technique, known as super-
clustering, has been developed which provides a solution to this problem. The superclustering
techniques developed here are related to and represent an extension of techniques in fuzzy cluster
validity theory [5].

If the final number of clusters is not known a priori, it is usually possible to formulate a crude set
of bounds on the number of clusters. For example, emissions have been detected that imply the
existence of at least one emitter. On the other hand, it is known a priori that there are not more than
20 emitters. Such commonsense approaches allow bounds to be determined on the number of targets,
hence clusters.

10



A Fuzzy Clustering and Superclustering

The method of superclustering is described as -follows: given a commonsense bound on the
number of clusters, this bound is supplied to the fuzzy clustering algorithm. The fuzzy clustering
algorithm produces this number of clusters for the data, with associated grades of membership for
each data point in each cluster. The fuzzy clustering algorithm also provides coordinates of fuzzy
cluster centers. Intuitively, clusters should be separated-nonoverlapping and not extremely close to
each other with respect to some measure. It then becomes essential to define a measure of
"closeness" and provide a criterion for what "too close" means.

An obvious candidate for a measure of closeness of two clusters is the separation of the cluster
centers, but the cluster centers do not tell the whole story. The data points may be distributed close to
the cluster center or they may be a significant absolute distance from it. Also, when dealing with
fuzzy clustering, before defuzzification, the points generally do not belong 100% to any cluster. In
an effort to provide a unitless measure of closeness and incorporate the concept of vagueness
inherent in fuzzy algorithms, the distance between fuzzy cluster centers should be normalized by
some function of the grades of membership. Incorporating the grades of membership, i.e.,
superclustering before defuzzification, has the advantage of potentially better cluster assignments for
points that fall on the boundary between clusters.

One such normalized measure of cluster center separation is the c-matrix defined below. Let v(i)
and v(j) be the position vectors for the fuzzy cluster centers for cluster i and cluster j, respectively,
and N the number of data points. Then the jth - ith element of the c-matrix is

c(i, j) = II v(i) - v(j) II / max[std(i), std(j)] , (1)

where

N N
std(k) = A u(i, k)m * [x(i) - mean(k)]2 / ; u(i, k)m (2)

i=l i=1

and

N N
mean(k) = Zu(i,k) m * x(i) /Eu(i,k) m . (3)

i=l i=l

Equations (2) and (3) define the fuzzy standard deviation and the fuzzy mean, respectively.

The c-matrix capitalizes on the intuitive idea that cluster centers should be separated by a certain
number of fuzzy standard deviations. If cluster centers are closer than this, they probably correspond
to the same cluster. If it is determined that two or more clusters should be merged into a single
cluster, the resulting grouping will be referred to as a supercluster. A criterion must be established to
determine when supercluster formation is warranted. A simple criterion consists of defining a
threshold r, such that if c(ij) < r then clusters i and j are merged into a supercluster. A method of
selecting the value of T is discussed below.

A simple criterion for selecting the value of T would be to first consider the elements of each
cluster as points randomly distributed around some mean value. If the data has a Gaussian
distribution then 98% of the points will be within three standard deviations of the mean. So as a first
attempt, a value of T = 3 is selected.

11
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The next step involved in superclustering after c-matrix formation and establishing the threshold
is determining exactly how to form superclusters, i.e., when there is more than one choice based on
what has been developed up to now, what is the best supercluster formation scheme. Accordingly,
four different procedures for supercluster formation are discussed below. They are referred to as
Fuzzy Cluster Merger Criteria 1, 2, 3, and 4 (FCMC1, FCMC2, FCMC3, FCMC4).

The first superclustering scheme, FCMC1, can be described as follows. After fuzzy clustering, the
c-matrix is formed. All fuzzy cluster centers within the threshold of fuzzy cluster center one, fall into
the first supercluster. Those that are within the threshold of fuzzy cluster center two fall into the
second supercluster and so on.

The above procedure, obviously, allows fuzzy cluster centers to be assigned to more than one
supercluster. This is not fatal because an additional fuzzy grade of membership could be assigned
allowing cluster centers to partially belong to different superclusters. The procedure that has been
pursued as a first effort is to uniquely assign each cluster center to a unique supercluster. This is
carried out by assigning each cluster center to the first supercluster encountered.

There are obvious problems with the above procedure. Certainly, this superclustering scheme is
non-unique and most likely non-optimal, but it is conceptually simple. In that sense, it is a good first
start. Another related and useful tool is the formation of a fuzzy graph.

