
NRL Report 8247

r-
4.,

Computers/Processors
(for Electronic Warfare)

L. W. LEMLEY

Electronic Support Measures Branch
Tactical Electronic Warfare Division

August 15, 1978

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

The Naval Research Laboratory is authorized to reproduce and sell copy-
righted items in this document. Permission for further reproduction must be
obtained from the copyright owner.

SECURITY CLASSIFICATION OF THIS PAGE (When Dat. Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8247 |

4. TITLE (end Subtitle) S. TYPE OF REPORT 8 PERIOD COVERED
ELECTRONI WARFARE) Interim report on one phase ofa

COMPUTER PROCESSORS (FOR ELECTRONIC WARFARE) continuing NRL Problem.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(t) B. CONTRACT OR GRANT NUMBER(a)

Leo W. Lemley

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem R16-47
Washington, D.C. 20375 WF 12-111-706

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Air Systems Command August 15, 1978
Washington, D.C. 13. NUMBER OF PAGES

176
14. MONITORING AGENCY NAME & ADDRESS(If different Irom Controlling Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceedery and identify by block number)

Architecture, computer Electronic Warfare Software (EW), computer
Computer Evaluation, computer Specification
Computer analysis, quantitative Future, computers
Cost, computer Processor
Electronic Support Measures Selection, computer/processor

20. ABSTRACT (Continue on reverse side If neceeaary and Identify by block number)

Computers/processors (for EW/ESM) have long eluded quantitative definition both in hardware
and software. This work provides quantitative factors by which (EW/ESM) requirements may be
translated into computer/processor evaluation, specification, and selection. Hardware and software
(EW/ESM) are addressed as well as architecture, costs, and the future of computers/processors. The
CFA/MCF work to quantify the software aspects of computers is translated into EW/ESM applica-
tion and relevancy. Essentially this document is a handbook by which (EW/ESM) computer pro-
cessors may be evaluated, specified, or selected.

(Continued)

DD F OJR M 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601

i

2-
c:r
v:r
_r

m~r

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (Continued)

While many factors have varying influence upon the (throughput) performance of a computer/
processor, memory speed is pivotal to this performance, and developing technology is the basis of

improving memory speed. In view of the high cost of software, it should be designed to be tolerant
of technological improvements.

SECURITY CLASSIFICATION OF-THIS PAGE(When Date Entered)

ii

EXECUTIVE SUMMARY

This rather massive work represents a need to bound computer/processors in quantitative
values. The work is EW/ESM-oriented because the requirement is to define EW/ESMsubsys-
tems (such as the computer/processor) in quantitative terms; however, much of the methodol-
ogy and values derived are general computer/processor and general military applicable. In
essence, this is a handbook of computer/processors although it lacks the overall completeness
of a handbook. Some redundancy is written in deliberately to permit section access for specific
needs, avoiding tedious cross-reference.

The EW community has long labored under a restricted throughput requirement. The
"choke-point" of this throughput is the preprocessor that can only evaluate a limited number of
emitters per second. This is true whether dealing with an electronic reconnaissance platform
that must distinguish hostile/friendly emitters and their wartime changes in rapid response; or,
the ECM/RWR equipment that must react to a threat in a high density environment.

The computer/processor, in turn, is limited by technology. Contrary to community
trends, the cost-effective EW processor is based upon well-established, software-supported, large-
volume technology, not on exotic new architecture. Throughput is directly related to memory
speed and to some extent memory-speed-dependent microinstruction execution time. Most
well-established, software-supported architectures are easily adapted to new technology for
higher throughput without expensive software-architectural changes. Widely available architec-
tures are competitive performers with EW custom-built architectures, and cost much less.

Computer/processor performance is primarily dependent upon memory technology.
Speed, volume, weight, cost are all primarily functions of the speed-power product characteris-
tic of the memory technology employed. The software support cost of a computer/processor is
a function of the total investment in a particular computer/processor architecture. Within com-
mon technological boundaries, hardware architecture (including microprogramming) can
account for a ± 43% variation in a computer/processor's (throughput) performance. Higher
level, software architecture can account for i 14% variation in throughput performance.

The future (1980-2000) computer/processors can plan on an order-of-magnitude (lOx)
cost reduction (per throughput) every ten years. Throughput will improve an order of magni-
tude (lOx) every seven years, with a military lag over commercial of approximately seventeen
years. The volume of computer/processors reduced an order of magnitude every five years.
Computer/processor weight (per throughput) also reduces an order of magnitude (lOx) every
five years. These predictions are based upon a rather substantially based trend in component
industry, twenty years of computer/processor experience, supported by an ongoing level
research that permits these technology improvements.

Among the recommendations that chiefly emerge from this study are

1. Systems should be designed with existent, widely used processor architecture, not cus-
tomized processors.

2. Software should be designed to be operationally tolerant of hardware technology
improvements.

iii

CONTENTS

Executive Summary iii

I. INTRODUCTION .1

Summary.. 5

II. PROCESSOR REQUIREMENTS .5

A. Environment .6
B. ESM System .7
C. Preprocessor :.8
D. Main Processor 13

III. ARCHITECTURE 19

A. Hardware 20
B. Software 30
C. Summary 39

IV. EVALUATION.. 40

A. Hardware 40
B. Software 54

V. SOFTWARE .. 72

A. Software Tool Description .72
B. Software Tool Evaluation .82

VI. SPECIFICATION : 85

A. Hardware 86
B. Software 102
C. Microinstruction 107

VII. SELECTION 108

A. Memory Access Time 108
B. Instruction Execution Time 109
C. Benchmark Tests 110
D. Architectural Element Weights 112
E. Tool Availability Index 113
F. Physical Characteristics 114

iv

VIII. COST 116

A. Hardware 117
B. Software 122
C. Life Cycle 123

IX. FUTURE COMPUTER/PROCESSORS 126

A. Statistical Forecasting 126
B. Density 128
C. Throughput 135
D. Cost 138

ACKNOWLEDGMENT 140

REFERENCES... 140

BIBLIOGRAPHY 141

APPENDIX A - Derivation of Table IV-9 149

APPENDIX B - Benchmark Algorithms 158

v

COMPUTERS/PROCESSORS
(for Electronic Warfare)

I. INTRODUCTION

A considerable amount of work has been carried out on (EW) processors in the interests
of satisfying the high data throughput required in the EW environment. This problem has
stimulated a significant amount of processor work even to the most basic research, currently in
the technology of the Josephson-Effect Device (JED). Unfortunately, no work has been per-
formed on the quantitative requirements of such processors, other than a superfluous attempt
to support a particular processor technology. Solutions range from various highly efficient
software algorithms, through various hardware processor architectures, new logic technologies,
to new solid state research, such as the above JEDs. Although all of these approaches present
captivating arguments in the solution of (EW) processors, an introspective, quantitative analysis
of processors as related to EW indicates that the EW community might well examine closely
these solutions as "virtual," and that the actual cost-effective results indicate that an EW processor
constructed of well established, software supported, large volume technology wins hands down over any
unique technological approach.

The extremely expensive, programmer-related software costs in the development of algo-
rithms and software tools should result in a close examination of any proposed new processor
technology. Established general architectures, such as PDP-11 or Intel 8080, have demon-
strated an ability to adjust to technological advances such as high speed memories while retain-
ing the advantages of their considerable investment in software tools. A further advantage of
the familiar architecture approach is the general familiarity of programmers with these proces-
sors and their software tools. Such an approach is in marked contrast to the manufacturer who
has built a better "mousetrap" processor solution to the EW problem, but only one or two corn-
*pany programmers know the machine well enough to use it. Studies carried out under NRL
Problem 57R16-47 (NAVAIR) indicate technologically that, as long as the machines contain
the same memory technology (MOS, bipolar, core), they are essentially equivalent in
throughput. Regardless of architecture, memory speed matched to CPU determines real-time
throughput.

The cost of a processor is closely correlated (0.902) to the total investment in that archi-
tecture;

CS, = 42 Bj-"', (I-1)

where Csj = $ cost per instruction (software)
B2 = $M total dollar investment in computer architecture,

Manuscript received July 17, 1978.

1

L. W. LEMLEY

such that the larger the value of delivered hardware inventory, the smaller the cost of a (EW)
processor system. In view of the adaptability of established processors to technology improve-
ments (bipolar memories), and technologically free software tools, one must conclude that the
introduction of a "new" fast processor architecture would be a ccst- and performance-inefficient
adventure.

As mentioned above, the throughput of any processor is directly related to the memory
access time,

PRF 13264N= (1-2)
Tm2/

where PRF= pulses per second
N= number of parallel CPUs

(where Tp > Tm, N, = TpITm)

Tm = memory access time (As)
Tp = average microinstruction execution time (As).

This relation is based upon a minimum tracking algorithm, and as such represents an
upper boundary for processors. There may be more basic algorithms that could increase
throughput somewhat; however, the increase would not be a significant improvement. More
sophisticated algorithms would result in reduced throughput.

The minimum boundary physical characteristics of a processor are also closely correlated
to memory size, whether they be military qualified or commercial. Of course', the minimum
boundary commercial characteristics outperform military values due to the ruggedization
requirements. These values may change with technological improvements that are addressed in
future processor projects; however, at present (ca. 1977) the required power for military proces-
sors is

Pwr = 36.3 + 4.8 M, (1-3)

where Pwr power in watts
M = static memory capacity (16-bit kilowords) and ±+1 a is

5.4 + 4.5 M < Pwr < 67.1 + 5.0 M. (1-4)

Processor weight, in the same manner, is related to memory size:

Wp = 3.7 + 0.69 M, (1-5)

where Wp = weight in pounds and ±I o- is

-16.5 + 0.59 M < Wp < 9.2 + 0.79 M. (1-6)

The appearance of a negative value (weight) for a low memory size is obviously invalid
and due to the statistical method of analytically representing processor weight related to

2

NRL REPORT 8247

memory size. However, when the total expression is examined, the upper Io- limit allows a low
memory - weight relationship.

Finally, the volume relationship also correlates to memory size (as defined above) as fol-
lows:

Vp = 369 + 7.67 M, (1-7)

where V,,= volume in cubic inches and +±1 o is

187 + 6.29.M < Vp < 551 + 9.05 M. (1-8)

The above relationships all apply to military standard experience (ca. 1977) in which gen-
erally airborne processors where analyzed. Airborne processors where chosen, since weight,
size, power are more critical to this platform (satellites are grouped with airborne). The
rationale is that performance designed to airborne requirements more nearly represents what
the state of the art can accomplish in these characteristics.

Evaluating physical characteristics of more advanced commercial (or R&D) products
becomes a bit more speculative as may be expected, since no attempt has been made to optim-
ize their packaging. However, some insight may be achieved by comparing the pertinent factors
that contribute to these physical characteristics at the commercial and R&D level. For instance,
present commercially available static memories display an order of magnitude improvement
over standard military;

Pwr = 0.334 + 0.0363 M, (1-9)

where M = memory capacity (kilobits).

The costs of acquiring and operating a processor have been particularly elusive. Only after
considerable analysis of various references did a good concept of the costs of a processor
emerge. There are three main elements of processor costs: (a) the initial hardware acquisition
costs, (b) the software costs, and (c) the life-cycle costs. These costs may be used together for
an up-to-date calculation of cost expectancy even though the base figures are ca. 1977/1976.

The initial acquisition costs of computer processor hardware are most generally related to
the processor's instruction execution time:

Ci= (1-10)
TP9

where C1,j = cost in dollars
k = 6.3 x 104 for 1976
g = 0.4
Tp = instruction execution time, ,us.

In the matter of software, cost per instruction is the most general manner of evaluating
software costs. An analysis of EW programs indicates that a tracking preprocessor would
minimally require 32 to 98 instruction steps per pulse word, depending upon architecture
(series or parallel) and parameters (AOA, frequency, TOA). Analysis of a main EW program

3

L. W. LEMLEY

indicates that the normally expected main EW computer software would involve some 15,000
steps of instruction.

As implied in the beginning of this introduction, there is a close association between
software cost and the inventory (value) of the processor. Most references use a software "Tool
Availability Index" as an indicator of the cost (per instruction) of software.

C51 = 1138 (TA!)-' 07 , (I-ll)

where Ci, = dollar per instruction and TA! = tool availability index.

Normally, it is not easy to assess the TAI for a processor without a considerable
knowledge of the software tools that are available for that processor, not only by title but by
content. A more powerful (and easily implemented) index of software costs (with equally high
correlation) is the value of the total processor inventory in use. The latter criterion provides a
good index of potential software costs based upon the rationale that the higher the inventory
value, the lower the cost of programming due to the total number of processors in use, the
software tools developed to use these processors, and a greater number of programmers familiar
with the processor and the software tools. Again, good examples of this rationale are the ease
and lower costs involved in the application of machines such as DEC's PDP-1 1 or Intel's 8080.
Common programming languages do not comprise an exclusive answer, since a company's
investment in its processor and a broad inventory of usages are more important factors to the
cost of software. As such, the cost of software is highly correlated (r = 0.902) to the total dol-
lar value of the basic installed computer/processor:

Cli,= 42.34 B2y0 49 (I-12)

where
B2 = total dollar value ($M) of installed processor base.

This value of Cs, is adjusted inflation for (and is current).

The final value, life cycle costs, is related to a number of factors, but primarily time (in
years), of course, decides the life cycle costs. Again, a number of references were analyzed to
provide the following guidelines as to the effects on this consideration. Aside from the time
factor, number of units, initial hardware cost, and software initial costs provide the factors that
determine the life cycle cost of a processor system:

CLC = ni di Lh Chi + L, Si, . (I-13)

where CLC = life cycle cost,
ni = number of units
di = quantity discount factor
L,, = life cycle
C,,h = initial acqusition cost/unit, hardware
Ls = life cycle cost factor, software
Si = initial software costs.

Certain factors require further definition. The software life cycle cost is based on experi-
ence in the support of the initial software base plus a time familiarity factor:

Lw t0.384 ' ' , (I-1io
where t =number of years from acquisition.

4

NRL REPORT 8247

The initial software cost is based on the previously determined cost per instruction and
the total number of instructions:

SWi= C,1,, (1-15)

where I = total number of instructions.

The initial hardware acquisition cost was previously defined in Eq. (I-10). The hardware
life-cycle-cost factor is also a time dependent variable in which a time/learning experience has
been factored:

Li, = t0 77 7 . (1-16)

The quantity discount factor d, is the result of experience in the reduction of cost due to
the purchase of a number of units on one order. It is less accurate for small numbers than
larger numbers, bui'it is a factor that must be assessed where a system may be evaluated on
quantity cost:

d= n 0 142 (I-17)

where cost reduction factor due to N., number of units purchased on one order.

SUMMARY

The above relationships are the first-order, executive guidelines for the evaluation
specification and selection of (EW) processors. The detailed analytic support for these approxi-
mations is presented in the ensuing report along with the rationale. Since technology is rapidly
advancing, in a final chapter some consideration is given to the predictive impact of commercial
and R&D technology on processors in the outyears. These predictive factors are of necessity
less confident, depending on their degree of development and potential. The procurement
planner may desire to wait for the fruition of these potentialities, depending on the urgency of
the need and the processor task to be accomplished. It is important, however, to be well
informed and avoid claims without basis. Processors (EW) must be evaluated, specified, and
selected on a firm technological, cost/performance basis. The purpose of this study and report
is to provide those quantitative factors by which the procurement planner may demand such
responsiveness from the vendor. To the vendor's advantage, he may know by this report to
what procurement factors the vendor may be expected to respond. If the vendor cannot justify
his product on this basis, then he will know why his processor is not competitive.

II PROCESSOR REQUIREMENTS

A number of general EW processor requirements will be addressed in detail in this sec-
tion. These requirements, in turn, will lay the groundwork for the ensuing sections on evalua-
tion, specification, and selection. The emitter environment requirements have been analyzed
enough so that pulse rates can be established for the processor. An ongoing analysis of emitter
environment in depth is to be published later. The EW/ESM requirements are the systematic
processor requirements. A third requirement is the preprocessor requirements; what is the
function of the preprocessor in the EW/ESM system. Finally, the requirements of the main

5

L. W. LEMLEY

processor are addressed. After the preprocessor has categorized (not identified) the emitters,
the main processor must analyze, identify, and report the results to a user in time for a reaction
if necessary.

A. Environment

A modern high-density EW signal environment involves approximately 1600 emitters that
radiate some 1.2 million pulses per second (pps). While these figures are platform and system
dependent, they do represent the magnitude of the ESM/EW processor problem. In Fig. 11-1
the environment represented is the East-West German border, with platforms at various alti-
tudes. Some features of this representation are listed below.

1. System sensitivities to -70 dBm are essentially altitude independent. Most operable
altitudes will result in the same pulse density regardless of altitude at a particular system sensi-
tivity.

2. Systems more sensitive than -70 dBm encounter environments that are both altitude
and sensitivity dependent.

3. The environment that an ESM system will encounter above approximately -106 dBm
is strictly altitude dependent, with system sensitivity playing a relatively minor role in pulse
density.

PULSE DENSITY

Fig. Il-1 -Representative high-density
noncommunications environment

6

THRESHOLD SENSITIVITY WdBm)

NRL REPORT 8247

It is obvious, then, that the processor requirements of an EW/ESM system are dependent
upon its sensitivity and altitude/horizon. It is equally obvious that the coverage of an EW/ESM
system is dependent upon these same factors - sensitivity and altitude/horizon.

B. ESM System

A functional block diagram of the processing requirements of a postulated ESM System is
shown in Fig. 11-2. This system is designed to continuously monitor the signal environment
and. to intercept, identify, and derive a direction of arrival (or location) for all emitters of
interest to the system. System performance is measured in terms of timely identification of
emitters on a prioritized basis. The output of the ESM System would be sent to a data
recorder, a video display, or a threat alarm, or it could be used to automatically activate an
ECM System.

Fig. 11-2-Typical ESM system

The modernized ESM antenna and receiving system consists of digitally controlled and
tuned equipment capable of covering the entire frequency spectrum of interest with a high pro-
bability of intercept and providing at its output the individual detected radar pulses and
sufficient information to calculate their direction of arrival (DOA).

The radio frequency (RF) receiving system is required to monitor specified frequency and
spatial domains continuously. However, performance tradeoffs such as sensitivity, resolution,
and dynamic range may require that a time-ordered sampling in the frequency and spatial

7

L. W. LEMLEY

domains be used. Thus, frequency-scanning receivers or spatial-scanning antennas are generally
a part of the receiving system, and the resultant output of the system is a time-ordered sample
of the signal environment that must be processed and reconstructed by the ESM processor.

Numerous antenna/receiver configurations are employed in ESM systems. However, the
output of each is similar, consisting of digital words indicating the average frequency, angle of
arrival (AOA), and the time of arrival (TOA) of the leading edge of each signal pulse. The sys-
tem may also output the actual received pulse for further processing, in which case other pulse
characteristics such as amplitude, pulse width, and instantaneous phase can be derived.

C. Preprocessor

The parametric data from the receiving system go to a preprocessor for preliminary
analysis. The main function of the preprocessor is to filter out the emitters that have been pre-
viously identified and the emitters that are of no interest from the incoming data stream and to
prepare the remaining signals for further analysis by the main computer. Figure 11-3 is a block
diagram of typical preprocessor. [1,2,31

Fig. 11-3-Preprocessor

8

NRL REPORT 8247

Preprocessor functions are summarized below.

Prepare the Data

Digitize data from receiver
Measure pulse width
Measure TOA
Calculate AOA

Perform Preliminary Analysis

Deinterleave incoming pulses
Calculate PRF
Analyze PRF agility

Sort the Incoming Pulses

Predict TOA of next pulse
Track the active emitters
Blank the Friendly emitters

Load the Main Memory

Format the data for further processing
Interrupt the main computer
Write under DMA control

1. Signal Sorter

Figure 11-4 shows a typical signal sorter and the associated circuits. The data stream from

the receiver is compared on a pulse-to-pulse basis with a series of data files. Data words that
match each file are deleted from the data stream to reduce the throughput requirements of each
succeeding comparator.

The first comparison is based on a file of emitters under active tracking by the flywheel
tracker. Each data word is compared with the expected parametric values (i.e., frequency,

DOA, and the expected TOA) of each emitter being actively tracked. Comparison matches of
tolerance limits for each emitter are calculated for each parameter by the flywheel tracker, based
on the variation of the previous measurements for the parameter. If the comparison results in
a match, the signal pulse is deleted from the data stream and the differences between the actual
data and the nominal signal parameters are sent to the flywheel tracker to update the tracked
emitter data file.

The second comparison is based on data for emitters fully characterized for frequency,
DOA, and PRI, but which have lost track. This may be due to emitter or system antenna scan-
ning, system frequency scanning, or a temporary change in the emitter's mode of operation.
The data in the nontracked emitter file corresponds to emitters that are expected to be received
and that match the system antenna (and frequency) scan. If a match occurs, the TOA of the
intercept is used, along with the known PRI information, to achieve a rapid "reacquisition" of

9

L. W. LEMLEY

Fig. 11-4-Signal sorter and associated circuitry

the emitter, eliminating the need to reprocess the emitter each time it is acquired. The
matched condition deletes that emitter's pulses from the data stream. The remaining data
stream consists of "new" and unmatched signals. A

The third comparison serves to presort the data stream into the PRI processor to simplify
the PRI sorting task. The preprocessor computer loads the PRI sort aperture file with values
that allow the efficient sorting of the PRIs.

The final comparison is to priority search the data residue for special signals and to control
the admission into the computer of unstable or unusual signals that could not be properly
characterized in the preprocessor.

2. Flywheel Tracker

The flywheel tracker [1,2,3] keeps a running estimate of the signal parameters of the
tracked emitter and determines the comparison limits to be used for the signal sorter, depend-
ing on the variability of the incoming data stream. The flywheel function compares the
expected TOA of the next signal pulse with a real-time clock and generates a missing pulse flag
if the clock time exceeds the expected TOA plus the TOA limit. It then adds the PRI to the
TOA to generate the expected TOA of the next pulse from the given emitter.

10

I

NRL REPORT 8247

The tracking function behaves as a predictor-corrector-type of parameter estimator. The
predictor algorithm predicts the incoming signal parameters from the known characteristics of
the emitter. Thus the DOA, for example, could be predicted from the known latitude and
longitude of the emitter. The corrector algorithm compares the predicted signal parameters
with the measured parameters and produces an error value, which is used to correct the emitter
characteristics model. Thus the difference in the predicted and measured DOA, for example, is
used to correct the ground location of the emitter. The equations for the predictor-corrector
function are given as

^ = (Ck) (I1
5 pk

Ck+I = Ck + P(Smk -pk' ok) (II-2)
where

Spk is the kth predicted signal vector

&pk is the kth calculated limit interval vector

Sink is the kth measured signal vector

Ck is the kth emitter characteristics vector

+ is a function relating signal parameters to emitter characteristics

p is a function relating emitter characteristic errors to signal parameter errors.

Substantial work has been' done in the development of adaptive tracking algorithms.
When the dynamics of the emitter are well known, the tracking algorithms can get very sophis-
ticated, even employing adaptive nonlinear Kalman techniques. The convergence rates of the
estimates in this case can be very fast and bounded. The comparison limits can be adaptively
adjusted, in response to changes in the signal environment. Even jittered and staggered PRIs
can be efficiently accommodated.

Unfortunately, these adaptive algorithms are very complex, so the required calculations
cannot be done by software unless the tracking information is updated occasionally, or unless
only a very few emitters are to be tracked. The TOA estimates must be updated continuously,
but this informaiton can be readily derived from the previous TOA measurement and the PRI
estimate (which can be updated occasionally). The other emitter parameters do not generally.
change very rapidly, so that software adaptive tracking with periodic updates can be used; how-
ever, this technique does not use the adaptive algorithms to their maximum advantage. The
adaptive calculations can be updated on a pulse-by-pulse basis by using dedicated hardware
logic, but at a severe penalty in weight, power drain, cost and flexibility.

3. PRI Processing and Deinterleaving

The function of the PRI processor is to sort through the data stream and to determine the
PRI of every emitter not listed in the active emitter file, or whose characteristics have changed
enough to be outside the limits of the parameter prediction windows. [2, 41

11

r L. W. LEMLEY

- The incoming data stream, consisting only of pulses from emitters that have not been pre-
viously identified, is first passed through a presorting aperture (part of the signal sorter) to limit

the number of pulses that must be processed at any one time. The aperture parameters and

limits are dynamically determined by the preprocessor computer, based on the density of pulse

inputs to the residue rate counter and the "new data" input to the computer. The presorting

aperture must be large enough that so all signals from a single emitter will pass through, but

not so large that a large number of different ermitters are admitted, thereby substantially degrad-

ing the TOA s sorting efficency. The incoming pulses are stored in a PRI buffer. ;

The PRI calculation is done in a straightforward manner, based on the TOA differ erces of

data pairs in the PRI buffer. These differences form a tentative PRI value used to predict the

TOA of the next pulse. The buffer is searched to determine if a pulse falls within the next

TOA window. After a second or third match, the PRI is confirmed and all the matching pulses

are removed from the data file. The process is then repeated to find the PRI from the other

emitters.

A typical PRI deilnterleaving program contains about 500 to 600 assembly language

instructions. The calculations require a large amount of repetitive processing, so a processor

load of 5000 program steps is not unreasonable 'to characterize the pulses from one emitter.

A high-speed computer performing the PRI processing should be able to characterize 50

to 200 emitters per second, depending on the' computer 'and the processing algorithins' used.

This great a density of "new" signals is rarely found in a realistic environment (except at initial

turn-on), so the PRI deinterleaving does not require a dedicated processor, but can be relegated

as an additional chore for the preprocessor computer (or the main computer if it is not heavily

loaded)..

Processing PRI staggered and jittered pulses should not produce any difficulty. PRI stag-

gered pulses appear to the deinterleaver as multiple emitters, all having identical signal parame-

ters, including identical PRIs. These can be merged by the computer to produce one emitter

with a staggered PRI. PRI-jittered pulses are left in the PRI buffer as a residue. When no

more matches are found, this residue is processed with increasing TOA limits until the average

PRI and PRI deviation are found. The residue in the PRI buffer can also be analyzed for linear

PRI slides by taking pulse triplets, predicting values for the PRI and the rate of change of PRI,

and looking for pulses that match the prediction windows.

As soon as the PRI of an emitter is determined, the emitter parameters are sent to the

active emitter file and the flywheel tracker, so that the pulses from that emitter can be deleted

from the incoming pulse stream as soon as possible.

4. DMA Controller .

The output of the preprocessor consists of digital data containing the frequency, DOA,

and the pulse width of each emitter in the signal environment, along with additional informia-

tion for special and agile emitters.'' These data- come' out -of -the preprocessor in -the

preprocessor's internal data format-each data parameter is usually assigned its own data word.

Sometimes these data words may have different word lengths tailored to each individual param-

eter. The multiplexer assembles these individual data parameter words into computer words in

'12

NRL REPORT 8247

a format suitable for storage and processing in the main computer. The data are then stored in
the output storage buffer to await loading into the main computer [5, 61.

Since it is not possible to read and write the same section of memory at the same time, a
DMA controller is used to synchronize the loading of the data into the main computer in such
a way that the loading takes place only during that portion of the main computer's operating
cycle when the memory is not being accessed by the main computer. In this manner, the load-
ing can take place without disturbing the operation of the main computer. The DMA controller
addresses the main memory directly, so that the data transfer can take place at the greatest pos-
sible speed.

D. Main Processor

The functions of the main processor are to control the operation of the ESM System; to
identify the emitters and their platforms; to counter threats by taking appropriate action; to
characterize and identify exotic emitters; to determine the geographic location of the emitters;
to update the emitter files; to interface with the operators; to monitor system performance; and
to perform auxiliary services, such as navigation calculations. A block diagram of the main pro-
cessor is shown in Fig. II-5. The functions to be performed by the main processor are summar-
ized below.

Fig. 11-5-Main processor

13

L. W. LEMLEY

Perform Signal Analysis

Analyze scan types
Analyze antenna patterns
Analyze modulation characteristics
Determine the emitter location

Analyze Exotic Signals

Unstable
Burst
Chirp
Pseudorandom

Identify the Emitters

Compare the Emitter Parameter List (EPL) files
Compare with Electromagnetic Order of Battle (EOB) files
Maintain active emitter files
Prioritize threats and take action

Identify the Platforms

Compare with EOB files
Identify associated emitters
Correlate emitter locations

Interface with the Operators

Process operator commands
Produce video displays
Sound threat alarm
Display unidentified emitters
Update the EPL and EOB files
Update the environment plots

Control the System

Sychronize DMA read/write operations
Control the receiver scans
Determine signal depopulation strategy
Schedule analysis algorithms
Prioritize threat processing
Turn on ECM systems

Diagnose Failures

Run built-in test programs
Bypass defective systems

14

NRL REPORT 8247

1. Operating System Software

The operation of the ESM processing system is controlled by a set of software programs

that are known as the Operating System. The quality and convenience of the results produced

by the computer depend entirely on the quality and thoroughness of the Operating System.
The operating programs may be broken down by function into the following categories:

a. The Executive Program is responsible for managing and coordinating system resources

in performing the various processing functions. It provides for the scheduling and dispatching

of the various processing tasks on a priority basis and for the interpretation and handling of

program interrupts. It allocates core and/or auxiliary memory storage and retrieves data from

auxiliary memory.

b. The Processing Control Program controls the signal flow in the processing and emitter

identification and reporting functions. It determines the additional processing required to iden-
tify a difficult emitter, determines the strategy to be used to depopulate the incoming signal

data stream when the signal environment becomes too dense, and provides look-through timing
for the processing system when an onboard jammer is active.

c. The Emitter Identification and Evaluation Program compares the parameters of the active
emitters to parameters within a prestored emitter parameter file to identify the received
emitters. It provides a tentative evaluation of the threat posed by signal sources that are not in
the library or that may be identified with more than one type of emitter, and updates the
emitter parameter fields to match the current environment. [11

d. Operator Interface Program provides the operators with the capability of exercising con-
trol over the system and entering data into the system. It provides the operators with prompt-
ing and control menus to enable the operators to communicate their commands with minimum
difficulty, presents digital data to the operator in a meaningful and understandable form, and
displays the tactical situation to the operator, along with a geographic map of the area displaying
fixes, tracks, and identified emitters.

e. Built-in Test Program monitors the performance of the ECM System during the mission
to confirm the operational readiness of the system. It traces malfunctions to the replaceable
unit level and determines whether processing can be continued in a degraded mode.

f. Miscellaneous Programs
Threat Processing and Self-Defense Control
Navigation Processing
Receiver Control
Extended Analysis Program
External Communications Control
Data Recordng and Control.

The threat analysis and self-defense programs and the executive interrupt handler are the
only programs in the operating system that must be run in real time to rapidly accommodate
these functions. The remainder of the operating system operates as time allows, according to a
set of priorities stored in the executive program.

15

L. W. LEMLEY

Typical program sizes for the operating system programs

Program Type

Executive
Processing Control
Emitter Identification
Operator Interface
Built-in Test
Miscellaneous

Program Core Size
Data Storage Area

Program Size

1500-4500
1000-5000
1200-1500
300-4800
600-1200

5000-6000

9600-23000
8400-15000

Total Memory Size 18000-38000

These are illustrated in Fig. II-6. The sizes indicated in the table are not intended to serve as
program size limits, but to show the typical size and variability of the sizes of the various pro-
grams. In general, the analysis programs do not show much variability in program size, since
the amount of computation required to solve a given problem is determinate. The operating
and control programs, and especially the operator interface programs, can be any size, depend-
ing on the scope of the problems to be solved, the amounts of automation desired in the sys-
tem, and, to a large extent, on the amount of sophistication, subtlety, and operator convenience
that the programmer wishes to design into the system. The programs listed are the ones nor-
mally stored in computer memory during operation. A large amount of additional programming
is normally stored in auxiliary disc or drum storage to handle unusual situations when different
techniques and special purpose programs are required.

PROGRAM TYPE

1. EXECUTIVE

2. BUILT-IN TESTING

3. PROCESSING CONTROL

4. RECEIVER CONTROL

5. PREPROCESSING & TRACKING

6. BASIC ANALYSIS

7. EXTENDED ANALYSIS

3. EMITTER IDENTIFICATION & EVALUI

9. ACTIVE EMITTER MAINTENANCE
& DISPLAY

10. INTERFACE

Z OF TOTAL NO. OF STEPS

7 9 1200

3.9 600

17 6 n\\\\\\\\\\\\\ 2675

19.1 I \ \ \ \ 2925
10.0 5525

11.6 1775

12.0 nNEEMENEEMEN 1325

ATiON 5.6 '\ 350

4. 4 N G\ 675

7.9 1200

100.0 TOTAL NUMBER OF STEPS 15,250

Fig. 11-6--Typical program sizes

16

of ESM processors are

NIRL REPORT 8247

2. Emitter Identification and Evaluation

The emitter identification process consists of successive comparisons of measured emitter
parameters with a succession of emitter parameter lists, in order to identify the most likely
emitter to be generating the measured signal. Figure 11-7 shows the major files used to perform
the comparison. Signals intercepted by the receiver are automatically analyzed by the preproces-
sor to determine the signal parameters. When the analysis of the signals from any given
emitter is completed, the emitter parameters' are sent to the preprocessor's active emitter file
for tracking and to the main computer for identification.

Fig. 11-7-Data processing flow

If the analysis cannot be performed successfully (not all electromagnetic signals can be

automatically classified), the signal parameters that have been identified are sent to the opera-
tors for manual computer-aided analysis or, in a fully automatic system, the residue signals are
tagged as unidentified.

The emitter characterization parameters from the preprocessor are input to the main com-
puter on a periodic basis under DMA control and are stored in an emitter parameter input
buffer. Emitter parameters remain in this file until the emitter is identified by the emitter
identification processor, in which case they are deleted from this file and are moved to the Mis-
sion Environment file. New emitter parameters in the input buffer are first compared with

17

L. W. LEMLEY'

entries in the Mission Environment file to determine whether the signal has been previously
identified. If a match is found, the Mission Environment file is updated to reflect the new data
and the parameters are deleted form the input buffer. If there is no match, a similar compari-
son is done with the parameters stored in the Unknown Emitter file, to assure that the emitter
has not been previously processed. Successful correlation here results in updating the parame-
ters in the Unknown Emitter file, and another attempt is made to process the updated informa-
tion. The signal intercepts that do not match either ;file are considered new signals and are
compared with an a priori data base consisting of the EOB file and the EPL.

The EOB file contains all available data concerning the emitters that have been recently
active and are suspected to be active in the area. The file contains exact values for the emitter
parameters and the tolerances for those parameter values for specific emitters. The data are
largely derived from the Mission Environment files of intelligence-gathering missions. A match
of the emitter parameters with the parameters of the EOB file results in identifying the emitter.

If the EOB file does not produce an identification, an effort is made to identify the emitter
through the EPL. The EPL file contains a list of the generic parameter data on all known
emitters, that may appear in the environment. The tolerances on the parameters are, often so
wide that several emitters in the file may match the emitter parameters in the emitter parameter
input buffer. As 'a result, more than one match is often found in the EPL file.

Emitter parameters that cannot be immediately associated with one given emitter, either
because there are no matches or because there are multiple matches within the emitter
identification files, are stored in an unknown emitter file, and the preprocessor is directed to
gather additional data on the emitter to facilitate further processing. If the advanced analysis
processing still fails to identify the emitter, the list of emitter parameters and the most likely
candidates for a match are presented to the human operators for a decision.

Successfully identified emitters are stored in the Mission Environment file, which contains
all pertinent data on emitters intercepted and identified during the mission, and in the Active
Emitter file, which keeps track of all emitters that are currently active.

After the emitter has been successfully identified, an attempt is made to identify the plat-
form and to identify emitter groups by comparing the identified emitters with the Associated
Emitter file. This file contains a matrix of emitters and platforms, identifying the emitter
configuration of a given platform. It is possible to identify the platform containing the emitter
by comparing several colocated emitters with the Associate Emitter file. Once the platform has
been identified, other emitters that are expected to be on the platform can be identified. This
process is especially useful in identifying emitters that have produced several matches in the
EPL file.

The Associated Emitter file also contains matrixes of emitters showing the emissions gen-
erated during the various modes of operation of a given emitter system. By using the Associ-
ated Emitter file, future signal intercepts can be predicted, resulting in a, significant enhance-
ment of system response speed.

As shown in the list on page 16, the Emitter Identification and Evaluation Program size
is not very large, typically requiring only 1200 to 1500 instructions. The program flow is also

NRL REPORT 8247

very simple, consisting mainly of searching a series of successive data files and comparing the
input parameter file to the stored data parameters and parameter limits in an effort to produce a
match.

