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DETECTION OF SIGNALS IN NON-GAUSSIAN CORRELATED
NOISE DERIVED FROM CAUCHY PROCESSES

INTRODUCTION

The detection of additive signals in correlated noise or radar clutter is a problem that is of
interest and has been extensively studied. The optimal detector when the correlated noise is

Gaussian-distributed is the Wiener filter, or matched filter, after prewhitening followed by a thresh-
old. This detector can be obtained by using the Neyman-Pearson procedure that maximizes the prob-
ability of detection for a given probability of false alarm for a binary hypothesis. In applying this
procedure to non-Gaussian, correlated noise, three problems are encountered. First, we seldom know

or can easily measure the required multivariate probability density of the noise; second, often there
are unknown parameters that must be accounted for in some way; and third, the likelihood ratio
obtained in the test sometimes is difficult to simplify. All three of these problems are addressed in
this study for a given situation to be described.

The most difficult problem encountered is obtaining the multivariate probability density of the
noise. A procedure for constructing an approximate representation of the multivariate probability
density is described by Martinez, Swaszek, and Thomas [1]. The procedure constructs the desired
multivariate density from one that can be analytically represented, such as a Gaussian one, by using a
nonlinear transform to map the one into the other. The mapping is adjusted so that the marginal dis-

tributions and the first two moments of the constructed multivariate distributions are correct. Often
these are the only properties of the clutter that can be measured easily. In Ref. 2, these results are

extended to include complex numbers to represent radar baseband signals, to provide a suitable
transformation, and to give the closed-form, multivariate probability density for both correlated
Weibull and log-normal clutter that is correct in the marginals and covariance matrices. The purpose
of this report is to repeat the procedure outlined for Ref. 2 except using an underlying Cauchy pro-
cess rather than an underlying Gaussian process. The examples in Ref. 2 use a bivariate distribution,
and consequently that is what is developed here. The two processes are identical in the marginals and
the first two moments but differ in other respects.

Once the bivariate distributions are known, the optimal detector for additive signal can be found
in closed form by using the Neyman-Pearson test. in Ref. 2, an approximation to the Neyman-
Pearson test was found that simplified the test and removed the need for knowing the signal amplitude
and phase. This detector was shown to perform better than the classical matched filter after pre-
whitening, which is optimal only for Gaussian noise.

We describe a means of generating correlated Cauchy distributed samples, then develop an
expression for the bivariate density function for the Cauchy process. This is followed by the develop-
ment of the Weibull and log-normal bivariate probability densities. The Neyman-Pearson test is con-
structed and simplified, and an example is given. Further work will involve comparing detection
results of the detectors described in Ref. 2, and those developed here by using each other's noise
models.

Manuscript approved August 8, 1987.
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BEN CANTRELL

CONSTRUCTING THE BIVARIATE CAUCHY PROCESS

Given that one can easily construct independent Gaussian random variables, Cauchy variables
can be constructed from them through a nonlinear transformation

Zea1) = h / (z14))

and

z4'(1) = - (z'(1)),

where z[Q), z43), zg4Q), and z4f1) are the inphase and the quadrature components for the Cauchy and
Gaussian random variables respectively, h- 3(- is the nonlinear function, and I indicates the I th sam-
ple. The inverse transformation h () is defined by

Z(l) = h(ZC (1))

and

z4l9) = h(zf i)).

The nonlinear functions are specified by the requirement that the distribution functions over each vari-
able must be equal and are

and

5_ Z Pz,(zg(l))dzg(1) = 5c'(z (/))

The Gaussian density is

PzZg (l)) = e I xp
9 'T2 ~~~7rqz,

4 (1)

t 2 qr2, f'

and the Cauchy density is

P(zZQ (l) =
1

7rb 4 + Lz f]I
where ua is the standard deviation of the Gaussian noise and b is the Cauchy parameter. After

integration the nonlinear function is

h - zg'[()) = b tan V - j erfc K
h (z,- (1)) = -X2-erfc - 1 { - Ztan- I

[zA!() 

2

1, (Z' (1)) Pz� (zg (o) dz, (1) = S z�(I)P,' (z, (f)) dz, (1)

S- co

Io
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where the complementary error functions are defined as

erfc (x) -2 e'- dt

and the dot represents the in phase r and quadrature i components. The integrations are classic ones
in that the integration over the Gaussian density yields an error function and over the Cauchy yields
an inverse tangent function.