The fuzzy graph consists of plotting points on a vertical line representing each cluster center and
then drawing curves to connect two cluster centers that are within threshold of each other. The curves
are labeled with the value of the c-matrix elements that connect them. Strictly speaking, to be a true
fuzzy graph, the c-matrix elements should be between zero and one. That is, they should be fuzzy
grades of membership. This could be easily accomplished in this case by defining the matrix
elements to be

CI~i, D I if c(i,j)ŽTr
c(i=c(i j)/ if c(ij)< T

The advantage of the fuzzy graph is that it easily represents all possible connections between
cluster centers and, as such, all possible superclustering schemes. The fuzzy graph will prove to be a
useful tool in the development of the next three superclustering procedures.

The second superclustering scheme to be considered is FCMC2. For this algorithm, a cost
function C2 is defined as

C2 (P) Xc'(i, j),
Kep i,jeK

where PC is the subclass of superclustering schemes that satisfy the c-matrix constraint, p is a
particular superclustering scheme in PC, K is a particular supercluster in p, and subscripts i and j are
particular cluster centers in K. The best superclustering scheme according to FCMC2 results from
minimizing the above cost function over Pc

FCMC2 is designed to select the supercluster scheme that minimizes the total sum of c-matrix
elements over each supercluster. Intercluster c-matrix elements that connect different superclusters do
not contribute to the sum.

12
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The third superclustering scheme (FCMC3) consists of selecting the supercluster that maximizes
the ratio

(no. of elements in supercluster with max no. elements)/(no. of superclusters in the scheme).

This method favors a large supercluster and the minimum number of superclusters. If it were not for
the c-matrix constraints, all clusters would collapse into a single supercluster.

The fourth supercluster procedure (FCMC4) involves minimizing the total fuzzy ambiguity
entropy over the collection of all admissible superclustering schemes, i.e., those superclustering

schemes that satisfy the c-matrix constraint. The total fuzzy ambiguity entropy H is defined as

H= XH(A)
tAIA=cluster}

where

H(A) = - , {MA(O) log[MA (w)] + [1-MA (a)) log[1 - JUA (0) I .
C Q

3. FUZZY CLUSTERING RESULTS FOR SIMULATED DATA

3.1 Performance of the Fuzzy Clustering Algorithm

Figure 5 is the starting point for a systematic analysis of the success of fuzzy clustering as a
function of a parameter that characterizes the spread of the data. Four basic data points (RFo, PRMIo),
i = 1,2,3,4 are situated on the vertices of a square with side of given length referred to as the
separation. The subscript notation includes a "0" to indicate they are the basic points from which
others are generated.

0
(RF20,PR! 20 )

0
(RFj0 ,PRI10 )

(RF30, PRI30 )
SEPARATION

(RF40, PPJ40)

RF
Fig. 5 - Starting point for systematic analysis of fuzzy clustering
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Figure 6 presents the next step in the simulation. From the initial four points of Fig. 5 a total of
100 points are generated. The new points are generated by using a zero mean unit variance Gaussian
random number generator to add points along lines parallel to the RF and PRI axis, as in Fig. 5. The
random numbers for both RF and PRI are multiplied by a parameter a. This parameter characterizes
the complexity of the data. Low values of af in the simulations that follow give rise to data groups
that can be separated by drawing straight lines, i.e., linearly separable data. High values of a
produce data with a high degree of mixture between groups, rendering the data linearly nonseparable
and more challenging for clustering algorithms.

RF

Fig. 6 - Data are simulated along fixed directions in RF and PRI plane

Figure 7 represents a systematic generation of data sets using the scheme set forth in Figs. 5
and 6. There are 12 plots, each indicating a different data set in the RF-PRI plane. Each plot is
labeled by the parameter "separation/sigma." This parameter is the analog of the notion of signal-to-
noise ratio. From left to right top to bottom the value of separation/sigma is increasing. Thus, the
figure with separation/sigma = 0.5 represents the greatest mixing of the four clusters and hence the
most difficult clustering and superclustering problem. The overlapping data in this plot preclude
drawing lines between clusters, i.e., the data are not linearly separable. The figure with the least
mixing of clusters is the bottom right-most figure with a value of separation/sigma = 6. The data in
this plot are actually linearly separable and can be clustered by inspection. This class of data sets is
designed to show that the fuzzy algorithm can still cluster when faced with a complicated noncircular
data geometry with mixing of RF and PRI from various targets.