From a system specification standpoint, the main problem with the emitter identification
process is the sheer size of the data library that has to be searched. Although a list of the most
urgent threats could be stored in as few as 500 storage locations, a more realistic list of the
major emitters to be found in a given area would take 3000 storage words. Worldwide emitter
tables would require well over 30,000 storage words for the EPLs alone.

Another problem is the time required to make all the comparisons necessary to identify
the emitter. Most high-speed processors are able to identify less than 10 emitters per second
on a continuous basis (although they can acquire and track about 100 emitters per second in the
preprocessor). The identification speed depends on the speed of the processor and on the
speed of data retrieval from the storage medium.

The system designer must decide how to allocate the EPL data among the storage media.
Core storage is very fast, but expensive. Magnetic tape storage is very slow and inexpensive.
Drum or disc storage is intermediate in both speed and cost. A good compromise would be to
place all threat emitter data in core for fast retrieval. Area nonthreat parameter lists can be
stored on disc or drum. All other nonthreat emitters can be stored on magnetic tape for later
analysis.

Data retrieval from magnetic tape is usually so slow that the overall emitter identification
throughput is independent of the speed of the processor. For modern high-speed processors,
the same is true for disc or drum storage. For data stored in core, a faster processor can natur-
ally make the required comparisons faster, and, therefore, is able to identify more emitters per
second. The designer must, therefore, be able to identify these processor characteristics that
influence processing throughput..

III. ARCHITECTURE

An attempt to describe computer/processor architecture is complicated by the many facets
these machines exhibit to the many fields of specialization that are necessary to their design and
function. The hardware 'engineer may view computers by the technology involved; LSI,
CMOS, bipolar, core, pipelining, DMA, data bus, word size, etc., are all terms that may
describe one processor as opposed to another. The software engineer may describe computer
architecture in yet another manner. The term architecture is used also to describe the attributes
of a systemras seen by the programmer; i.e., the conceptual structure and functional behavior,
as distinct from the organization of the data flow and controls, the logical design, and the physi-
cal implementation. This definition of architecture specifically excludes details of hardware
implementation. The instructions and registers that programmers "see" are part of the architec-
ture, but the data buses are not. For example, the IBM 360/30 uses 8-bit data paths, the
360/40 uses 16-bit paths, and the 360/50 uses 32-bit paths, but all three are the same architec-
ture, and can execute the same programs. As another example, the PDP-I 1 Unibus is not an
integral part of the architecture (indeed PDP-1is have been built with at least three different
bus structures), but the use of dedicated memory locations for communication with I/O devices
is an architectural feature because the programmer does not see the unibus, but he does see the
dedicated I/O registers. 17]

19

L. W. LEMLEY

In other words, there is no concise simplification of computer architecture in spite of the
extensive use of this term. Yet we cannot do without it. An attempt will be made in this sec-
tion to clarify for the reader what architecture means both to the hardware engineer and the
software programmer. The bulk of computer processing improvements over the last two
decades have risen out of technology advances rather than out of architectural changes, and this
principle is likely to remain in effect for at least another generation or more of computer sys-
tems. It is more promising, then, for the Navy to adopt an already successfully demonstrated
extant computer architecture, commercial or military, and to use that architecture to reap the
benefits of technological advances while enjoying the benefits of software stability. The selec-
tion of an existing architecture carries with it an understanding of the strengths and Weaknesses
of that architecture and also a useful inventory of support and applications software already
developed. [8]

A. Hardware

From the simple "hobby" computers to the largest "number crunchers," the basic concepts
behind all computer systems are the same. A conceptual computer with the basic functional
modules to be found in all computers is shown in Fig. III-1. All computers consist of a
memory module for storing data and information and a central processing unit (CPU) for doing
the processing. The CPU contains either an accumulator or a general register file for storing
data, an arithmetic and logic unit (ALU) for processing the data, a processor control unit, an
instruction register to store instructions, a program counter, and a memory address register.
[6,9]

MEMORY SYSTEM

Fig. 111-1-Digital input/output data

20

NRL REPORT 8247

The basic operation of any computer is as follows:

1. The program counter contains the memory location of the next computer instruction,
which is stored in the main memory. Operation begins when the contents of the program
counter are loaded into the memory address register and sent out via the memory address bus.

2. The program counter is incremented to point to the memory location of the next fol-
lowing instruction.

3. The instruction code is read from the main memory via the data bus and is stored in
the instruction register. The contents of the instruction register address the microprogram
memory.

4. The control word in the microprogram memory (at the address location corresponding
to the instruction) is sent to the data processor via the control register. The different bits in the
control word select the source register in the general register file, the function to be performed
by the ALU, and the disposition of the result of the operation.

5. Sometimes the microprogram memory is clocked through more than one address for
each instruction in the instruction register to generate more than one microinstruction for each
machine instruction. The sequence of microinstruction addresses used can be varied, depend-
ing on the contents of the status register, thereby allowing conditional program branching.

The above sequence describes a register-to-register operation. In general, the microin-
struction can load any register from any other register through the ALU and the output switch.
Therefore, the address register can be loaded by the microprogram from any other register or
from the data bus, and data may be input or output via the data bus. The microprogram can
also load the program counter and thereby cause unconditional branching to another program
segment or to a subroutine.

This explanation of the way computers operate may be extremely elementary, barely
scratching the surface of the operational complexity of a modern computer system. Neverthe-
less, the presentation of basic operating concepts should be sufficient to understand some of the
architectural features that can be used to increase a computer's processing throughput.

In most modern computers, the CPU is usually composed of an integrated circuit (IC)
microprocessor (sometimes composed of a number of IC modules) and associated circuit
modules. Microprocessor technology is now in a rapid state of flux, with new microprocessors
continually being introduced by the various manufacturers. The problem, then, is how to
evaluate the ESM processor with respect to each new device in order to determine which of
them would perform the ESM processing tasks at the greatest speed, with the greatest
throughput.

1. Instruction Timing

The basic computer is composed of a CPU memory section (plus an I/O interface to com-
municate with the outside world). Therefore, the processing speed of the computer depends on
the processing speed of the central processor and the access time of the computer memory.

To determine how these factors contribute to the total instruction timing requires an
analysis of the basic instruction execution sequence of a computer (shown in Fig. 111-2). The
sequence may be divided into two main parts: the instruction fetch cycle, and the instruction

21

L. W. LEMLEY

INSTRUCTION FETCH I INSTRUCTION EXECUTE INSTRUCTION FETCH
I CYCLE I CYCLE I CYCLE

:~~~~~ I

SETUP TIMFFI I ,

CLOCKSS IB S *S I . IAI

ADDRESS BUS ADDRESS VALID '!)I'T"

I MEMORY ACCESS!
-a TIME r-

DATA BUS DATA INVALIDI DATA INVdALID

Fig. 111-2-Microcomputer instruction execution sequence

execute cycle. For the instruction fetch cycle, the CPU logic outputs the contents of the pro-
gram counter register to the memory address register at the positive edge of the clock. A short
time later, the address appears on the system address bus. While the external logic is respond-

ing to the address change, the CPU increments the program counter by one, thereby pointing
to the next instruction to be fetched. The processor now waits for the memory output on the
data bus to become stable. After a sufficient time (called the access time of the memory) has
elapsed, the clock goes low and the instruction on the data bus is stored in the instruction regis-
ter. Once the instruction code is in the instruction register, it triggers a sequence of events that
constitutes an instruction execution cycle. It is quickly decoded by the microprogram control

unit into one or more control words (also called microinstructions). These control words are
sent to the CPU to control the processing. A portion of the control word is also fed back to the

microprogram control unit to control the sequence of microinstructions. [61

2. Pipelining

In a pipelined architecture, Instruction 2 is fetched immediately after Instruction 1 (Fig.

III-3). Thus, while the memory is accessing Instruction 2, the central processor can be execut-
ing Instruction 1. In this way, the memory utilization rate and average instruction speed are
nearly doubled for programs that consist of long instruction sequences where all the instruc-
tions invariably follow one another 16,10-121.

When a pipelined computer has to execute a program branch (as a result of a compare

and branch instruction, for example), the pipeline circuitry will have already fetched the next
instruction of the regular sequence (or in the case of an unconditional branch, the contents of
the next higher location in the program memory). The instruction register will contain the
wrong instruction and must be cleared, any steps taken to begin the instruction must be reset,

and the fetch cycle for the correct instruction must be initiated. As a result, a pipelined com-
puter will usually execute bianch iiisttuctioins more slowly tihan a nonpipeiined computer woulo.

22

NRL REPORT 8247
c-

a) REGULAR SEQUENCE:

FETCH EXECUTE FETCH EXECUTE

INSTRUCTION I I INSTRUCTION 11 INSTRUCTION 2 INSTRUCTION 2

b) PIPELINED SEQUENCE:

FETCH EXECUTE FETCH EXECUTE
I NSTRUCT I ON I I I NSTRUCT I ON I INSTRUCT ION 3 INSTRUCTION 3

FETCH EXECUTE FETCH EXECUTE
INSTRUCTION 2 INSTRUCTION 2 |INSTRUCTION I4 INSTRUCTION 4

c) REGULAR SEQUENCE;

FETCH EXECUTE FETCH ACCESS FETCH
INSTRUCTION I INSTR.I INSTRUCTION 2 1 MEMORY INSTRUCTION 3

d) PIPELINED SEQUENCES, SPLIT MEMORY

FETCH |EXECUTE! ID | FETCH IEXECUTE
INSTRUCTION I RUTH INSTRUCTIONS INSTR.5 IDLE

ODD

I FETCH 1EXECUTEI FTCH |EXECUTE ID IE MEMORY
INSTRUCTION 3 IINSTR 3 DLEINSTRUCTION 7 INSTR. 7' I |

(F ETCH EXECUTE FETCH EXECUTE IDL
I I DUC T IDT

INSTRUCTION 2 INSTR.2 | INSTRUCT O 6 NSTR.6: 1
EVEN

MEMORY

FETCH EXECUTE I FETCH XECUTE
INSTRUCTION 4 INSTR,4 IDLE INSTRUCTION 8 INSTR.8 IDLE

Fig. [11-3-Regular vs pipelined instruction sequency timing

3. Effect of Memory Speed

It is apparent that for processors operated by a constant-frequency clock, the minimum
clock period of the pipelined processor is determined by either the memory access time or the
central processing unit's microinstruction cycle time, whichever is greater. Therefore, if the
memory access time is shorter than the CPU's basic cycle time (less the address setup time),
the operating throughput of a computer is determined almost entirely by the basic cycle time of
the central processor. On the other hand, if the memory access time is a bit larger than the

CPU's basic cycle time, the operating throughput is determined by the memory access time
(plus the address setup time). [131

To operate with even slower memories, the system designer has two options - either
take more than one clock cycle to access the memory, or stop the clock entirely and have the

23

L. W. LEMLEY

memory acknowledge when it is ready. In either case, the clock is run at the minimum cycle
time of the microprocessor, but the total instruction execute time is determined largely by the
memory access time, since only a very few instructions require a large number of execute
cycles without accessing memory for more data or further instructions.

An example of a regular processing sequence where the processor takes two clock cycles
to access memory is shown in Fig. III-3c. In practice, most processor clocks do not run asyn-
chronously, so the processor does not start as soon as the memory acknowledges that it is
ready, but waits to the next clock tick (which may be either a quarter, half, or full clock cycle,
depending on the CPU and the clocking scheme used). If the memory is so slow that the
memory access time is more than twice the microinstruction cycle time, some of the lost pro-
cessing time can be recovered by using a "split memory."

4. Split-Memory System

In a fully pipelined system (Fig. 111-3b) where the CPU's cycle time is faster than the
memory access time, the operating speed of the computer is determined almost entirely by the
memory access time. The system clock can either be slowed down to match the memory access
time (or a slower processor could be used), or the processor will sit idle, waiting for the next
instruction fetch cycle to end.

5. Direct Memory Access

Direct Memory Access (DMA) is a technique for the bulk transfer of memory data
between a computer and an external device or another computer. DMA transfer is directly
related to pipelining, with the memory access at the alternate leg of the pipeline being directly
controlled by the DMA controller. DMA timing sequences are shown in Fig. 111-4.

In a computer with a split memory, various techniques can be used to implement DMA
transfer without seriously affecting the operation of the computer. For example, in a nonpipe-
lined split memory system, the DMA can access the even memory bank while the computer is
accessing the odd memory bank and vice versa. In a pipelined split-memory system, the
memory can be subdivided further into blocks. The DMA controller can access one block of
memory while the computer is operating on another memory block, with no interference
between the two operations. Although DMA operations do not increase the operating speed of
the computer itself, they can provide a significant increase in the ESM System operating speed,
since in most ESM systems, large amounts of data must be moved back and forth among the
various processors.

6. Microprogrammability

A microprogrammable computer allows the users to insert their own control and sequenc-
ing microinstructions into the microprogram memory of the CPU (see Fig. III-1). This gives
the computer a set of unique user-defined instructions for performing special, job-related
repetitive or time-consuming procedures. [12, 14]

The major advantage of having the special instruction sets is that these procedures can be
executed without continually referring back to the main memory for instructions, thereby sav-
ing considerable processing time. A ten-step procedure, for example, which would normally

24

NRL REPORT 8247

a) REGULAR COMPUTER SEQUENCE ,

FETCH EXECUTE FETCH EXECUTE
INSTRUCTION I INSTRUCTION I INSTRUCTION 2 INSTRUCTION 2

b) NORMAL DMA TRANSFER:

-FETCH - EXECUTE FETCH EXECUTE
| INSTRUCTION I INSTRUCTION I 'INSTRUCTION 2 INSTRUCTION 2 : :

TRDMA S DMA IDLE DMANSFERIDLE
TRANSFER I ~~~TRANSFER 2 DAIL

c) CONTINUOUS DMA TRANSFER:

| DMA DMA | DMA DMA..
TRANSFER i RANSFER 2 TRANSFER 3 TRANSFER 4

Fig. 111-4-DMA transfer timing

require ten instruction fetch cycles to implement, can be carried out after a single instruction
fetch cycle. In this case, the time saved equals nine'memory access times.

In an ESM processing system, the most likely candidates for microprogramming are the
following procedures:

1. The adaptive tracking of the parameter values and the search limits update procedures

2. The procedure to calculate the next TOA

'3. A compare-between-limits procedure for' PRI searching and for emitter identification
searching

4. The PRI procedure for comparing pairs of TOA values and generating the next TOA
window

5. A masked comparison procedure for comparing packed data

6. Multiple load and store procedures for moving blocks of data between internal regis-
ters and memory

7. Special table-search procedures, such as search every Mh byte or every Mh word, to
facilitate the searching of numerically ordered parameter lists.

25

L. W. LEMLEY

The increase in overall computer operating efficiency due to microprogramming depends
on the length of the microprogrammed procedures, the ratio of internal-to-memory access steps
in the procedure, the ratio of the microinstruction cycle time to memory access time, and the
fraction of time the procedure is used during normal processing. The gain in operating speed
when using the microprogrammed procedure over the regular procedure is typically 3 to 1. A
comparison of processor throughput for a microprogrammed computer vs a regular computer in
performing the adaptive tracking task was shown on page 14. The processing throughput
improvement varied from 2 to 1 through 4 to 1 for the various processors investigated.

Formulae for the increase of processing throughput due to microprogramming are
presented later.

7. General Purpose Registers

General purpose registers are useful for storing intermediate results of mathematical
operations, as index registers for modifying addresses for repetitive (looping) calculations, as
pointer registers (page pointer) for addressing different blocks of data, for block transfer of data
from location to location, or as multiple accumulators for arithmetic or logical functions. The
number of general purpose registers in a processor is usually chosen to be a power of 2 from
binary addressing considerations. [15, 161

Register-to-register operations are normally performed in a single microinstruction cycle,
so a large number of general purpose registers can provide for extremely rapid data processing
by decreasing the number of external memory references required. Register-to-register instruc-
tions are usually constructed in single-word format, which decreases program storage space and
also increases the processing speed.

General purpose registers are sometimes arranged in two banks, with each bank indepen-
dently available for data storage. Programs that are called repeatedly into operation and applica-
tions that require rapid switching from one task to another can each be assigned a register set
for its own use. This increases processing speed by eliminating the need to change the contents
of the general registers each time a task is changed.

8. Processor Word Length

In order for the computer to operate at a high speed, it is important that the computer
word length not be too small. The time required to fetch a word from memory is essentially
independent of the word length. Fetching a two-word instruction, however, takes about twice
as long as fetching a one-word instruction. Therefore, from the point of view of the instruction
set, a computer word must be sufficiently long to allow all but a few of the instructions to be
specified in single-instruction words. On the other hand, instruction word bits that are not used
are wasted, so that overly long instruction words simply increase the cost without increasing the
performance.

The cost-vs-performance tradeoff has been studied by various minicomputer manufactur-
ers, with the result that the majority of manufacturers have adopted the 16-bit computer word
size as a standard. These 16-bit computers can perform all the fast register-to-register opera-
tions with one-word instructions, although most computer operations that address the main

26

NRL REPORT 8247

-~~~~F
memory directly require two-word (32-bit) instructions. Special addressing techniques, such as
indexed addressing and memory paging, permit some main memory operations with one-word
instructions. It may be considered that a 16-bit processor word is a reasonable minimum word ,
size for the ESM processor instruction words, whereas a 32-bit word size is perferred if the pro-
cessing throughput rate must be a minimum.

These same arguments hold for data words, except that for some mathematical opera-
tions, such as shifts, data stored in two short memory words takes more than twice as long to
process as it would take to process the same data if it were stored in one long memory word.
This is one reason why large number-crunching computers tend, to have 48- to 64-bit memory
words. On the other hand, data words that are longer than required waste memory.

It is possible to increase the data storage efficiency by packing more than one data word
into each of the extralong memory words. However, for very short data words, a significant
portion of the computing time gets spent in packing and unpacking the data bits, and the
advantages of using these extra long memory words are lost.

The optimum data word size for the ESM System can be determined from an analysis of
the amount of information required to uniquely locate and identify each emitter of interest in
the environment. The actual number of required data bits depends on the proposed data
analysis algorithm, which, in turn, depends on the specific application envisioned for the ESM
System.

An estimate of the number of bits that should suffice to represent each of the various sig-
nal parameters is presented in Table III-1.

In selecting the processor data word size, an attempt should be made to avoid splitting up
any of the parameter data words into two processor words. Each portion of the split word must
be processed separately, and then the separately processed portions must be logically connected
together with further processing; thus a data word split in two takes more than twice as long to

Table -III-1 - Representative ESM Parameter
Word Size Requirements

27

Parameter Range Increments (bits)

Angle of Arrival 0-3600 0.350 10
Time of Arrival 0-200 0.2 As 20
Signal Amplitude -120 to +8 dBm 1.0 dBm 7
Pulse Width 0.25 Us

0-12.5 /As 0.1 As 8
Frequency 0.5 GHz 5 MHz

5-10 GHz 10 MHz 11
10-15 GHz 20 MHz

or
Frequency 2-4 GHz 1 MHz
Total 56 bits

L W. LEMLEY

process as a single data word. For example, in Table 111-1 the minimum processor data word
size is 20 bits to accommodate the 20-bit TOA word. All data for one emitter pulse could be
stored in three 20-bit words, two 28-bit words, or one 56-bit word.

In most general purpose computers, the processor instruction word size and the data word
size are the same. This allows each general purpose memory location to be used to store either
data or instructions, whichever a given program may require. Since a large variety of programs
may be run on a general purpose computer, this arrangement results in the most efficient utili-
zation of the main memory.

In a special purpose ESM processor dedicated to performing only one given task, the
instruction memory and the data memory can be kept separated, with each type of memory
having a different word length suited to the given application.

9. Hardware. Options

To enhance programming versatility and to increase computation throughput, some pro-
cessors utilized separate IC hardware to perform special- functions that would take very long to
perform with software [15-17]. The hardware often includes the following functions:

1. Floating-point arithmetic hardware, which performs precision floating-point instructions
much faster than ordinary floating-point software subroutines

2. Double-precision multiply and divide for direct processing of double-length operands

3. A trigonometric function package, which includes sin, cos, arctan, and other trigonometric
functions.

In ordinary operation, most ESM processors do not make extensive use of floating-point
or double-precision arithmetic, so these functions need not be included in an ESM processor as
special hardware. The trigonometric function package could be useful for navigation and for
emitter location algorithms if these calculations are performed fairly often. If the calculations
are done infrequently, they may as well be implemented in software.

: Some newer ESM Systems are turning to sophisticated mathematical techniques, such as
adaptive Kalman filtering, to perform the adaptive tracking algorithms and fast Fourier
transforms to do the PRI processing. These techniques normally take too much processing to
allow a high processor throughput if they are implemented in software. They may prove to be
practical, however, if performed by a special function hardware addition to the computer.

10. Multiprocessing

The system designer must decide how to allocate the computer resources that will do the
processing. The obvious first approach would be to use a big general purpose computer to do
all processing. In this case, all processing would be done in one central processor,:and all data
would be stored in one central memory, as shown in Fig. III-5a.

28

NRL REPORT 8247

Fig. 111-5-Possible processor configurations

As is pointed out in Section IV, the entire processing capability of an AN/UYK-20 is
not sufficient to track more than ten emitters on a pulse-to-pulse basis, so it becomes apparent
that at least some processing will have to be done by hardware, or special purpose software pro-
cessors.

The approach taken by most modern ESM Systems is to divide the processing task among
as many processors as possible. Since each processor works on a small segment of the problem
and all processors operate simultaneously, the overall system throughput can be increased con-
siderably by using multiprocessing. Task size and processor speed are selected so that each pro-
cessor works at about the same rate, enabling the data to flow smoothly through the system
with no backup.

The system illustrated in Fig. l1-5b is such a system. The approach shown, where no
more than two processors access each data memory, can be designed with minimal interference

29

a) ' b)
INPUT INPUT

CENTRAL CENTRAL PROCESSOR I
PROCESSOR MEMORY A (SIGNAL SOI

OUTPUT | MEMORY NI

(PRI BUFI

PROCESSOR I
(PRE-PROCE!

MEMORY NC
(OUTPUT BI

PROCESSOR N
(1/0 CONTRC

MEMORY NC
(MAIN MEM

PROCESSOR N

I(MA IN COMIU

OUTPUT

L. W. LEMLEY

between processors by interleaving the data transfer timing of the two processors. Since each
processor accesses two data memories, as well as its own individual instruction set memory, the

processors can use pipelined architecture most of the time. Unfortunately, this technique
wastes memory space and loses some of-the processing time, since duplicate data must exist in
several memory blocks and some. processing time must be used to merely move data from one
memory block to another. In addition, 'this involves a complex interconnect and highly com-
plex operating system to synchronize the operation of the entire system. The architecture of
such a system is not cost-effective. The cost of developing a complex operating system capable
of synchronizing a number of processors operating simultaeously has been demonstrated over a
long number of years to be overwhelming. Finally, it implies a high level of unreliability for
the system, as it can never be proven that the system will operate correctly under all cir-
cumstances.

The above discussion viewed only one aspect of hardware architecture that is most per-
tinent to processing throughput. Other authors view architecture from more technological
aspects, as chip composition, bit-slice, devices, etc.

B. Software

The joint Army/Navy Computer Family Architecture (CFA) committee has largely
evaluated architecture on a software (higher level language) basis. They have defined computer
architecture as "the structure of the computer a programmer needs to know in order to write
any machine language program that will run correctly on the computer."

With a well-specified architecture, details of data bus width, technology (core memory vs
semiconductor memory, TTL vs ECL circuits), implementation speed-up techniques, -physical
size of computer, etc., need not be of concern to the programmer and hence are not part of the
architecture. This separation of architecture and implementation is not a radically new idea.
The IBM System/360-370 series, the DEC PDP-11 series, and the Data General NOVA series
are just three examples of computers in which this has already been successfully accomplished
to a greater or lesser degree. [181

Thus, software architecture operates relatively free of technology, permitting computer
performance technology to advance without significantly affecting the software approach to pro-
gramming the machine. For example, the PDP-11 using the same software architecture
delivers significantly different throughput performance with hardware architectures of core and
bipolar memories, see Table IV-9. Yet these machines are programmed in the same manner.
On the other hand, the software performance of the AN/UYK-21 (PDP-11) and AN/UYK-20
are quite different even with the same technology (core memory). The ensuing discussion is
derived from the extensive work of the CFA, which is also known as the MilitaryComputer
Family (MCF) program. The goal of this program is to provide quantitative standards of per-

formance in support of their recommendations for the standardization of; military
computers/processors.

1. Absolute Criteria

The CFA selection commitee specified nine absolute criteria [19]'that they felt a candidate
computer architecture needs to satisfy if it is going to meet the requirements of fututte military

* . . .< . t 4~~~- '

30

NRL REPORT 8247

computer systems. All absolute criteria (with the exception of the subsetability criterion) had
to be satisfied by an implementation of the architecture, 'which was operational by January 1,
1976. This eliminated speculative decisions based on promises or potential solutions that
looked inviting, but might not come to fruition. Failure to satisfy any absolute criterion
resulted in the eliminaton of the architecture from further consideration. The nine absolute
criteria are given below. The formal statement of each criterion is underlined, while explana-
tions and examples are not underlined. Many comments that follow the definition of an abso-
lute criteria are the result of the experience gained when the CFA committee evaluated the
nine candidate architectures against these criteria [201. Table 111-2 shows which absolute cri-
teria each candidate architecture passed or failed.

a. Virtual memory support

The architecture must support a virtual-to-physical address translation mechanism. The intent
of this criterion is to take advantage of the widely used feature of many machines known as vir-
tual memory. Many advantages accrue to architectures that support virtual address translation
mechanisms, the most notable of which is the ability to simplify programming by freeing the
programmer of explicit management of his primary memory and providing a mechanism for
keeping only the active portions of a program in high speed memory.

The answers for this criterion listed in Table III-2 are not controversial, except for the
AN/UYK-20. This architecture provides the page registers necessary for relocation, but it does
not limit the ability to change these registers to privileged programs. Some members of the
CFA committee felt that preventing user access to the page registers was a necessary aspect of
virtual memory; others disagreed. The full CFA committee voted to fail the AN/UYK-20 on
this criterion. The ROLM-1664 and SEL-32 both failed this criterion because each of these
architectures provides a mechanism commonly known as "bank switching," which the commit-
tee felt was not an adequate memory translation mechanism.

b. Protection

The architecture must have the capability to add new, experimental (i.e., not fully debugged)
programs that may include I/0 without endangering reliable operation of existing programs. The
intent of this criterion is to provide a mechanism in the hardware for aiding software develop-
ment and to keep certain catastrophic software failures from occurring in the field. Architec-
tures that use a privileged mode to protect vital registers and system resources generally meet
this criterion.

The AN/UYK-20 failed this criterion because it lacks memory protection; any user can
modify the contents of the relocation registers and thereby read and write any word in memory.
Another generic way for an architecture to fail the protection criterion is for a program to have
the ability to put the machine into a noninterruptible state for an indefinite time. Architectures
that permitted nonterminating instructions were carefully examined to determine whether these'
were, or were not, interruptible.

c. Floating-point support

The architecture must explicitly support one or more floating-point data types with at least one
format yielding more than 10 decimal digits of significance in the mantissa. The significance meas-
ure was determined as representative of the most stringent requirements actually encountered.

31

Table III-2 - Candidate Architecture Value for Absolute Criteria
Candidate Computer Architectures

Absolute Criterion Rolm
IBM S/370 Inter- AN/UYK- DEC Univac SEL 32 Burroughs Univac Litton

Data 8/32 28 PDP-1 1 AN/UY-K-7 B6700 AN/UYK-20 AN/GYK-12

1 Virtual memory Y Y N Y Y N Y N Y

2Protection Y Y Y Y Y Y? *N N Y?

3 Floating point Y Y Y Y N Y N Y N

4 Interrupts/traps Y ? Y Y Y Y Y - y Y

5 Subsetability Y Y Y Y Y? Y Y? Y Y?

6Multiprocessor Y Y Y .Y Y y y y y
7I/O Controllability Y Y Y Y Y Y Y Y Y

*8 Extensibility Y Y Y Y Y Y Y Y - Y

9Read-only Code Y Y Y Y Y Y Y Y Y

SUMMARY Y ?N Y N N N N N

Y Yes, meets criterion.
N No, fails criterion.
Y? Yes (but with some reservations).
? Unresolved.

Note: Table adapted from Ref. 18.

r,
:0-
r
M
4r
M
11

i.." . r - 7

. c �- - i

NRL REPORT 8247

The AN/GYK-12 failed this criterion because it does not support floating-point opera-
tions. The AN/UYK-7 failed because it supports a single, 64-bit, floating-point format with
only 31 bits (9.2 decimal digits) of mantissa. Because this is so close to the borderline, one
might reconsider requirements on significance to determine how firm the 10-decimal digit cri-
terion is. (Had the AN/UYK-7 looked like an otherwise excellent architecture, it is likely that
the committee would have relaxed the floating point absolute criterion for it.)

d. Interrupts and traps

It must be possible to write a trap handler that is capable of executing a procedure to respond to
any trap condition and then resume operation of the program. For example, if the processor
receives a page-fault trap from the address translation unit, it must be able to request that the
appropriate page be brought in from secondary storage and then resume execution. If resump-
tion of execution is logically impossible (e.g., an attempt to store an operand into a read-only
segment of virtual memory or fetch an instruction with a parity error), then the trap handler
should be able to abort the program with an indication of which instruction and/or operand
caused the termination.

A similar requirement exists for interrupts: The architecture must be defined such that it is
capable of resuming execution following any interrupt (e.g., power failure, disc read error, console
halt).

Another intent of this criterion is to permit extensions and subsets of an architecture to
operate correctly so that programs can be upward or downward compatible. The subsets and
extensions may differ drastically in size, cost, and performance, but every program written for
the native architecture can run on the subset or extended machine.

The Interdata 8/32 had difficulty satisfying this criterion since it has variable-length
instructions, and there is no way after a trap or an interrupt to tell whether the instruction that
was being executed was a 16-, 32-, or 48-bit instruction. This may be a problem when it is
desired to correct the cause of the fault, and then reexecute (or resume) the instruction. Due
to uncertainties in the definition of the Interdata 8/32 architecture, the CFA committee was not
able to resolve whether pr not the Interdata 8/32 satisfied this criterion.

e. Subsetability

At least the following components of an architecture must be able' to be factored out of the full
architecture:

* Virtual-to-physical address translation mechanism
* Floating-point instructions and registers (if separate from general purpose registers)

* Decimal instruction set (if present in full architecture)

* Protection mechanism.

Implementations' of the architectures on small machines for dedicated applications must
not be required to include features of the architecture intended for use on larger, multipro-
grammed, multiapplication configurations. Existence of such subsets did not have to be
demonstrated in an operational implementation of the architecture.

33

L. W. LEMLEY

Because there was no operational method for testing subsetability, we could not challenge
positive replies for any of the nine candidate architectures. However, the B-6700 and the
AN/UYK-7 have not been designed for 'subsets in the sense of the criterion, so that their
subsetability is more speculative.

In order to retain program compatibility for all implementations of the architecture, this
criterion was extended to include the following requirement: The trap mechanism of the architec-
ture must be defined such that instructions in the full architecture, but not implemented in the subset

machine, trap on the subset machine and that it be possible to write trap routines for the subset

machine that allow it to interpretively execute those instructions not implemented directly in hardware
(or firmware) and then resume execution. (This is an elaboration of absolute criterion 4.)

f. Multiprocessor support

The architecture must support some form of" test-and-set' instruction to allow for the communi-

cation and synchronization of multiple processors. The intent of this criterion is to be sure that the
basic architecture can support multiprocessor configurations.

g. Input/output controllability

A processor must be able to exercise absolute control over any I10 processor and/or I10 con-

troller. The interpretation of the criterion proved rather difficult. Although all architectures
necessarily permitted individual devices to be started and queried for status, there were varying
degrees of control exercisable with respect to stopping the devices. It is reasonable to stop all
I/O functions, or to stop selected devices. All architectures had some way of stopping a single
device and stopping all devices, but how they did it varied widely in efficiency.

h. Extensibility

The architecture must have some methodfor adding instructions to the architecture that are con-
sistent with existing formats. There must be at least one undefined code point in the existing opcode

space of the instruction formats. All nine candidate architectures have unused instructions, so all
passed this criterion.

i. Read-only code

It must be possible to execute programs from read-only storage. It was intended that this
criterion permit an added degree of reliability by permitting programs to be stored in a nonvola-
tile read-only memory. However, a program can be rewritten to be read-only on any one of the
nine architectures even if that architecture does not support special types of instructions to
facilitate this. It might have been more meaningful to examine this question quantatively.

Table 111-3 shows the score for each candidate architecture on each absolute criterion.
Note that none of the nine architectures failed to meet the last five criteria: subsetability, mul-
tiprocessor support, I/O controllability, extensibility, and read-only code. This is in part the

case because we limited our evaluation to reasonably successful architectures, but it is partly the
result of not defining these criteria precisely enough prior to applying them to the candidate
architectures. For example, by not clearly defining how to test for the practical subsetability of

34

Table III-3 - Candidate CFA Values for Quantitative Criteria
Candidate CFAs

Quantitative Inter- Rolm Dec Univac Burroughs | Univac Litton
Criteria IBM S/370 Data 8/32 AN/UYK-28 PDP-11 AN/UYK-7 SEL 32 B6700 AN/UYK-20 AN/GYK-12

I V. 27 27 20 20 24 22 24 20 20
2 V2 27 27 20 19 24 22 20 17 20
3 P-I 27 27 22"1 25 23 26t 24 20 .29

4 P22 27 27 2211 24 23 26t 20 17 29
5 U ' 0.371 0.355 0.039 0.043 0.15 0.450 0.019 0.125 0.219
6 Cs] 1344 1632 1008 1168 992 304 306 1328 1008
7 CV2 576 576 112 144 448 288 204 336 752
8. CM, 3168 1120 1882 736 1472 768 408 2256 1344
9 CM 2 1312 32 544 480 - 1472 704 408 720 1088

10 K I '0 0 1 0 0 0 0 0
11 B. 17,300 185 38,000* 14,700 346 75 90 400 30
12 B21 16,000 14 169 311 147 23 207 8 6
13' 1 64 16 48 16 128 64 169 80 32
14 D 15 27 20 19 18 22 18 20 20
15 L 6192 560 114 112 2112 288 255 - 1376
16 J. 1904 2368 ' 1360 1040 1280 960 459 1408 1344
17 J2 1136 1280 320 400 1280 960 459 640 1088

TAI (%) 83 31 44 48 43 34 46 29 28
'Cs/ ($) 10.01 28.57 19.71 18.00 20.13 26.54 19.13 31.06 32.42

Note: Table adopted from Ref. 18.

*These values are of the form 2x where x = indicated data except for B6700, which is of the form 3(2x).

tWith memory bank switching.
*Include Novas.

t1 Millions of dollars.

z
X

00
XO-
t:30

°P°
--

H T TSSVi3Nf

L. W. LEMLEY

an architecture, we made it virtually impossible for an architecture to fail this criterion. Subse-
quent studies would be well advised to consider more precise definitions of these (and any addi-
tional) absolute criteria before evaluating alternative architectures against them.

2. Quantitative Criteria

In addition to the absolute criteria, the CFA committee specified 17 quantitative criteria
that they felt would be helpful in the initial screening process. A number of these quantitative
criteria measure attributes of a computer architecture better measured by benchmarks, or test
programs. However, the CFA committee recognized that it did not have the resources to run
benchmarks on all nine candidate architectures and therefore proceeded with the use of these
quantitative criteria to help select three or four candidate architectures out of the original nine
candidate architectures for more intensive study via test programs [18, 211.

The quantitative criteria are described below, and the score for each architecture on the
quantitative criteria is given in Table III-3.

a. Virtual address space

VI: The size of the virtual address space in bits.
V2: Number of addressable units in the virtual address space.

Two aspects of these measures were open to interpretation. The CFA committee settled
on the following interpretation for treating bank switching: the virtual address for a machine
with bank switching is the address within a bank. The effect of bank switching is to increase
the size of the physical rather than the virtual address.

The second interpretation centered on the notion of "addressable unit." There are several
degrees of addressablity. An item may be fully addressable in the sense that it can be accessed
by the address produced by an effective address computation. The committee also decided,
however, that instructions such as the IBM S/370 Test Under Mask, and the OR Immediate
allowed the testing and setting of individual bits, and provided a minimum addressable unit of 1
bit.

b. Physical address space

PI: The size of the physical address space in bits.
P2: The number of addressable units in the physical address space.