The next step is to correlate the data. Since the sum of Cauchy processes is still Cauchy (sho' n-
subsequently), the data are correlated by using some of the same samples in sums for each of the new
random variables. Furthermore, the results are to be obtained for both the independent inphase and
quadrature channels. The following sum operations over K variables accomplish these goals:

j K+

xl = iScl~

_ E 4c(1),
I=1

j K+1
X2 E K Zc) 

K W=2

1 K
x - F, z'(1 X, and

l =l

1 K+1
X2 = E Z CII}

The marginal probability densities of each of these new random variables xj, , x1, and x2 are all
identical and are Cauchy, given by the density function

'Fx: (x*') = 2
7rb I + Ctbj 

The bivariate density

Pr]!I2OXI!X2 r xr r I ] p (X, r) X (xlx2)

is derived in the next section. The first samples X1 and x4 can be made highly correlated to the
second set of samples r2 and 42 if K is large. Note that the moments are not defined for the Cauchy
process.

BIVARIATE CAUCHY PROBABILITY DENSITY

The bivariate Cauchy probability density is found by using characteristic functions. Because
W r , (x) and Pxi j Wx, X2 ) are identical in form, only the one for the inphase component is

developed. The characteristic function of Pxr , (rxi, x) is first found, then Pxrxr (x',xj) is
found by using the inverse Fourier transform of it.
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BEN CANTRELL

The characteristic fumction Cxr (w 1w2 ) of P2r ,r (4,4) iS defined by

Cr "r (jw1, jW2) = E eiwI +JW 2C 21 2~ ~ K 
where E is the expected value with respect to x and x' . Substituting for x and x' , the characteris-
tic function becomes

WI K r WI K + I 
j K ZcT ) i-K Z"(/) K K~ I+1

C< 4r jw1,jw 2 ) = E UeK e g2

where now the expected value is over z4ff) for r = 1, K + 1. This expression can then be writ-
ten as

Ccr Ir UW1 jW2) = C,, rx & 2 ( l
[jw 

K~
C~'+ j2 12 II 

by noting that all the z' f) s are independent and that each of the (K + I) terms are by definition a
characteristic function The characteristic functions C4 (,) ( ) are characteristic functions of Cauchy

processes and are

C FWI

CZr(l) K ; ]

CZK + l) K:]

Czr) L WL + tW 2)C;: ( 2) K

= ex {_ wilh 

= exp (- wK j

=exp f - ,

The desired characteristic function then is

Cxr ,'(1w 1I jW2) = exp - -

The bivariate probability density is obtai
characteristic function and is defined by

wII + lW21 +(K-l) wl+W2 D 1

ined by taking the inverse Fourier transform of the

r~~~~~~~~~~~~P~r rX j (X', X9) = 2 2I | Cr rQWj]w)exp t-(Wu X + w2X2)dwIdw2

4

K(W +W2) J
K 
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The integration is performed in parts over different regions because of the absolute value signs in the
characteristic function. The regions are defined by the boundaries

!0 :W1 >O, W2 >0 I':w 1<O, W2>O, {WJ > Iw

i' 0o:w<C0, w1 <0 (2: w1>O, w2cc, C wd < CW2j

II1-W1>0, W2<O, ili4> SW21 1'2:-W10, W2>0, IWOt< tW2t

and k0, I'1I,I'1, 12 and I 2 are the values of the integrals over those regions. Consequently

.XI, X2 (X, X2') = 10 +1 IO + I't +1 .' +1I2 + 1'2

The integrations are sketched out in Appendix A. The result is

Pr (x4) 2 [b+ [9
(X X2 (2ir) 2 b2 f j2 [2 [ 21

fl t-PD2+ [92 fl+ [ +9
[0l-PD)2+ W2 ] [.+ [+b2]

2 2r 0 -Px)2 + X -20 1 1 +| | j
fxl>[9 b bPI( 2p3_t X'2 2 

[11PX3' + | + 

+ [p,(, ~X, [r ,2 1 12 ] 

+

where px 2/K. A small bx indicates a large correlation.
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The density P (x . 4r1 , x) is identical to Pgr x, (x , x4) except superscript r is replaced with i.