Figure 8 is a plot of the percentages of correctly clustered points as a function of
separation/sigma for data generated as in Fig. 7. The upper curve represents the results for the fuzzy
clustering algorithm and the lower curve the Euclidean algorithm. These are ensemble-averaging
results. Each data point is the average over 64 members of the ensemble. Results are presented for a
separation/sigma range of 0.5 to 3, ire., high to low data mix limits. For this domain, the Euclidean
algorithm has a success rate varying from 50% to 99% in clustering. Over the same domain, the fuzzy
clustering algorithm varies from a 65% success rate at high cluster mixing to 100% of the points
correctly clustered in the low data mix limit. The fuzzy clustering algorithm is always better than the
Euclidean algorithm, sometimes by as much as 20%.
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1400f i

1350

RF
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a 1350
a I---

9400
RF

9450 ""T350 9400
RF

9450

Fig. 7 - Simulated data created by adding additional points along lines parallel to RF or PRI axes

The fuzzy clustering algorithm is much more successful than the Euclidean algorithm in
clustering. In particular, the fuzzy algorithm's success in clustering in the high mix limit
(separation/sigma >0.5) should be noted. These are linearly nonseparable data that would be
extremely difficult to cluster by visual inspection. It is also well to remember that the fuzzy clustering
algorithm uses a Picard algorithm for optimization and, as such, is only guaranteed to converge to a
local minimum. The current version of the fuzzy clustering algorithm uses the Euclidean algorithm
to create a first estimate of the fuzzy partition matrix. If a better pre-clustering algorithm were used to
initialize the fuzzy partition matrix then, unless the pre-clustering algorithm were perfect in its
classification, the fuzzy clustering algorithm could most likely improve on the results.

It is also important to observe that the Picard algorithm can be initialized by selecting initial
values of the fuzzy cluster centers instead of the fuzzy partition matrix. Thus, an initial estimate of the
fuzzy cluster centers by one class of sensors could be used to cluster data from another class.

Another approach to fuzzy clustering would be to first pre-cluster and make an initial estimate of
the cluster centers. Certain algorithms emphasize the estimate of a cluster center, notably neural net
procedures like those of Linde-Buzo-Gray [6] and the Kohonen learning vector quantizer [6]. Once
again, since the Picard algorithm finds a local minimum even though the algorithm of Linde-Buzo-
Grey and Kohonen may produce good results on their own, the fuzzy algorithm could likely improve
on their results.
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Fig. 8 - Fuzzy and Euclidean clustering results for ensemble average case

Finally, still another approach to fuzzy clustering that might improve results would be to use an
optimization algorithm guaranteed to converge to a global minimum. An example of such an
algorithm is simulated annealing [7]. It should be emphasized that a global minimum may not be
better than the local minimum. The quality of the minima depends on the amount of a priori
information contained within the cost function.

Figure 9 represents another approach to generating data for simulation. It differs from the data of
Fig. 6 in terms of the data point mixing geometry.

As in Fig. 5, there are four initial points each on the vertex of a square of side of length
"separation." Also, like Fig. 5, 100 points are generated by adding zero mean, unit variance
Gaussian random variables multiplied by a, which characterizes the complexity of the data. Unlike
the previous case, for each data group defined by one of the initial four points, both the RF and PRI
are changing. The simultaneous change of RF and PRI results in a faster mixing rate for smaller
values of a than in the previous case.

Figure 10 depicts 12 data cases generated for different values of separation/sigma, according to
the procedure of Fig. 9. From upper left to lower right, separation/sigma is increasing, i.e., the data go
from a high mix state to a low mix state (linearly separable data).
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0* .0 .

RF
Fig. 9 - Data are simulated by generating new data points at random positions
relative to the cluster centers (large dots); both RF and PRI are allowed to vary,
assuming they are uncorrelated.
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Fig. 10- Simulated data generated by randomly changing both RF and PRI
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Figure 11 is a summary plot resulting from clustering and fuzzy clustering the data cases in
Fig. 10. Each data point represents an average over an ensemble with 64 members. As in Fig. 8 the
separation/sigma parameter ranges from 0.5 to 3.0. The Euclidean algorithm ranges from clustering
45% of the data correctly in the high mix limit 0.5, to a 90% success rate in the low mix
neighborhood. The fuzzy clustering algorithm (upper curve) is always superior to the Euclidean
algorithm, by more than 25% in some cases. The fuzzy algorithm ranges from clustering 100% of
the data correctly in the low mix limit to clustering half the data correctly in the high mix limit.
Examination of Fig. 10 in the high mix limit suggest that without additional a priori information it is
unlikely that any algorithm could automatically cluster more of the points correctly. The more
complicated mixing possible in the data generation scheme of Fig. 9 results in a slightly degraded
performance by both fuzzy and Euclidean algorithms.
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Fig. 11 - Summary plot resulting from clustering and fuzzy clustering the data cases in Fig. 10.
Each data point represents an average over an ensemble with 64 members