Where bank switching has been implemented, the physical address measures include all
banks of memory available. For computers with virtual address translation, the physical address
is the address resulting from the virtual-to-physical address translation. The physical address
space is defined apart from any implementation, since the physical address space size is defined
by the effective address calculation process or the virtual address translation process and need
not be equal to the largest memory configuration yet delivered.

36

NRL REPORT 8247

c. Fraction of instruction space unassigned

It is important to select an architecture that will allow reasonable growth over its expected

lifetime. Let U be defined as the fraction of the instruction space in the architecture that is
unassigned. Specifically,

U = u2-',
* I~~~~~~1i<oo

where ui is the number of unassigned instructions of length i.

d. Size of central processor state

The amount of information that must be stored or loaded upon interrupt and/or context
swapping is clearly an important factor in the response of real-time systems and'in the overhead
of multiprogramming systems. Let the processor state be defined as all the bits of information
in a processor that must be saved in order to be able to restart an interrupted process at a later

date. Processor states normally include the accumulators, index registers, program counter,
condition codes, memory mapping registers, interrupt mask registers, etc.

Cr1: The number of bits in the processor state of the full architecture.

C'2: The number of bits in the processor state of the minimum subset of the architecture (i.e.,
without floating-point, decimal, protection, or'address translation registers).

Cmi: The number of bits that must be transferred between the processor and primary memory
to first save the processor state of the full architecture upon interruption and then restore
the processor state prior to resumption. This measure differs from Cj1 above In that
"register bank switching," where provided for in the candidate architectures, may eliminate
the need to save some registers in primary memory, while the instruction fetches required
to save the state are included in CmI but not in Cs1.

Cm2: The nreasure analogous to Cmi for the minimum subset of the architecture.

These measures give an approximation of the complexity of the implementation of the
architectures, as well as a measure of the responsiveness of the architectures to worst-case con-
text changes for interrupt processing.

If an architecture provides for several sets of certain registers to provide fast switching or
multiple contexts, and if a program uses only one such register set when it runs in one context,
then only one set of these registers is used in calculating Cs1.

e. Usage base

Be: Number of computers (delivered) as of the latest date for which data exist prior to June
1, 1976.

B2: Total dollar value of the installed computer base as of the latest date for which data exist
prior to June 1, 1976.

37

L. W. LEMLEY

These two measures are meant to be approximate indicators of the existing software and
programmer experience base. A single individual determined the value of these measures for
all candidate architectures from standard sources.

f. I/O initiation

I: The minimum number of bits that must be transferred between main memory and any
processor (central or I/O) in order to output one 8-bit byte to a standard peripheral dev-
ice.

Although this measure was intended to give some insight into the responsiveness of an
architecture, it is very difficult to construct an interpretation of the measure that serves this
purpose well. The measure counts relatively few bits for some architectures, and this, in turn,
makes the measure very sensitive to changes of a few bits. The I measure is also sensitive to
several assumptions about exactly what actions are to be performed in doing the input/output
operation, and where parameters for the operation are found. Unfortunately, this sensitivity
made the I measure very arbitrary, and a rather inexact measure of input/output responsive-
ness.

g. Virtualizability

K: is unity if the architecture is virtualizable as defined in Ref. 6; otherwise, K is zero.

The intent of this criterion is to capture the concept of virtual machines that has been
used to advantage in some commercial computer systems (e.g., IBM's VM/370). An architec-
ture that supports virtual machines provides a mechanism for a privileged, stand-alone program
to run as an unprivileged task and produce the results identical to those it produces as a
privileged program. 'The importance of this idea is that an operating system can be run in user
mode as a subsystem of another operating system.

The definition of virtual machine as provided by Popek and Goldberg [22] is a very strict
definition that guarantees that any operating system that can run stand-alone on architecture X,
can also run on architecture X in nonprivileged mode. If an architecture fails this definition it
may still support virtual machines in a more limited sense.

h. Direct instruction addressability

D: The maximum number of bits of primary memory that one instruction can directly address given
a single base register, which may be used but not modified.

Large displacement fields in instructions generally simplify programming because they
reduce the need to set base registers and to maintain addressability. Because an architecture
may have several different instruction formats, each with different displacement field formats,
the committee required that the format selected for this measure be the one used for standard
LOAD and STORE operations, or the equivalent thereof. This eliminated anomalies, like the
MOVE CHARACTER LONG in the IBM S/370 architecture, from consideration.

38

NRL REPORT 8247

i. Maximum interupt latency

Let L be the maximum number of bits that may need to be transferred between memory
and any processor (central processor, I/O controller, etc.) between the time an interrupt is
requested and the time that the computer starts processing that interrupt (given that interrupt
are enabled). This may be interpreted as a measure of the longest noninterruptible instruction
or sequence of instructions. Architectures with nonterminating, noninterruptible instructions
have infinite L measures and are so indicated in Table III-3..

j. Subroutine linkage

JI: The number of bits that must be transferred between the processor and memory to save
the user state, transfer to the called routine, restore the user state, and return to the cal-
l ling routine, for the full architecture. No parameters are passed.

J2: The analogous measure to S1 above for the minimum architecture (e.g., without floating-
point registers).

This measure gives an indication of the size of overhead that might be encountered in
doing subroutine calls in the case for the biggest and smallest machines in the family. The bits
counted here are related to the count in CS,, CS2, CM,, and CM2. By presumption, the bits
that are stored for J1 are exactly those for CS,, except that it is not necessary to save the pro-
tection registers, memory map registers, interrupt mask, and other registers that determine the
global context for a program. Architectures with small processor states or that have
LOAD/STORE MULTIPLE instructions show up well on these measures.

C. Summary

As introduced, the architecture of a computer is complicated by the many aspects from
which it may be viewed. This section has presented two such aspects: (a) hardware architec-
ture and (b) software architecture. The hardware architecture is characterized by ten elements
that may be used to distinguish one configuration from another in performance. In a similar
manner the software architecture is described by nine qualitative features and 17 quantitative
features. For the most part, these architectures are manufacturer oriented. The quantitative
features, when used to evaluate a particular architecture, provide a basis for the relative (and
absolute) performance of a computer architecture. In the ensuing sections, these criteria will
provide the basis to evaluate, specify, and select computers for requirements as discussed in the
previous section.

For ESM applications where throughput is the predominant factor, memory access time
Tm tends to dominate other considerations. In software, costs, which bear a high correlation to
the total architectural inventory dollar value B2 , combine to provide the basis for a cost-
effectiveness evaluation of the particular computer architecture.

Finally, another architectural facet not addressed is technology, which appears to tran-
scend the above. Hardware architecture can (and should) survive technological advances that
would improve throughput. Software, too, can be designed so as to take advantage of improved
technology without requiring change.

39

L. W. LEMLEY

IV. EVALUATION

Preliminary to and necessary for the specification of a computer processor, is the ability to
evaluate such a computer. This section develops the quantitative criteria for evaluation. Hav-
ing done so, it is possible to understand how specification is related quantitatively to the data
requirements of the system that the computer/processor must support. Again, as in the archi-
tecture, there is a hardware and software aspect to this evaluation. The hardware evaluation
develops those factors that most represent throughput of an (EW/ESM) processor. These fac-
tors are then applied to the actual characteristics of some of the more common military and
commercial computers to evaluate their performance in an EW/ESM system. These indices of
performance, which are in fact absolute for the computer, are then compared with their
software performance as determined in the CFA/MCF studies. In the latter comparisons, the
software factors that contribute most to the EW/ESM processing are isolated by the hardware
performance index, and the software architectural criteria are quantitatively weighted for their
significance to EW/ESM.

Table IV-1 summarizes the various efforts at processor architecture evaluation, both
hardware and software. In some cases the figures are induced by cross-correlation as indicated.
The hardware column represents the ESM weighted average instruction-execution time. As
such it represents the absolute throughput of that architecture to process ESM data. The
smaller number implies a faster throughput. The next four columns are software architecture
related and evaluate the processor architectures for their efficiency in general military process-
ing. Again in these columns the smaller value indicates a more efficient processing architec-
ture.

A. Hardware

One goal in an ESM System design is to select a complement of components and tech-
niques that will maximize the rate at which the emitters in the environment can be processed
and identified without error. Various techniques were presented in the previous section to
increase the efficiency and the speed of an ESM processor. These techniques were generally
aimed at the designer who intends to specify or build a special purpose processor to do the ESM
processing job.

This section will address the factors that must be considered when a general purpose com-
puter is used to perform the processing task.

1. Main Computer

Since one of the most important goals of an ESM System is to increase the emitter collec-
tion and identification throughput rate, it follows that one of the most important criteria for
evaluating an ESM computer is the relative computation speed.

There are two diverse approaches that may be taken to evaluate the processing speed of a
microcomputer in the ESM environment. The first approach is to actually encode an entire
ESM Analysis Program in computer language, and then make a detailed analysis of the system
throughput. This approach gives a very accurate estimate of the throughput capability of a
computer, but it is very time-consuming and, therefore, very expensive.

40

UNCLASSMI ILD

'8L60 ' - D0 '8t07 = Ueaw
paseq Uo!ilnJisU!oJ!jW*

paseq Xpetuwuasg

paseq Ajjujniloa!'oJv.

M1AIUfl

11VMIV
U11!-

3B^!Un
sqgnoiing

13S
MUAIUn

£60°/o81b

%Zb
%b8
%CL

wl/aou
tUlO-d/UAON

ipJgaluI

WG
S8.0
LZ-I

(S/SpJOm aslnd) OJEA1JOS (W)II OSL_4d WI MMe M J'PJL'H oiniaolpqoiv JOssaSOJd
WIV mndq8no°jjql lioddnS VAJ I VA a JdD 11 pIIg) PaOe1 .jlindwoa j iainljt iup

_wl-_____ VAD__

(JOIfa3 ST Iamo-A)
sllnso-d uoiletTIV~a- I-Al olqvl

%IZ
(%6Z)
(%9tb)

%6S

DBZ91
L8LOZ
1906
S8tb

ZS8SI

b7L611
b7L611
Z6SOZ

q609SZ
89tbl
L1801
6LO11

9bL- I
90Z- 1

S19-0

ZLS-O
198-0

96-0
EL'O

8WIl

88-0
61-1

b90- I
f LZ-Z
£91 1
£91-1

669-0

L80-I
S6S O
5EL'O

98S I

899-Z

086-'
Ws9L I
9b7L-I

*610-Z

3E6Z-Z

8017*
*5cZ-Z
*Z81 Z

Ol-)IAfl/NV
S-ovlV

-DV.LV

t'l-)IAV/NV

IZ-)lAfl/NV
61-)lAfl/NV

SI -XAfl/NV
S-oViN
S-Z)V1V

9-VAV/NV
Z I -)AD/NV
OZ-mAfl/NV

OOL90

L-Akfl/NV

Il-dud
8Z-XAfl/NV

ZE£/
OLU/S

oo1'
00

1-
0

z

L. W. LEMLEY

The second approach is to estimate the system throughput based on a weighted average of
the computer's instruction execution times. This may be accomplished in the following
manner:

A representative ESM Analysis Program is selected and encoded, using an instruction set
that has been optimized for ESM processing. The total number of times that each instruction is
used is tabulated, taking into account all program loops and all repetitions of each subroutine.
This gives the percentage use or the weight factor for each instruction. When these weight fac-
tors are multiplied by the time required to perform each instruction on a given computer, a
quantitative rating of the relative throughput capability of that computer is achieved. The steps
required for this technique are outlined below.

1. Selected a representative ESM Processing System.

2. Chose the primary (most used) instructions (About 10 percent of the instructions
should perform over 50 percent of the processing.)

3. Determine the weight factor. (This is the precent of time that each primary instruc-
tion is used.)

4. Determine the time required to perform each primary instruction on the given proces-
sor.

On microprogrammable computers: microprogram the instruction set into the computer.

On regular computers: If a given instruction is not available, write a "macro" subroutine.

5. Multiply the time per primary instruction by the weight factor and sum for all primary
instructions to get the relative rating.

The disadvantage of this technique is that the various computers use different instruction
sets. Although most instructions in the various sets are equivalent to one another, some way
must be found to adjust for the variances.

There are no such difficulties when microprogrammable computers are compared, since
each computer can be microprogrammed to have the complete instruction set required for the
evaluation. Once the instructions have been microcoded, the total operating time for, each
instruction can be readily found by multiplying the number of microinstructions required by the
microinstruction cycle time.

The advantage of using the weighted instruction set approach is that, when the weights
are actually calculated for the various instructions, it is found that 10 percent of the instruction
set is used to perform about 60 percent of the processing, while the least-used 40 percent of the
instruction set does only about one percent of the processing. As a result, the infrequently
used instructions can be ignored without significantly affecting the rating of the processor.

A very good estimate of the ESM processor capability can, in fact, be made by considering
only the most-often used 19 percent of the instruction set. This produces a reasonably quick

42

NRL REPORT 8247

method for sorting through a large number of available computers and ending up with a few
top-rated machines that could then be subjected to the detailed evaluation discussed previously.

a. Determining ESM weight factors

For determining the instructions that are used most often in ESM processing and for
determining the weight factors, a "representative" ESM processing program is needed. The pro-
gram selected here is the EXCAP ESM Program, which is used to do the processing aboard the
EA-6B.

The best method for determining the weight factors is to estimate the relative number of
times each functional subprogram is run during the normal operation of the system. Then, the
number of times each instruction is used during normal operation of each subprogram is tabu-
lated, taking into account each repetition of each instruction within all the program loops- found
in that subprogram. Unfortunately, the number of times each subprogram is run, and the
number of times each of the loops is iterated within the subprogram, are strongly dependent on
the signals present in the environment at any given time. The detailed determination of the
instruction usage in a real operating system requires a great deal of statistical analysis of the
interaction of the system with the expected signal environment. To simplify the analysis, all
program loops and subprogram repetitions are ignored, and each instruction is counted only
once each time it appears in the EXCAP Program listing.

The EXCAP Program contains a total of 103 separate, distinct assembly language instruc-
tions (not counting the different addressing modes). These are listed in Table IV-2 in the order
of their frequency of usage.. It is apparent from the table that the first 21 instructions,
representing the most-used fifth of the instruction set, do about 84 percent of the total process-
ing, while the least-used 51 instructions, almost half of the instruction set, perform only 2.4
percent of the processing. Clearly, ignoring these last 51 instructions would have a negligible
effect on the evaluation of the relative processing speed of a given computer.

The main factors that determine computer throughput (such as the processor's microcycle
time, the memory access time, whether the computer uses pipelined architecture, etc.) have a
similar influence on the execution times of all the computer's instructions. Therefore, a good
estimate of the relative throughput of various computers can be achieved by considering only
those few instructions that do the bulk of the processing.

The 21 most-used instructions are shown in Table IV-3, along with their percentage con-
tribution to the total EXCAP program and the cumulative percentage contribution to the pro-
gram. The same data are plotted in Fig. IV-1 to provide a more readily understandable graphic
presentaton of the data.

The weights are simply the fraction of the number of times a given instruction is used out
of the total instruction set used for calculating weights. Therefore,

A We = N ' ~~~~~~~~(IV-i1)
If,
J=1

43

L. W. LEMLEY

Table IV-2 - Assembly Language Instruction
Usage in the EXCAP Program

44

Instruction I Frequency . Instruction [Frequency Instruction Frequency If instruction Frequency

LAH 2073 BM 73 BSM 11 CUTI I

MIC 1598 IOSE 72 RSPB 11 GPLM I

SAH 1569 MH 66 SNZ 11 NLM I

B 1043 SLF 57 ISPB 10 SEOM I

BSI 834 BOC 48 SNM 8 SEOP I

LXR 665 D 47 SS 7 SNP I

SA 500 MFTO 47 SZ 7 SP I

LA 477 XOR 46 LXI 6

MXR 454 SRAD 43 SM 6 Total

SBZ 447 BNM 40 SPLM 6 Statements 15,365

DIOC 416 LSW 40 COM 5

AUA 351 BP 39 XORS 5

SR 349 AN 38 BCN 4

SH 343 LXA 37 PMC 4

MSH 322 SRA 32 ALE 3

SXR .277 ALA 31 BSZ 3

SL 267 BSNZ 31 CUT2 3

AH 263 CVD 31 IOCR 3

BZ 228 AUE 28 MFTI 3

SHZ 224 ANS 27 BC 2

SHN 197 SQ 26 BSNM 2

BNZ 181 BNP 25 BSOM 2

M 171 AS 23 CUT3 2

ORS 138 OR 22 SE 2

A 119 USIN 21 SLCD 2

AUO 110 CVB 2 | XAS 2'

CH 95 ALO 18 BCON I

SLD 90 C 16 BOP ' I
S ' 87 IOCW 14 BSNP I
IORS 82 SLC 13 BSOP I

SRL 82 SRRD 13 BSP I

LQ 74 BO 12 CP I

I1 11

NRL REPORT 8247

Table IV-3 - EXCAP Program Instruction Usage
by Individual Instruction

.Instruction Frequency' Percent Comment
Percent

01. LAH 2073 13.49 13.5 Load accumulator half-word
02. MIC 1598 10.40 23.9 Modify instruction counter
03. SAH 1569 10.21 34.1 Store accumulator half-word
04. B 1043 6.79 40.9 Branch
05. BSI 834 5.43 46.3 Branch to subroutine
06. LXR 665 4.33 50.6 Load index register
07. SA 500 3.25 53.9 Store accumulator
08. LA 477 3.10 57.0 Load accumulator
09. MXR 454 2.95 60.0 Modify index register
10. SBZ 44.7 2.91 62.9 Skip if bit is zero
11. DIOC 416 2.71 65.6 I/O control.
12. AUA 351 2.28 67.9 "AND" upper half-word
13. SR 349 2.27 70.1 Shift right
14. SH 343 2.23 72.4 Subtract half-word
15. MSH 322 2.10 74.5 Modify storage 'half-word
16. SXR 277 1.80 76.3 Store index register
17. SL 267 1.74 78.0 Shift left
18. AH 263 1.71 79.7 Add half-word
19. BZ 228 1.48 81.2 Branch on zero
20. SHZ 224 1.45 82.7 Skip if half-word is zero
21. SHN 197 1.28 .83.9 Skip if half-word is negative
Note: Total: 103 instructions, 15,365 statements.

where

wI is the weight of the ith instruction.

fI is the frequency of the Ath instruction.

N is the number of instructions used in the evaluation.

The average time to execute an instruction is the weighted average of the individual
instruction execution times:

N
= S

i-l
(IV-2)

where tj is the time required to perform the ith instruction (in rnicroseconds).

The relative throughput rating of the -microcomputer is an estimate of the number of
instructions the computer can execute per second:

k I 1

I Wit'
i=1

(IV-3)

45

L. W. LEMLEY

FREQUENCY
OF USE CUMULATIVE

2000 FREQUENCY OF USE

Žj& CUMULATIVE FREQUENCY (P) 8

I 500

r 0 I - N N Ns 0 Ct r Nf Ns S

Cl: - CCt o .:1:t C XC N - D I V) X IC I-J1I

Fig. IV-1I-ESM program instruction usage by individual instruction

b. ESM ratings of computers

The relative ratings of computers were calculated with the aid of the above formulas,
using the 21 most-used instructons of the EXCAP instruction set. The results are shown in
Table IV-4.

The computers evaluated were the AN/AYA-6 (4wr) computer used in the EXCAP Sys-
tem, two versions of Applied Technology's ATAC computer, the AN/UYK-15, AN/UYK-20,
AN/UYK-23, and AN/AYK-14 computers [13,15-17,231.

.~~~~~~~~~~~~~~~~ V

The ATAC computers both use a 2900-type bit-slice microprogrammable microprocessor
with a basic cycle time of 250 ns. The computers are identical in every way, except for the
memory modules. The ATAC-S uses an MOS memory with a 1-ps cycle time (650-ns access
time), and the ATAC-F uses a bipolar, random-access memory with a 200-ns cycle time. The
AN/UYK-15 and AN/UYK-20 both use a split-memory architecture with a memory read/write
cycle time of 750 ns. The AN/UYK-28 memory is magnetic core with an access time of 1 pas,
but it uses special purpose, high-speed hardware to do some of the processing. since the
EXCAP instruction set used was written for the AN/AYA-6 computer, the other computers are
penalized slightly by sometimes having to perform several instructions for one EXCAP instruc-
tion. '

46

NRL REPORT 8247

Table IV-4 - Relative Ratings of Computers Based on the 21
Most-Used Instructions that do 84% of the Processing

Instruction Weight AN/AYA-6 ATAC-S* ATAC-F* AN/UYK-15J AN/UYK20¶ AN/UYK-28 AN/AYK-14t
LAH

MIC

SAH
B

BS]

LXR

SA

LA

MXR

SBZ

DIOC

AUA

SR

SH

MSH

SXR

SL

AH

BZ

SHZ

SHN

Factor

Tav
R

RIRI

0.1607

0.1239

0.1217

0.0809

0.0647

0.0416

0.0388

0.0370

0.0352
0.0347

0.0323

0.0272

0.0271

0.0266

0.0250

0.0215

0.0207

0.0203

0.0176

0.0173

0.0152

0.804

0.413

0.659

0.303

0.386

0.172

0.226

0.185

0.142

0.195

0.337

0.091

0.237

0.133

0.177

0.134
0.285

0.102

0.084

0.101

0.089

5.255
0.190
1.00

0.442

0.155

0.304

0.283

0.348

0.103

0.136

0.139

0.053

0.134

0.081

0.054

0.088

0.053

0.156

0.075
0.067

0.041

0.051

0.032

0.029

2.824
0.354
1.86

0.2210

0.0620

0.1521

0. Il I

0.1294

0.0258

0.0(679

0.0648

0.0132

0.0434

0.0565

0.0136

0.0678

0.015(

0.0719

0.0323

0.0518

0.0114

0.0176

0.0130

0.0114

1.2430
0.805
4.23

0.2411

0.1487

0.1826

0.1456

0.1068

0.0774

0.0873

0.0833

0.0528

0.0850

0.0969

0.0408

0.0894

0.0399

0.0938
0.0484

0.0683

0.0305

0.0317

0.0208

0.0182

1.7893
0.559
2.94

0.2411

0.1363

0.2069

0.1375

0.1876
0.0774

0.0931

0.0833

0.0528

0.1006

0.1454

0.0408

0.0461

0.0399

0.0988

0.05 16
0.0352

0.0305

0.0299

0.0190
0.0167

1.8705
0.535
2.81

0.402

0.124

0.304

0.129

0.233

0.114

(1.163

0.155

0.035

0.069

0.116

0.027

0.087

0.027

0.075

0.048

0.066

0.020

0.035

0.035

0.030

2.2940
0.436
2.29

0.2250

0.1735

0.2677

0.1052

0.1359

0.0929

0.0737

0.0888

0.0510

(0.0798

0.1131

0.0488

0.1653

0.0386

0.1125

0.0409
0.0642

0.0294

0.0308
0 0242

0.0213

1.9826
.504

2.65

*Related architecture, different memory speeds.
tRelated architecture.

Since the actual addressing modes used by the program were not considered, the timing
used for this evaluation was the one for indexed addressing (the most prevalent mode used).
Since this is the fastest addressing mode, the execution times listed are slightly faster than they
would have been if all the different addressing modes had been considered. Nevertheless, the
results of the comparison serve to illustrate the differences between the computers.

When using a partial instructon set to rate computers, there is always the question of
where to draw the line. Certainly 21 instructions are much easier to compare than 103 instruc-
tions, but the question remains whether fewer instructions would give a satisfactory comparison
with much less effort. Looking at Table IV-3, note that just six instructions perform half the
total programming. Therefore, an evaluaton of the operating speed of just these six instruc-
tions should give a good estimate of a computer's relative throughput.

The comparison of the six computers, based on the six instructions which do 50 percent
of the processing, is presented in Table IV-5. If only six instructions are used, the average
instruction execution time is somewhat underestimated. The reason for this is that some of the
most-used instructions run relatively fast-this is especially true of the MIC instruction-while
the slower, more complex instructions are used less often. Nevertheless, the difference

47

Table IV-5 - Relative Ratings of Computers Based on the Six
Most-Used Instructions That Do 50 Percent of the Processing

Instruction Weight AN/AYA-6 ATAC-S' ATAC-F AN/UYK-15 AN/UYK-20t AN/UYK-28 AN/AYK-14t PDP1 11/45*
_____ _______ ~~~~~~~~~~~~~~~~~Bipolar Memory Core Memory

LAH 0.267 1.34 0.734 0.367 0.401 0.401 0.668 0.374 0.280 0.742
MIC 0.205 0.68 0.256 0.103 0.246 0.226 0.205 0.287 0.123 0.232
SkH 0.202 1.09 0.505 0.253 0.303 0.343 0.505 0.444 0.212 0.562

i 0.134 0.50 0.469 0.168 0.241 0.228 0.214 0.174 0.121 0.192
ESI 0.107 0.64 0.575 0.214 0.177 0.310 0.385 0.225 0.161 0.281

LXR 0.085 0.28 0.170 0.043 0.128 0.128 0.187 0.153 0.089 0.236

Fac or
Tav 4.53 2.71 1.15 1.496 1.636 2.164 1.657 0.986 2.245
R 0.221 0.369 0.871 0.668 0.611 0.462 0.604 1.014 0.445

R.RR I 1.0 1.67 3.94 3.03 2.77 2.09 2.733 4.588 2.016

*Relawed architecture, different memory speeds.

tRelzted architecture.

00
r

1<

NRL REPORT 8247

between the rating based on six instructions and the rating based on 21 instructions is quite
small; using the six most-used instructions, which perform 50 percent of the processing, gives a
fairly good indication of the relative throughput of various computers.

c. Rating by instruction category

In most computers there is a large number of instructions that are executed identically
and which have identical execution times. In a. computer with a number of general purpose
registers, for example, the time required to load any given register is usually the same as the
time required to load any other register. Add and subtract instructions usually follow the same
signal flow paths and have the same execution times, the only difference being the setting of
the arithmetic logic unit. Similarly, logical expressions such as AND, OR, NAND, etc., usually
take the same time to execute.

A considerable saving of effort can be made in the weight-factor method of evaluating
computers if all the instructions that are executed identically are collected into instruction
categories, and the weights are calculated by category rather than by individual instructions.

Taking the EXCAP Program again as an example, the EXCAP instruction set of 103
instructions was arranged into 40 separate categories. As was the case with the individual
instructions, it was found that the most-used 10 instruction categories accounted for 79 percent
of the total processing done in the program. These 10 instruction categories are listed in Table
IV-6 in the order of the frequency of usage. The same data are illustrated in Fig. IV-2.

The six computers that were rated previously are rated again by instruction categories.
The ratings, shown in Table IV-7, are based on the 10 instruction categories which account for-
79 percent of the total processing. The computers were also compared, based on the top four
instruction categories, which account for 54 percent of the processing. The results are
presented in Table IV-8.

Table IV-6 - ESM Program Usage by Instruction Category,
Ranked by Frequency of Use

Instruction Category Frequency Cumulative Percent
1. Load Internal Register 3289 21.4
2. Store Internal Register 2372 36.8
3. Quick Branch 1598 47.2
4. Branch 1043 54.0
5. Branch to Subroutine 834 59.5
6. Register Add/Subtract 812 64.7
7. Branch on Condition 622 68.8
8. I/O Control 587 72.6
9. Register Logical Operation 541 76.1

10. Modify Internal Register 454 79.1

Total - 10 Categories 15,365 Instructions

49

L. W. LEMLEY

Fig. IV-2-ESM instruction usage by instruction category

Table IV-7 - Relative Ratings of Cumputers Based on
the Ten Most-Used Instruction Categories That

Do 79 Percent of the Total Processing

Cate- Weight AN/AYA-6 ATAC-S ATAC-F AN/UYK-15 Univac Rolm
gory AN/UYK-20 AN/UYK-28
LIR 0.271 1.355 0.745 0.373 0.407 0.407 0.678
SIR 0.195 1.076 0.536 0.268 0.293 0.332 0.488
QBR 0.132 0.440 0.65 0.066 0.158 0.145 0.132
BR 0.086 0.323 0.301 0.108 0.155 0.146 0.138
BSI 0.069 0.412 0.371 0.138 0.114 0.200 0.248

Reg A/S 0.067 0.335 0.134 0.038 0.101 0.101 0.068
BOC 0.051 0.244 0.147 0.051 0.092 0.087 0.102
1/0 0.048 0.500 0.120 0.084 0.144 0.216 0.173

Logical 0.045 0.150 0.090 0.023 0.068 0.068 0.045
MIR 0.036 0.145 0.054 0.014 0.054 0.054 0.036

Total 4.980 2.668 1.163 1.586 1.746 2.108
Rating 0.201 0.376 0.860 0.631 0.573 0.474
R/R, 1.00 1.87 4.28 3.14 2.35 2.36

50

FREQUENCY OF USE FREQUENCY OF USE CUMULATIVE t

4000 - Lull CUMULATIVE t - 80
INSTRUCTION TYPES RANKED

70 BY FREQUENCY OF USE

1. LOAD INTERNAL REGISTER

3000 60 2. STORE INTERNAL REGISTER

3. QUICK BRANCH

__ 50 4. BRANCH

5. BRANCH TO SUBROUTINE

6. REGISTER ADD/SUBTRACT

2000 40 7. 1/0 CONTROL

8. BRANCH ON CONDITION

30 9. HALFWORD LOGICAL OPERATION

10. MODIFY INTERNAL REGISTER

1000 20 TOTAL 40 CATEGORIES

10

n ~~~~~~~~~~~~~~~~~0
-

Table IV-8 - Relative Ratings of Computers Based on
the Four Most-Used Instruction Categories That

Do 54 Percent of the Processing Instructions

Cae- Weight AN/AYA-6 ATAC-S* ATAC-F* AN/UYK-15 AN/UYK-20t AN/UYK-28 AN/AYK-14t PDP-o 1/45m PDP- 1/45M

LIR 0.396 1.980 1.089 0.545 0.594 0.594 0.990 0.554 0.416 1.101
SIR 0.286 1.579 0.737 0.393 0.429 0.486 0.715 0.629 0.300 0.795
QBR 0.192 0.640 0.240 0.096 0.230 0.211 0.192 0.269 O.115 0.217
BR 0.126 0.473 0.441 0.158 0.227 0.214 0.202 0.164 0.113 0.180

Total 4.672 2.557 1.192 1.480 1.505 2.099 1.616 0.944 2.293
Rating 0.214 0.391 0.839 0.676 0.664 0.476 0.619 1.059 0.436
R/R 1 1.0 1.83 3.92 3.16 3.10 2.23 2.892 4.950 2.036

*Related architecture, different memory speeds.
tRelated architecture.

z
r,

00

(I IT mim3fn

L. W. LEMLEY

Comparing Tables IV-4 through IV-8 allows one to reach some conclusions about the
computer evaluation technique and the relative rating of computers:

* Tables IV-4 and IV-8 are expected to give the best indication of the relative rating of
the several computers. Certainly the rating value should be a close (but optimistic) estimate of
the processor's throughput.

* The throughput ratings are optimistic because the especially slow computer instructions,
which are not often used, are not included in the evaluation.

* The fewer the number of instructions included in the evaluation, the more optimistic
the ratings become. The relative ratings, however, do not change very rapidly when the size of
the data base is decreased.

Concerning the third item above, it should be noted that a remarkably good relative
evaluation of various computers can be made by comparing the timing of the Load Accumula-
tor (Load Internal Register) instruction alone. The relative ratings of the six computers based
on the LA instruction are:

AN/AYA-6 - 1.0 AN/UYK-15 - 3.33
ATAC-S - 1.82 AN/UYK-20 - 3.33
ATAC-F - 3.64 AN/UYK-28 - 2.0.

2. Preprocessor

The incoming data stream from the receiver is stored in a buffer, and signal characteristics
such as pulse width, amplitude, TOA, frequency, and intrapulse amplitude and phase are deter-
mined.

The data are then fed to a signal sorter circuit, where the pulses from previously identified
emitters and from unwanted emitters are removed from the data stream. The remaining sig-
nals, coming from interesting but unidentified emitters, are sent to a PRI processor and pulse
deinterleaver secton where the PRI of the unidentified emitters is determined. The PRI data,
are multiplexed with the other emitter data in the signal formatter to form a set of emitter
parameter words, which are then stored to await transfer to the main computer memory under
DMA control. The parameter comparison function of the signal sorter is performed in real
time at the maximum signal input rate from the environment. The input data rate could
exceed a half-million data words per second. The rapid processing required can be performed
only by dedicated hardware. Software processing for the signal sorting function with present-
day processing equipment is impractical.

a. Signal sorter

The parameter comparison function of the signal sorter is performed in real time at the
maximum signal input rate from the environment. The input data rate could exceed a half-
million data words per second. The rapid processing required can be performed only by dedi-
cated hardware. Software processing for the signal sorting function with present-day processing
equipment is impractical.

b. Flywheel tracker

The simplest adaptive tracking technique, requiring a minimum of software and comput-
ing time, is to maintain a running average of the previously measured values of the parameter

52

NRL REPORT 8247

estimates and a running average of the absolute value of the measured parameter deviations to
set the limits. The equations for the predictor-corrector functions are given as:

Sp(k+l) = Spk + k (IV-4)

D(k+l) Dk + N V-5)

&k+l =IM + M | +, (IV-6)

where
Sk - Spk is the error signal from the comparator

Dk is the main absolute deviation

N, Ml and M2 are powers of 2.

This simple adaptive algorithm can serve as a benchmark to estimate the maximum
signal-handling capabilities of various types of processors. Given N = 16, Ml = 4, and M2 =
-4 (corresponding to the 3o limit interval of a normal distribution), the algorithm can be per-
formed in 32 assembly language instructions per parameter, including the calculation of
Sm -S and the upper and lower limits. Two additional instructions are required to update the
TOA, so the entire update calculation (of three parameters) for one emitter requires 98 instruc-
tions, of which 32 instructions reference the memory.

The maximum pulse-to-pulse tracking capability for various processors is shown in Table
IV-9, based on an assumed PRF of 1000 pps for each emitter. The table shows the approxi-
mate number of emitters that can be tracked when the tracking is based on three emitter
parameters processed serially by a single processor. The number of emitters that can be tracked
is tripled if each parameter is processed in parallel by three parallel processors. If the proces-
sors are microprogrammed to do the entire processing sequence with only one assembly instruc-
tion, all individual instruction fetch cycles are eliminated and the processing speed is increased
by an additional factor of 3 or 4, depending on the type of memory used.

Table IV-9 - Signal Tracking Capability of Various Preprocessors
(Number of Emitters at 1000 Pulses per Emitter)

SOFTWARE

53

Processor Memory General-Purpose Microprogrammed
Series Parallel Series Parallel

NMOS NMOS 2 7 6 16
Bipolar Core 6 18 17 46
AN/UYK-20 10
Bipolar Fast NMOS 11 31 24 66
Bipolar Bipolar 17 50 30 85

HARDWARE

Processor Memory Serial Memory Parallel Memory
Processor____ [o _________________Series Parallel Series Parallel

TTL Core 36 94 133 400
TTL Low-power TTL 105 333 350 1052
TTL TTL 196 512 455 1395

L. W. LEMLEY

Table IV-9 shows that a fast general-purpose computer, such as the AN/UYK-20, would
spend its entire computing time in tracking only 10 emitters on a pulse-to-pulse basis, using the
simplest possible tracking algorithms and ignoring the processing required to perform the
flywheel function. It is quite obvious that the flywheel tracking function for any realistic

environment cannot be implemented with a general-purpose software processor (computer), if

the tracking has to be done on a pulse-to-pulse basis.

The designer has three options for implementing the processing required for a flywheel
tracker:

* If a large number of emitters must be tracked, the tracking algorithm should be imple-
mented in a hardwired logic processor.

* If the tracking is limited to a moderate number of emitters (under 30), and if simple
processing algorithms can be used, the tracking and flywheel functions can be performed by

parallel-organized dedicated, microprogrammed, bipolar processors that are specially designed to

perform the tracking function on a pulse-to-pulse basis.

* If the tracking algorithms used are to be complex, the processing algorithms cannot be
implemented on a pulse-to-pulse basis. In this case, it is best to perform the TOA update and

the flywheel tracking with simple hardwired logic, and to use a parallel-organized microcom-
puter to periodically update the tracked emitter parameter file. Emitter parameters do not nor-
mally change very rapidly, so a few updates per second should be sufficient to maintain track-
ing, within wider tolerance limits, for most emitters.

A more complete evaluation of preprocessors is presented in Appendix A.

B. Software

Having applied the quantitative criteria discussed in the previous section, the CFA com-

mittee evaluated the performance of the candidate architectures on these criteria to screen out
all but three or four of the architectures for further consideration in the test program and
software evaluation phases of the study [181.