The density was checked to see if a simple Cauchy was obtained after numerical integration over one
of the variables. This was obtained for a number of cases. This fact is also sufficient to guarantee
that the area under the density is one. These numerical integrations served as checks to the
mathematics.

BIVARIATE WEIBULL AND LOG-NORMAL PROBABILITY DENSITES

Two noise distributions of interest are specified by the Weibull or log-normal marginal distribu-
tions on the magnitude of the signal. To map the bivariate Cauchy variables just derived to these dis-
tributions on the marginals, the distribution of the magnitudes of the random variables given by

Xj I = r ar (X f

must first be found. Then the nonlinear mapping must be specified.

The distribution of the magnitude and phase of the Cauchy random variables is given by

P ff 0 k (| X ) = xk x/) Px 5k')

where J~x is the Jacobian transformations. Given

Xk- = Xk CoS Ok

Xk = Xk sin Ok,

JIk

ax,

akXk I

ae

axL

aXk

ao,~

and

Pxf,(x) =
I

,ir i + EXk ]
Y > br 2

________ 1

then

I

P)XI,5 (Ixk I, k) =
I Xk r I

7r2b2 _ _ I I1 X J 4 

I + - + ~~~~9sin' 20kJ
6

= l~I Xkd

Xi 2
1 + I

b
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Integrating over 0, from - 7r to ir yields

Phxki( )X = -4xk I

where the integral

t (lxk 12 +2b2 )

cdx - a1
a i a tan-) I ~ + btanx

a

found on page 152 in Ref. 3 is used.

The mapping used to map the bivariate Cauchy into a bivariate Weibull is

r g 1 (IXk I )
A -= I Xk I XkI

I - XkI 
I| X , 

and the inverses are

xr g(¶ yI) Ar
IYk I

XI 9 Yk i ) k
Xkk = i Y

for k = 1 and k =
tion function on i Yk

2. The nonlinear functions are specified from the requirement that the distribu-
j and iXk | must be equal. This requires

0 P l I ( i Xk (d I Xk i = I I P lY, j (I Yk 4 d Yk I

and

P xI (I XI)dI XI = S0 1) (I A I )d I AI

The Weibull distribution is given by

P Yk(I yj) = a In 2

7

(2)

(3)

I A I 'x- ' I A I

MY exp In 2 MY
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where M. is the median value and a is the Weibull parameter that ranges from -. 5 to 2 for radar
clutter. For oa = 2, the Weibull reduces to the Rayleigh distribution. The lognormal is given by

21
P yj Iy) 2=I ) ex-

where My is the median value and ar, is the standard deviation of (In 9. By performing the
integrals over the defined marginal densities, the nonlinear functions are found to be

g( I Y1 >) = kb tan -2 - exp {-In 2 lyk _ I 

{n ' [2 1 -- tan-l j2 I x +b ] ] I
ln2

lei

for the Weibull distribution and

9(IYk I) = bV tan 8 erfc
S -1 In r 'X 1 } F i l m f j Y 4 ] 7 -

g-'(¶x~k ) = My exp tl erfc-14 [1 - I tan-n [ IXk ± 2
]

for the lognormal. The function erfc is the complimentary error function, erfc- t is its inverse, and In
is the natural logarithm. Appendix B provides the details for finding these functions.

Finally the new bivariate Weibull or bivariate lognormal density can be specified in terms of the
bivariate Cauchy by

gOYI I
SY' > y1

Xk! = g({yk_ YA

IY !