Figure 12 examines the prediction of the cluster centers by the fuzzy clustering and
superclustering algorithms and compares them to truth. The data involved four clusters of the kind
given in Fig. 7. Symbols are defined as:

* - position of the true cluster centers;
o - fuzzy cluster center estimate, assuming four clusters; and
+ - supercluster estimate of the fuzzy cluster center, assuming upper bound of six clutsters.
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The superclustering results are an example of no a priori information. The superclustering scheme
used is FCMC4 (in this case FCMC2, FCMC3 and FCMC4 give the same results. FCMC1 gives the
appropriate number of clusters but a different prediction of final cluster centers. The RF and PRI
window used is 1200 to 1360 gs and 9410 to 9426 MHz.

1 3 60 r

13501

CLUSTER CENTERS: TRUTH(*), A PRIORI(o), NO A PRIORI(+)

O. X

13401

1330 0

13201

a: 1310
0 W.

13001

1290

12801

12701
W Q0

9412 9414 9416 9418
RF

9420 9422 9424 9426

Fig. 12 - The prediction of the cluster centers by the fuzzy clustering
and superclustering algorithms and compares them to truth

In each case, the fuzzy and supercluster centers are close to the true values. In three out of four
cases, the fuzzy and supercluster results overlap or nearly overlap. In the fourth case, in the center of
the figure the supercluster results are actually closer to truth than the initial fuzzy results. This most
likely has its origin in the initializing of the Picard algorithm. The supercluster results initialized the
Picard algorithm by using a combination of fuzzy cluster centers. This most likely places the initial
estimate closer to a better local minimum than the original fuzzy algorithm used.

Figure 13 is the result of a superclustering ensemble calculation. The vertical axis indicates the
percentage of the time the superclustering algorithm reproduced the number of emitters with an error
of no more than one emitter. The horizontal axis is the standard parameter separation/sigma. This
figure contains four different markers. Each marker indicates the result of a calculation for a
different fuzzy cluster convergence criterion. The correspondence between symbols and fuzzy cluster
merger criterions is as follows:

1260C1
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Fig. 13 - Comparison of different supercluster schemes

In this simulation, the parameter separation/sigma was allowed to vary between 0.5 and 2.5,
corresponding to high to low mixing. Over the entire domain, FCMC2, FCMC3, and FCMC4 are
found to determine the number of emitters within plus or minus one 100% of the time. In the high
mix limit 0.5<separation/sigma<1.0, FCMC1 is off by 2 in its prediction of the number of emitters at
two values of separation/sigma. Even at these points, FCMC1 predicts the number of emitters within
one, 85% of the time. At the four other points in the high mix limit, it predicts the number of emitters
within one 100% of the time.

4. CLUSTERING RESULTS FOR DATA MEASURED BY ESM ATD

In this section, the fuzzy clustering and superclustering algorithms are applied to data measured
by a device known as the Electronic Support Measures Advanced Technology Demonstration (ESM
ATD). For each emitter the ESM ATD records the following attributes: time of intercept, bearing, RF,
PRI, PW, and an ID parameter. The quality of the ID parameter is uncertain, so it is generally not used
in clustering.
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Figure 14 represents the fuzzy clustered and superclustered data in the RF and PRI plane. The
PRI is recorded on the vertical axis and it ranges from 0 jis to 1600 jis. The horizontal axis records
RF that ranges from 9000 to 9900 MHz. Six clusters are present in the plane denoted by o's, x's, .'s,
*'s, and +'s.

1800 ..................... ........ ........ ..... ... ....
16 0 . .. . . . .. . . . . . . . . . .. . . . .. . . . . . . . . ... . . . ... ... . ... . .. .. . ..4 .1400 . ..............
1200..........

1000 . .... .............. .... .... ............. .

:. .. . . . .

200. . ... : : : :.:.:

_ . : : :

OP 0

800oo 9100 9200 9300 9400 9500 9600 9700 9800 9900
RF

Fig. 14 - Fuzzy clustered data in the RF and PRI plane; six clusters are present

Figure 15 represents the same fuzzy clustered in the bearing-time plane. The data are confined to

values of bearing between -120 to 20 deg and 66 to 78 mmn. The shapes of the symbols correspond
to the same shape used to describe RE-PRI clusters in Fig. 14.