1. Phase k

Clearly, the candidate architectures should be ordered relative to each of the 17 quantita-
tive criteria, and these independent orderings then studied to detect weaknesses and strengths
of the competing architectures. However, some summary measurements were ultimately
needed to assist the committee in its selection of the final architectures to undergo more inten-
sive study. Various thresholding and weighing schemes were proposed, but the particular
scheme described here was the scheme chosen by the CFA committee.

a. Relative weighting of criteria

Each voting organization of the CFA committee was given 100 points to distribute among
the various measures to indicate their relative importance to the organization. The weight for
criterion x, W[x], was defined as the total number of points given criterion x by all the voting

54

Table IV-10 - Quantitative Criteria Composite Weights*

Criterion Army Weights Navy Weights Weights Weights

VI 0.0412 0.0444 0.0433 0.039
VI 0.0438 0.0575 0.0529 0.000
P1 0.0425 0.0006 0.0612 0.045
P2 0.0387 0.0637 0.0554 0.022
U 0.0513 0.0644 0.600 0.051
CS1 0.0587 0.0375 0.0466 0.026
CS2 0.0675 0.0219 0.0371 0.090
CM1 0.700 0.0544 0.0596 0.014
CM2 0.0713 0.0319 0.0450 0.158
K 0.0500 0.0587 0.0558 0.000
BI 0.0450 0.0244 0.0313 0.128
B2 0.0200 0.0281 0.0254 0.063
I 0.0875 0.1419 0.1238 0.096
D 0.0912 0.1081 0.1025 0.048
L 0.0812 0.0969 0.0917 0.066
J1 0.0637 0.0626 0.0629 0.036
J2 0.0762 0.0331 0.0475 0.089

*After Ref. 18.

CFA organizations, divided by the total number of points handed out. The weights for the
quantitative criteria based on responses from 24 voting CFA committee members are given in
Table IV-10.

b. Normalization
When attempting to combine these quantitative measures into a composite measure there

were two problems:

* The measures are defined such that good computer architectures maximize some meas-
ures and minimize others. Specifically, the measures that a computer architecture should max-
imize are VI, V2, PI, P2 U, K, BI, B2, and D; whereas the measures that should be minim-
ized are CS,, CS2, CMI, CM2, I, L, JI, and J2.

The composite measure was a maximal measure and all minimal measures were
transformed to maximal measures by taking the reciprocal, X' = 1/X

* Measures that inherently involve large magnitudes were not necessarily more impor-
tant than smaller measures. For example, VI was on the order of 104 to 109, while K was
either 0 or 1.

To resolve this problem of differing scale, the values for the quantitative criteria were
normalized by dividing each value by the average value of the criterion over the set of nine
architectures. For eample, the nine measures for criteria Iare 64, 16, 48, 16, 128, 64, 169, 80,
32; the average value is 68.6, and the normalized measures are 0.93, 0.23, 0.70, 0.23, 1.87,
0.93, 2.47, 1.17, 0.47.

55

rr
..r

L. W. LEMLEY

Normalized measures have the attractive properties that they all lie in the range (0,M); all
have a mean across the set of M architectures of unity; and the standard deviation of the set of
normalized measures is in the interval (0,M05). We could have taken the normalization pro-
cess a step further and adjusted the spread of each measure so that the measure gave a standard
deviation of unity (or some other constant) across the set of architectures being evaluated. We
did not do this for all measures. Some measures were better "discrimination functions" than
others and we did not want in general to lose this information by further normalization. How-
ever, the committee agreed that it is important to normalize the standard deviation of some of
the measures; specifically, VI, V2, Pi, P2, and D were normalized to have a mean and stan-
dard deviation of unity. These measures may differ by several orders of magnitude between
candidate architectures, but the CFA committee did not feel that the utilities, as expressed by
the measures, differ by orders of magnitude.

c. Relative architecture scoring

In order to combine the individual measures, the committee used a simple, linear sum of
each normalized measure x scaled by its corresponding weighting coefficient W[xI. The
weighing coefficients have been defined so that they sum to unity and hence the composite
measure A is in fact a normalized measure with a mean of 1. Using the weights given in Table
IV-10 and the values of the quantitative criteria given in Section III, we get the composite
measures for the candidate architectures shown below in Table IV-11.

Table IV-11 - Software Ranking Based
on the Quantitative Criteria'

Score
Architecture Mltr E

Military EW
Interdata 8/32 1.68 2.235
PDP-11 1.43 2.293c
IBM S/370 1.36 2.182
AN/GYK-12 0.94 1.525
ROLM 0.92 2.108
B6700 0.91 2.019
SEL-32 0.86 2.019
AN/UYK-7 0.46 1.174
AN/UYK-20 0.44 1.746
*After Ref. 18.

There was some valid concern by members of the CFA committee about the role of the
weighting of the measures, the normalization of the measures, and the measures themselves in
the selection of finalists. However, upon detailed examination of the results we found that,
given the weights applied by the committee as an indication of the importance of idealized con-
cepts, the finalists selected are very insensitive to the exact details of the selection procedure.
Almost any reasonable methodology for measuring the key concepts quantitatively would select
the same finalists.

The scores for each of the candidate architectures are given for the absolute and quantita-
tive criteria, respectively. Only the IBM S/370 and PDP-1 1 architectures passed all the absolute

56

NRL REPORT 8247

criteria. The Interdata 8/32 architecture is not well defined with respect to trap handling, and
there remains some question as to whether it meets the requirements of the interrupt and trap-
handling criteria. The remaining six candidate architectures failed one or more of the absolute
criteria specified by the CFA committee. A weighting scheme was developed by the CFA com-
mittee for the quantitative criteria, and the composite scores of the nine candidate architectures
are given in Table IV-11. The quantitative criteria showed that the Interdata 8/32, PDP-11,
and IBM S/370 lead the other architectures by comfortable margins. These results were used
by the CFA committee to reduce the field of candidate architectures to three finalists -the
IBM S/370, the PDP-11, and the Interdata 8/32 - for more thorough evaluation.

d. EW weighting

The architectures evaluated by the CFA committee were correlated with their perfor-
mance as EW/ESM processors in Section IV.A.1. These results were then correlated to obtain
the relative weights of the CFA's architectural elements from the EW/ESM performance
aspect. Table IV-10 contains the relative weights of those architectural elements (as described
in Section III) that most contribute to optimized EW/ESM performance.

2. Phase 1

While there are many useful parameters of a computer architecture that can be deter-
mined directly from the principles of operation manual, the only method known to be a realis-
tic, practical test of the quality of a computer architecture is to evaluate its performance against
a set of benchmarks, or test programs [211. In the previous sections, absolute and quantitative
criteria were presented that the CFA committee felt provided some indication of the quality
of the candidate computer architectures. It is important to emphasize, however, that
throughout the discussion of these criteria it was understood that a benchmarking phase would
be needed and that many of the quantitative criteria were being used to help construct a reason-
able "prefilter" that would help to reduce the number of candidate computer architectures from
the original nine to a final set of three or four. As described in the previous section, this initial
screening in fact reduced the set of candidate computer architectures to three: the IBM S/370,
the PDP-11, and the Interdata 8/32.

This section presents the evaluation of the Computer Family Architecture (CFA) candi-
date architectures via a set of test programs. The measures used to rank the computer architec-
tures were S, the size of the test program, and M and R, two measures designed to estimate the
principal components contributing to the nominal execution speed of the architecture. Descrip-
tions of the twelve test programs and definitions of the S, M, and R measures are included
here. The statistical design of the assignment of test programs to programmers is also dis-
cussed. Each program was coded from two to four times on each machine to minimize the
uncertanty due to programmer variability. The final results show that for all three measures (S,
M, and R) the Interdata 8/32 is the superior architecture, followed closely by the PDP-l1, and
the IBM S/370 trailed by a significant margin.

a. Benchmark test programs

The concept of writing benchmarks or test programs is not a new idea in computer perfor-
mance evaluation and is generally considered the best test of a computer system. For the pur-
pose of the CFA committee, a test program was defined to be a relatively small program (100 to

57

L. W. LEMLEY

Table IV-12 - Phase 1 Individual S Measuret

Computer Architecture
Test Program S/370 | Interdata

IBMS/30 IPDP-11 1 83

A. Priority T/O Kernel

B. FIFO Kernel T/O

C. I/O Device Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Integration

H. Linked List Insertion

L Quicksort

J. ASCII to Floating-Point

K. Boolean Matrix

L. Virtual Memory Exchange

216[31
742[141
286[121
372[21
465[131
308[171
192[11

252[171
454[111
454[9]*

104[11

092 [41

154[1111

144[91
122[121
116[171

202[21
2381171

144[4]
228[13]
176[141
340[61
407 [5]
256[4]
441[51
241[71
224[3]
267[61
284[8]
292[3]
382[71
414[81

048[41
32[141
032[12]
133 [21

124[31
246[13]
132[11

216[171
766[111
766[91*

088[1]
136[111
090[17]
068 [31

078[91
086[121

.184[21
172[31
248[171

162[131
182[141
194[17]
940[61
1534[51
164[51
208[71
172[17]
174[41
232[61
284[81
254[41
250[71
37R [81

026[121
26[171
028[141
144[21
142[41
098[131
176[11

241 [171
550[111
402[91
402 [171At
120M11

144[31
168[111
082[41
090[91
098[11IA
098[121
166[121
158[41
232[11]A
190[171
148[31
198[13]
164[141
426[61
524[51
206[31
238[51
204[71
156[17]
130[61
180[81
328[171
310[71
334[8]

*Incomplete.

tFrom Ref. 21.

*A = Auxiliary data.

58

, .
. . .,

NRL REPORT 8247

Table IV-13 - Phase 1 Individual M Measuret

Computer Architecture
Test Program IBM 1 Interdata

IMS/370 PDP-1I1 8/32

A. Priority I/O Kernel

B. FIFO I/O Kernel

C. I/O Device Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Integration

H. Linked List Insertion

I. Quicksort

l. ASCII to Float-Point

K. Boolean Matrix

L. Virtual Memory Exchange

000212[31
000354[121
000522[141
000424[21
000920[131
000434[171
000328[1]
000304[171
010810[111]
010810[91*

000854[1]
000940[41
001724[111
000378[91
000358[121
0002381171

141074[21
228056[171

000228[41
000304[131
OQ0264[141
001024[51
001008[61
000241[41
000437[51
000433 [71

000832[31
000909[61
000896[81
000532[31
000532[71
00064518]

000028141
000024[121
000024[141
000208[21
000188[31
000296[131
000309[1]
000290[171
014746[111
014746[91*

000730[1]
000770[111
000520[171
000162[31
000178[91
000152[121

102662 21
094960[31
176960[171

000204[131
000218[141
000240[17]
014960[51
002756[61
000292[5]
000275 [71
000283[171
000582[4]
000776[61
000932[81
000541[41
000566[71
000945181

000028[12]
000032[141

000192[21
000226[41
000114[131
000426[1]
000279[171
010886[111
008560[91*
08560[171A
000958[1]
001044[31
001021[111
000222[4]
000176[91
000296[1 1A
000276[121
100062[21
100042141
117984[11]A
138414[171
000224[31
000260[131
000238[14]
002968[51
001732[61
000363[31
000423[5]
000334[71
000384161
000566[81
000640[171
000721[71
0010581[8
0007801171

*Incomplete.

tFrom Ref. 21.

tA = Auxiliary data.

59

L. W. LEMLEY

- Phase 1 Individual R Measuret

Test Program Computer Architecture
IBM S/370 PDP- 11 Interdata_ . I . . _ 8/32

A. rriority 1/u Kernel

B. FIFO I/O Kernel

C. I/O Device' Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Integration

H. Linked List Insertion

I. Quicksort

J. ASCII to Floating-Point

K. Boolean Matrix

L. Virtual Memory Exchange

*Incomplete. I

tFrom Ref. 21.
*A = Auxiliary data.

000094/131
0002146[121
0003052[14]
0002222[2]
0004583[13]
0002226[17]
0001789[1]
0001729[171
0062904[111]
0062904[9]*

0005603[1]
0005549[4]
0010239[111

0001674[9]
0001542[12]
000012212[171

0845966[2]
1203952[17]-

0000950[4]
0001741[13]
0001137[14]
00076181]
000754016]
0001330141
000257815]
0002226[7]
0005576[31
0005661[61
0005277[81
0001931[3]
0001934[7]
0002529[8]

000010814]
0000106[12]
0000106[141
0001096[2]
0000810[31
0001419[131
0001480[1]
0001416[171
0070512[11]*
0070512[9]*

0004348[1]
0004326[111]
0003091[171
0000832 [3]
0000917[9]
0000801[121

724372[2]
0665529[31
1012727[171

0001025[131
0001087 [14]
0001210[17]
0074278[51
0015205[6]
0001726[51
0001512[71
0001716[17]
0003180[41
0003905[61
0004446[8]
0002616[4]
0002911[71
0004226[8]

000166[12]
000166[17]
000214[141
000698 [21

000937[41
000482[131
001902[1]
0001391[17]
060446[111
05004519]
0500451[17]At
005885[1]
00313913]
005767[111]
000891[9]
000887[9]
001167[121
001281 [11A
696085[21
696049[41
777846[111A
874923 [171
000834[31
0001049[13]
000965[141
013315[51
009609[6]
002100[31

002270[5]
001897[17]
002216[61
0003154[8]
003945 [171
00253917]
004573[81
0026431171

60

Table IV-14

A T_:__:.. T - Z__AAA~e -...... I --- ----

NRL REPORT 8247 c

500 machine instructions) selected as being representative of a class of programs. The CFA
test program evaluation study had to address the central problems facing conventional bench-
marking studies:

m.

* How is a representative set of test programs selected?

* Given limited manpower, how are programmers assigned to writing test programs in
order to maximize the information that can be gained?

Time is the natural measure of how quickly a test program can be executed. However, a
computer architecture does not specify the execution time of any instruction and so an alterna-
tive to time must be chosen as a measure of execution speed.

The rationale of the test programs is explained below, together with the particular archi-
tectural features to be tested:

* I/O kernel, four priority levels, requires the processor to field interrupts from four dev-
ices, each of which has its own priority level. While one device is being processed, interrupts
from higher priority devices are allowed.

* I/O kernel, FIFO processing, also fields interrupts from four devices, but without con-
sideration of priority level. Instead, each interrupt causes a request for processing to be
queued; requests are processed in first-in, first-out (FIFO) order. While a request is being
processed, interrupts from other devices are allowed.

* I/O device handler processes application programs requests for I/O block transfers on a
typical tape drive and returns the status of the transfer upon completion.

* Large FFT computes the fast Fourier transform of a large vector of 32-bit floating-point
complex numbers: This benchmark exercises the machine's floating-point instructions, but
principally tests its ability to manage a large address space. (Up to half a million bytes may be
required for the vector.)

* Character search searches a long character string for the first occurrence of a potentially
large argument string. It exercises the ability to move through character strings sequentially.

* Bit test, set, or reset tests the initial value of a bit within a bit string, then optionally
sets or resets the bit. It tests one kind of bit manipulation.

* Runge-Kutta integration numerically integrates a simple differential equation using
third-order Runge-Kutta integration. It is primarily a test of floating-point arithmetic and itera-
tion mechanisms.

* Linked list insertion inserts a new entry in a doubly linked list. It tests pointer manipu-
lation.

* Quicksort sorts a potentially large vector of fixed-length strings using the Quicksort
algorithm. Like FFT, it tests the ability to manipulate a large address space, but it also tests the
ability of the machine to support recursive routines.

61

L. W. LEMLEY

* ASCII to floating point converts an ASCII string to a floating-point number. It exer-
cises character-to-numeric conversion.

* Boolean matrix transpose transposes a square, tightly packed bit matrix. It tests the
ability to sequence through bit vectors by arbitrary increments.

* Virtual memory space exchange changes the virtual memory mapping context of the
processor.

b. Measure of performance

Very little has been done in the past to quantify the relative (or absolute) performance of
computer architectures, independent of specific implementations. Fundamentally, performance
of computer is measured in units of space and time. The measures that were used by the CFA
Committee to measure a computer architecture's performance on the test programs were S, M,
and R, as follows:

Measure of Space

S: Number of bytes used to represent a test program.

Measures of Execution Time:

M: Number of bytes transferred between primary memory and the processor during the
execution of the test program.

R: Number of bytes transferred among internal registers of the processor during
execution of the test program.

All measures described in this section are in units of 8-bit bytes. A more fundamental
unit of measure might be bits, but a number of annoying problems exist with respect to carry
propagation and field alignment that make the measurement of S, M, and R in bits unduly
complex. Fortunately, all computer architectures under consideration by this committee are
based on 8-bit bytes (rather than 6-, 7-, or 9-bit bytes) and hence the byte unit of measurement
can be conveniently applied to all these machines.

1. S measure. An important indication of how well an architecture is suited for an appli-
cation (test program) is the amount of memory needed to represent it. We define Si.;jk to be
the number of 8-bit bytes of memory used by programmer i to represent test program j in the
machine language of architecture k. The S measure includes all instructions, indirect addresses,
and temporary work areas required by the program.

The only memory requirement not included in S is the memory needed to hold the actual
data structures, or parameters, specified for use by the test programs. For example, in the
Fourier transform test program, S did not include the space for the actual vector of complex
floating-point numbers being transformed, but it did include pointers used as indices into the
vector, loop counters, booleans required by the program, and save-areas to hold the original
contents of registers used in the computation.

62

NRL REPORT 8247

2. M measure. The particular measure of primary-memory/central-processor transfers
used by the CFA Committee is called the M measure. Miik is the number of 8-bit bytes that
must be read or written from primary memory by the processor of computer architecture k dur-
ing the execution of test program j as written by programmer i.

3. R measure. The M measure does not capture all that is be known about the perfor-
mance potential of an architecture. A second measure of architecture performance is defined:
R-register-to-register traffic within the processor. Whereas the M measure looks at the data
traffic between primary memory and the central processor, R is a measure of the data traffic
internal to the central processor. The fundamental purpose for having the M and R measures
was to enable the CFA committee to use M and R to measure a processor's execution rate. An
additive measure, aM + bR, was used where the coefficients a and b can be varied to model
projections of relative primary memory and processor speeds. An unfortunate but unavoidable
property of the R measure is that it is very sensitive to assumptions about the processor's inter-
nal register and bus structure; in other words, the "implementation" of the processor.

C. Performance Results

In the following are actual measurements for each test program written for the CFA pro-
gram. The unit of measurement for all data is (8-bit) bytes. The number in brackets following
each measurement is the identifying number of the programmer who wrote and debugged the
particular test program. Data followed by an A are auxilary data points. Data followed by a *
were associated with programming assignments not completed in time to be used by the CFA
Committee and the pseudovalues shown were used in the analysis of variance calculation.
(When the actual data points became available at a later date, insertion of the real values for
these programs had no significant effect on the results.) 1211

The statistical analysis of the above results was carried out in three phases. The average
performance of the three architectures is given in Table IV-15. From the point of view of
EW/ESM, the memory activity M is the best indicator of EW/ESM performance, since memory
speed equates directly to throughput speed.

Table IV-15 - Average Performance of the Architectures
on the 12 Test Programs*

Architecture S M R EW

PDP-11 1.00 0.93 0.94 2.293c

IBM S/370 1.21 1.27 1.29 2.182

Interdata 8/32 0.83 0.85 0.83 2.235

*After Ref. 21.

3. Phase 2

In much the same manner as Phase 1 of the previous section, a study was undertaken in
support of the Military Computer Family (MCF) program to determine the relative efficiency of
the following computer architectures: AN/UYK-7, AN/UYK-19, AN/UYK-20, AN/GYK-12,

63

L. W. LEMLEY

and PDP-11. (The PDP-11 was recommended as a future standard military architecture for
military applications in August 1976 by the Army/Navy Computer Family Architecture (CFA)
Committee Phase I study. The other four architectures are the ones in most common use
today in Army and Navy applications.) 1241

From a set of 160 test programs writte& by 16 different programmers, the following meas-
ures were found (lower is better):

Execution Efficiency
Program Size Memory Processor

Activity Activity
(S measure) (M measure) (R measure)

PDP-1l (0.82) AN/UYK-20 (0.73) AN/UYK-20 (0.77)
AN/UYK-20 (0.89)
AN/UYK-19 (0.93) PDP-1l (0.88) AN/GYK-12 (0.96)

AN/GYK-12 (0.96) PDP-11 (1.03)
AN/GYK-12 (1.14) AN/UYK-7 (1.12)
AN/UYK-7 (1.30) AN/UYK-19 (1.18) AN/UYK-19 (1.17)

AN/UYK-7 (1.38)

The architectures are clustered into groups based on which gaps in performance were statisti-
cally significant at a practical level (i.e., the gaps in performance were statistically significant at
the 95% confidence level). The numbers in parentheses give the average performance for an
architecture in this study. For example, a machine with an S measure of 0.80 would require
only 80% of the memory required by the average of these machines, while one with an S meas-
ure of 1.50 would require 50% more memory than the average.

The results of this study were correlated with the processor EW performance of the previ-
ous sections to obtain a weighted indicator of the relevance of these factors and benchmarks
applied to EW/ESM.

The methodology used in this phase was based on a similar previous Phase I work for the
CFA Committee in comparing alternative commercial architectures. However, several
significant improvements have been made in the methodology of this second phase. Briefly,
the differences are as follows:

* The set of test programs has been improved to be more uniform in size and wider in
scope; the individual tests are more precisely directed at architectural features.

* The dynamic program measures have been extended to provide information on imple-
mentability over a range of hardware parallelism, as well as hardware speed.

* The processor activity measure has been completely redefined. The original R measure
was found to be highly correlated with the original memory activity measure, and thus provided
little additional information. It also failed to capture the inherent cost differences between sim-
ple and complex processor computations.

64

NRL REPORT 8247

* The method of computing program measures has been automated.

* A superior statistical design was chosen that allowed more significant results to be
extracted from the program measures.

A set of test programs was selected to test significant applications or capabilities of the
architectures. Each program was described in a Program Description Language (PDL) that
specified the algorithm to be used but left unspecified the exact machine level implementation
of the algorithm. All test programs were designed to be writable by a test programmer in one
or two pages of machine code.

Sixteen test programmers were selected to write test programs for the five MCF architec-
tures. Each programmer was assigned two programs to be implemented on all five architec-
tures. The assignment was done according to a statistical design that attempted to separate
architecture effects from programmer and program effects. The programs coded by the test
programmers -were executed using a standard set of test data on an ISP simulator written for
each machine. The Instruction Set Processor (ISP) simulator gathered statistics on the execu-
tion of the programs. Measures of efficiency computed from these statistics were used in an
analysis of variance to determine the relative efficiency of each architecture.

a. Benchmark Test Programs

The set of test programs used in the MCF evaluations was constrained by budget limita-
tions and the statistical use to be made of .the results. Validity of the statistical results required
that the programs be a representative set of the kind of operations performed by military com-
puters. Along these lines, it was also considered important that the programs test all significant
aspects of the architectures. These considerations would indicate the desirability of a large set
of test programs. However, the analysis required that each program be coded frequently
enough to allow significant statistical inferences to be made. Thus budgetary constraints forced
a tradeoff between number of tests, length of test, and frequency of coding.

A set of 16 test programs divided into four categories was ultimately selected for the
evaluation. The basis of the individual selections was twofold. First, a list of important archi-
tectural features was assembled. Features to be tested were

Interrupt handling and 1/0
Executive/user interaction
Control and branching constructs
Integer arithmetic
Floating-point operations
Character and bit processing
Addressing mode flexibility
Ability to address large data structures.

Second,,a set of significant tasks to be performed were considered:

Real-time processing
Handling multiple processes
Communications processing

65

L. W. LEMLEY

Display processing
Fast table lookup
Packing and unpacking data
Sorting
Manipulation of list structures
Minimal difference search
Character processing.

The benchmark programs selected to measure the above tasks are described below
(together with its EW/ESM relevance; higher is better):

* TTY Input Driver (0.457). This is a driver for a simple interrupt-driven device.
Important characteristics are a low transfer rate (bytes per interrupt), minimal latency from
interrupt signal to response, and high flexibility in the nature of the response. These charac-
teristics preclude the use of a typical hardware channel (DMA transfer). The test is typical of a
varity of slow-speed devices.

* Message Buffering and Transmission (0.684). A high-speed DMA device is used to
transmit data buffers. The driver's concern is to buffer transmission requests and maintain as
high a transfer rate as possible. The computer performs no processing on the data transmitted.
This test exercises the channel (DMA) I/O structure of the architecture.

* Multiple Priority Interrupt Handler (0.189)., Interrupts from four devices of unequal
priority are directed to the appropriate device handlers. The I/O requests thereby completed
are added to the executive's queue so that the appropriate actions may be taken relative to the
requesting process. The test performs only the interrupt fielding and request queueing func-
tions. The model is applicable to a variety of real time applications.

* Virtual Memory Exchange (0.028). A protected subroutine facility is provided by a pair
of executive calls. The test program performs the memory space and register changes necessary
to transfer control. The test measures supervisor call and context swap costs.

* Scale Vector Display (0.074). Given a display list and a scale factor, the program pro-
duces a scaled display list. The program is a test of integer manipulation and fixed-field extrac-
tion.

* Array Manipulation-LU Decomposition (0.192). Solution of simultaneous equations
using standard Gaussian elimination. Floating-point operations, multiple indexing, and nested
interation capabilities are tested.

* Target Tracking (0.295).. Given the coordinates of an object, find the closest element
to it in a given table. This tests floating-point comparison as well as the costs of performing
contorted array searches.

* Digital Communications Processing (0.306). This program directs messages to various
output lines depending upon their destinations. Fast search and block move capabilities are
tested.

66

NRL REPORT 8247

* Hash Table Search (0.492). The problem is to locate the position a key would occupy
in a hash table. This involves address and integer manipulations and indexing.

* Linked List Insertion (0.437). Given a doubly linked list in ascending order, insert a
new entry. The test involves pointer extraction and following.

* Presort on Large Address Space (0.243). Manipulate the elements of a very large, ran-
domly ordered array to form a partially ordered binary tree. The array is large enough (order 1
Mbyte) to require manipulating the page (segment) address registers to access it. This is a test
of the cost of randomly addressing a very large address space.

* Autocorrelate on Large Address Space (0.554). This test is complementary to test the
Presort on Large Address Space. An autocorrelation is performed on an an array large enough
to require manipulation of page registers. Floating-point and sequential access of large address
spaces are tested.

* Character Search (0.229). A character string is scanned while looking for an occurrence
of a specified string. This program tests character accessing abilities.

* Boolean Matrix Transpose (0.339). This program takes a bit matrix and reflects it
about its diagonal. Ability to access and move bits is tested.

* Record Unpacking (0.124). This test program takes an array of tightly packed bit fields
and a format string indicating the size of each field and unpacks the fields into another array.
The ability to do general field extraction is tested.

* Vector to Scan Line Conversion (0.208). A list of vectors is converted to an equivalent
scan line display. This tests bit addressing capabilities as well as some integer manipulations.

b. Measure of performance

As in the Phase 1 study, the performance of an architecture on the test programs is meas-
ured by the efficiency of the test programs written for that particular architecture.
Quantification of the concept of an efficient program allows the comparison of different archi-
tectures independently of their implementation. The measures used by the MCF evaluation are
such a quantification in terms of space and time.

An efficient program is one that requires a small amount of storage and executes in a
short amount of time. Three classes of measures were used to capture this concept. The S
measure is a measure of the storage requirements of a program, and the M and R measures are
measures of execution efficiency.

(1). S Measure: Test Program Size. The S measure is defined as the number of bytes of
memory required by the test program. This includes locals allocated on the stack as well as
own variables. For the Interrupt and Trap test programs, this also includes memory allocated to
interrupt vectors used by the test program. Excluded from the S measure are the parameter
block and parameters passed to the routine as well as any global data structures to which the
routine has access. This was done to avoid adding a fixed overhead of significant size to each S
measure.

67

L. W. LEMLEY

A single exception to the parameter exclusion principle was made. Test Program 14,
Record Unpack, allowed the programmer to chose a representation for the format string.
Optimal packing would cause each entry in this string to occupy 6 bits. Because a trade-off
decision between packing efficiency and accessing difficulty was allowed, the size of this parame-
ter was included in the S measure for this program.-

For those test programs in which multiple calls were measured, the stack usage could
conceivably vary between calls. The S measure in this case is defined as the maximum of the
individual S measures.

(2).'' M Measure: Memory Activity. An important parameter of a computer system is the
bandwidth of its processor/memory interface. Thus a significant determinant of program exe-
cution speed is the number of bytes the program transfers to or from memory. The M measure
is a measure of memory activity.

The M' measure is defined as the number of bytes read or, written to main memory during
the execution of the test program. Specifically, counting begins at the 'first instruction of the
routine and ends when a return is exectuted. No activity of the calling routine is counted.

Three M measures were computed. These M measures reflect differences in the width of
the memory (and therefore the minimum number. of bytes that can be read from a given
address). They are referred to as M8, M16, and M32- corresponding to 1-, 2, and 4-byte-wide
memories, respectively.

Certainly, no one would implement the 16-bit machines with 32-bit memories without
making some attempt at reasonable utilization of the'wider memory. Thus, two adjustments to
the M32 definition for the 16-bit machines were made. First, it is assumed that all multiple-
word references (double integer, floating point, etc.) were aligned on full-word boundaries.
This is of course standard practice in most 32-bit machines. Second, the sequential nature of
instruction fetch makes it highly desireable to have a 32-bit instruction buffer. Otherwise a
sequence of 16-bit instructions would result in each instruction being fetched twice as the low
and high halves of the 32-bit word were.executed. This implementation was modeled by allow-
ing instruction fetches to fetch 2 bytes, while all other memory accesses must use 4-byte words.
These two adjustments define the 32-bit memory system assumed by M32 for the 16-bit
machines.

(3). R-Measure: Processor Activity. The activity of the processor during the execution of
an instruction is simply the computation of a function. Complexity theory indicates that the
cost of this computation can be measured by many step-counting functions. Consideration of
step-counting functions applicable to digital implementations fails to restrict significantly the
range of possible cost functions. (Consider two processors, one which is bit serial, the other
uses table lookup in a read-only memory (ROM). Addition is expensive in the former, while
all functions are of equal cost in the latter.) It is therefore necessary to choose a cost function
that represents an implementation that is reasonable, given the current state of the art. This is
the approach taken in the MCF study.

The R measure for a program is defined as the sum of the R measures for each instruc-
tion executed. The R measure of an instruction is defined as the number of CPU cycles

68

NRL REPORT 8247

required to execute it using a canonical CPU. As for the M measure, no driver activity was
included.

Two R measures were computed. One assumed a 16-bit-wide ALU, as would be used for
low-performance versions of the AN/UYK-7 and AN/GYK-12 and most versions of the PDP-
11, AN/UYK-19, and AN/UYK-20. The other assumed a 32-bit ALU, as would be used for
high-performance versions of the -11, -19 and -20, and most versions of the -7 and -12. These
two measures are referred to as R16 and R32.

c. Performance results

The raw scores from the Phase 1 study are shown in Tables IV-16-IV-18 together with
the individual architectural EW/ESM rating.

Table IV-16 - S-Measure Results (EW Relevance= 0.275)*

Machine PDP-11 AN/UYK-20 AN/UYK-7 AN/GYK-12 AN/UYK-19
Prog/Pgmrn

0/7 94 164 228 148 130
0/8 88 142 236 168 156
1/5 96 162 246 164 98
1/10 118 160, 304 184 120
2/6 214 734 472 264 238
2/9 202 440 428 192 232
3/4 306 160 252 138 220
3/11 254 196 272 140 196
4/3 280 242 348 312 270
4/12 240 , 174 256 316 258
5/1 156 150 256 212 226
5/14 200 244 420 392 288
6/2 274 298 376 360 374
6/13 258 276 436 .364 370
7/0 54 68 176 . 116 64
7/15 96 86 136 128 122
8/0 88 102 172 152 94
8/15 120 136 180 212 114
9/2 144 178 196 256 122
9/13 156 132 204 192 132
10/1 224 202 248 244 226
10/14 230 260 348 324 264
11/3 250 292 320 352 300
11/12 338 226 ' 352 356 360
12/4 90 116 162 580 140
12/11 86 120 160 236 128
13/6 182 206 320 308 208
13/9 230 198 368 384 246
14/5 198 170 246 264 290
14/10 348 204 ' ' 302 170 294
15/7 278 256 444 292 282
15/8 326 256 512 440 402

EW Rating 2.293 1.746 1.74 1 1.525 2.108
(Lower is better)

After Ref. 24.

69

Table IV-17 - M-Measure Results (EW Relevance = 0.150)*
Word Size M[81 M1161 M1321

Prog/Pga r PhP-Ii AN/UYK-28 AN/UYK-7 AN/GYK-12 AN/UYK-19 PDP- I1 AN/UYK-20 AN/UYK-7 AN/GYK-12 AN/UYK-19 PDP-11 AN/UYK-20 AN/UYK-7 AN/GYK-12 AN/UYK-19
0/7 2360 1088 7610 3524 4206 2512 1164 7782 3578 4206 3554 1528 7872 3904 6020
0/8 2294 1088 7568 3097 4052 2370 1164 7700 3152 4052 3506 1530 7700 3482 5886
I/5 252 354 572 434 220 258 354 572 434 220 366 504 572 444 302
1/10 350 418 884 576 326 350 418 884 576 326 488 574 884 588 472
2/6 620 1268 1312 528 502 620 1268 1312 528 502 880 1638 1312 528 726
2/9 460 872 1340 364 876 466 878 1340 364 876 632 1250 1340 416 1274
3/4 618 496 512 188 424 620 496 512 188 424 986 874 512 220 660

3/11 666 576 611 190 574 668 576 618 190 574 1014 974 620 .216 972
4/3 2598 1422 3144 1804 4010 2598 1422 3144 1804 4010 3370 1546 3144 1808 5342

4/12 2084 1064 1670 1716 2906 2084 1064 1880 1716 2906 2550 1256 1880 1716 3760
5/1 794 750 1656 964 1858 794 750 1656 964 1858 1094 1068 1656 964 2250

5/14 2018 1752 5396 4660 2978 2018 1752 5396 4660 2978 2634 2198 5396 4660 3554
6/2 2644 2848 5456 3288 4472 2654 2848 5456 3288 4472 3595 3618 5456 3368 4884

6/13 2610 2370 4592 3340 3778 2610 2370 4592 3340 3778 3364 2982 4592 3380 4118
7/0 960 966 2214 1840 1754 960 966 2214 1840 1754 1428 1432 2236 1868 2202

7/15 1510 1088 2414 2114 2622 1510 1088 2414 2114 2622 1948 1530 2416 2120 4300
8/0 898 818 1492 1246 838 902 818 1492 1246 838 1216 1028 1544 1324 1098

8/I5 1140 1022 2232 1708 986 1140 1022 2232 1708 986 1548 1250 2232 1708 1372
9/2 220 278 396 344 230 220 278 396 344 230 286 370 396 364 294

9/13 282 210 372 304 256 282 210 372 304 256 376 288 372 304 344
10/I 2500 1376 1468 1992 2542 2500 1376 1468 1992 2542 3202 1660 1468 1992 2986

10/14 3042 1948 3864 3356 3226 3042 1948 3864 3356 3226 3696 2144 3864 3364 3694
1113 11838 9100 7000 10196 14040 11838 9100 7000 10196 14040 14819 11094 7000 10196 16220
11112 6880 4170 5892 5216 9832 6880 4170 5892 5216 9832 8998 5420 5892 5216 11606
12/4 762 992 2529 1636 2366 832 1062 2808 1660 2364 1098 1340 2808 1732 3000
12/lI 842 1370 3041 2668 2630 912 1440 3320 2668 2630 1218 1868 3320 2872 3602
13/6 1490 882 2492 1896 1936 1540 882 2492 1896 1936 1918 1044 2492 1996 24361319 700 540 1520 1066 916 700 540 1664 1066 916 926 652 1664 1144 1242
14/5 769 516 950 736 1312 782 522 968 736 1312 1008 626 968 760 1796
14/10 2082 660 846 676 2488 2088 660 864 676 2488 2370 784 864 700 2936
15/7 4404 3666 5818 4962 7702 4404 3666 5818 4962 7702 5732 4644 5904 5172 945815/8 7046 5004 8442 5686 8236 7046 5004 8442 5686 8236 8870 6234 8532 6100 10536

EW Rating 2.293 1.746 1.174 1.525 2.108 2.293 1.746 1.174 1.525 2.108 2.293 1.746 1.174 1.525 2.108
(Lower is better)

*Afler Ref. 24.