(4)

8

9 -'O Xk O = My

,. c.gy (Yr , Yr ,(Y'l, A, Y'2' Y'2) = P�' , (XI, X2)P i (X , X yr, Y, )L 2 t 1 2 2Y1 ,Y'2' Y I , Y2 I , , i2 1 , .2
-1 " =
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where

Jy , Y( Il, Y,2 Y 2 ) =

aXr

k3Xk
r

ayk

Ak =
I aXkr

aylt

J,1

0

0

KzJiJ 2

where g '( ) is the derivature of g (- ) with respect to i Yk I . The Jacobian for the Weibull is

= [ab2ln2] [ ]r j-IYk ] s c 2 [r ]

Ak = 0 M g l tan 0 2 -A J sec -A J

where

=j -4 exp - [n2 (YI Yk I fy

and for lognormal

A = 4 I Yk 2! exp-
401Y& I Ai 2

where ~t for this case is

UI
lo L'Q I 3

2

Itan ipsec 2 o

f = - erfc
8

r 2 2In L MIt J

The bivariate Weibull distribution was checked by numerical integration. The signals were con-
verted to magnitude and phase through another transform and then integrated over the two phases and
one magnitude. The remaining marginal density was Weibull as desired; consequently the integration
over all variables is one.

NEYMAN-PEARSON TEST

The classical radcar solution for optimally detecting a signal in additive noise is the Neyman-
Pearson procedure for a binary hypothesis test. This processor maximizes the probability of detection
given a fixed false alarm rate. The processor is specified by the likelihood ratio and in this case is

xnp =

Py , y i ((Y 'I -S 'I ) WI - S l ), S G2 - S 2 ), (Y 2 - S 2 3)

Y~~~~P 1 IY2( 2 1 2 

9

and

(5)

_ gelyk l)g (IYD I
- IYk 

(6)

& t.k

r
ayk

aXk'

I
ayk
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where

I - S Cos)1

s =-Ssin ,f)

s = Scos(, +±A),and

S2 = S sin( 5 + A).

Here, S and Q. are the signal's unknown amplitude and phase, and A is the phase rotation of the sig-
nal between samples 1 and 2. The signal-to-noise ratio is defined to be

(SIN) = S2/2 2

where

ZVAR (yk) 3=VAR(yi)

and VAR(9) is the variance. A very lengthy closed form expression for the likelihood ratio can be
written by combining Eqs. (2) through (6). However, the test is very difficult to implement and con-
tains unknown parameters. Consequently an approximation to this processor is next considered.

APPROXIMATE NEYMAN-PEARSON TEST

The noise is assumed to be heavily correlated (.Px very small), and the signal is assumed to be
small with respect to the noise. Equations (2) and (3) under signal condition can be approximated
from Ref. 2 as

9(IYk) rD
IXk YikCJ

g(lyk o j) 
Xk - Yk CSk

I Yk i

By using this approximation, the likelihood ratio becomes

Xr= g D ) --cs

Px W, , IPx X ( If 2) PX{iX lxi I 7 X'2 /Jy (Y' I A, 

XAr =.---,,I, 

Pxr ,x Px .))
r = X Y t r

xi IYI Y

10
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Assuming that the Jacobians cancel and that 2, 42 1, and X2 are the transformed samples, the
likelihood fanction is

Ipx =

P r ,x I (X {X Cs 'I ) , (X 2 -CS2)J PXi , 'x [ -CS'] ), (X 42, -CS I )|

Px]rEX2 (X,1,42)PXf, 1NXl , X2)

The expressions for PXr Ir (x, xr) and P, Xi Ixl, x4) are simplified by noting that the factor

2 x x2' 2PX + 

in the denominator of Eq. (1) that defines Pr x (X, 4) basically controls the central peak of the
probability density, since px is small and X' = X4 under high correlation conditions. Consequently,

PXIsX2(X r8Xr2) =

P '2 X x 

P1i jxiXI, x)==x1 x 2 2

-V

P ] + -_ r

2~~~ 2
P A r 4 -

Next, \, is defined by

X z a = rxiXnp a a a',

where

b 2p+(iX -X2)2
U b2p2 + L[X -CSr ) _(4 - CS)]2

and

= bp]+(Xi -X)2

a b2 p 2 + ((X -CS 4)-(Xi -cs, 2

These can be approximated by

= ± +2c (s -s9)(x X-4),

' I + 2c(s' - s( )4x -xD ).