The process of clustering has defined clear tracks in several cases. The +' s apparently represent a

target with bearing constant in time; this could be a stationary emitter. The o' s indicate a target with

nearly constant bearing time slope, the clustering algorithm is able to distinguish the emitter
characterized by the +' s from the emitter labeled by .' s even though they cross. Several other tracks
are apparent.

In Fig. 16, a PW index has been added to each data point of Fig. 15. The PW index was

established by fuzzy clustering on PW within each RF-PRI cluster. The clusters denoted by points
with a common symbol and index are referred to as (RFPRI)-PW clusters. The advantage of this

procedure is for cases when two emitters have essentially the same PRI and RE emissions but different

pulsewidths, they can be distinguished. This is an example of a powerful technique that is referred to

as product space fonnation subcluste ring. Clustering in lower dimensional spaces followed by
forming product spaces frequently has advantages in terms of computational efficiency, easy
introduction of intuitive rule sets, and a priori information.
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Fig. 15 -Fuzzy clustered data in the bearing-time plane; data are confined
to values of beaning between -120 to 20 deg and 66 to 78 mii
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Fig. 16- A PW index added to each data point of Fig. 15; the PW index
was established by fuzzy clustering on PW within each RF-PRI cluster
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The additional PW index indicates that although it might be concluded from Fig. 15 that there is
a single aircraft creating tracks, in reality there are multiple aircraft. The emitter represented by +'s
seems to be a single object, as are the emitters labeled by o's. The emitters labeled by o's probably
represent two or more objects or one emitters rapidly changing PW.

Figure 17 is a representation of (RF,PRI)-PW clusters as tracks. Points in a (RF,PRI)-PW cluster
that represent a bearing rate of more than 3 deg/s or are separated by more than 2 min without
intermediate data are not connected. The algorithm has found at least six tracks. Since two or more
tracks may occupy the same space, there can be additional tracks that are not immediately obvious.
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Fig. 17 -A representation of (RF,PRI)-PW clusters as tracks

Figure 18 represents the same data window processed by an RMM Kalman filter [8,9]. This filter
takes into account RF, PRI, PW, bearing, and time. It also incorporates a bearing rate discrimination
rule, coasting windows, and a track initialization window. Most of the same tracks that are found in
this figure are also found in Fig. 17. In those instances where the Kalman filter predicts more tracks
than found in Fig. 17, multiple PW indices are found by looking at the comparable cluster in Fig. 16.
This indicates that the additional tracks result from including PW information.
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Fig. 18 -The same data as in Fig. 17 processed by a Kalman filter. This filter takes into account RF, PRI,
PW, emitter ID, bearing, and time and also incorporates a bearing rate discrimination rule.

5. CONCLUSIONS

The fuzzy algorithm clusters as much as 80% to 100% of the data correctly in the low (3 * or) to
high (I * ar) mix limit. Its performance exceeds that of the Euclidean algorithm by 20% or more in
some cases. The fuzzy clustering algorithm with a priori knowledge of the number of clusters
reproduces pre-noise addition values of attributes very well. Superclustering reproduces the number
of emitters, with little or no a priori knowledge, within one. Cluster centers produced by
superclustering approach the positions of those produced by fuzzy clustering with a priori knowledge
of the number emitters. Superclustering determines the number of emitters without a priori
information.

6. FUTURE EXTENSIONS

The current batch algorithm is being converted to a recursive real-time code. When this is
accomplished, the following will be examined:

* the use of product space formation subclustering to incorporate late-arriving data from
different sensor types;

* introduction of heuristic rule sets; and
* calculation of track probabilities from the grades of membership determined by fuzzy

clustering.
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Also, fuzzy set theoretic techniques as described above will be applied to improve an existing
IMM-Kalman filter that currently uses a maximum likelihood test for association. A standard
maximum likelihood test might be improved by introducing a fuzzy extension of maximum
likelihood theory. Also, there may be room for application of the fuzzy extension of Bayesian
theory, or Dempster-Shafer theory. Fuzzy clustering might allow the IMM-filter's current approach
to multiple hypothesis track splitting and pruning to be improved or eliminated. Finally, by merging
the best features of the fuzzy and Kalman algorithms, it should be possible to produce a fast
algorithm that more easily incorporates subjective rule sets and uncertain information.
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