-j
C0

r-

r
m

CSr,

Table IV-18 - R-Measure Results (EW Relevance = 0.452)*

Wordsize R[161 R[321
Machine

Prog/Pgmr PDP-11 AN/UYK-20 AN/UYK-7 AN/GYK-12 AN/UYK-19 PDP-11 AN/UYK-20 AN/UYK-7 AN/GYK-12 AN/UYK-19

0/7 2631 1009 6049 2281 4450 2631 1009 4238 1994 4450
0/8 1932 945 6282 2060 4360 1932 945 4255 1729 4360
1/5 237 249 311 313 246 237 249 274 237 246
1/10 322 292 550 385 367 322 292 401 290 367
2/6 547 1031 819 366 485 547 1031 638 280 485
2/9 496 694 800 252 960 496 694 603 221 960
3/4 559 130 611 168 328 543 130 509 125 328
3/11 750 179 659 171 334 734 179 538 130 334
4/3 4008 3261 7939 4055 5323 4008 3261 4509 3170 5323
4/12 4131 3195 3309 7109 4779 4131 3195 1983 3964 4779
5/1 2262 2069 2541 2346 2037 1558 1491 1606 1349 1795
5/14 4472 4207 7539 7834 4602 3766 3629 4692 4602 4360
6/2 4991 4526 4893 4229 4632 4049 4064 3401 2927 4257
6/13 5172 4034 4526 4347 4300 4102 3784 3116 2961 3897
7/0 1488 1203 1364 1651 2454 1488 1203 1175 1362 2454
7/15 2001 1314 1807 1974 1430 2001 1314 1476 1397 1430
8/0 1402 1086 1549 1326 1193 1402 1086 1059 1001 1193
8/15 1867 1688 3146 2331 1728 1867 1688 2008 1734 1728
9/2 212 238 223 291 308 212 238 205 210 308
9/13 290 207 225 244 311 290 - 207 205 175 311
10/1 2981 1956 1309 2254 2746 2981 1956 890 1606 - 2746
10/14 3893 2456 2074 3336 3371 3893 2456 1647 2264 3371
11/3 17995 14443 10095 15152 14367 16176 12848 6324 9758 14202
11/12 9389 7750 7868 . 8933 7723 7544 6155 4977 5511 7558
12/4 1169 1175 1647 1789 3051 1169 1175 1209 1263 3051
12/11 1149 1083 , 706 2943 2843 1149 1083 1413 2153 2843
13/6 2277 1903 3882 3781 3200 2277 1903 2404 2233 3200
13/9 733 836 1084 1130 1059 733 836 815 838 1059
14/5 862 781 764 917 1640 862 781 558 657 1640
14/10 3685 886 738 851 3625 3685 886 534 566 3625
15/7 8308 6696 11827 11634 11751 8308 6512 7287 6939 11751
15/8 11397 6660 8207 6174 10173 11397 6476 5791 4414 10173

'After Ref. 24.

aImm m1gNO

z

w
r,
x
m

To

tlj

L. W. LEMLEY

These results are summarized in Table IV-19 and at the beginning of this section in Table
IV-1. It should be noted that the best score for general military application was not necessarily
the best for EW/ESM application for various reasons as have been discussed in previous sec-
tions, this section, and subsequent sections. Further, it should be noted that certain of the
MCF benchmark test programs displayed high EW relevance for certain measures (0.983 for
Autocorrelation, S-measure), while certain other benchmarks displayed almost no EW
relevance (0.000 for Virtual Memory Exchange, M-measure), indicating definite EW/ESM
applicability.

Table IV-19 - Phase 2 Results
(Lower is better)

Machine EW Military Application
Rating S-measure M-measure R-measure

AN/UYK-7 1.174 1.30 1.38 1.12
AN/GYK-12 1.525 1.14 0.96 0.96
AN/UYK-20 1.746 0.89 0.73 0.77
AN/UYK-19 2.108 0.93 1.18 1.17
PDP-11 2.293 0.82 0.88 1.03

V. SOFTWARE

Also necessary to the specification of a computer processor are the software requirements,
especially the software tools. Subsequently,-it will be shown in the cost section that the pro-
gramming cost will increase the total processor-system cost depending upon the software "tools"
that are available. The cost of the hardware architecture will be insignificant if there is not a
good set of software tools available to support the programming. The factor Tool Availability
Index (TAI) is introduced to represent the architectural software tools. The TAI will be subse-
quently shown to be a direct function of the architectural inventory investment in dollars. The
cost of programming will be shown to be a direct function of the TAI. The Military Computer
Family (MCF) program carried out a study of software tools for five common military architec-
tures under Harold S. Stone of the University of Massachusetts. These tools, as they appeared
in Stone's report, were examined for applicability to EW/ESM through the process of architec-

-tural performance in the EW/ESM index of Section IV. This section contains a description of
the tool, its dollar value (to construct), and the EW/ESM applicability.

A. Software Tool Description

This section contains a description of the existing software base for the military computers
AN/UKY-7, AN/UYK-20, AN/GYK-12, and AN/UYK-19. For reference, the DEC/PDP-11
is included for comparison and linkage to the other sections of this report. The software study
treated the set of software tools selected by a committee of Army/Navy representatives during
the selection of a candidate architecture for the standard military computer family [231.

The method used to assess the software base for each computer was to visit the manufac-
turer of each computer system and principal users, questioning the individuals about the avail-
able software. Where questions arose, the questions were answered by examining reference
documentation. A tool was deemed to be available for a specific architecture if:

72

NRL REPORT 8247

(1) the tool was a genuine released item supported by user documentation,

(2) the tool had to be available for use as of January 1, 1977, and not merely nearing
release, and

(3) the tool had to satisfy the characteristics for that tool as described in Ref. 7.

In evaluating the software base, the study was enlarged to include software systems that
are not self-hosted. This gives rise to some interpretation as to what tools should be counted in
the software base of a particular architecture and what tools should be treated as missing. In
several instances, the existence of a software tool for one system makes that tool available to all
architectures, since the tool itself need not be self-hosted. For example, one tool in the base is
a General Purpose Systems Simulator, of which GPSS for the IBM System/370 is but one
example. Since this tool is not likely to be deployed in tactical systems but is more likely to be
used at software development centers, it does not make sense to insist that it run on a particu-
lar computer family provided that some computer that supports the tool is available at each
development center. In the case of the simulator, there is' a GPSS system or equivalent for
every major commercial computer system, and it is extremely likely that at least one commer-
cial computer will be accessible by support software staff. Consequently, the availability of
GPSS counts as a simulator in the software base of each candidate architecture.

GPSS was selected for this example, since its function is completely independent of the
architecture of the computers involved. Other tools that share this characteristic are indicated.
Examples of software tools that do not have this characteristic are compilers, assemblers, and
operating systems, since these are dependent in some essential way on the target computer

.architecture.

The inclusion of nonself-hosted software in this study has been done by considering each
tool in two forms-self-hosted and nonself-hosted. The listings are compiled separately. Some
tools simply cannot be used except in self-hosted form, so these do not appear in the tabulation
of. nonself-hosted software. Among these tools are operating systems and language-
independent monitors, since both of these depend on the execution of the tool on the host
architecture in real time. Other tools omitted from the nonself-hosted list have been excluded
for similar reasons. The software base for the AN/AYK-14 is essentially that of the
AN/UYK-20 since the AYK-14 is upward compatible from the AN/UYK-20, and the group in
charge of the AN/UYK-20 software is currently making the few modifications required to move
the entire base to the AN/AYK-14. Although the AN/AYK-14 was not included in this study,
very little error is introduced by treating its base equal to the AN/UYK-20 base.

1. Self-hosted software.

Table V-1 gives the pertinent results of the software base study for self-hosted software.
Details of the table are explained in this section. We list only the tools that exist for at least
one architecture.

Tool l.a. Data Base Design Aid. This tool is used for the construction of data base sys-
tems. For the AN/UYK-21 the appropriate tool is the SCHEMA Compiler, which is part of the
IDMS-l1 data base management system for the PDP-11 and is available from Digital Equip-
ment Corporation.

73

L. W. LEMLEY

Table V-1 - Software Support Tools

Performance
Tool General/EW AN/UYK-7 AN/UYK-19 AN/UYK-20 AN/GYK-12 PDP-11 IBM Interdata

(Lower is better) 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Computer System Simulator 0.99/1.34 0.99/1.34

Data Base Design Aid 0.91/1.47 0.82/1.59 0.99/1.34

Test Case Design Advisors N/A

FORTRAN
CMS-2
TACPOL
DOD-I

Test Case Instrumenters 0.96/1.12
& Analyzers

FORTRAN 0.86/1.48 . 0.93/1.56 . 0.82/1.59 0.99/1.34 0.68/1.42
CMS-2 0.89/0.94 0.89/0.94
TACPOL 1.14/0.93 1.14/0.93
DOD-I

Compilers & Cross-compilers 1.03/1.06

FORTRAN 0.86/1.48 0.93/1.56 0.82/1.59 0.99/1.34 0.68/1.42
CMS-2 1.10/0.78 1.30/0.62 0.89/0.94
TACPOL 1.14/0.93 1.14/0.93

Assembler 0.96/1.20 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Macro Assembler 0.96/1.20 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Basic Linker 0.96/1.20 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.98/1.34 0.68/1.42

Simple Overlay Linker 0.85/1.48 0.93/1.56 0.82/1.59 0.98/1.34 0.68/1.42

Extended Overlay Linker 0.91/1.47 0.82/1.59 0.99/1.34

Intqractive Debugging Aids 1.00/1.31

Assembler 1.01/1.28 1.30/0.62 0.93/1.56 0.82/1.59 0.99/6.34
FORTRAN 0.99/1.34 0,99/1.34
TACPOL
DOD-I
CMS-2

Noninteractive Debugging Ajd. 1.12/1.01

Assembler
FORTRAN 0.91/1.47 0.82/1.59 0.99/1.34
CMS-2 1.30/0.62 1.30/0.62
TACPOL 1.14/0.93 1.14/0.93

DOD-I

74

NRL REPORT 8247

Table V-1 (continued) -. Software Support Tools

Performance
Tool General/EW AN/UYK-7 AN/UYK-19 AN/UYK-20 AN/GYK-12 PDP-I I IBM Interdata

(Lower in better) 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Language Independent 1.10/0.78 1.30/0.62 0.89/0.94
Monitor

Language Dependent 0.97/1.24
Monitor

Assembler 0.94/1. 14 0.89/0.94 0.99/1.34
FORTRAN 0.99/1.34 0.99/1.34
CMS-2
TACPOL
DOD-I

Reformatters 0.95/1.24

FORTRAN 0.95/1.24 1.30/0.62 0.82/1.59 0.99/1.34 0.68/1.42
CMS-2
TACPOL
DOD-I

Standards Enforcers N/A

FORTRAN
CMS-2
TACPOL
DOD-I

Test Data Auditor 1.01/1.16 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34

Test Data Generator 1.01/1.16 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34

Integrated Library 0.99/1.21 1.30/0.62 0.93/1.56 0.89/0.94 0.82/1.59 0.99/1.34

Automatic Software N/A .
Production & Test

Text Processing System 1.01/1.16 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34

Interactive Source Editor 0.96/1.20 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Batch Source Editor 0.96/1.20 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0.99/1.34 0.68/1.42

Data Base Management System 1.01/1.28 1.30/0.62 0.93/1.56 0.82/1.59 0.99/1.34

Real-Time + Time-Sharing 05 0.95.1.24 1.30/0.62 0.82/1.59 0.99/1.34 0.68/1.42

Real-Time + Time-Sharing + 0.99/1.34 0.99/1.34
VMM OS

Time-Sharing + Multi- 0.99/1.34 0.99/1.34
Processing + VMM OS

Instruction simulator 0.99/1.18 1.30/0.62 0.93/1.56 0.89/0.94 . 0.82/1.59

General Purpose 1.01/1.16 1.30/0.62 0.93/1.56 0.89/0.94 1.14/0.93 0.82/1.59 0,99/1.34
System Simulator

75 -

L. W. LEMLEY

Tool L.b. Test Instruments and Analyzers. This tool allows a programmer to instrument
his source program so as to obtain counts of the number of times designated portions of his
program are executed. He can also discover which portions have not been executed at all.
Since the tool is specific to particular source languages, and since it may itself be written in a
machine-independent source language, it may be available for all architectures if it is available
for one. Indeed, this is the case for a FORTRAN analyzer. Either RXVP-1 or TAP may be
used; both are commercially available. They are written in FORTRAN and can be moved to
any computer system with a FORTRAN compiler. -Thus they count in the base of all architec-
tures except the AN/GYK-12, since it does not have a FORTRAN compiler in its base.

The AN/GYK-12 has a TACPOL compiler with the test instrumentation built into the
language, so that it gets credit for this tool in the TACPOL base.

Tool 1.c.J Basic Assembler

All architectures have assemblers available. In several cases there is more than one
assembler. Since macro assemblers satisfy the basic assembler need, and all architectures have
macro assemblers, we list the source of the tool under the macro assembler heading in the next
paragraph.

Tool J.c.2. Macro Assembler

The macro assemblers available for the several computers are the following:

AN/UYK-7 MACRO/32 (from Univac)
AN/UYK-20 Level 2 Assembler and MACRO/20 (from Univac and NAVSEC)

AN/GYK-12 L3050 Macro Assembler (from Litton)
AN/UYK-19 Macro Assemble (from ROLM)
AN/UYK-21 MACRO/II (from DEC)

Tool J.d.I FORTRAN Compiler

All architectures except the AN/GYK-12 have a FORTRAN compiler available. Some
have more than one. Univac and NAVSEC are sources for the AN/UYK-7 and AN/UYK-20
compilers while ROLM' and DEC supply compilers for the AN/UYK-19 and AN/UYK-21,
respectively.

Tool L.'d.2. COBOL Compiler

The two architectures compatible with commercial computers have COBOL compilers,
while the purely military architectures do not. The COBOL for the AN/UYK-19 is called'IPI
COBOL, available from the Florida-based company IPI. DEC supplies the COBOL for the
AN/UYK-21.

Tool J.d.3 CMS-2 Compiler

For the purposes of this study we do not distinguish among the several different levels 'of
CMS-2. For the architectures considered here, if a CMS-2 compiler exists, then the study

76

NRL REPORT 8247

found that it exists for at least two levels of the language definition. Univac and NAVSEC can
supply the CMS-2 compilers for the AN/UYK-7 and AN/UYK-20 architectures. Command
Control Communications Corporation of San Pedro, California, supplies the CMS-2 for the
AN/UYK-19.

Tool L.d.4 JOVIAL Compiler

Univac has written a JOVIAL for the UYK-7 and can supply this as a product.

Tool L.d.5 TACPOL Compiler

Litton's TACPOL compiler for the AN/GYK-12 is called TACPOL-B and is available
from Litton.

Tool L.e.1 Basic Linker

Architectures that had simple overlay linkers were credited with- having basic linkers as
well. The linking capability exists for all architectures, at least at the basic level, and in several
instances at the simple overlay level. The linkers credited to each architecture are as follows:

AN/UYK-7 Linker (from Univac)
AN/UYK-20 Linking loader (from Univac and NAVSEC)

AN/GYK-12 Embedded in PSS and TOS operating systems (from Litton)
AN/UYK-19 RLDR (from Data General and ROLM)
AN/UYK-211 LINK-11 (from DEC)

Tool L.e.2. Simple Overlay Linker

This tool performs basic linking of modules and has the capability of constructing overlay
trees so that overlay calls from module to module can be implemented. The programs and
their respective sources are given as follows:

AN/UYK-19 RLDR (from Data General and ROLM)
AN/UYK-21 RSX TASK BUILDER (from DEC)

Tool L.e.3. Extended Overlay Linker

This tool has all of the capabilities of a simple overlay linker plus the ability to manage
memory dynamically so as to take advantage of available memory. There is some concern as to
the applicability of this tool in a system with virtual memory, since the virtual memory achieves
the same function in a different way. Only the AN/UYK-21 has such a linker, namely in the
RSX Task Builder available from DEC. The tool known as DMR for Dynamic Memory Res-
tructurer, available for the AN/UYK-7, has some of the capability of an extended overlay
linker in that it can restructure memory assignments dynamically in a system in which one or
more memory modules have failed. However, its user interface does not appear to be adequate
for the intended purposes of the extended overlay linker, since the main function of DMR is
reconfiguration for reliability purposes.

77

L. W. LEMLEY

Tool 4f 1. Interactive Debugger for Assembler

This tool is deemed to be similar to debugging systems similar to On-Line Debug Trace
(OBT) and Dynamic Debugging Technique (DDT) for the PDP-10 and PDP-11 computer sys-
tems.

The debugging aids given in Table V-1 are QED for the AN/UYK-7 (from Litton),
DEBUG for the AN/UYK-19 (from ROLM) and DDT for AN/UYK-21 (from Carnegie-
Mellon University and DEC).

Tool 1f42. Symbolic Debugger for COBOL

This tool is the COBOL equivalent of the previous tool in that one has to be able to
debug interactively at the source language level with the aid of this tool. This presupposes that
COBOL exists on the architecture. The debugging aids are built-in features of the two architec-
tures that have COBOL compilers. For the AN/UYK-19, the program is available from Data
General and for the AN/UYK-21 it is available from DEC.

Tool 1f 3. Noninteractive Symbolic Debugger for FORTRAN

Of the architectures for which FORTRAN is available only the AN/UYK-21 architecture
has a FORTRAN with built-in symbolic debugging aids for batch (noninteractive) debugging of
FORTRAN. The source of the software is DEC and it is contained in PDP-11 FORTRAN.

Tool L.f 4. Noninteractive Symbolic Debugger for COBOL

This is the same situation as for the FORTRAN batch debugging aid. Only the
AN/UYK-21 architecture has such software available, and it is part of the COBOL package for
the PDP-11 available from DEC.

Tool 1.f45 Noninteractive Symbolic Debugger for CMS-2

The CMS-2 compiler available from Univac for the AN/UYK-7 has debugging facilities
for noninteractive debugging at a symbolic level.

Tool 4f 6. Noninteractive Symbolic Debugger for TACPOL

The TACPOL language as implemented by Litton for the AN/GYK-12 contains debug-
ging directives that satisfy this requirement.

Tool i.g. Integrated Library

This tool is a comprehensive library change control system. It exists for the UYK-21
architecture in the form of the Modification Request Control System and Source Code Control
System that are part of the Programmer's Work Bench System available from DEC for the
PDP-11. For the AN/GYK-12, Litton has developed a tool known as SPS Librarian. Other
architectures appaltetiy do not have software that meets the specificaiious for isis ivon.

78

NRL REPORT 8247

Tool Lh./.. Language-Dependent Monitor for Assembler

There exists a tool known as STV, for System Test Vehicle, available from Univac and
NAVSEC that appears to meet the tool specifications. This runs on the AN/UYK-20. m

Tool L.h.2. Language-Independent Monitor

The STV for AN/UYK-20 satisfies this tool requirement and is available from Univac and
NAVSEC. A monitor for the AN/UKY-7 is available from Litton as part of Interim Tactical
Amphibious Warfare Data System (ITAWDS) software system written to support the LHA
(Landingship Heavy Amphibious) project.

Tool 1.i. Reformatters

All architectures that have FORTRAN compilers are deemed to have this tool since it is
available as a FORTRAN source to operate on FORTRAN as a preprocessing step. The tool is
called IFTRAN-2 FORTRAN Preprocessor for Structure Programming. Since the AN/GYK-12
does not have a FORTRAN compiler, it is missing this tool. However, if a FORTRAN com-
piler becomes available for the AN/GYK-12, then this tool becomes available automatically.
Thus the absence of this tool does not penalize the AN/GYK-12's software base.

Tool ij. Data Base Management System

The tool known as ITAWDS mentioned above for language-independent monitors is a
comprehensive software system that contains within it a data base management system. It is
available from Litton. The two architectures that have commercial counterparts also have data
base management systems. For the AN/UYK-19, the system is known as MIDAS, and is
available from Boeing Computer Services. For the AN/UYK-21, the tool is IDMS-ll, available
from DEC for the PDP-Il.

Tool L.k. Text-Processing System

The text-processing system function is to prepare final copy of publishable materials, and
it has many built-in features that assist this process. The text processor listed for the
AN/UYK-7 is available from Fleet Combat Direct Systems Support Activity (FCDSSA). The
tool listed for the AN/UYK-21 is TYPESET-il and is available from DEC for the PDP- 11.

Tool 1.1. Interactive Source Language Editor

The editor of the AN/UYK-19 architecture is known as SPEED, and is available from
ROLM. The AN/UYK-7 editor is a subsystem of SHARE 7 and is available from Univac. Any
one of a number of editors for the AN/UYK-21 architecture meet this criterion. Among them
is the editor that runs under IAS available from DEC for the PDP- 11.

Tool J.m. Batch Source Language Editor

All architectures have batch editors available according to the list below:

79

L. W. LEMLEY

AN/UYK-7 Subsystem of Share 7 (from Univac)
AN/UYK-20 Subsystem of Level 2 Librarian system (from Univac)
AN/UYK-19 BEDIT (from ROLM)
AN/GYK-12 Subsystem of SPS Librarian (from Litton)
AN/UYK-3 SLIPER (from DEC).

Tool L.n. Real-Time Operating System plus Time-Sharing

The AN/GYK-12 version of this tool is the ITAWDS system available from Litton. The
AN/UYK-21 software system is called IAS and is available from DEC.

Tool L.o Time-Sharing Plus Virtual Machine Monitor

Of the five architectures only the AN/UYK-21 was given credit for being virtualizable in
the sense of being able to support a virtual machine monitor as of January 1, 1976. The archi-
tectures have not evolved since that time to the point where any others have been shown to be
virtualizable. However, not even the AN/UYK-21 was given credit for this tool, since the only
instance of a virtual machine monitor for the AN/UYK-21 exists in a research environment
and cannot said to be a releasable piece of software. For similar reasons, no architecture was
credited with Tool 3.14, which is a superset of this tool.

2. Nonself-Hosted Software

Software that can be hosted on architectures other than the candidate architectures must
necessarily not depend on real-time responses of the candidate architectures. This eliminates
operating systems, performance monitors, and data base management systems from the list of
tools that can be self-hosted. Similar reasoning reduces the list of possible nonself-hosted tools
to the list given in Table V-1. Since some tools fall in the category of those that are available
for all architectures if available for one, they are credited to all architectures. The text in this
section explains all such cases.

Tool 2.a General-Purpose System Simulator

This program exists on the IBM 370 and Univac 1100 series computers, among others. It
is probably not necessary to mount a special development to create a running version on a mili-
tary computer system.

Tool 2.b Cross-Assembler

All architectures have at least one cross-assembler that executes on a foreign architecture,
producing object code for the native architecture. In some cases the cross-assembler is written
in a machine-independent language such as FORTRAN so that it can run on any one of several
different computers. The list of cross-assemblers available is as follows:

AN/UYK-7 Available for Univac 1100 series computers from Univac.

AN/UYK-20 Runs on six different computers since it is written in compatible FOR-
TRAN (from NAVSEC).

80

NRL REPORT 8247

AN/UYK-19 Available for IBM 370, Univac 1100, and CDC 6000 series computers from
Computer Associates and First Data

AN/GYK-12 Available for IBM 370

All assemblers that run on foreign hardware are macro assemblers. -

Tool 2.c.1. FORTRAN Compiler,.

The AN/UYK-20 architecture has a FORTRAN compiler written in FORTRAN that has
successfully executed on CDC'6000, Univac, 100, and IBM 370 series computers.

The AN/UYK-21 has a FORTRAN cross-compiler that runs on the GE 6000 computers
and is available from GE.

Tool 2.c.2. COBOL Compiler

-A COBOL compiler that runs on the IBM 370 and generates code for the AN/UYK-19
has been written and is in operation by the Navy.'

Tool 2.c.3. CMS-2 Compiler

The CMS-2 compiler for the AN/UYK-19 mentioned above is written in FORTRAN and
runs on several different computers. Similarly, the CMS-2 compiler for the AN/UYK-20 is
written in FORTRAN and runs on several different computers. There is an AN/UYK-7 CMS-2
compiler that runs on Univac 1100 computer systems, and the nonself-hosting Tethodology is
the normal mode of operation with CMS-2 program development.

Tool 2.c.4. JOVIAL Compiler

JOVIAL is written in itself and can run on several different computers while producing
object code for a specific computer. Since there is self-hosted JOVIAL compiler for the
AN/UYK-7, this compiler can be and has been run successfully on other computers that have
JOVIAL.

Tool 2.c.5. TACPOL ,

TACPOL-A is the TACPOL compiler for the AN/GYK-12 that executes on the IBM 370
series computers.

Tool 2.d. Instruction Simulators

All but the AN/UYK-21 have reported nonself-hosted instruction simulators. We suspect
that there are such simulators for the'AN/UYK-21 as well, and are currently investigating this
possibility. The ISP compiler at Carnegie-Mellon University does simulate the PDP-I l
correctly at instruction level, but it is not a piece of software with extensive outside release and
use, so it is not counted here. A summary of'the instruction-level simulators appears below:

AN/UYK-7 Runs on the Univac 1100 series computers (from Univac)

81

L. W. LEMLEY

AN/UYK-20 FORTRAN-based program for AN/UYK-20 runs everywhere (from
Univac)

AN/GYK-12 Available for IBM 370 (from Litton)
AN/UYK-19 Available for IBM 370 (from ROLM)
AN/UKY-21 Available for IBM 370 (from First Data and Computer Associates).

3. Summary

Some caution concerning the accuracy of the data and its validity for use in cost models
should be observed. There may be some tools that are missed. Several sources, where possi-
ble, were sought for an architecture with good agreement. It is rather unlikely that anything
significant was missed, and highly probable that all data given are correct as of this date (1977).

The table contains a single bit of information about each item, that is, whether it exists in
releasable form or not. Two different software systems that ostensibly perform the same func-
tion may have vastly different characteristics, utility to the user, and procurement costs.

B. Software Tool Evaluation

The efficiency with which a programmer programs a particular architecture depends
directly on the Tool Availability Index (TAI) mentioned previously. The TAI is difficult to
evaluate directly. The elements of TAI, as described in the previous section, were cataloged by
participants of the CFA/MCF programs for some prime military architectures. These TAI ele-
ments were quantified in Table V-1, by using the performance of these architectures as previ-
ously discussed. The criterion of performance was the S-measure of program efficiency for
those machines as applied to the particular architectures in general military usage. A lower
index indicated greater utility in the programming of that machine. Where a number of
machines had that TAI element available, a mean was used to quantify the particular tool [251.

In terms of EW application, the S-measure of Benchmark programs with particularly high
EW correlations were used and depicted as the second entry under the representative architec-
ture of Table V-1. The results of these entries were ordered from most contributing (lowest
numerical index) to least contributing in the two lists that follow.

Priority List of Software Tools (General Military)

Performance
(Lower is Better)

0.85 Simple Overlay Linker

0.91 Extended Overlay Linker

0.91 Data Base Design Aid

0.95 Real Time + Time Sharing Operational System
0.95 Reformatters

82

NRL REPORT 8247

0.96 Test Case Instrumenters + Analyzers
0.96 Batch Source Editor
0.96 Assembler
0.96 Interactive Source Editor
0.96 Macro Assembler
0.96 Basic Linker

0.97 Language-Independent Monitor

0.99 Computer System Simulator
0.99 Integrated Library
0.99 Real-Time + Time Sharing + Virtual Machine Monitor Operational System
0.99 Time-Sharing + Multi-processing + Virtual Machine Monitor Operational System

0.99 Instruction Simulator

1.00 Interactive Debugging Aids

1.01 Test Data Auditor
1.01 Test Data Generator
1.01 Text Processing System
1.01 Data Base Management System
1.01 General Purpose Simulator

1.03 Compilers + Cross-Compilers

1.10 Language-Independent Monitor

1.12 Noninteractive Debugging Aids

Priority List of Software Tools (Electronic Warfare)

Performance Tool
(Lower is Better)

0.78 Language-Independent Monitor

1.01 Noninteractive Debugging Aids

1.06 Compilers + Cross-Compilers

1.12 Test Case Instrumenters + Analyzers

83

'1S

L. W. LEMLEY

1.16 Test Case Auditor
1.16 Test Case Generator
1.16 Text Processing System
1.16 General Purpose System Simulator

1.18 Instruction Simulator

1.20 Assembler
1.20 Macro Assembler
1.20 Basic Linker
1.20 Interactive Source Editor
1.20 Batch Source Editor

1.21 Integrated Library

1.24 Language Dependent Monitor
1.24 Reformatters
1.24 Real Time + Time-Sharing Operational System

1.28 Data Base Management System

1.31 Interactive Debugging Aids

1.34 Computer System Simulator
1.34 Real Time + Time-Sharing + Virtual Machine Monitor Operational System

1.34 Time-Sharing + Multiprocessing + Virtual Machine Monitor Operational
System

1.47 Extended Overlay Linker
1.47 Data Base Design Aid

1.48 Simple Overlay Linker

The rationale of these figures lies in the facts that a machine using certain of the tool list
and displaying good programing efficiency through the S-measure, achieved that efficiency

through those tool elements. It follows that those tool elements should be noted with that
efficiency on the mean of those efficiencies when a number of machines are involved with the
same tool element. There are fallacies in this approach in that a little-used tool may appear to

be more efficient than a widely used tool that may appear on machines that are poor performers
for other reasons; such as the "Simple Overlay Linker, 0.85 compared! to "Compilers & Cross-

Compilers, 1.05." The latter tool obtained a poorer performance rating only because it appeared
on all machines; whereas, the former tool "Simple Overlay Linker," appeared only with those

machines with a very efficient program performance S-measure. Obviously, the machines can-

not function without certain basic tools, inefficient or not. Small differences in performance
indices are not considered significant.

84

NRL REPORT 8247

Table V-2 attempts to distinguish the performance of some of the various common mili-
tary languages, such as FORTRAN, CMS-2, and TACPOL, for application to general military
and EW. Interestingly enough, FORTRAN, 0.93, shows the most efficient performance for
general military application; whereas, CMS-2, 0.78, displays the best EW performance
efficiency.

Table V-2 - Software Language Efficiency

Software Tool FORTRAN CMS-2 TACPOL

Test Case Design Advisor
Test Case Instr + Analyze 0.86/1.48 0.89/0.94 1.14/0.93
Compilers + Cross-compilers 0.86/1.48 1.10/0.78 1.14/0.93
Interactive Debug Aids 0.99/1.34
Non-Interact Debug Aids 0.91/1.47 1.30/0.62 1.14/0.93
language Dependent Monitor 0.99/1.34
Reformatters 0.95/1.24
Standards Enforcers

Performance(GM) 0.93 +.06 1.10+.21 1.14 +.00
(Lower is Better) (EW) 1.39+.10 0.78±.16 0.93 ±.00

VI. SPECIFICATION

When the military, Navy, or EW system manager decides to procure a computer/
processor, he is more likely to be procuring an existent architecture that is being adopted to
the particular needs of the system, or an architecture with existing standard options. Otherwise,
the procurement becomes an exceptionally expensive development project with subsequently
expensive software and hardware support to keep the computer/processor operating. This is
not to say that procurement cannot be competitive or innovative; however, the procurer should
not attempt to specify architecture or technology. He should specify capacities, performance,
physical environment, reliability, maintainability, basis of selection, weighting factors, and gen-
eral software support tools. It will be the vendor's responsibility to respond with architecture,
technology, and supporting software tools that he considers best fit the procurement
specifications.

It is important that the procurer understand technology well enough to not overspecify his
requirements, which would result in no-response or a request for waiver of specifications. In
addition, it is important that the procurer understand technology well enough that he may
evaluate the responses to this procurement. Of course when "he" is used in this context, "he"
may refer either to an individual or a board of experts depending upon the size (value) of the
procurement.

The simplest procurement is by catalogue wherein the vendor's options are fitted to the
procurer's requirements. Here it is necessary to define requirements in terms of
computer/processor capacity and performance. In such a case, the procurer must accept what
he is getting based upon the the vendor's specification.

85

L. W. LEMLEY

A. Hardware

The greatest single factor affecting processing speed is the interplay between the memory
access time and the microinstruction cycle time. Techniques have been shown that can be used
to increase the operating speed of a computer sytem consisting of a fast processor coupled to a
slow memory.

For a computer system where the memory setup and access times are faster than a central
processor's minimum cycle time, the instruction execution time depends entirely on the central
processor. Therefore, the evaluation of the computer, according to the principles laid down, is
equivalent to the evaluation of the central processor.

For a computer system where the memory access time is slightly greater than the central
processor's minimum cycle time, the instruction execution time depends on the details of the
timing of the system and must be determined on a case-by-case basis.

For a computer system where the memory access time is more than twice the central
processor's minimum cycle time, the instruction execution time depends almost entirely on the
memory access time. The central processor's cycle time has little effect on the overall system
speed. In this case, the processor should be specified for a large and efficient instruction set to
minimize the number of instruction fetch cycles, and for a large number of internal general
purpose registers to eliminate the need to store intermediate results in an external "scratch-pad"
memory.

The effect of the various techniques on the computer's instruction execution time may be
expressed as follows: Let

To be the computer's instruction execution cycle time,

Tm be the effective memory read/write access time,

T. be the central processor's microinstruction execution time,

and
M be the smallest integer that satisfies the inequality.

The internal clock of the computer is normally running continuously, so that all the
computer's microinstruction cycles are synchronized to the clock ticks, which occur every 1/nth
of the clock cycle (n=1, 2, 4, etc.). The effective value of the memory access time of the com-
puter is

Tm =- T n = 1, 2, 4, etc. (VI-1)
n

where

Tm
M > n- (VI-2)

Tp

T'm is the actual memory access time.

86

NRL REPORT 8247

The computer's minimum instruction execution time (for single-memory-cycle instruc-
tions such as register-to-register arithmetic) is given for a nonpipelined computer by the for-
mula

T = T. + Tp. (VI-3)

A pipelined architecture is most useful when Tm > Tp. In the case of a pipelined archi-
tecture,

T,= Tm. (VI-4)

If Tm > 2 Tp, a split memory scheme can be used to decrease the processing time. In this
case, the execution time can be cut in half. Thus, for a nonpipelined computer,

1
T =- (T, + Tp) (VI-5)

For a pipelined computer,

1T, = 2 Tm (VI-6)

In the case of microprogrammable processors, the time saved in performing an N-step
procedure is the time it takes to fetch N-1 instructions. (One instruction must'be fetched to
initiate the procedure.)

Let T, be time saved to execute the procedure, and N be the number of steps in the pro-
cedure. Then, for a nonpipelined processor,

T, = (N-1) Tm. (VI-7)

For a single-memory pipelined processor, the time saved is the same as above, but-the
time it takes to perform the procedure must be added back. Therefore, if there are no memory
references in the procedure,

T, = (N-1) (Tm - Tp). (VI-8)

If there are memory references in the procedure, the exact amount of time saved depends
on the placement of the memory references in the procedure. The maximum time is saved
when the memory references occur in the beginning and are evenly dispersed throughout the
procedure. The maximum time saved is, as before,

T, = (N-1) Tm (VI-9)

The throughput ratio of a microprogrammed computer vs a regular computer depends on the
ratio of register-to-register operations vs external memory reference operations in the pro-
cedure.

The greatest gain in processing throughput occurs when all the microprogrammed instruc-
tions are registet-to-registdr. In this case, the regular instruction execution time would
be NT,. The speed improvement factor is

87

L. W. LEMLEY

F. = NT,-T; (VI-10)

for a nonpipelined processor,

N N(T.m+Tp)
F5 - To; N~(V- I l)

Tm +NTP

The maximum improvement factor for a nonpipelined processor due to microprogramming is

Fsmax 1 + T. (VI-12)

For a nonpipelined processor,

F NTm (VI-13)

The maximum improvement factor for a pipelined processor is

Tm
Fs max = T . (VI-14)

TP

If the ratio of memory access [two-cycle] instructions (as opposed to register-to-register lone
cycle] instructions) to the total number of instructions is R, and R is sufficiently large that
F, < F, max, then the approximate improvement factors due to microprogramming are as fol-
lows:

For a nonpipelined processor,

F= N(1+R) (Tm,+Tp) ;(VI-15)

Fs= N(1+R) Tp + (NR+1) T(I

for a pipelined processor,

F N(1+R)F = NNR+1) (VI-16)

The equations indicate that the minimum improvement factor in the processing speed due
to microprogramming a long procedure is a ratio of two to one for a pipelifted computer. For a

nonpipelined computer, the minimum improvement ratio for long procedures is 4/3 if Tp = Tm.

The improvement factors stated apply to fairly long procedures that consist of simple
register-to-register instructions and indexed memory references-machine instructions that exe-
cute with one microinstruction. When the microprogrammed procedure replaces program steps
that are already microprogrammed to some extent-machine instructions that require more
than one microinstruction to execute-the improvement factor is less than stated.