Then

11

and

Xa = (StI- SI )(Xi -Xi ) + (Sr - Sr) (Xr _Xr)
2 1 2 1 2 1 2
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where the higher order term has been ignored and the other coefficients have been incorporated into
,. This expression states that the data are transformed back to the bivariate Cauchy random variable

and then the correlation between samples is removed by subtraction. This seems reasonable since it
was in the Cauchy domain that the data were correlated. Consequently, the correlation probably
should be removed in this domain. However the Cauchy domain is not an easy one in which to set
the thresholds because of the large tails on the distribution. Since the Cauchy random variables were
generated from Gaussian ones, the subtracted random variables are transformed to Gaussian by h.
The detector finally used is then given by

X = ~fh _(x e x + -[(h(x - x)3.

The detector transforms the measurements from bivariate Weibull or lognormal to bivariate Cauchy,
removes the correlation by subtraction in both the r and the i components, transforms the remaining
Cauchy to Gaussian, and computes the energy in both r and i signal components. This is intuitively
satisfying in the sense that the processor inverts the way the data are generated.

SIMULATION PERFORMANCE OF AN EXAMPLE

The performance of the detector is evaluated by using data samples obtained from the con-
structed multivariate density of the clutter. The performance curves are defined as the probability-of-
detection vs signal-to-noise ratio given a fixed probability of false alarm for various problem condi-
tions. The performance of the approximate Neyman-Pearson test is compared to that of the matched
filter defined by

Xmf = [StyY,

where the traditional complex notation has been used to represent the data vector

Y= tW jyr + M}r 

where j = The covariance matrix is

Ry = d [ ],

where py is the correlation coefficient of the Weibull noise that has an even spectrum, and the signal
vector is

S.+ JS] 1
S sr d_ is -

The bar represents the conjugate, I represents the transpose, -I represents the inverse, and j:1
represents the absolute value.

For this example N = 2,N 40, b = 1, My =1 = 4, is arbitrary, and the steering

vector is sj = 1/i , s' = 0, 4 = °, and -= 1/li. For Weibull clutter of parameter -y = 1,
1.5, and 2, it was found by simulation that cry = 1.42, .97, and .84, respectively, and that py = 972

for all three values.

12
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The data used in the simulation are generated by converting independent Gaussian distributed
samples to Cauchy distributed samples, correlating them through a summer, and then converting them
to Weibull distributed samples on the marginals. This data generation is used to set the thresholds
through the probability of false alarm. Signals are then added with random phase to the bivariate
Weibull distributed samples to obtain the data required for generating the operating characteristics of
the detectors.

The probability of false alarm Pfa vs threshold is computed by using Monte Carlo simulation
techniques. Random samples of noise y', y', y Y are generated. A normalized histogram of the
number of samples having values in a small interval for each detector is found. After many trials, a
curve of the probability density of the output of each detector vs Xin or Xmf is obtained. The
probability of false alarm is defined as the sum of all values of the density from X*% or X1*mf to infin-
ity. For small values of the probability of false alarm, an importance sampling technique is used.
This procedure distorts the generation of random samples so that more false alarms occur than should
and then compensates for this in the weightings used to generate the histogram. This technique is
outlined in Appendix C. The threshold settings vs probability of false alarm for the new approximate
detector and the matched filter are shown in Table 1 for a = 1, 1.5, and 2.0 and for probability of
false alarms as low as 1f-7. The reason the thresholds for the approximate detector are independent
of a is that the detector maps the Weibull distributed measurements to an identical Cauchy distribu-
tion regardless of what a is. Although the thresholds are independent of ae, this does not mean that
the detector performance is independent of ae.

The performances of the detectors are compared by observing the probability of detection vs
signal-to-noise ratio for a fixed probability of false alarm. The probability of detection is computed
by using a Monte Carlo simulation. The fraction of time the detector output exceeds the threshold for
a set of randomly generated samples is computed. This number is the probability of detection.

Performace results are shown in Figs. 1 to 3 for Weibull parameters of a = 1.0, 1.5, and 2.0,
respectively. In all cases, the probability of false alarm is 10-7. Figures 1 to 3 show that the
approximate detector performs better than the matched filter. In all cases, the new approximate
detector performs better than the matched filter; that is optimum for stationary Gaussian bivariate dis-
tributions. This is true even when a = 2 and the marginal densities become Gaussianly distributed.
Even though the marginals are Gaussian, the data are not bivariate Gaussian and consequently the
new detector is better. A functional flow of the detector is shown in Fig. 4.