88

NRL REPORT 8247 -

1. Architecture

The influence of various architectural features on computer throughput was discussed in
Section III. Some features, such as pipelining and split-memory systems, influence the speed C
rating calculations when the speeds of the computers are compared. Other features, such as
DMA access, microprogrammability, the number of general-purpose registers, processor word
length, and so forth, do not affect the comparative ratings calculated above, so these must be
compared independently.

2. Memory

Perhaps the most singular element affecting the performance of the computer/processor is
the memory. The memory characteristics are derived directly from developed technology and
are pivotal in the architecture and engineering of the computer/processor. Technology such as
NMOS, bipolar, and core memories determine the size, speed, power consumption, weight,
volume, and reliablity of the memory. In turn, the memory determines the
computer/processor capacity, speed, power consumption, weight, volume, instruction timing,
number of registers, and architecture. The software and software tools are relatively unaffected
by technology, even though software does display some architectural efficiencies, as has been
demonstrated in the previous sections.

In determining the memory requirements of the EW/ESM computer processor, the
specifier is also determing the characteristics of the computer/processor. The specifier should
go by the EW/ESM system and its signal environment to obtain his entering arguments. In the
requirements (Section II), the signal environment was dictated by the altitude and sensitivity of
the EW/ESM sytem. The processor throughput is then determined by these factors:

13264 N,.'
PRF= T213 (VI-17)

where
PRF = pulses per second

N, = number of parallel CPUs (when Tp > T.,,, N, = Tp/T,,,)

Tp = average microinstruction time (As)

T, = memory access time (Ms).

This relation is based upon a minimum tracking algorithm, and as such represents an
upper boundary for processors. There may be more basic algorithms that could increase
throughput somewhat; however, the increase would not be a significant improvement. More
sophisticated algorithms would result in reduced throughput (see Appendix A).

a. Memory size

A strong consideration for the comparison of various computers is the number of memory
words that the computer can address. Some 16-bit computers are able to work only with 32,000

89

L. W. LEMLEY

words of memory. While this may be adequate for small ESM systems, the designer must con-
sider the possible need for further memory expansion, especially in the threat library, as the
number and variety of potential future emitters increase.

.All but the smallest ESM computers should be capable of addressing at least 64,000 words
of memory. Some computers are capable of addressing up to 256,000 words or mote of com-
puter memory, making it possible to store all programming and all emitter libraries in computer
core where they will be rapidly accessible.

Another factor that must be considered is the way in which memory is addressed. The
more of the memory that can be addressed directly, or by indexing, the faster the program will
run.

Most computers split the memories into "pages" for quick addressing. Generally, the
larger the page size, the better. Page sizes smaller than 1,000 memory locations require
numerous references outside the page boundaries, which slows them down.

Memory indexing can be either by page or by block, or by both. Indirect memory
addressing is flexible, but slow. Because computers, whose main method of addressing
memories outside the current page is by indirect addressing, will operate more slowly than com-
puters that use indexed addressing, they should be penalized.

The size of memory is again related to the system sensitivity and the altitude of the
EW/ESM or system. However in terms of the incident number of pulses per second, the
memory size relation would be

(M-MF + 1) C=, , N. (VI-18)
P" ~~~~~n

where

PRF= maximum pulse density

M = memory size (bits, bytes, words)

M,= program size (bits, bytes, words)

C,, = computer's word size (bits, bytes, words)

P,.,= data word size (bits, bytes, words)

N, = number of microinstructions

tj= execution time of ith microinstruction

N= number of processor channels (multipoint memory)

90

NRL REPORT 8247 d C

The program size typically is as discussed in Section IV. Current emitter environments are
related to system sensitivity and altitude as noted in Section II. Emitter characterization was
discussed in Section III and subsequently in Section VI.A.5 under word size. r

b. Memory speed

It is apparent that for processors operated by a constant-frequency clock, the minimum
clock period of the pipelined processor is determined by either the memory access time or the
central processing unit's microinstruction cycle time, whichever is greater. Therefore, if the
memory access time is shorter than the CPU's basic cycle time (less the address set-up time),
the operating throughput of a computer is determined almost entirely by the basic cycle time of
the central processor. On the other hand, if the memory access time is a bit larger than the
CPU's basic cycle time, the operating throughput is determined by the memory access time
(plus the address set-up time). [121

In order to operate with even slower memories, the system designer has two options-
either take more than pne clock cycle to access the memory, or stop the clock entirely and have
the memory acknowledge when it is ready. In either case, the clock is run at the minimum
cycle time of the microprocessor, but the total instruction execute time is determined largely by
the memory access time, since only a very few instructions require a large number of execute
cycles without accessing the memory for more data or further instructions.

An example of a regular processing sequence in which the processor takes two clock
cycles to access memory is shown in Fig. III-3c. In practice, most processor clocks do not run
asynchronously, so the processor does not start as soon as the memory acknowledges that it is
ready, but waits till the next clock tick (which may be either a quarter, half, or full clock cycle,
depending on the CPU and the clocking scheme used). If the memory is so slow that the
memory access time is more than twice the microinstruction cycle time, some of the lost pro-
cessing time, can be recovered by using a "split memory." Memory access time is technologically
related; however, there is a high correlation with memory size due to propagation path. Figure
VI-1 presents a general relationship between memory access time and memory capacity. This
relationship changes as technology improves. Figure VI-1 represents 1977 technology.

c. Split-memory system

In the split-memory scheme, the computer memory is split into odd and even sections,
each section being independent of the other. Each memory section is addressed by its own
independent memory address register at the central processor unit, and each has an indepen-
dent (or multiplexed) address bus.

The pipelined instruction timing for a split-memory computer is shown in Fig. III-3d.
Each memory bank is fully pipelined. The tw.6 memory banks are 'addressed out of phase so
that the instruction execute period that would normally be wasted in a regular pipelined system
is used to execute the instruction from the other memory bank.

This technique nrarly doubles the instruction throughput of a fast processor coupled to a
very slow memory. It is used extensively in modern military computers, which must marry
ultrafast microprocessor-basgd central processors to nonvolatile but slow magnetic-core

91

L. W. LEMLEY

4

10

(n

2W 102

/
,101 ' '

103 104 105 10 6 l7 108 109
MEMORY (BITS)

Fig. VI- I-Access time vs memory capacity

memories in order to meet military specifications for nonvolatile memories. The execution
speed of these computers depends almost entirely on memory access speed.

d. Direct memory access

If the computer is operating in a regular nonpipelined sequence, with the instruction fetch
and the instruction execute cycles being the same length, then data can be entered into the
computer memory under DMA control without affecting the operation of the computer, as
shown in Fig. III-4b.

If much data must be transferred very rapidly, the main computer can be briefly halted,
and data transfer can take''place continuously as; shown in Fig. 111-4c. The advantage of DMA
transfer over computer-controlled 1/0 transfer is that during computer-controlled transfer, the
computer executes its normal instruction fetch and instruction execute cycles to perform the
transfer, whereas under DMA control the data transfer occurs continuously.

92

TM= 2.66 X IO4 M0 8 9 ,2 = .80

:.

NRL REPORT 8247

In a pipelined computer without a split memory, DMA transfer cannot occur without
interfering with the operation of the computer. The computer must be slowed down while
DMA data transfer is taking place as illustrated in Figs. III-3b and III-4b.

3. Timing

a. Regular

A typical microinstruction execute cycle is shown in Fig. VI-2. On the positive edge of
the clock, the central processor receives the microinstruction, decodes the control word, selects
the operands, performs the given operation, and selects the destination of the resultant. On the
negative edge of the clock, the resultant is stored in the proper locations and the CPU waits for
the next control word, which may specify another operation or may begin another instruction
fetch cycle. [6]

I

RECEIVE THE MICROINSTRUCTION
ON THE CONTROL BUS

ON POSITIVE EDGE OF CLOCK

DECODE CONTROL WORD

SELECT THE OPERANDS

PERFORM THE OPERATION

SELECI THE DESTINATION
OF THE RESULTANT

I STORE THE RESULTANT IN
PROPER DESTINATION ON
NEGATIVE EDGE OF CLOCK

OPERATION COMPLETE
_ WAIT FOR NEXT MICROINSTRUCTION

I i

Fig. VI-2-Microinstruction execution cycle

93

C] D
I &

L. W. LEMLEY

b. Pipelining

Under this scheme, it is apparent that the CPU is idle during the instruction fetch cycle,
whereas the memory is idle during the instruction execute cycle. A technique to interleave two
consecutive instructions, called pipelining, is illustrated in Fig. III-3b. [6, 10-121

The algorithms employed in ESM processing usually contain a large number of compare
and branch instructions, so the full potential increase in execution speed of the pipelined archi-
tecture cannot be realized in ESM processors.

4. Microprogrammability

A microprogrammable computer allows users to insert their own control and sequencing
microinstructions into the microprogram memory of the CPU. This gives the computer a set of
unique user-defined instructions for performing special job-related repetitive or time-consuming
procedures. 112, 151

The major advantage of having the special instruction sets is that these procedures can be
executed without continually referring back to the main memory for instructions, thereby sav-
ing considerable processing time. A ten-step procedure, for example, which would normally
require ten instruction fetch cycles to implement, can be carried out after a single instruction
fetch cycle. In this case, the time saved equals nine memory access times (see Appendix A).

In an ESM processing system, the most likely candidates for microprogramming are the
following procedures:

* The adaptive tracking of the parameter values and the search limits update procedures

* The procedure to calculate the next TOA

* A compare-between-limits procedure for PRI searching and for emitter identification
searching

* The PRI procedure for comparing pairs of TOA values and generating the next TOA win-
dow

* A masked comparison procedure for comparing packed data

* Multiple load and store procedures for moving blocks of data between internal registers
and memory

* Special table-search procedures, such as search every Nth byte or every Nth word, to facil-
itate the searching of numerically ordered parameter lists.

The increase in overall computer operating efficiency due to microprogramming depends
on the length of the microprogrammed procedures, the ratio of internal-to-memory access steps
in the procedure, the ratio of the microinstruction cycle time to memory access time, and the
fraction of time the procedure is used during normal processing. The gain in operating speed

94

NRL REPORT 8247

when using the microprogrammed procedure over the regular procedure is typically 3 to 1. A
comparison of processor throughput for a microprogrammed computer vs a regular computer in
performing the adaptive tracking task is analyzed in Appendix A. The processing throughput
improvement varied from 2 to 1 through 4 to 1 for the various processors investigated.

Formulae for the increase of processing throughput due to microprogramming are
presented in Appendix A.

Optimization tables for microinstructions to increase EW/ESM throughput are presented
in Section IV.A,1.b. Tables IV-6 and Fig. IV-2. Next to memory access time, the optimization
of these microinstructions would have the greatest effect upon EW/ESM throughput in the
main computer. For preprocessors the reader is referred to Appendix A.

5. Word Size

In order for the computer to operate at a high speed, it is important that the computer
word length not be too small. The time required to fetch a word from memory is essentially
independent of the word length. Fetching a two-word instruction, however, takes about twice
as long as fetching a one-word instruction. Therefore, from the point of view of the instruction
set, a computer word must be long enough to allow all but a few of the instructions to be
specified in single instruction words. On the other hand, instruction word bits not used are
wasted, so that overly long instruction words simply increase the cost without increasing the
performance.

The cost-vs-performance tradeoff has been studied by various minicomputer manufactur-
ers, with the result that the majority of the manufacturers have adopted the 16-bit computer
word size as a standard. These 16-bit computers can perform all the fast register-to-register
operations with one-word instructions, although most computer operations that address the
main memory directly require two-word (32-bit) instructions. Special addressing techniques,
such as indexed addressing and memory paging, permit some main memory operations with
one-word instructions. It may be considered that a 16-bit processor word is a reasonable
minimum word size for the ESM processor instruction words, while a 32-bit word size is pre-
ferred if the processing throughput rate must be a minimum.

These same arguments hold for data words, except that for some mathematical opera-
tions, such as shifts, data stored in two short memory words takes more than twice as long to
process as it would take to process the same data if they were stored in one long memory word.
This is one reason why large number-crunching computers tend to have 48- to 64-bit memory
words. On the other hand, data words that are longer than required waste memory.

It is possible to increase the data storage efficiency by packing more than one data word
into each of the extra-long memory words. However, for very short data words, a significant
portion of the computing time gets spent in packing and unpacking the data bits, and the
advantages of using these extralong memory words are lost.

The optimum data word size for the ESM System can be determined from an analysis of
the amount of information needed to uniquely locate and identify each emitter of interest in
the environment. The actual number of required data bits depends on the proposed data

95

L. W. LEMLEY

Table VI-1 - Possible Parameter Word Size Requirements

Parameter Range Increments (bits)i|

Angle of arrival 0-360° 0.350 10
Time of arrival 0-200As 0.2 iAs 20
Signal amplitude -120 to +8 dBm 1.0 dBm 7
Pulse width 0.25 ,us _s

0-12.5 ,us 0.1 us 8
Frequency 0-5 GHz 5 MHz

5-10 GHz 10 MHz 11
10-15 GHz 20 MHz

or
Frequency 2-4 GHz .1 MHz
Total 56

analysis algorithm, which, in turn, depends on the specific application envisioned for the ESM
System.

An estimate of the number of bits that should be sufficient to represent each of the vari-
ous signal parameters is presented in Table VI-1.

In selecting the processor data word size, an attempt should be made to avoid splitting up
any of the parameter data words into two processor words. Each portion of the split word must
be processed separately, and then the separately processed portions must be logically connected
together with further processing; thus a data word, split in two, takes more than twice as long
to process as a single data word. For example, in Table VI-1 the minimum processor data word
size is 20 bits to accommodate the 20-bit TOA word. All data for one emitter pulse could be
stored in three 20-bit words, two 28-bit words, or one 56-bit word.

In most general-purpose (GP) computers, the processor instruction word size and the data
word size are the same. This allows each GP memory location to be used to store either data
or instructions, whichever a given program may require. Since a large variety of programs may
be run on a GP computer, this arrangement results in the most efficient utilization of main
memory.

In a special purpose ESM processor dedicated to performing only one given task, the
instruction memory and data memory can be kept separated, with each type of memory having
a different word length suited to the given application.

During the evaluation of five military family architecture computers by MCF (Section
IV), the high EW/ESM correlation Benchmark programs were examined for word-size
efficiency. In the memory activity index M, there was an 18% loss of efficiency in going from a
16-bit word to a 32-bit word. However, in the register activity index R, these same Bench-
marks displayed a 12% increase in activity in going from a 16-bit word to a 32-bit word.
Apparently there is some gain to be realized in memory packing efficiency with a 16-bit word,
however, processing with 32-bit words brings a 12% improvement in efficiency.

96

L'. REPORT 8247

6. General-Purpose Registers

General-purpose registers [15,161 are useful for storing intermediate results of mathemati-
cal operations, as index registers for modifying addresses for repetitive (looping) calculations,
as pointer registers (page pointer) for addressing different blocks of data, for block transfer of
data from location to location, or as multiple accumulators for arithmetic or logical functions.
The number of GP registers in aprocessor is usually chosen to be a power of 2 from binary
addressing considerations.

Register-to-register operations are normally performed in a single microinstruction cycle,
so a large number of GP registers can provide for extremely rapid data processing by decreasing
the number of external memory references required. Register-to-register instructions are usu-
ally constructed in single-word format, which decreases program storage space and also
increases the processing speed.

General-purpose registers are sometimes arranged in two banks, with each bank indepen-
dently available for data storage. Programs called repeatedly into operation and applications
requiring rapid switching from one task' to another can each be assigned a register set for its
own use. This increases processing speed by eliminating the need to change the contents of the
general registers each time a task is changed.

The relationship of registers to throughput is discussed in Section VL.A and Appendix A.
The number of registers that would optimize throughput is program dependent.

7. Special Arithmetic

Programming Versatility can be enhanced and computation throughput increased in some
processors by using separate IC hardware to perform special functions that would take very long
to perform with software [14-161. The hardware often includes the following functions:

* Floating-point arithmetic hardware, which performs precision floating-point instructions
much faster than ordinary floating-point software subroutines

* Double-precision multiply and divide for direct processing of double-length operands

* Trigonometric function package which includes sin, cos, arctan, and other tri-
gonometric functions.

In ordinary operation, most ESM processors do not make'extensive use of floating-point
or double-precision arithmetic, so these functions need not be included in an ESM processor as
special hardware. The trigonometric function package could be useful for navigation and for
emitter location algorithms if these calculations are performed fairly often. If the calculations
are done infrequently, they may as well be implemented'in software.

Some newer ESM Systems are turning to sophisticated mathematical techniques, such as
adaptive Kalman filtering, to perform the adaptive tracking' algorithms and fast Fourier
transforms to do the PRI processing. These techniques normally take too much processing to
allow a high processor throughput if they are implemented in software. They may prove to be
practical, however, if performed by adding special function hardware to the computer.

97

L. W. LEMLEY

8. Input/Output (110)

A large number of modern computers are actually multiprocessors, employing a CPU to
perform the main work of the computer and using special purpose microprocess-type computers
to handle peripheral chores. The most common use for an additional processor is in the imple-
mentation of an I/O controller.

A separate I/O controller executes 1/0 instructions independently of the central proces-
sor. Data are transferred between the I/O controller and main memory by stealing memory
access cycles from the central processor. Otherwise, the 1/0 controller operates independently
to interface a large number of peripherals using a variety of standard parallel or serial interface
types.

9. Multiprocessing

The system designer must decide how to allocate the computer resources that will do the
processing. The obvious first approach would be to use a big GP computer to do all the pro-
cessing. In this case, all processing would be done in one CPU, and all data would be stored in
one central memory, as shown in Fig. 111-5.

As pointed out in Appendix A, the entire processing capability of an AN/UKY-20 was not
enough to track more than ten emitters on a pulse-to-pulse basis, so it becomes apparent that
at least some processing will have to be done by hardware, or special-purpose software proces-
sors.

The approach taken by most modern ESM Systems is to divide the processing task among
as many processors as possible. Since each processor works in a small segment of the problem
and all processors operate simultaneously, the overall system throughput can be increased con-
siderably by using multiprocessing. Task size and processor speed are selected so that each pro-
cessor works at about the same rate, enabling the data to flow smoothly through the system,
with no backup.

The system suggested in Section III (Fig. 111-5) is such a system. The approach shown,
where no more than two processors access each data memory, can be designed with minimal
interference between processors by interleaving the data transfer timing of the two processors.
Since each processor accesses two data memories, as well as its own individual instruction set
memory, the processors can use pipelined architecture most of the time. Unfortunately, this
technique wastes memory space and loses some of the processing time, since duplicate data
must exist in several memory blocks and a part of the processing time must be used to merely
move data from one memory block to another.

10. Physical Characteristics

Other factors that must be considered are the physical size, weight, and power drain of the
computer. If the computer is to be part of an airframe, the size, weight, and power drain
become important considerations in its selection. If the computer has to be used on the
ground, size is usually secondary.

98

NRL REPORT 8247

A large size computer can be an advantage if it leaves room for plug-in options that the
designer wishes to incorporate. Computer and memory options that are "add-ons" require a
separate chassis, separate power supplies, and additional cabling, all of which increase the cost
and decrease the reliability.

The minimum boundary physical characteristics of a processor are also closely' correlated
to memory size, whether they be military qualified or commercial. Of course, the minimum
boundary commercial characteristics outperform military values due to the ruggedization
requirements. These values may change with technological improvements that are addressed in
future processor projects; however,' at present (ca. 1977) military processor power requirement
performance is

Pwr 36.3 + 4.8M, (VI-19)
where

Pwr = power in watts

M = static memory capacity (16-bit kilowords)

and ±ola is

5.4 + 4.5 < Pwr < 67.1 + 5.OM. (VM-20)

The relationship between power and memory capacity is illustrated in Fig. VI-3 with a
benchmark representing the size of one AN/ATR box.

Processor weight, in the same manner, is related to memory size, as

Wp = 3.7 + 0.69M, (VI-21)
where

Wp = weight in pounds

and ilo- is

-16.5 + 0.59 M < Wp < 9.2 + 0.79M. (VI-22)

The appearance of a negative value (weight) for low memory size is obviously invalid and
due to the statistical method of analytically representing processor weight related to memory
size. However, when the total expression is examined, the upper 1-&r limit allows 'a low
memory-weight relationship.

This relationship is illustrated in Fig. VI-4 with the volume of a full-size ATR box as a
benchmark.

Finally, the volume relationship also correlates to memory size, as defined above, as fol-
lows:

where r Vp =369 + 7.67 M, (VI-23)

V,= volume in cubic inches

and lo- is

187 + 6.29 M < Vp < 551 + 9.05 M. (VI-24)

99

L. W. LEMLEY

co

Oq 5

0° F E
D E

(ow z
_1- Ir

0q ,>

2

no

i0

I0 i..
0o 0 0

o 0
0 (SGB)IH9DIM

(D0
e)
6

Clj-1

ID

Ix
!i

a.

co

].EcCL

cn V

. . .,

* 0 Z

x
"I'.

a-

o 0 0 0
o 0 . o
0 0 - - . 9

g , (liVM) 83MOd
i

100

0+1

:

M
If,

I0
x

13.

I I __, - --- -- ,
-

-
S

i � I -

I I i

NRL REPORT 8247

2
A,
2
-a
0

MEMORY (BITS)

Fig. VI-5-Volume vs memory capacity

As previously, these relationships are illustrated in Fig. VI-5 for volume vs memory capa-
city. The volume of various standard-sized ATR boxes are marked as benchmarks for easy
reader reference.

The above relationships all apply to military standard experience (ca. 1977) in which gen-
erally airborne processors were analyzed. -Airborne processors were chosen since weight,
size, power are more critical to this platform (satellites being grouped with airborne). The
rationale is that performance designed to airborne requirements more nearly represents what
the state of the art can accomplish in these characteristics.

Evaluating physical characteristics of more advanced commercial (or R&D) products
becomes a bit more speculative as may be expected, since no attempt has been made to optim-
ize their packaging. However, some insight may be achieved by comparing the pertinent factors
that contribute to these physical characteristics at the commercial and R&D level. For instance,

101

L. W. LEMLEY

present commercially available static' memories display an order of magnitude improvement
over standard military;

Pwr = 0.334 + 0.0363 M, (VI-25)
where

M= memory capacity (kilobits).

11. Reliability and Maintainability

Reliability is important in military applications; all else being equal, computers that have
been in production long enough to have demonstrated their reliability should be given prefer-
ence over new designs. Memory failures are a' serious source of computer malfunctions, so
memories that use extra bits per word for error detection and error correction should be more
reliable than computers that use only working bits in the memory. A 16-bit-word computer
requires only one extra bit for the detection of single-bit errors. Five extra bits added to the
16-bit computer word would correct single-bit errors and detect multiple-bit errors.

To increase maintainability, most computers have diagnostic fault-isolation software, and
most of them are constructed of easily replaceable modules, so maintainability should not be a
serious problem.

B. Software

The major factor in the life cycle cost of a computer/processor-based (EW/ESM) system
is the available software [19]. This will be illustrated both analytically and empirically in the
subsequent section on costs. In the past, far too many small- to medium-scale military com-
puter systems were developed using the computer that was to go into the final operational sys-
tem as its own software development environment. The consequences of this approach were
often disastrous, since these development environments were virtually devoid of the very broad
spectrum of powerful support software tools that now exist on larger computers.

The software aspects of (EW/ESM) computer/processors have been covered quite
throughly in Section V. It remains for this section on computer/processor specifications to
emphasize the requirement for well-developed software tools. Consequently, in Section VIII
the cost of these tools will be discussed. It will be up to the specifier to determine whether he
is prepared to support those costs or would be prepared to "adapt" his processor need to less
costly, "established" architecture. For the most part, this section is oriented to the requirements
of EW/ESM; however, as has been implied in the previous and ongoing discussion, the metho-
dology and conclusions are generally applicable to both military and commercial requirements.

1. Software Tools

In Section V, software tools were analyzed for their relative contributions to EW/ESM
requirements through correlation with machine EW/ESM performance. The following discus-
sion breaks these tools down into three statistical catagories: (a) high EW/ESM contribution,
(b) medium EW/ESM contribution, and (c) low EW/ESM contribution. Within these general

102

NRL REPORT 8247

categories, the software tools as listed below, in order of decreasing EW/ESM contribution,
although the differences may be small.

High Contribution (greater than 14%)
1. Language-Independent Monitor
2. Noninteractive Debugging Aids
3. Compilers and Cross-compilers

Medium Contribution (+14%)
1. Test Case Intrumenters and Analyzers
2. Test Case Auditor
3. Test Case Generator
4. Text Processing System
5. General-Purpose System Simulator
6. Instruction Simulator
7. Assembler
8. Macro Assembler
9. Basic Linker

10. Interactive Source Editor
11. Batch Source Editor
12. Intregrated Library
13. Language-Dependent Monitor I

14. Reformatter
15. Real Time and Time-Sharing Operating Systems
16. Data Base Management System
17. Interactive Debugging Aids
18. Computer System Simulator
19. Real Time and Time-Sharing and Virtual Machine Monitor Operating System
20. Time-Sharing and Multiprocessing and Virtual Machine Monitor Operating System

Low Contribution (less than 14%)
1. Extended Overlay Linker
2. Data Base Design Aid
3. Simple Overlay Linker

The CFA listed these tools in "layers" according to their general military utility. These layers
and a short description of the tools are described below. [201

Layer 3: Functional Support Tools

Layer 3 contains those tools that provide direct support to the software development
activities. The applications software developer has the greatest interaction with these tools.
Layer 3 tools will be related to the specific development activities they support.

Layer 3: Tool Types That Support Activity 1 (Analyze Requirements)

The types of tools directly applicable to requirement analysis are GP system simulations
and system description languages and analysis.

103

L. W. LEMLEY

* General Purpose System Simulators-These allow a user to construct a computer model
of a real or proposed system and to perform simulations to determine the behavior of the
model under various operational conditions.

* System Description Languages & Analyzers-These assist system analysts in describing
the functional characteristics of a system and in validating the consistency and completeness of
a functional decomposition.

Layer 3: Tool Types That Support Activity 2 (Design Software)

The types of tools directly applicable to software design are listed below.

* Computer System Simulators-These are similar in nature to the general purpose simu-
lator except that their basic building blocks represent real computer system components whose
modeled behavior approximates the throughputs, capacities, and access times achievable on the
modeled equipments.

* Data Base Design Aids-These aids assist data base designers in grouping data elements
into logical record classes and in determining the relationships among logical record classes
implicit in either the nature of the data or the usage of the data.

* Data Dictionary Systems-These systems assist data base designers in managing the
data definition activities.

Layer 3: Tool Types That Support Activity 3 (Build System Tests)

The types of tools required to support system test construction are listed below.

* Test Data Generators-Create data files for testing and validating programs.

* Test Data Auditors-Compare data files against specification and produce reports of
discrepancies and/or compliance.

* Test Case Design Advisors-Analyze programs written in a high-level language and
present the results of that analysis in a form suitable to assist test-case designers in the selec-
tion of test data.

* Test Instruments and Analyzers-Instrument modules under test so as to collect data
characterizing the behavior of the module.

Layer 3: Tool Types That Support Activity 4 (Build and Unit-Test Software)

The types of tools required to support the program development and unit-test activity are
listed below.

* Assemblers-These allow programs to be coded in a symbolic language in which state-
ments generally correspond to a single machine instruction. Specific tools include basic assem-
blers and macro assemblers.

104

NRL REPORT 8247

* Compilers-Translate programs written in a high-level language into either relocatable
object code acceptable to a linker or an assembly language acceptable to an assembler.

* Linkers-Combine the text.produced by separate interrogations of compilers and assem-
blers ("object modules") resulting in executable code strings ("load modules" or "core images")
that can be loaded into the computer's main storage and executed without further preprocess-
ing. Specific tools are basic linkers, simple overlay linkers, and extended overlay linkers.

* Debugging Aids-Assist the programmer in locating the sources of program errors that
have been discovered during unit testing, usually by giving him some control over the execu-
tion of the module under test that is external to the normal program code. Specific tools are
interactive symbolic debuggers, noninteractive symbolic debuggers, interactive absolute
debuggers, and noninteractive'absolute debuggers.

* Module Libraries and Change Control Systems-Provide computer-controlled mainte-
nance of groups of related source modules (programs), object modules (the output of assem-
blers and compilers), and load modules (the output of linkers). Specific tools are basic
libraries, integrated libraries, and automatic software production and test systems.

* Performance Monitors-Assist the programmer in quantifying the resource consump-
tion characteristics of a program and in isolating performance-critical areas. Specific tools are
Language-Dependent Monitors and Language-Independent Monitors.

* Standards Enforcers-Allow source programs to be examined automatically and checked
for conformance to installation-defined standards of format, content, and usage.

* Preprocessors and Reformatters-Assist programmers in producing well-structured and
readable programs by allowing the programmer to introduce to structured programming ele-
ments into source programs for languages that do not have them, and by automatically
controlling indention, the placement of comments, etc., to produce readable listings.

Layer 3: Tool Types That Support Activity 5 (Integrate and System Test) and Activity 6 (Main-

tain System)

-No unique layer 3 tools exist to support these activities. The tools that were listed for
activities 1 through 4 are generally appliable to activities 5 and 6 at layer 3. Most of the tools
used in practice that are specifically oriented to activity 5 are special-purpose, e.g., test environ-
.ment tools (emulators, hot benches, system integration lab support, virtual machines), test
drivers and special performance monitors.

Layer 2: General Support Services

The primary function of layer 2 tools is to provide a framework of common services that
will allow the output of third-layer functions to be stored, retrieved, and intercommunicated.
Second-layer functions should be usable for common purposes across different third-layer func-
tions, and should serve to hide (where possible) differences between first-layer and third-layer
functions. Layer 2 tool types provide general support to all of the software development activi-
ties. These tool types are summarized as follows:

105

L. W. LEMLEY

* Data Base Management Systems-Allow the use of a computer system to define the
contents of and the logical relationships between collections of data items that represent some
useful abstraction of a real-world phenomenon (tactical command and control system, and
modules and documentation of a system of computer programs) without being concerned with
the physical mechanics of storing, locating, and retrieving items or groups of items.

* ERT/CPM System-Assist managers in planning and controlling project activities.

* Project Estimation Systems-Assist in the development of work breakdown structures
and related performance standards for use in estimating project resource requirements.

* Documentation Aids-Assist in the preparation and maintenance of documentation
about the molules of a system. Specific tools are text processing systems, flowchart construc-
tion languages and automatic flowcharters.

* Data Manipulation Utilities-Allow the system user to alter the format and content of
data files independently of the logical significance of the data fields involved. Specific tools are
sort/rnerge programs and editors (interactive source language editors, interactive object module
editors, batch source language editors, and batch object module editors).

* Information Retrieval Systems-General purpose application programs operating either
on-line (interactively) or in-batch that interpret user requests to locate and display information
that is stored either within a structured data base or within separate files: Specific tools and
query language systems and report writers.

Layer 1: Operating System Services

Layer 1 implements the operating system services that present a "virtual machine" inter-
face to the services/tools at layers 2 and 3 and manage the real system hardware. The layer 1
tool types are generally applicable across all of the software-develpment activities. Layer 1 tool
types/capabilities are listed below:

* Basic Operating Systems (BOS)-Run single-user processes from initiation to termina-
tion. May or may not overlap I/O with execution. Provide basic I/O support that allows user
to refer to files symbolically and to read and write them without knowing the hardware details
of the V/O interface. Provide basic batch supervisor services that control normal and abnormal
job termination, job-to-job transition, and operater communication. Provide a minimum base
for program development by supporting at least one language translator and/or linker/loader.

* Multiprogramming Operating Systems (MOS)-Provide all of' the services of the basic
operating system. Supports the concurrent execution of two or more user jobs by allowing the
execution of any job' to be suspended while another is executed, without any special program-
ming considerations in the user job. Prevents concurrently executed user jobs from accidentally
or intentionally destroying each other or the supervisor.

* Multiprocessor Operating Systems (MPOS)-Allow the computing load to be spread
across more than one processor; based on automatic (programmed) load-leveling algorithms or
operator control, but does not require special ease programming in the user job. Multiprocessor
Operating Systems include the shared storage, loosely coupled, and networked types.

106

NRL REPORT 8247

* Virtual Machine Monitor (VMM) -The operating system presents an interface to the
user program that makes it appear that the program is executing on a real computing system.

* Time-Sharing Operating System (TSOS)-This is a-variant of the multiprogramming
operating system in which system resources are allocated to user jobs in such a way that all jobs
appear to progress at the same rate.' In addition, users are allowed to "interact" with and receive
outputs from their jobs via terminals. Such systems are optimized for response rather than
throughput.

* Real-Time Operating Systems (RTOS) -Allow user jobs to be executed within specified
short time limits.

A number of approaches can be made; to the specifying software tools:

a. High-Cost Approach. The specifier may describe each tool as required for the processor
that is being processed and require the vendor to develop this tool(s) for the architecture pro-
cessor being procured.

b. Medium-Cost Approach. The specifier requires the vendor to conform the processor
architecture to operate with established operational software tools.

c. Low-Cost Approach. The specifier stipulates that the vendor develop his
computer/processor to comform to an established software base, preferably from an established
high-inventory computer architecture.

2. Software Language

One conclusion that can be established from Table V-2 of the preceding section on
software is that the military language, CMS-2, appears to enjoy a 78% efficiency advantage over
the more common FORTRAN. However, in general military applications, FORTRAN does
appear to be more efficient than CMS-2 by 18%. Another factor that will be established in Sec-
tion VIII regarding cost is that the FORTRAN base will be on the average 34% less costly to
program than CMS-2 because of the higher base of programmers familiar with the FORTRAN
lauguage.

C. Microinstructions

Section IV, under Evaluations, established that EW/ESM programs used 10 of 103
microinstructions nearly 80% of the time. It would follow that the specifier should require that
any computer/processer procured for an EW/ESM system be optimized for at least these ten
instructions. Optimization in this case would be in the form of execution times. These instruc-
tions, together with their relative weighted importance, appear in Table VI-2.

107

L. W. LEMLEY

Table VI-2 - Weighted Priorities for EW/ESM Microinstruction

Instruction Category Frequency Cumulative Percent Weight

1. Load Internal Register 3289 21.4 .271
2. Store Internal Register 2372 36.8 .195
3. Quick Branch 1598 47.2 .132
4. Branch 1043 54.0 .086
5. Branch to Subroutine 0834 59.5 .069
6. Register Add/Subtract 0812 64.7 .067
7. Branch on Condition 0622 68.8 .051
8. I/O Control 0587 72.6 .048
9. Register Logical Operation 0541 76.1 .045
10. Modify Internal Register 0454 .79.1 .036

VII. SELECTION

As part of the specification process, the computer/processor procurement must be capable
of selecting the best technical response to his request for proposal. The vendor, in turn, should
expect and derive a great deal of information from the basis of selection. The selection pro-
cess is a weighting process by which every element of importance in the selection of a
computer/processor is weighted for its contribution to the expectations of a system; in this
case, an EW/ESM system.

As implied by this ongoing text, the criteria of selection are complicated and extensive.
The most important criterion, is memory access time; however, most modern developed
computer/processors should be very close in technology, so that this single characteristic would
not provide sufficient basis for choice. A second criterion of performance is the microinstruc-
tion execution time as discussed in Section IV. Here, individual hardware architectural features
will begin to exhibit differences that will permit choices of performance, especially EW/ESM
performance. Software architecture and software tools become a third important criterion of
choice. 'Without the software tools the computer/processor becomes an extremely frustrating,
time-consuming and costly choice, even if it does exhibit some performance superiority.
Hardware costs are often diminished by the high-cost, programmer-related expenses of
software. Life-cycle costs are dominated by the software cost over the initial cost of hardware
acquisition, as will be shown in Section VIII.

This is not to say that cost is an overriding criterion of selection. There are a number of
reasons why performance must override cost; however, within the boundary conditions of per-
formance, these criteria may be used for selection. The purpose of this document and section
is not to make a selection but to provide the basis by which selection can be made, given the
normal objectives of (EW/ESM) system processor procurement.

A. Memory Access Time '

As has been pointed out in several areas of this document, memory access time is the
sole criterion of real-time throughput performance. Section IV demonstrated the performance

108

NRL REPORT 8247

differences that can be realized for computer/processors of the same architecture when memory
access time is changed through technology. Table VII-I compares two computers of the same
architecture with different memory technologies (core, semiconductor, bipolar). The (EW
weighted average) instruction execution time dramatically demonstrates the performance
differences for the change of memory even though the same architecture is retained.

Table VII-1 - Computer Architecture Performance
vs Memory Access Time

Computer Memory Instruction
Access (ns) Execution (As)

ATAC-S 650 2.71
ATAC-F 200 1.15
PDP-11/45 C 452 2.245
PDP-11/45 B 300 0.986

Generally, the average instruction execution time is related to memory access time by

T = 1.824 T,23 .(VII-1)

where
T, average instruction execution time (pus)
T. memory access time (us).

However, differences do exist, due to the particular architecture, so that the next level of com-
parison for performance selection lies in a (EW/ESM) weighted comparison of the most fre-
quently used microinstruction execution times.

B. Instruction Execution Time

Selection between computer architectures on a hardware basis is carried out by a compari-
son of the architecture's microinstruction execution times. These factors depend upon the par-
ticular usage the program makes of these instructions. As was pointed out earlier in Section IV
on Evaluation, EW/ESM programs are almost dominated (80%) by ten microinstructions that
represent the frequency-of-use times execution-time product of an EW/ESM program (see
Table VII-2). It is not only sufficient to note the frequencies of microinstruction usage; but,
since each instruction is executed with different times, the frequency-time product is more
indicative of the architecture's performance than frequency alone.

The use of weighted microinstruction selection permits a performance evaluation based on
not only the previously discussed memory characteristics, but also the architectural structure of
the CPU, ALU, bus, registers, and all elements that would contribute to the performande data
for the computer/processor. The computer/processor vendor, then, should provide the perfor-
mance data for his candidate processor as against the microinstruction weighted list of Table
VII-3 for EW/ESM application. The absence of any microinstruction would have a penalizing
effect upon the particular machines performance in an EW/ESM system. (Table VIII-4
presents the variations in microinstruction execution times realized by various
computer/processor configurations.)

109

L. W. LEMLEY

Table VII-2 - Ten Most Frequently Used
Frequency-Time Product Microinstructions

for EW/ESM Programs

Instruction Type Frequency Cumlative Percent Frequency - Time Product
Load Internal Register 3289 21.4 25517
Store Internal Register 2095 35.0 17688
Quick Branch 1598 45.4 5321
Branch 1043 52.2 6519
Branch to Subroutine 834 57.7 5738
Register Add/Subtract 812 62.9 6431
I/O Control 587 66.8 * 7396
Branch on Condition 586 70.6 4213
Halfword Logical Operation 541 74.1 3522
Modify Internal Register 454 77.1 3673

Table VII-3 - Weights of Ten Most-Used
EW/ESM Microinstructions

Instruction Category Weight
Load Internal Register 0.271
Store Internal Register 0.195
Quick Branch 0.132
Branch 0.086
Branch to Subroutine 0.069
Register Add/Subtract 0.067
Branch on Condition 0.051
I/O Control 0.048
Register Logical Operation 0.045
Modify Internal Register 0.036

1�

C. Benchmark Tests

Several levels of Benchmark tests are available that will produce various degrees of accu-
rate comparisons. Appendix A provides the details of a simple EW/ESM tracking algorithm
that can benchmark test the most fundamental processor either programmatically or analytically,
as demonstrated in Appendix A. More software-oriented, the CFA/MCF programs generated a
series of Benchmark programs to test the elements of (software) computer architecture that
most represent the needs of general military computer/processing. These benchmark programs
were analyzed through correlation for their ability to characterize EW/ESM computer/processor
performance. One CFA/MCF Benchmark program, 1. Message Buffering and Transmission,
displayed very high S, M, and R correlation with the EW/ESM performance of the computers
on which they were tested. Other Benchmark programs displayed individually higher S, M, and
R correlations; and in some cases, the Benchmark programs displayed no correlation at all.

One- pruoienr WiLi the CFA,'MC1i Bcnchr~mark prograims is tiat they are subjecvu indivi-
dual programmer interpretation and implementation such that programmer variances are

110

NRL REPORT 8247

involved. This results in a less rigid approach to computer/processor selection than the above
microinstruction approach or the flywheel tracking algorithm of Appendix A. On the other
hand, the implementation of a microinstruction analysis or program is much more difficult than
the higher level programming demanded of the CFA/MCF Benchmark tests. The results of the
CFA/MCF test must almost be treated statistically, as they were in that program. On the other
hand, the CFA/CMF Benchmark programs do test the higher levels of (software) architecture
and would permit an evaluation of software tools and programmer efficiency if demanded in the
specification and selection process.

Table VII-4 - Mean and Standard Deviation for
Microinstruction Execution Times

Microinstruction Time, .t + %

LAH 2.289 1.321 57.7
MIC 1.398 0.900 64.4
SAH 2.438 1.401 57.5
B 2.129 1.044 49.0
BSI 3.371 1.708 50.7
LYR 1.833 0.858 46.8
SA 3.128 1.485 47.5
LA 3.086 1.225 39.7
MXR 1.622 1.141 70.4
SBZ 2.914 1.442 49.5
DIOC 4.181 2.886 69.0
AUA 1.662 0.891 53.6
SR 4.114 2.453 59.6
AH 1.859 1.456 78.3
BZ 2.245 1.226 54.6
SHZ 1.951 1.554 79.6
SHN 2.023 1.736 85.8
SH 1.859 1.456 78.3
MSH 4.487 1.607 35.8
SXR 2.886 1.605 55.6
SL 4.400 4.163 94.6
t 2.465 1.322 53.6

Table VII-5 presents the Benchmark programs together with their EW/ESM relevancy as
determined through correlation with the EW/ESM performance of known computer/,processors.
The correlation coefficient was determined from the relation:

[Vai xi) (in y,) - (en x 1)(Un y1) 1
2

(VII-1)(,X -U (in y1)2-Y
ill

L. W. LEMLEY

where

x= the EW/ESM index of performance of the ith machine
y= The Benchmark program value on the Ith machine.

Table V11-5 gives the EW/ESM correlation relevancy values for program size, S; memory
activity, M; and processor activity, R. The values are most relevant as they approach 1.000,
which is perfect correlation. Values approaching 0.000 have practically no relevancy at all and
would not normally be used to select a computer processor for EW/ESM. In some cases corre-
lations are negative; that is, while relevancy exists, there is an inverse relationship between the
EW/ESM index and the Benchmark program value.

The S, M, and R values that the MCF program derived from Benchmark tests were corre-
lated in a similar manner with the EW/ESM performance of the architectures tested. This
yields a fairly reliable relationship between the S. M, R values and the EW/ESM index such
that performance can be projected based upon S, M, R rather than the EW/ESM index when
one or the other is not available:

Tp = 2.22 - 1.094M + 2.298R - 1.624S, (VII-2)

where

To = EW index (or average EW weighted processor time)

M = memory activity index

R = processor activity index

S = program size index.

D. Architectural Element Weights

As a means of preliminary screening, the CFA committee constructed a set of absolute
and quantitative criteria for general military computer architecture. These criteria were com-
pared quantitatively with the EW/ESM peformance of the relevant machines to determine the
relevancy of the architectural elements to the requirements of EW/ESM. A complete descrip-
tion of the architectural criteria is given in Section III and will not be repeated here.

1. Absolute Criteria

These architectural characteristics defy quantification and can be used only to describe a
qualitative characteristic of the computer. A computer either has or does not have floating
point arithmetic capability. Table VII-6 was derived from the performance data for the nine
computers evaluated by the CFA committee. A value was assigned to each characteristic based
upon the computer architecture's performance. These values were used as a normalized basis
for weighting the absolute architectural characteristics. An examination of the weights and
architectural characteristics indicates, as might be expected, that very little difference exists in
these criteria that could provide a basis for selection of an EW/ESM architecture. It is not
surprising to find floating point arithmetic at a slight disadvantage, since it had been pointed out
in previous sections that this capability is not frequently used in EW/ESM programs. However,
to repeat, these absolute criteria display very few differences. They may be used in a screening
process of vendors' candidate computers.

112

NRL REPORT 8247

Table VII-5 - CFA/MCF Benchmark Tests

.Relevancy (EW/ESM)
No. Benchmark Description R EW M

Program S Memory M Processor R

1 Message Buffer and Transmission -0.924 *-0.781 -0.333
11 Autocorrelation(Large) *0.983 +0.220 +.315
8 Hash Table Search ' - -0.649 -0.614 -0.187
9 Linked List Insertion -0.506 -0.662 +0.168
0 TTY Input Driver ' -0.807 -0.267 -0.112i-

10' Presort (Large) ' '-0.332 +0.026 *+0.570
13 Boolean Matrix Transpose -0.611 -0.197 -0.051
6 Target Tracking -0.424 -0.342 +0.056
7 Digital'Communicatons Proc -0.539 -0.207 +0.028

12 Character Search " ' -0.254 -0.409 -0.006
14 Record Unpacking ' ' -0.010 ' +0.199 ' +0.429
5 Array Manipulation ' -0.325 -0.119 ' -0.081
2 Mulitple Priority Interrupt -0.264 -0.248 ;-0.007

15 Vector-to-Scan Line Conversion -0.454 -0.002 +0.010
4 Scale Vector Display -0.125 +0.036 -0.051
3 Virtual Memory Exchange +0.018 +0.072 +0.000

*Maximum relevancy

2. Quantitative Criteria

Architectural characteristics that do require description in terms of some quantification
were identified as desirable military computer architectural characteristics 'by the CFA commit-
tee. These characteristics were also correlated with the EW/ESM performance of the comput-
ers analyzed by the committee. As noted in'Section VII D.1, these architectural characteristics
have been described and evaluated in previous sections and need not be repeated here.

Table 'VII-7 has been constructed to provide a further basis for the selection of
computer/processors for EW/ESM.

E. Tool Availability Index

The ability to program a computer/processor efficiently is directly'related to the software
tools available to the programmer. After hardware architecture and microinstruction execution
time, program efficiency becomes the most important aspect of 'computer/processor perfor-
mance. The program 'determines 'the number' of steps a cotnputer/processor must take to
accomplish a task. "This is demonstrated in Appendix A where a microinstruction' program is
designed and stepped out for the Flywheel Tracker, a fairly simple, but'demonstrative,' algo-
rithmn.

113

L. W. LEMLEY

Table VII-6 - EW/ESM Weights for Absolute
Computer Arcitectural Criteria

Architectural Element Value Weight
1. Virtual Memory 1.909 1.027
2. Interrupts and Traps 1.913 1.025
3. Subsetability 1.949 1.006
4. Multiprocessor 1.949 1.006
5. I/O Controllability 1.949 1.006
6. Extensibility 1.949 1.006
7. Read-only Code 1.949 1.006
8. Protection 1.965 0.998
9. Floating Point 2.120 0.925

The "tools" to which we refer in this section are the means available to the programmer by
which he constructs a program. These tools range from the familiar FORTRAN Compiler to
the less familiar Text Case Design Advisors. Certain of these tools are basically necessary to
the operation of the computer/processor. Certain of these tools are easily transferred in appli-
cation from one architecture to the other, being essentially architecturally independent. Other
tools are architecturally dependent. As mentioned previously, it is important that the software
architecture, and TAI, at least, be independent of technology; such that computer/processor
technology changes may proceed without the ponderous expense of "carrying" a software tool
redesign ($26 to $28 million).

If one is to consider the case of EW/ESM alone, it is possible to speculate as to the appli-
cability of some of these tools. Such was demonstrated in Section VI on specification, where
TAI was addressed for its derived degree of contribution to EW/ESM performance. There can
be no doubt that certain software tools are fundamentally necessary to EW/ESM programming
performance. Others make a demonstrated, high contribution, while another category of tools
contributes very little.

An examination of Table VII-8 indicates that there is almost no relevancy between the
Tool Availability Index (TAI) and the performance of five architectures for which these data
are available. Subsequently, in Section VIII, it will be shown that there is a high relevancy
between software cost ($/instruction) and TAI. There appears to be little support for TAI as it
relates to the S measure, described earlier in Section IV. It appears, therefore, that at least
from the point of view of performance selection, TAI should be chosen at a minimum. This
choice, as is demonstrated in Table VII-8, would result in a higher performance/TAI efficiency.
From the point of view of performance, therefore, TAI selection should be minimized. The
smaller the TAI, the higher the performance efficiency.

F. Physical Characteristics

The physical characteristics of a computer/processor may or may not be critical in the
selection process. In a space system, weight, volume, and power are all important factors that
require optimization. An airborne system requires optimization of weight and volume, with
some relaxation on power. Most surface systems would only require some optimization of

114

NRL REPORT 8247

Table VII-7 - EW/ESM Weights for Quantitative Computer
Architectural Criteria Performance

Architectural Element Relevency Weight* Units
M2 Central Processor Transfer (min) +0.601 0.158 Bits
B1 Number of Computers Delivered -0.535 0.128 Units
I I/O control +0.400 0.096 Bits
S2 Central Processor State (min) +0.375 0.090 Bits
J2 Subroutine Linkage (min) +0.373 0.089 Bits
L Maximum Interrupt Latency +0.274 0.066 Bits
B2 Computer Inventory Value -0.264 0.063 $M
U Unassigned Instruction Space (Fraction) -0.212 0.051 Fraction
D Direct Instruction Address -0.200 0.048 Bits
PI Physical Address Space Size -0.186 0.045 Bits
VI Virtual Address Space Size -0.162 0.039 Bits
Jl Subroutine Linkage (max) -0.152 0.036 Bits
V2 Virtual Address Space Units -0.126 0.030 Bits
SI Central Processor State (max) -0.108 0.026 Bits
P2 Physical Address Space Units -0.093 0.022 Bits
Ml Central Processor State (max) +0.058 0.014 Bits
K Virtualizability 0.000 0.000 Yes/No

*When all architectural elements are involved.

Table VII-8 - TAI Relevancy

Relevancy (r2)
A TAI Performance Efficiency P/T

Architecture (%W

EW Gen-S EW Gen-S1 _______ 1 ~0.018 10.015
AN/UYK-7 59 1.174 1.30 1.990 2.203

AN/UYK-19 42 2.108 0.93 5.019 2.214
AN/UYK-20 30 1.746 0.89 5.820 2.967
AN/GYK-12 21 1.525 1.14 7.262 5.429
AN/GYQ-21 63 2.293 0.82 3.640 1.302

(Lower is better) (Higher is better)

volume, with weight and power noncritical. Current (1977) realizable weight, volume, and
power curves are set forth in Section VI, based on airborne processor configurations that meet
MIL-E-5400 specifications.

It would be natural that the selection of computer/processors on the basis of physical
characteristics be weighted such that technology is rewarded by significant improvement over
the current state of the art.

115

L. W. LEMLEY

VIII. COST

While not directly involved in the technical performance of a computer/processor, cost is
perhaps the most significant factor in procurement and can overwhelmingly dominate perfor-
mance specification, evaluation, and second selection. As observed previously in architecture,
the cost elements of a computer/processor are at least as complicated as the technical aspects.
It is important that the purchaser have a good idea of the elements of his entire costs or the
cost can rapidly escalate beyond his resources. The actual hardware is only one element that is
presumed to include proper documentation. As previously implied, software considerations
rapidly outgrow hardware costs. A new architecture may involve software tools on the order of
$24 to $28 million. Estimates of the overall cost of software development and maintenance in
the United States alone range from $15 to $25 billion. DOD spends an estimated $3 billion per
year. Some 4 to 5 percent of the Air Force budget is in computer software, and 6 percent of
NASA's budget is in computer software costs.

It is important to realize the magnitude of the above figures when a trade-off decision is
to be made between hardware and software costs, where either is impacted by the other. A
decision to use a new architecture with a resulting higher program cost can cause software costs
to grow rapidly into billions of dollars, even through the cost per instruction may seem an
insignificant percentage.

Summarized in the introduction was the cost per instruction for various architectural
bases. This cost was significantly related to the total investment in an architectural base by

C., =42.34 B' 4 9-2' (VIII-1)

r = 0.902
where

C,, = cost per instruction ($)

B2 = total dollar value of architecture inventory ($M)

r = correlation confidence (1.0 = perfect) (see Fig. VIII-1).,

The CFA Selection Committee generated the architectural attribute evaluation results that
are the basic inputs to the cost computations 1261. The first of these are the data derived from
test program experiments. These data indicate the relative efficiencies of the architectures in
utilizing storage and processor hardware resources. The S measure is a count of the number of
storage bytes required to contain programs, given an architecture. Differences in S can be
directly related to differences in the amount of storage, and therefore, cost requirements. The
M measure is a count of the number of bytes transferred between the CPU and main memory
including cache) during execution of the test programs, and the R measure is a count of the
number of bytes transferred among the registers of the CPU. M and R are clearly indicators of
the hardware bandwidth requirements of an architecture to do a job. Everything else being
equal, memory cost will be greater if more storage is required (larger S) or if the memory has
to be faster (larger M or R). Similarly, the CPU cost will be larger if the processor has to be
faster (larger M or R). The relationship between memory, CPU speed, and cost is taken as
speed (in MIPS*) = k xcost'l. where k and g are empirically derived constants.

*MIPS is millions of instructions per second.

116

NRL REPORT 8247

0 10 100 1000

'Fg Vl-l-ntuto cos vsivntoyivs

Co~~~~~~~~~~~~~~~~~~C
0~~~~~~~~~~~

o)-

'Fg.VII 2n0ucin ot sinetoyinemn

The other architecture attribute used in cost computations is the availability of software
tools to aid in developing software for MCF systems. This was established by the Selection
Committee by defining support software (i.e., compilers, editors, etc.) 'required for military
applications and then evaluating the relative percentage of this support software available for
each architecture. Using data from actual system developments, the Committee generated a
curve relating this relative availability of software tools to the cost (per line of code) of
developing software for an architecture. This data were ultimately used in the computation of
life cycle software costs. 1271

The ensuing cost analysis is based upon CFA's "bottom-up" model, which predicts the
cost of a particular computer architecture j, as applied to a particular military (EW or other)
system L. It stands to reason that different architectures I will produce different results depend-
ing upon system requirements.

The computer resource life-cycle cost for system i and architecture j is defined as

C1, HW,, + ASw,1 , (VIII-2)

where

HW,j = hardware life cycle cost

O~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ASw, U = applications software life cycle cost.

10 -

A. Hardware

As may have been implied in the foregoing, the cost of computer/processor hardware is
dependent upon several elements; processor speed, main memory capacity, and secondary

117

L. W. LEMLEY

memory capacity pretty much make up the initial costs. These costs must be added to lifetime
cost of maintenance and the number of units to be processed, together with the number of
units produced, to become the major factors in computer/processor hardware costs. These
costs are somewhat based in technology, which will be addressed in the subsequent and final
Section IX. [261

The computer hardware life-cycle cost for a given system using a specific CFA is defined
as

HWi, = niL,,(P_1 j + MM1_J + SM,1), (VIII-3)

where
i = index of the system
j = index of the architecture
nj = number of units to be produced for system i
L,, = hardware life-cycle cost factor, i.e., ratio of total hardware life-cycle cost to

hardware acquisition cost. This factor is assumed to be 2 for a 10-year
life cycle

Pu = processor acquisition cost
MMj = main memory acquisition cost (see Fig. VIII-2)
SM,, = secondary memory acquisition cost (see Fig. VIII-2).

1. Processor Speed Costs

Principally based in technology, the processor speed as has been demonstrated is a factor
of memory speed. At present (1975-1977) there are three technologies that dictate three
ranges of memory access time; core, MOS, and bipolar, at corresponding costs ranging from 0.1
cents/bit to 1.0 cents/bit. These technologies represent memory access time (and processor
speeds) of from 300,000 IPS to 80 MIPS, (see Fig. VIII-3). The range of values is not obvi-
ous, since there is a give and take in memory capacity involved.

Tutorially, the initial acquisition cost of a processor with T. average instruction processing
time is

CHi = k (VIII-4)
pI

where
CHi = cost of the ith processor
k = 6.3 x 1 O!
g,, = 0.4
Tp = average instruction execution time (in pusec).

The processor acquisition cost for system i using architecture j is defined as

P,, = K (aiMr,) 0 4 (VIII-5)

where
k = constant relating to processor cost
a,, = processor speed ratio
Mr, = operating speed in millions of instructions per second (MIPS).

118

NRL REPORT 8247

Equation (VIII-3) follows from a commonly cited relationship between performance and
cost, namely performance = constant x costg. For the purpose of the bottom-up (BU) model,
g was assumed to be 2.5. To obtain a value for k, in Eq. (VIII-5), CFA used the fact that
recent cost/speed data for several military processors seem to indicate that speeds of 0.5 MIPS
(T, = 2 .s) and processor costs of $48,000 are representative values; consequently,

K = 48 x 103/(0.5)4 = 6.3 x 104.

This value of K is used in subsequent calculations for 1976 processor cost estimates and is
reduced by a factor of 10 for 1985 processor cost estimates based on an assessment of
hardware cost reduction over the next decade (see also Section IX.D).

2. Main Memory Costs

At this time, there are three types of main memory technologies - core, MOS, and
bipolar - which represent three distinct characteristics in access time, capacity, and cost.

The main memory acquisition cost for system i using architecture j is defined as

MM,, = cb(biPM, + DMI), (VIII-6)

where

MM,, = main memory acquisition cost (in dollars)

bij = static storage ratio

PM, = main memory (in bits) required for program storage in system iM, is derived
from system requirements; P is estimated fraction of M, dedicated to program
storage vs data storage.

DM, = main memory (in bits) required for data storage in system i; M, is derived
from system requirements; D is estimated fraction of Mi dedicated to data storage
vs program storage.

cb = cost per bit of main memory. Examination of the price per bit of recent mili-
tarized memory systems indicates an average cost of 4 cents per bit; i.e., $5000
per 16,000-byte memory module. This value is used in 1976 cost estimates; 0.4
cents is assumed in 1985 cost estimates.

(See also Figs. VIII-2 and Fig. VIII-3).

3. Secondary Memory Costs

Inherently characterized by slower access time and enormous storage capacity, secondary
memories are important adjuncts to the computer/processor. Naturally, secondary memories
cost less (see Fig. VIII-2).

The secondary memory acquisition cost for system i using architecture j is defined as

SMj = C0(b1 P'Mai + D' Mai) (VIII-7)

119

L. W. LEMLEY

Fig. VIII-2-Cost vs memory size. Copyright 0 1977 by Cahners Publishing
Co., Inc. Reprinted, by permission, from EDN Vol. 22 (No. 9), pp. 21-24 (May
1977).

U
W

is
W
U
V

10

- 1975 COST Id/BIT)
-- 1976

Fig. VIII-3-Access time vs cost (1975-1976). Copyright e 1977 by Cahners Publish-
ing Co., Inc. Reprinted, by permission, from EDN Vol. 22 (No. 9), pp. 21-24 (May
1977).

120

NRL REPORT 8247

where

SMj = secondary memory acquisition cost (in dollars)

bjj = static storage ratio

PMa1 = secondary memory (in bits) required for program storage in system i; MaJ is
derived from system requirements, whereas P' is the estimated fraction of Ma,
used for program storage vs data storage.

DMa1 = secondary memory (in bits) required for data storage in system i. Mai is
derived from system requirements, whereas .D' is the estimated fraction of secon-
dary memory used for data storage vs program storage.

Ca = cost per bit of secondary memory.

(See Figs. VIII-2 and -3.)

Examination' of the price per bit of current militarized disc systems indicates an average
cost of 0.2 cents per bit, e.g., a 36-Mbit disc system costs $72,000. This value is used in 1976
cost estimates; a cost reduction of 10:1 in the next 10 years is assumed, so a price of 0.02 cents
per bit is used in 1985 cost estimates (see also Section IX.D).

4. SMR Costs

The processor speed ratio a,, and static storage ratio b,, attempt to capture the ability of
the jth architecture relative to system i. They are derived by measuring the performance of the
three architectures on Benchmark test programs and by estimating the relative importance, or
weight, of each program to computations characteristic of each system (see Table VII-5). The
performance of each architecture on the test programs is summarized in what are called the S,
M, and R measures, where

Ski is a measure of the amount of memory (in 8-bit bytes) needed to represent test pro-
gram k on architecture j.
Mkj is a measure of the processor/memory transfers required to execute test program k
when using architecture j.
Rkj is a measure (in 8-bit bytes) of the number of internal register-to-register transfers
required by the processor to execute test program k on architecture j.

See Section IV for details of the test program experiment.

The relevancy of the kth test program to the ith system is given by factors WkA., which
were obtained by first dividing the' Benchmark programs into two categories: programs that
relate principally to I/O, and those that are associated with traditional processor/memory func-
tions. Within these categories, varying degrees of functional overlay occur among the test pro-
grams. Initially a gross value was estimated for each category; subsequently, this value was dis-
tributed across the programs of the category. As an example of how the weights were distri-
buted, see Section VII. I

121

L. W. LEMLEY

The processor speed ratio aj and the static storage ratio bj were obtained by combining
the above quantities in the following rnanner.

12

3 S Wik(3Mkj + Rd,)
ka1 (VIII-8)3 12

I, I Wk(3Mkm + Rkm)
m=1 k=l

and
12

3 1 WikSkj

I ' = ,3 12 (VIII-9)

W I k'km
m=1 k=1

B. Software

As implied earlier, software costs may outweigh hardware costs when viewed in the total
life-cycle cost picture. Figure VIII-1 showed a strong correlation between total dollars inven-
tory investment and the cost-per-instruction for software. This correlation is even stronger
when cost per instruction is related to the TAI:

Csi = 1138 T, 1.07 (VIII-10)

r = 0.99
where

TAI = Tool Availability Index (%)
r = correlation confidence

and ±ac is
781 (TAI)- 107 < C3, < 1984TAI-1 7 . (VIII-Il)

However, since TAI is not as easily evaluated as investment inventory, the relationship of
Fig. VIII-1 is more usefully applied.

.Some note of caution should be brought to the attention of the EW community, here. In
Sections V, VI.B, and VII.E, there appears to be very little relevant influence of TAI on
EW/ESM performance, so it may be possible to tolerate poorer TAIs and, consequently, high
program costs and still experience more cost-efficient computer/processors. In other words, it
should be noted that architectures with lower TAI do come out with higher cost efficiencies in
total life-cycle costs (LCC) (see Table VIII-1).

The applications software life-cycle cost for system i using architecture j is defined as
[26,271 A4Sw,, = C -SSLS, (VIII-12)

where

C'j = cost (in dollars) per instruction of applications software for architecture j
Si = applications software size (in instructions), derived from the system proponents data
(Table 11-3 and Fig. 11-6)
Ls = applications software life-cycle cost factor, i.e., ratio of applications software life-
cycle cost to initial acquisition cost (= 5.5).

122

NRL REPORT 8247

Table VIII-1 - EW/ESM Cost Efficiency

Throughtput
Architecture S Normalized CI Cost

C3 , ($k) ($/pulse)

IBM 370 0.82 1.434 206.93 070.12
PDP-11 0.89 0.738 393.63 116.05
UYK-28 0.93 1.080 324.65 092.95
UYK-7 1.14 0.653 648.79 093.45
UYK-20 1.30 2.114 349.52 082.90

1. TAI Cost

The MCF provides an evaluation of the costs of each element in the previously described
TAI elements. These costs, together with the required TAI elements for each architecture,
became the basis for the indices used in this report. Table VIII-2 presents the estimated value
of these TAI elements, together with their EW/ESM weights.

The total dollar value of TAI was plotted in Fig. VIII-4 for representative architectures
and is presented in Table VIII-3. There appears to be a high confidence relationship between
TAI and costs:

CTA, = 244 TAII'0 09 (VIII-13)

where CTAI = total software tool cost ($K)

TAI = Tool Availability Index (%)

r = correlation confidence, 0.994.

C. Life Cycle

Table VIII-4 summarizes the total life-cycle cost (per unit) for the five architectures for
which the most current data are available. This table (VIII-4) should be tempered by Table
VIII-1, in which recognition was given to the EW/ESM throughput performance of the archi-
tectures and the relatively low (EW/ESM) relevancy to TAI. It should be noted that the
AN/UYK-20 rapidly jumps to second place from last (Table VIII-4) when it is applied to
EW/ESM in cost performance. This is only to emphasize the importance of the interplay
between architecture j and system i. In other applications or with architectures that have not
been addressed, the best architecture for the best system can change again significantly.

It should be noted that the CFA/MCF work described above is for general military appli-
cations. It does not rule out the relative advantages of special applications such as EW/ESM
that make some architectures (such as the AN/UYK-20 with its relatively low, 30% TAI), a
good EW/ESM (cost) choice.

123

L. W. LEMLEY

Table VIII-2 - Software Tool Costs

EW Weight Software Tool Cost
(Higher is Better) SotwreTol(1977)

Noninteractive Debugging Aids (CMS-2)
Language-Independent Monitor

*Compiler + Cross-Compiler (CMS-2)

Real-Time + Time-Sharing Operational System
*Computers + Cross-Compilers (TACPOL)
*Test Case Instrumenter + Analyzers (TACPOL)
*Test Case Instrumenter + Analyzers (CMS-2)
*Noninteractive Debugging Aids (TACPOL)
Language-Dependent Monitor (Assembler)

Assembler
Macro Assembler
Basic Linker
Simple Overlay Linker
*Interactive Debugging Aid (Assembler)
Test Data Auditor'
Test Data Generator
Integrated Library
Text Processing System
Interactive Source Editor
Batch Source Editor
Data Base Management System
General Purpose System Simulator

Instruction Simulator
*Reformatters (Fortran)
*Test Case Instrumenters + Analyzers (Fortran)

*Compilers + Cross-Compilers (Fortran)
*Noninteractive Debugging Aids (Fortran)
Ekxtended Overlay Linker '

$50k
210k

3300k

3500k
1000k
280k
280k

50k
50k

135k
800k
130k
210k
300k
140k
350k
100k
630k
130k
100k

4200k
700k

350k
110k
280k

1000k
50k

500k

124

1.61
1.61

1.34

1.12
1.07
1.07
1.06
1.07
1.06

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.99
0.64
0.64

0.64
0.63
0.63

*Alternative choices represented

NRL REPORT 8247

U)

-J
-j
0

0
U,
> 0M

-J

4
>4

-j00

10 20 30 40 ' 50 60
TAI (%)

Fig. V111-4-Tool availability cost

Table VIII-3 - TAI Costs

TAI (%) Cost ($) Architecture

21 $5,075k AN/GYK-12
30 8,035k AN/UYK-20
42 10,295k ' AN/UYK-19
59 15,755k AN/UYK-7
63 15,495k AN/GYK-21

70 80

Table VIII-4 - EW/ESM Architecture Life-Cycle Costs

Architecture tO(j.s) B2($M) Chi($k) | ($k) LlOyr LCC($k)
IBM S/370 2.182 16,000 46.1 152.6 645.3
PDP-11 2.293 311 45.2 274.5 935.1
AN/UYK-28 2.108 169 46.8 300.6 1,007.8
AN/UYK-7 1.174 147 59.1 306.9 1,096.7
AN/UYK-20 1.746 8 50.4 473.6 1,448.2

N.B. Based on previously noted program structure.

125

I

0 01 ~ >-
! D Y > v ;tO D 3D D0.

I I I I I a

L. W. LEMLEY

IX. FUTURE COMPUTER/PROCESSORS

The key to future characteristics of computer/processors lies in technological research
today. The sum total of almost every characteristic of computer/processors lies in the circuit
density of technology (see Fig. IX-1). The closer the circuits, the faster a signal propagates, the
faster the memory access, the faster the computer. However, the closer the circuits, the higher
the energy density, the more power required, the more heat to be dissipated. The higher the
density, the smaller the packaging, the lighter the weight. Not all of this is directly linear, of
course. The technology by which this density is achieved is varied.

CIRUI

Fig. IX-1 -Circuit density

IRUT(no l)

The exotic Josephson junctions, operating at superconducting temperatures, have no resis-
tance; therefore, they can be packaged closer together for high density. However, the materials
by which J2 circuits are constructed have a tendency to disassociate after a relatively few (10)
cycles of temperature change.

Emitter Cathode-Follows Logic (ECL) devices realize high propagation times but must be
"forced" through high relative power. This creates heat dissipation problems and accompanying
reliability problems.

While light source lithography permits use of impressive circuit densities, a limit has been
reached due to the diffraction resolution limits of the source. The relativistic x-ray and electron
beam technologies are now being pursued to achieve even higher density masking through the
higher diffraction resolution of these sources. However, these higher circuit densities, using
familiar techniques and materials, are accompanied by slower access times in an almost linear,
inverse relationship (see Fig. IX-2). The picojoule line is the barrier that is stopping most tech-
nologies, regardless of ability to achieve high VSLI packing densities through E-beam or x-ray
diffraction techniques. Here, again, Josephson junctions may provide the breakthrough of the
"picojoule barrier."

A. Statistical Forecasting

It is apparent that the fitting of trends merely describes the movements of a series and
that this type of work belongs to the domain of descriptive statistics. Having found the equa-
tion of a trend, the obvious thing that suggests itself is to extrapolate or to estimate a value that
lies beyond the range of values on the basis of which an equation was originally obtained.
However, its success depends on many factors.

126

NRL REPORT 8247

1W
GaAs
MESFET

OOmw \ (DEPLETION)

GaAs
lOmW A T

2
L

E ImW GaAs
JFET

U) ~~(ENHANCEMENT) CO/O PO

IfJ

10 *- \ j LCMOS

nIWpAmJJTGATEAT
IOOnW v GT I OjjmJJ '0X,,~

l~~nW7SaW ~OR GATE v Cz,
IOnW

Ips lops loops Ins IOns lOOns lis~' lOp1s
PROPAGATION DELAY

Fig. IX-2-The "picojoule barrier" power dissipation vs pro-
pagation delay for various logic technologies. Boundaries
exist at 1 0 -21 J for room temperatures and at 5 x 10-23 J

for 4 kelvins.

The basic question almost always asked is whether the fPrces that have operated in the
past will continue to operate in the future and to operate in the same way. It could be a start-
ing point, a base from which to proceed to a final prediction.

Statistics, in its current state of development, comes somewhere between being of rela-
tively little value and providing a complete solution of the problem of forecasting. When used
intelligently with appreciation of its possibilities and recognition of its limitations, statistics pro-
vides invaluable quantitative aids in reaching well-informed and wise decisions.

In the ensuing forecasts projected in this section, two factors are employed for confidence.
One is an overwhelming industrial inertia that propagates the vast IC market such that compar-
able massive (technological) power would be required to shift the predictions indicated. In
other words, the factors predicted are so massive that they will continue as projected by the
curves. Second, there is technology that can support these predictions, even though they are
not fully developed. Finally, commercial systems, and subsequently military systems, lead
technology by a significant number of years (commercial leads military by roughly seventeen
years). The reason for this is that initially industry must adjust to new technology and military
must adjust to new commercial products that are not as rigid in specification as military require-
ments. Therefore, the forecasting here is not as risky as may appear. By examining new tech-
nology results alone, it would be possible to predict commercial and subsequently military
computer/processor performance in the next twenty years. Combining the support of new tech-
nology with the events of the past twenty years makes it possible to add more confidence to the
predictions.

127

L. W. LEMLEY

The forecasts are limited to the major factors considered pivotal to computer/processor
development: density, speed, and cost. All of the factors previously discussed will develop
parasitically with these three factors, since they are somewhat dependent upon the same tech-
nology. For example, IC devices will develop in a systematic manner to accommodate increas-
ing processor speeds. And, costs will follow the costs of producing ever-decreasing processor
costs.

B. Density

As noted in the introduction to Section IX, circuit density is pivotal to the prediction of
computer/processor performance. Dr. Gordon E. Moore, then of Fairchild Semiconductor,
noted in 1964 that the number of components per chip (circuit) had doubled every year since
1959. Dr. Moore further predicted that this trend would continue (see Fig. IX-3). This curve
appears to be continuing its trend, supported by technology. Moore's curve, then, is the basis
of predicting the future of computer/processors, since most all characteristics of the
computer/processor can be related to circuit density with a high degree of confidence.

SMALL-SCALE
INTEGRATION

MEDIUM-SCALE
INTEGRATION

1969
YEAR

LARGE-SCALE
INTEGRATION

19T4

Fig. IX-3-Moore's curve

128

262,144
(262K)

65,536
(65K)

16,384
(16K)

' 4,096
(4 K)

1,024
(IK)

256

64

I-
z
a
c-

z
Wz0
0.
0
Uo

65K CHARGE-COUPLED
l DEVICE MEMORY

- eC I K MOS RANDOM-
ACCESS MEMORY

I OUR-BIT TRANSISTORI
TRANSISTOR LOGIC COUNTER

MOORE'S7.
PREDICTION--* AL TRANSISTOR

LOGIC FLIP-FLOP
.l

RESISTO-
TRANSISTOR
LOGIC GATE

16

4

19791959 1964

NRL REPORT 8247

.It takes about three years between initial design and the production of microprocessor
designs. Any VLSI bus implementation would be foolish unless at the start of a design it is
possible to forecast the manufacturable logic density that will be available some years ahead.