Table 1 - Probability of False Alarm vs Thresholds for Weibull Clutter

IPf,

13

a 10o- 10-2 10- 10-4 lo-, lo-6 10-7

Approximate filter 1.0 .51 1.65 2.52 3.30 3.85 4.15 4.35
1.5 5I 1.65 2.52 3.30 3.85 4.15 4.35
2.0 .51 1.65 2.52 3.30 3.85 4.15 4.35

Matched filter 1.0 5.0 30. 75. 115. 155. 195. 230.
* 1.5 9.0 45. 95. 135. 170. 200. 230.

;XAmj 2.0 9.0 54. 104. 137. 165. 189. 210.
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Fig. I - Detector operating characteristics for
Weibull clutter, a = 1.0 and Pfa = 10-7
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Fig. 2 - Detector operating characteristics for
Weibull clutter, a = 1.5 and Pfa - 10°7
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SUMMARY

A procedure to detect a target in non-Gaussian correlated noise is obtained. Since the bivariate
probability density is unknown, an approximate one is constructed. The constructed density matches
the true density in the marginals and first two moments. The mappings required are found for both
the Weibull and the lognormal clutter distributions. The bivariate density is formed from first map-
ping an independent Gaussian random variable into Cauchy distributed random variables, correlating
with summers, and then mapping so that the new bivariate density has the desired marginals and first
two moments.

A Neyman-Pearson test was obtained for detecting an additive signal in this bivariate distributed
noise. Since the test was complicated and contained signals with unknown amplitude and phase, it
was simplified. The simpler test transforms the correlated Weibull or log-normal measurements back
to Cauchy distributed, removes the correlation, and finally transforms back to "Gaussian-like distrib-
uted" variables where the result is compared to a threshold. The performance of this detector was
compared to that of the matched filter operating on the same data set. It was found that the new
detector performed better than the matched filter. One could speculate that the best detector always
transforms the noisy data to that domain where the correlation is best removed and then transforms it
so that stationary Gaussian random variables are obtained on all examples.
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Appendix A
INTEGRATIONS FOR BIVARIATE CAUCHY

The integrations 10 and P0 are

I co co
Jo- (= t2 tt sexp -blwj+w2 +(N-)(wi+w 2)1 -iW1Xt-]WiX21dwidw 2

1- ° = 2f 50 exp{ - bt-wJ - W2 -(N - 13(w +W 2) -jw]Xl -jW 2 X2 j dwldw2(27w2 ?

where the superscript r and i have been dropped for convenience. By changing variables
w ' = - W j and w'z w w 2, the two integrations can be combined

Io+I'o =-2exp{-&b(wi+w23 [exp{-j(XIWI+X 2W2)l+exp{+j(xlwl+x 2 w 2)1]dwpdw 2.

This can be simplified to

0 f #= (22 -e NbWJ cos xw dw1 jI e CNbW2 Cos X2wldw 2

2 -____ . -Nbw2
(2-r2 j sin x 1w .w I e sin xzwzdw2.

These integrals are standard table integrals and consequently

fl 2 U M?2 _Xl 1
1 -2r [(qbA) + X 22 )I + ] 2

The integrals Il and It are

I 00 o -
(2-)2 0 Sw, exp l-b[w 2(N- )(w 1+w2 )]-jwlxl -jw2 X2 dw2dw1

1S1 = 2w 2 L exp [ -b[-w wW2 -(N -I)w1 +W 2)i -jWXl -jw 2 X2 ) dw2dw1 .

These can be combined after changing variables to yield

1+1, = 2 C i exp-Nbwl-(N -2)bww)[exp[-g(xtw +X2w 2 ))

+ exp{+j(xlw+x 2wX2) 1 ldw2dw1
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This can be simplified to

i + I = 2 5 ebw coS W IYI [ If e ± 2Thw2 cos w 2 y 2dw 2 ] dw 1

+ 2 oe -Nbiv sin wjYt e 2 sin w2 y2 4w2 I dw1
02 

After integrating over W2, It +I'( become

(2rt2(N -2)b?+xfl f(N-2)b e cos w d

-X 2 C e ' sin w1 x1 -x 2)dw1 -(N -2)b e l cos w x dw 

+X 2 5 e sin w xIdw 1

After integration over WI, then

2 [2(N -2)b 2 -X2 (X1 -X2)

=(27r)
2f [(N-2)b 12 + X2 1[(2b )2 + (xI -x 2)2 ]

2tN(N -2)b 2 - X X21

(2 r)2 K - 2)b 12 + X21 [(Nb) + x i1

The final integrations for 12 and 1 2 are similar and are

1 ° -W2_
(2 = 2 0 )P2 ScWI- W2- ( - (WI+ WA jW1X -jW2X2X dW dw2

1'2 = 125 ,r)expt-b[-w 1- w2 +(N -1)(wI+± W2)]-jwIx1 -jW2 X2}dw~dW2

Combining and changing variables yield

2 , -NhW2 W2 +(-2)Aw,
'2+ 2'2 0 e coS W1 Y2 F e coswly dw 1 dw 2

2w 2 -0 -0bW2 W2 +(N-2)hw1
(27r)2 Jr 6 NWe sin wIY2 [<J + sin wlyidw, ] dW2
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In a similar manner to I1 + 1I first one integrates over w 1 then w2 by using standard integration
tables; the result is

11 +1'2 2f2(N -2)b 2-X(xz -xI)]
(2X)2(tl(-2 12 + x 2 1 [(h 2 + (Xz 1)2111 +12 =(2x tN -2)b12 +4 2b (X

2 [N(N -2)b2 -x xj

(2itf(N - 2)bI2-x? U(Nb)2 +fl
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Appendix B
DISTRIBUTION FUNCTIONS

The distribution function for the magnitude of the Cauchy variables over the in-phase and quad-
rature components is

L ~-, r j- d Ixk I 

Changing variables to

yields

e2 = lXk F +b2

Vixb I +b2 dS = - tan

The distribution function for Weibull is

,I a In 2 f($ 1c exp [
and is obtained by first noting

ty, exp 1n2 S A 1 1Jo I 1 4 1 0A 

Then we obtain

L5 jXj 2+2 j2
b jI .

In 2 f 3-g d I yk)

1n2 , MY 1

My L

L _ '.-Y J J

I- exp f-In2 2

The distribution function for the lognormal is

It l,/ a y exp- 2 L2 In I 'k ] 92 d IYk I 
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which is

ly, I ~ ~ ~ ~ ~ ~Yky° Cd2T e-F P {a In M d 02 In 0}y 

This is the form of an integral over a Gaussian, which is

- + I erf i12 in Yki 02 2 L fco L on
These distribution fuinctions are used to define the mappings g ()and g (
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Appendix C
IMPORTANCE SAMPLING

The importance-sampling procedure [ClC2] is a Monte Carlo technique that distorts the genera-
tion of the random number so that the events of interest occur more frequently than, but in the same
manner as, the events occur in nature. The probability of the event occurring is then compensated for
with a weighting factor so that the true probability of the event is obtained.

To compute the probability density of the detector, the filter values are quantized by

X = mAX,

where

m = O... M-1.

The probability density is computed by

I X
p(X is between (m - 1) AX and mAX) = N E k

Nk = I

where N is the number of Monte Carlo samples and 6k = I if no importance sampling is used. The
equation is simply counting the percentage of time the samples fall in the m th interval. For impor-
tance sampling and this case, the first and last sample of the independent Gaussian variables are dis-
torted in their standard deviation. The weight factor is computed by ratioing the true density to the
distorted density evaluated with the distorted data samples. In this case

ad ~~~~1-exp --
oa 2

[Zrg)l] + [(Z (1)1 [Z1(1)1 + [Zg(1)] 2

9 9 - - 9~~~~~~
2

ori

[ [zr(N + 1)]2 + [z(N +1)12Oldexp- I N N i1

or 2 I r,

[z4(N + I)] + [zg(N + 1)]±
GQ2'

11
where Cd IS the distortion of the standard deviation on the first and last samples. The values z'(1),

4(1). z(N + 1), and zU(N + 1) are the sample values under distortion. This distortion decreases the
correlation in the final data and raises its variance slightly. Consequently more false alarms for the
same threshold are produced after distortion but the probability is reduced because of ik
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