* [291

Fortunately, progress in LSI technology over the past ten years has been very consistent.
Considering the progress on only the fastest moving technology-metal-oxide semiconductors
(MOS)-we see that the speed x power product has decreased by two orders of magnitude

* while gate-propagation delay has decreased by almost an order of magnitude. Gate density and
practical chip size for high-volume production also have increased steadily. On that basis, it is
,possible to predict with a fair degree of certainty what kind of complexity will be used five to
ten years from now. Today, we can put 8000 gates on a chip to implement random logic-
more, of course, in the repetitive designs of memories and particularly of read-only memories.
Our predictions suggest that by 1981 those random logic designs will have a complexity
equivalent to about 20,000 gates on a single chip.

Because of recent advances in electron-beam and x-ray lithography, coupled with better
understanding of small geometry devices, there is no reason to think that in the next decade
the rate of increase in complexity will depart appreciably from the one shown in Figs. IX-4 and
IX-5.

It 'is obvious that the technologcal acceleration shown in Figs. IX-4, IX-5, and IX-6 cannot
continue unabated forever. However, as long as we are several orders of magnitude away from
the theoretical limit, progress is likely to continue at the rate shown. A gyoss estimate of a
practical limit for MOS technology is a circuit'using complementary MOS (tMOS) technology,

1000 --- ! ---

Gate 45 000 A'
complexity a,

-E '0 u \ ' 45.5 mm2

I - \ 3000 33mm2

1500, 21.4 mm2 Chip size

c 100

F'12.2 mm2 Legend:

I First-generation
microprocessor

0
-j II Second-generation

microprocessor

III Third-generation
microprocessor-

0 I 'I I' I I ' I
70 72 74 76 78 80 82 84 86

Fig. IX-4--Logic gate density trend. Copyright 0 1978 by Insti-
tute of Electrical and Electronic Engineers, Inc. Reprinted, by
permission, from IEEE Spectrunt vol. 15 (No. 5), pp. 28-31 (May
1978). Author's permission also obtained.

129

L. W. LEMLEY

100_ I I I I I I I

Random logic circuits ./

50- o

E -/0 Memory circuitsE

0)-

10

5-cm- 7.5-cm- 10-cm- 12.5-cm-
diameter diameter diameter -diameter
wafers wafers wafers wafers

I I I I I II
68 70 72 74 76 78 82 83 84 86

Fig. IX-5-Projection of logic and memory circuit sizes. Copy-
right 93 1978 by Institute of Electrical and Electronic Engineers,
Inc. Reprinted, by permission, from IEEE Spectrum vol. 15 (No.
5), pp. 28-31 (May 1978). Aufhor's permission also obtained.

1000 I I I

Me gate PMOS 80

1Si-gate PMOS 30

Si-gateHV NMOS 12

*0

i 10 Si- ateLVNMOS4

0.

iS 1\ Si-gate LV. short
%, ,channel NMOS 1.5U) Legend:

Si = Silicon
1.0 Me =Metal

HV = High voltage \ 3V operation
LV = Low voltage

Numbers refer to gate
delay in nanoseconds

0.1 I
68 70 72 74 76 78 80 82 84 86

Fig. IX-6-Speed-vs-power trend of LSI production. Copyright
© 1978 by Institute of Electrical and Electronic Engineers, Inc.
Reprinted, by permission, from IEEE Spectrum vol. 15 (No. 5),
pp. 28-31 (May 1978). Author's permission also obtained.

130

NRL REPORT 8247

operating at a supply voltage of 400 mV, having a minimum line width of 0.25 Mm, dissipating

1 W at an operating frequency of 100 MHz, having a chip size of about 5 x 5 cm2, and having

the complexity of about 100 million gates! The trends shown in Figs. IX-4, IX-5, and IX-6 are

still very far from a practical limit; therefore, technological acceleration will continue beyond

the next decade.

In only seven years the industry has advanced from simple-minded microcomputers,
remarkable less for what they could do than for what they suggested could be done, to the

microcomputers that rival high-end minicomputers in performance.

It is Faggin's [291 assessment that future processor development will take place along two

paths: One path will be essentially the same one that technology has been following for the last

twenty years-putting more and more functions on a chip and making the chip run faster and

faster. An example is integrating onto a single chip the CPU, memory, and I/O circuitry of an

older design that previously required separate chips. This path will continue to be plagued by

the need for compatibility with prior designs. As a result, architectural progress along this path

will be relatively slow.

The other path, that of developing a parallel-processor architecture, means taking a fresh

look at new technology and at the many new processor applications that have recently emerged.

Given the fact that a complex CPU or even a full single-chip microcomputer can be purchased

for a few dollars, it seems appropriate to devise a structure using a multiplicity of microcomput-

ers providing more processing power than would be possible or practical, using a single CPU

with traditional architecture.

The previously mentioned, the "picojoule barrier" does show a predictable improvement as

displayed in Fig. IX-6. This tends to belie the "barrier" concept if voltages can continue to

decrease without noise probems. Such a trend would result in logic densities as depicted in Fig.

IX-4.

1. Instruction Timing

The improvement of instruction timing, or inversely, the number of operations per

second that an architecture can expect, is related to the number of circuits by

- = 0.115 NC,488

tj

r- 0.948, (IX-1)

where

j= time to execute average instruction (Ms)

N. = number of circuits

r2= correlation coefficient.

Obviously; as the density increases, the processing capability for a given volume or weight

improves, as indicated by the trends in (ultimately) Moore's curve.

131 X

L. W. LEMLEY

2. Volume

The size of a computer/processor for a particular throughput must improve almost directly
with the improvement in the speed vs power curve. This relationship follows the relation

V = 239 N,0
85'

r2 - 0.993, ,(IX-2)

where

V= volume in cubic inches

N= number of circuits

r2= correlation coefficient.

The improvement must be in speed, power, or as the number of circuits increases in density,
the speed of these circuits will decrease as an indirect function (see Figs. IX-2 and IX-6).

3. Weight

The weight of computer/processors also shows a high correlation to the number of circuits
active in the architecture. Of course, as densities improve, so will the weight of
computer/processors for a particular performance. At present, weight is related to the number
of circuits by

W= 20.284 N 0
53 '

2= 0.972, (IX-3)

where

W. = weight in pounds

N,. = number of circuits

r2= correlation-coefficient.

This, of course, will not remain the same; as the number of circuits per chip increases, weight
will remain constant but throughput (MIPS = I/il) will improve with circuit density.

4. Cost

Cost, which is to be covered subsequently in this section as a major topic, is related to the
number of circuits by -. -

Cle, = 594.74N,0-795 " (IX-4)

r2 = 0.965,

'132

NRL REPORT 8247

where

C,,= cost of hardware ($)

N= number of circuits

r2 = correlation coefficient.

Naturally, again, as the cost to produce these chips goes down, the cost of performance (MIPS)
will decrease also (see Fig. IX-7).

3 70 72 74 76 78 80 82 84 86 88 90 92
YE AR

Fig. IX-7-Projection of computer/processor
cost (varied throughput)

5. Memory

Ultimately, the use of magnetic tape for the recording and storage of information in large
on-line systems will probably be totally phased out. Very high-density magnetic discs will be in
common use, but newer developments also can be anticipated. For example, the use of large
semiconductor random access memories may be standard in the future. Developments in the
area of magnetic bubbles will also lead to major breakthroughs, at least in the magnetic area,
providing larger and larger random access storage systems. [301

133

L. W. LEMLEY

Figure IX-8 presents a projection of the capacities of magnetic discs and bubble systems
for the year 2000. Note that at the middle upper portion of the display, one point has been
added. This is the point that represents the current available storage density for the video disc,
which is currently being developed by several different organizations. Its potential for the year
2000, as of this point in time, has not been assessed although it can be expected to grow with a
minimum rate of increase equal to that of magnetic systems. The ability to store 109, 1010, or
1011 bits in a square inch certainly opens up whole new applications.

9-
10

* VIDEODISCy
8 LIUB

10
DISC

U

Z TA7PE

W

CY 6
N) 10
I-

>-5

1-10
C,)z

04
10

tO ~1960 1970 1980 1990 2000

YEAR

Fig. IX-8-Projected densities of storage devices

6. Military

Figure IX-9 summarizes the foregoing discussion as it impacts military processors. Using
technology projected for logic gate densities as the trend-setter, it is possible with some degree
of confidence to project the memory density of military computers. It should be noted that mil-
itary performance is not a smooth, linear curve but advances in steps with a delay of about 17
years behind commercial performance. The inverted function depicted in Fig. IX-9 is a direct
result of advancing technology in circuit densities. As technology permits the production of
higher density circuits, the volume (size) of military computer/processors will decrease for each
megabit of memory capacity. As a benchmark, the emerging AN/AYK-14 was used for com-
parison.

134

NRL REPORT 8247

E
E
E

inU,

z
I-

4

CD

Uz

I
U

Id

-70 72 74 76 78 80 82 84 86 88
YEAR

Fig. IX-9-Projection of computer/processor densities

F.

r

2
CD

o
2

Id1

0

E

4
-J

C. Throughput

The principal criterion of EW/Military computer/processor evaluation in this report has
been throughput (or speed). It is natural, therefore, to project the performance of
computer/processors from the throughput point of view. Figure IX-10 uses the speed-power
projection of Fig. IX-4 as the criterion for projecting military computer/processor throughput
performance. Again, using the evaluated performance of the emerging AN/AYK-14 as a
benchmark of military (EW) computer/processor performance, a predictor curve was drawn in

Fig. IX-10. This curve projects the EW weighted average instruction time (in As) as essentially

the reciprocal of a computer/processor's throughput.

As another point of reference, the range of required performance (ca. 1978) from Fig.

11-1 is depicted in Fig. IX-10 for platforms from 10,000 to 70,000 ft altitude (269 to 3443

MIPS). This performance requirement, of course, is for 100% coverage. The immediate
impact of Fig. IX-10 is that at present, military computer/processors can only hope to achieve

0.22% of total throughput for an EW environment (real time) and projects to 100% (at 10,000

ft) in 1991 military technology - that is, presuming that the EW requirement does not
increase in the meantime. At present, projected EW requirements do not appear to increase as

fast as the projected improvement of computer/processors.

135

CDC7600

10 00 iO-'0 >100-S

STAR-lOO 4

5100 CRAY-I oi< 10 1

0
1000 7 C,

14 -s~

68 70 72 74 76 78 80 82 84 86 88 90 92
YEAR

Fig. IX-IO-Projection of computer/processor throughput

1. Volume

In the previous section, computer volume was related to circuit density by Eq. (IX-2).
The number of circuit elements was also found to correlate highly (0.948) with throughput (in
MIPS), by Eq. (IX-1). When these two relationships are used together with the projection of
circuit densities from Figs. IX-4 and IX-5, one obtains a fairly accurate basis of projecting gross
computer characteristics such as volume.

Depicted in Fig. IX-11 is a projection of computer/processor volumes for various
throughput values (1, 10, 100 MIPS) through the year 1992. These projections follow the fam-
iliar methods of statistical forcasting described earlier and are based upon the rather well-
behaved technology characteristics of the previously mentioned Figs. IX-4 and IX-5 and
Moore's curve (Fig. IX-3). To illustrate the degree of confidence in such curves, some archi-
tectural benchmarks are placed in the figure. It should be noted that the military AN/AYK-14
appears to register rather well with the curves of volume, where volume is an important charac-
teristic to optimize for airborne computer application. The maximum volume line may require
some explanation. This curve is based upon computer configurations that represent the max-
imum capability configuration produced on an analytical basis.

As may be expected, there is a general (almost linear) downward trend of performance
per volume in the future, although full 100% real-time EW requirements remain a rather taxing

' requirement for the computer/processor. This "EW volume" requirement is based upon the
volume/throughput relationship previously developed.

136

NRL REPORT 8247

Par 0~~~~~'

.g10 , ' , l, I \
684 707 a47 88 28 68 09

>IOP

2. Weight ~ W

C,)

0~~~~~~~~~~~~~~~~~,

(0.6 MI PS

68 70 72 74 76 78 80 82 84 86 88 90 92
YEAR

Fig. IX-1 I -Projection of computer/processor
volume (for varied throughput)

2. Weight

As developed previously for Section IX.C.1, Volume, the projection of
computer/processor weight in the future (1992), is based primarily upon throughput and circuit
density arguments. Weight was related to circuit density in Eq. (IX-3). The remaining rela-
tionships of throughput and yearly improvement of circuit density are as previously developed.

Figure IX-12 depicts the results of these relationships graphically, as was done for the
volume relationships. There are no more particularity surprising projections for
computer/processor weights through 1992. The confidence index noted on the ordinate at left
indicates fairly high confidence (0,921) that such goals will be realized. This confidence index
is based upon the classical statistical, correlation coefficient explained in relation to Eq. (VII-1).

It should be noted that the impetus for these predictor curves depends upon some ongo-
ing normal level of'R&D in addition to market demands. It is not sufficient to say that these
goals will come about without the R&D effort. On the other hand, there is always a chance
that exceptional R&D (breakthroughs) can result in exceeding these goals. However, the
improvement projections are being based on the anticipated breakthroughs.

137

L. W. LEMLEY

:z m0
IBC, 37/63

Zzl

10 '\

CRAY- I N
(80 MIPS)A

IM 370f 168
10 (12.5 Mips)

AN/AYK-14 \
(0.6 MIPS)

I I i \
68 70 72 74 76 78 80 82 84 86 88 90 92

YEAR

Fig. IX- 12-Projection of computer/processor
weight (varied throughput)

D. Cost

In Section IX.A, the instruction timing of a computer/processor (or inversely, the
throughput) was shown to have a high correlation (0.948) with the number of logic chips in the
processor, Eq. (IX-1). Further, as may be expected, the cost of the processor displayed an

equally high correlation (0.965) with the number of logic chips in the processor. It would stand
to reason, then, that processor cost can be related to throughput with relations (IX-1) and
(IX-4).

Again, the same methodology is pursued as for throughput, volume, and weight; how-

ever, to relate the above relationships to cost projection, a new prediction has to be applied.
The predictor deviates from the Moore's curve, speed vs power projection. The curve depicted
in Fig. IX-13 is the trend of silicon-device prices that dominate the costs of circuits dominating
computer/processors. Again arguments that other technology and other materials can influence
a projection based upon silicon devices are countered by the competitive market that the
silicon-device industry creates for such other devices; and vice-versa.

The curve of Fig. IX-13 is used as the basis of trend prediction for the cost projections of
Fig. IX-7. Here, as was mentioned, throughput and number of circuits were used to relate to
the (silicon device) trend-predictor curve in such a manner as to project the cost trends of
computer/processors. Finally, certain well-established architecture configuration costs are used
to link total commercial posts to the trends of silicon devices. Significantly, the AN/AYK-14

138

NRL REPORT 8247

In X~~~~~~~~~~~~

Cn

-J

0

0.

1960 1962 1964 1966 1968 1970 1972 1974 1976

YEAR

Fig. IX-13-History of silicon device prices

benchmark displays a large deviation (11.4 times) from commercial practice. This is not a criti-
cism; the well-known requirements to satisfy Military Standards will often cost an order of mag-
nitude more than a comrriercial performance equivalent.

It should be noted that the cost-predictor basis is inflation adjusted inasmuch as the cost
forecasts are based on the -actual cost of that year. It follows, then, that the predictor is
inflation adjusted to the trend. The general trend that is obvious is that an order of magnitude
improvement is seen in the cost vs speed relationship every ten years.

139

C_
2-

co6

i.1

2;
rre

1.0

0.1 I I I I I I 'I I

I

I

L. W. LEMLEY

ACKNOWLEDGMENT

It should be obvious that no one individual could have expertise in so vast a subject as
represented by this document. Therefore, we acknowledge the contributions of the following:

Dr. Raivo Vest for hardware architecture
Mr. William E. Burr for software architecture
Mr. James H. Edwards for technology
Dr. Martin Nisenoff for advanced technology
The CFA/MCF family for software architecture, evaluation, and analysis.

REFERENCES

1. Applied Technology, "Countermeasures Warning and Control System," Vol 2., System B,
Applied Technology Div. (ITEK Corp.), Sunnyvale, Calif., Oct. 14, 1974.

2. Fawcett, D.'G., "The Adaptive High Speed Signal Sorter," Final Report for ONR/NRL,
FRN00014-75-C-1201, Nov. 1, 1977, Hughes Aircraft Company, Fullerton, CA.

3. Litton Industries (AMECON Div.) proposal, "ESM IFM Receiver and Processor for EP-
3E," Litton (AMECON Div.), College Park, Md., July 1977.

4. Rockwell International, "Adaptive Processor for Electronic Reconnaissance," Rockwell
International, Anaheim, Calif., June 1975.

5. 'Texas Instruments, "The Microprocessor Handbook," Texas Instrument, Dallas, Texas,
1975.

6. Osborne, Adam and Associates, " An Introduction to Microcomputers," Vol. 1 Basic Con-
cepts, Berkeley, Calif., 1976.

7. Wagner, James, E. Lieblein, J. Rodriguez, and H. S. Stone, "Evaluation of the Software
Bases of the Candidate Architectures for the Military Computer Family," interim report
issued by NRL Code 7590 on August 1, 1976, contained in Final Report of the Army/Navy
Computer Family Architecture Selection Committee, as Chap. VI, Sec. II.

8. Burr, W. E., A. H. Coleman, and W. R. Smith, Summary of the, Final Report of the
Army/Navy Computer Family Architecture Selection Committee, NRL Code 7590 Dec.' 1,
1976.

9. Motorola, "Introduction to Microprocessors," 1975.
10. Parasuraman, B., "High-Performance Microprocessor Architectures" Proc. IEEE 64, No. 6,

851-859 (June 1976).
11. Advanced Micro Devices Corp., "The AM 2900 Family Data Book," Sunnyvale, Calif.,

1976.
12. Advanced Micro Devices Corp., Mick, J. R., and Barr, J., "Microprogramming Hand-

book," Sunnyvale, Calif., 1976.
13. "ATAC-16N Principles of Operation," Applied Technology, Inc., II, Sunnyvale, Calif.,

Dec. 1976.
14. "Microprogramming Software for Hewlett-Packard 2100 Computer," Hewlett-Packard,

Cupertino, Calif., Aug. 1972.
15. "AN/UYK-20 Technical Description," Sperry-Univac,' PX10431C. St. Paul, Minn., Nov.

1976.
16. "AN/AYK-14 Technical Description," Control Data Corp., Minneapolis, Minn., 1977.

140

NRL REPORT 8247

17. "AN/UYK-15 Technical Description," Sperry-Univac, PX7917A, St. Paul, Minn., Mar.
1973.

18. Fuller S. H., H. Stone, and W. E. Burr, "Selection of Candidate Architectures and Initial
Screening." Vol. II of Computer Family Architecture Selection Committee Final Report, Naval
Research Laboratory, Washington, D. C. 20375. Dec. 1, 1976.

19. Fuller, S. H., W. E. Burr, P. Shaman, And D. A. Lamb, "Evaluation of Computer Archi-
tectures via Test Programs," AFIPS Conference Proceedings., 46, 1977, National Computer
Conference, Dallas, Texas.

20. Wagner, J., B., Lieblein, J. Rodriguez, H. S. Stone, "Evaluation of the Candidate Archi-
tectures for the Military Computer Family," AFIPS Conference Proceedings, 46, 1977
National Computer Conference, Dallas, Texas.

21. Fuller, S. F., W. E. Burr, P. Shaman, D. Lamb, "Evaluation of Computer Architectures
via Test Programs," Vol. III of Computer Family Architecture Selection Committee Final
Report, NRL Code 7590, Washington, D. C., Dec. 1, 1976.

22. Popek, G. J., and R. P. Goldberg, "Formal Requirements for Virtualizable Third Genera-
tion Architectures," Commun. ACM, 17, No. 7, 412-421, July 1974.

23. "AYA-6 Computer Instruction Set," IBM 67-538029, Sept. 13, 1967, Federal Systems
Div., Oswego, N. Y.

24. S. H. Fuller, G. Mathew, L. Szewerenko, "Comparative Evaluation of the MCF Computer
Architectures," Dept. of Computer Sciences, Carnegie-Mellon Univ., Pittsburgh, Pa., Jan.
15, 1978.

25. Stone, H. S., "An Inventory of the Existing Software Base for Computer Architectures
Considered in the MCF Project," University of Massachusetts, Electrical Engineering
Dept. Feb. 23, 1977.

26. Smith, W. R., J. J. Cornyn, A. H. Coleman, W. Svirsky, R. Estell, and P., Sabin, "Life
Cycle Cost Models for Comparing Computer Family Architectures," AFIPS Conference
Proceedings, 46, 1977 National Computer Conference, Dallas, Texas.

27. Cornyn, J. J., "Top-Down Life-Cycle Cost-Analysis Model for Selecting a Computer Fam-
ily Architecture," NRL Code 7590, Washington, D. C., Aug. 1976.

28. "Submicron IC Technology: From Lab Curiosity to Production," EDN 22 (No. 9), 21-24
(May 5, 1977).

29. Faggin, F., "How VLSI Impacts Computer Architecture," IEEE Spectrum, May 1978.
30. Nisenoff, N., "The Engineer in the Information Environment of 2000 A. D.," Forecasting

International, LTD Paper, EASCON Proceedings, Arlington, Va., Sept. 1976.

BIBLIOGRAPHY
ESM Systems

1. IBM, "TASES ELINT PROPOSAL"
2. Long, R. E., "Advanced EW Processing," AOC Technical Symposium, 1976.
3. Bigas, W. R., "Automated IFM/DF Handles Dense Threat Environment," Electronic War-

fare, Mar. Apr. 1977, pp. 50-56.
4. Hyatt, G., "Signal Processing in the Frequency Domain," Electronic Warfare, 9 (No.5),

Sept/Oct 1977, pp. 95-98.
5. Gunn, T. L., "Signal Sorting in Dense Environments," Electronic Warfare, 9 (No. 5)

Sept/Oct 1977, pp. 95-96, 98.

141

L. W. LEMLEY

Computers, Microprocessors

6. Frisch, I., et al., "7 Steps to Picking the Best Communications Processer," Data Communi-
cations Nov/Dec 1976, pp. 25-37.

7. Wolin, L., "Procedure Evaluates Computers for Scientific Applications," Computer Design,
15 (No. 11), 93-100 (Nov. 1976).

8. Ollivier, R. T., "A Technique for Selecting Small Computers," Datamation 16 141-145
(Jan. 1970).

9. Osborne, Adam and Associates, An Introduction to Microcomputers Vol. 2, Some Real Pro-
ducts, Berkeley, Calif., 1976.

10. Ogdin, C. A., "MC Design Course" EDN, Nov. 20, 1976, pp. 127-136.
11. Bursky, D., "Microprocessor Selection Guide" Electronic Design 25, Oct 11, 1977, pp. 55-

67.
12. Gellender, E. "Learn Microprocessor Fundamentals," Electronic Design 25 (No. 21) Oct.

11, 1977, pp. 74-79.
13. Holland, S. "Break the 65-Kbyte Address Barrier," Electronic Design 25 (No. 23), Nov. 8,

1977, pp. 82-85.
14. Weissberger, A. J. "Analysis of Multiple-Microprocessor System Architectures," Computer

Design, June 1977, pp. 151-163.
15. Burton, T., "Multi-AP Systems Combine the Efficiency ---- ," Electronic Design 25 (No.

16) Aug. 2, 1977, pp. 68-71.
16. Gabriele, T., "Multiprocessing can Marry a Radar ---- ," Electronic Design 25 (No. 16),

Aug. 2, 1977, pp. 74-77.
17. Balph, T., "Get the Best Processor Performance by Building it from ECL Bit Slices," Elec-

tronic Design 25 (No. 12), June 7, 1977, pp. 84-92.
18. Clymer, J., "Use 4-bit Slices to Design Powerful Microprogrammed Processors," Electronic

Design 25 (No. 10), May 10, 1977, pp. 62-71.
19. Nemec, J., "A Primer on Bit-Slice Processors" Electronic Design, 25 (No. 3), Feb. 1, 1977,

pp. 52-60.
20. Nemec, J. and Lay, S.Y., "Bipolar Microprocessors - An Introduction to Architecture and

Applications," EDN 22(No. 19), Oct. 5, 1977, pp. 79-81; 22(No. 17), Sept. 20, 1977, pp.
63-67.

21. Bass, J. E., "A Peripheral-Oriented Microcomputer System," Proc. IEEE 64(No. 6), pp.
860-873, June 1976.

22. Nichols, A. J., "An Overview of Microprocessor Applications," Proc. IEEE 64 (No. 6),
951-953, June 1976.

23. Lin, W. C., "Microprocessor-Based Digital System Design Fundamentals and the Develop-
ment Laboratory for Hardware Designers and Engineering Executives," Proc. IEEE 65(No.
8), 1138-1161, Aug. 1977.

Computers, Manufacturers' Literature

24. Intel, "8080 Microcomputer Systems Manual," Jan. 1975.
25. Hewlett-Packard, "A Pocket Guide to the Hewlett-Packard 2100A Computer."
26. "Bipolar Microcomputer Components Data Book," Texas Instruments, Jan. 1977.
27. Signetics, "Introducing the 3000."
28. Intel "Programming Manual for the 8080 Microcomputer System," May 1974.

142

NRL REPORT 8247

Computers, E.W.

29. Allison, A. A., "Computers in Electronic Warfare," Electronic Warfare, Sept. 1976, pp. 31-
34. ,

30. "World's First EW Minicomputer Debuts," Electronic Warfare, Sept. 1976, pp. 62-73.
31. "Make or Buy your Own Computer," Electronic Warfare, Jul/Aug 1974, pp. 27-35.
32. Jordan, G. B. "The Hardware Interface: Computer to Jammer," Electronic Warfare,

Jul/Aug 1974, pp. 37-50.

Advanced Techniques

33. Jack, M. A., et al., "Waveform Detection and Classification with SAW CepstrumAnalysis,"
IEEE Trans. AES-13(No. 6), 610-619, Nov. 1977.

34. Gholson, N. H., and Moose, R. L., "Maneuvering Target Tracking Using Adaptive State
Estimation," IEEE Trans. AES-13(No. 3), 310-317 (May 1977).

35. Friedland, B., "Optimum Steady-State Position and Velocity Estimation Using Noisy Sam-
pled Position Data," IEEE Trans. AES-9, 906-911 (Nov. 1973).

36. Foy, W. H., "Position-Location Solutions by Taylor-Series Estimation," IEEE Trans.
AES-12(No. 2), 187-193 (Mar. 1976).

37. Singer, R. A., and Behnke, K. W., "Real-Time Tracking Filter Evaluation and Selection
for Tactical Applications," IEEE Trans. AES-7(No. 1), 100-110 (Jan. 1971).

38. Pearson, J. B., III, and Stear, E. B., "Kalman Filter Applications in Airborne Radar Track-
ing," IEEE Trans. AES-10, 319-329 (May 1974).

39. Widrow, B., et al., "Adaptive Noise Cancelling: Principles and Applications," Proc. IEEE
63(No. 12), 1692-1716 (1975).

40. "Comparison of the AN/UYK-20(V) and AN/UYK-28 Computers for ROC Applications,"
Sperry-Univac, Mar. 1977.

41. "Comparison of the AN/UYK-20 and AN/UYK-19 Computers for ROC Applications,"
Sperry-Univac.

42. Grumman, "EXCAP Memory Usage," private correspondence.
43. Shimp, A. C., "Can Core Survive," Digital Design, Nov 1,77, pp. 31-38.

Software Architecture

44. Amdahl G. M., G. A. Blaauw, and F. P. Brooks, Jr., "Architecture of the IBM Sys-
tem/360," IBMJ. R and D8, April 1964, pp. 87-101.

45. Computer Review, formerly Computer Characteristics Review, GML Corporation, Lexington,
Mass., 02173, 1975.

46. Stone, H. S., "An Audit of the Selection Criteria for Computer Family Architecture,"
CFA Memorandum, January, 1976. Distrubuted at the 18-20 February CFA meeting.

47. Fuller, S. F., H. S. Stone, and W. E. Burr, "Initial Selection and Screening of the CFA
Candidate Computer Architecture," AFIPS Conference Proceedings, 46, 1977 National
Computer Conference.

48. Lucas, H. C., "Performance Evaluation and Monitoring," ACM Computing Surveys 3 (No.
3), 1971, pp. 79-91.

49. Bernwell, N. (ed.), Benchmarking: Computer Evaluation and Measurement, John Wiley &
Sons, New York, 1975.

50. Wichmann, B. A., Algol 60 Compilation and Assessment, Anderson Press, New York, 1973.

143

L. W. LEMLEY

51. Bell, C. G., and A. Newell, compilers, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971.

52. Computer Review, GML Corporation, Lexington, Mass., 1976.
53. Stone, H. S. (ed.), Introduction to Computer Architecture, Science Research Associates, Chi-

cago, 1975.
54. Davies, 0. L. (ed.), The Design and Analysis of Industrial Experiments, Oliver and Boyd,

Edinburgh, 1971.
55. Anderson, V. L., and R. A. McLean, Design of Experiments, a Realistic Approach, Marcel

Dekkerk, Inc., New York, 1974.
56. Connor, W. S., and M. Zelen, Fractional Factorial Experiment Designs for Factors at Three

Levels, National Bureau of Standards, Applied Mathematics Series 54, 1959. .
57. Rao, C. R., Linear Statistical Inference and its Applications, 2nd ed., John Wiley & Sons,

New York, 1973.
58. Cornyn, J. J., W. R. Smith, W. R. Svirsky, and A. H. Coleman, "Two Life-Cycle Cost

Models for Comparing Computer Architectures," AFIPS Conference Proceedings, 46, 1977
National Computer Conference, Dallas, Texas.

59. Box, G. E. P. and D. R. Cox, "An Analysis of Transformations," J. Roy. Statist. Soc. Series
B., 26, 1964, pp. 211-252.

60. Barbacci, M. R., "The Symbolic Manipulation of Computer Descriptions: ISPL Compiler
and Simulator," Technical Report, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., 1976.

61. W. S. Connor and Shirley Young, Fractional Factorial Designs for Experiments with Factors
at Two and Three Levels, National Bureau of Standards, Applied Math Series 58, Sept. 1,
1961.

62. "Military Computer Family, Selection Methods for a Computer Family Architecture,"
reprinted from AFIPS Conference Proceedings 46 AFIPS Press, Montvale, N. J., 1977.

63. H. Scheffe, The Analysis of Variance, John Wiley and Sons, Inc., New York, 1959.
64. Salisbury, A. B., "MCF: A Military Computer Family for Computer-Based Systems," Sig-

nal 30(No. 9), 42-45 (July 1976.)
65. Coleman, A. H., "Army/Navy Military Computer Family," Digest of Papers of COMPCON

76. IEEE. Cat. No. 76 CHillS-SC, Thirteenth IEEE Computer SocietyInternational
Conference, Washington, D. C., Sept. 7-10, 1976, pp. 230-232.

66. Estell, R. G., R. P. Sabin, and W. R. Smith, "Final CFA Selection Methodology Subcom-
mittee Preliminary Report," April 1976.

67. Cornyn, J. J., W. R. Smith, A. H. Coleman and W. Svirsky: "Life Cycle Cost Models for
Comparing Computer Family Architectures," AFIPS Conference Proceedings 46, 1977
National Computer Conference, Dallas, Texas.

68. Svirsky, W., T. Giles, and A. Irwin, "Life Cycle Cost Analysis of Computer Family Archi-
tecture (CFA) Finalists Within Army Embedded Computer Systems," System Develop-
ment Corporation, unpublished manuscript generated for CFA Selection Committee, Aug.
1976.

69. SADPR-85 Study Group, "Support of Air Force Automatic Data Processing Requirements
through the 1980's (SADPR-85)," Electronics Systems Division, Hq. ESD (MCS), Han-
scom AFB, Mass. Six Volumes, ESD-TR-74-192. Vols. 1 and 3 dated Jun 1974.

70. R. Turn, Computers in the 1980's, Columbia Univ. Press, New York and London, 1974.
71. Fuller, S. H., W. E. Burr, P. Shaman, and D. A. Lamb, "Evaluation of Computer Archi-

tectures via Test Programs," AFIPS Conference Proceedings 46, 1977 National Computer
Conference, Dallas, Texas.

144

NRL REPORT 8247

72. Fisher, D.A., "Automatic Data Processing Costs in the Defense Department," Institute for
Defense Analyses, Arlington, Va., IDA Paper P-1046, Oct. 1974.

73. Wagner, J., et al., "Procedure for the Results of the Evaluation of the Software Bases of
the Candidate Architectures for the Military Computer Family," 6 August 1976, prepared
by the Software Evaluation Subcommittee, NRL. -

74. Shishko, R., "Choosing the Discount Rate for Defense Decision Making," Rand Corp.,
Santa Monica, Calif. R-1953-RC, July 1976. -

75. AFR-172-2; DODI 7041.3, "Economic Analysis of Proposed Investments," 30 December
1969, Attachment 2, p. 42.

76. Kossiakoff, A., T.P. Sleight, E.C. Prettyman, J.M. Park, and P.L. Hazan, "DOD Weapon
Systems Software Management Study," Johns Hopkins" Univ., Applied Physics Lab,
Laurel, Md., June 1975, APL/JHU-SR 75-3, AD-`AO22 160/6WC. Abstract 'in Comp.,
-Control, and Info. 'Theory, May 3, 1975.

77. Chapin, G.G., "What is Different About Tactical Military Operational Programs," AFIPS
Conf Proc. 42, 1973, Nat. Comp. Conf. pp. 787-795.

78. Premo. A.F., Jr., "Computer Software: Estimating Guidelines," COMPCON 76, Digest of
Papers, IEEE Pub. No. 76CH1115-5C, Sept. 7-10, 1976, pp. 146-151.

79. Boehm, B.W., "Information Processing/Data Automation Implications of Air Force Com-
mand and Control Requirements in the 1980's (CCIP-85). Vol. IV, Technology Trends:
Software," Space and Missile Systems Organization, AFSC, Los Angeles, Calif., Oct. 1973,
AD919267L.

80. Boehm, B.W., et al., "Information Processing/Data Automation Implications of Air Force
Command and Control Requirements in the 1980's (CCIP-85). Vol.AI, Highlights," April
1972, SAMSO/XRS 71-1. U.S. Air Force, AD-900031L.

81. Private communication, meeting of D. Fisher, W. Smith, and J. Cornyn on May 3, 1976.
82. McLaughlin, R.A., "1976 DP Budgets," Daiamation,22 (No'.2), February 1976, pp. 52-58.
83. System Development Corp., "Embedded Computer System Data Processing Requirement

for U.S. Army Weapon/Data Systems," Draft, Mar. 1 1976, prepared for CENTACS, U.S.
Army Electronics Command, Ft. Monmouth', N.J. Contract DAAB07-76-C-0334.'

84. Grosch, H.R.J., "High Speed Arithmetic: The Digital Computer as a Research Tool," J.
Optical Soc. Amer. 43 Apr. 1953, pp. 306-310. '

85. Withington, F.G., "Beyond 1984 -' A Technology Forcast," Datamation, Jan. 1975, pp.
54-73.

86. Private communication with Al Irwin, W. Svirsky, and T. Giles of System Development
Corporation.

87. Young, H.D., Statistical Treatment of Experimental Data, McGraw-Hill Book Company,
Inc., New York, 1962.

88. Boehm, B.W., "Keytone Address: The 'High Cos't of Software," TRW, Redondo Beach,
Calif., in 'Proceedings of a Symposium on the High Cost of Software, Sept. 17-19, 1973, at
Naval Postgraduate School, Monterey, Calif., Stanford Research Institute, Menlo Park,
Calif., SRI Proj. 3272, pp. 27-40. '

89. Brooks, F.P., Jr., The Mythical Man-Month, Addison-Wesley Publishing Co., Reading
Mass., 1975. ' '

90. Manley, J.H., "Embedded Computers'-Software Cost' Considerations," AFIPS Conf Proc.
43, 1974, pp. 343-3i47.

91. Taback, M.A., and M.C. Ditmore, "Estimation of Computer Requirements and Software
Development Costs," General Research' Corp., Santa Barbara, Calif. RM-1873, March
1974, AD-782-2208WC, p. 20. '

145

L. W. LEMLEY

92. Wolverton, R.W., "The Cost of Developing Large-Scale Software," IEEE Trans. C-23
(No. 6), pp. 615-636, June 1974.

93. Smith, W.R., "AADC Computer Family Architecture News 4 (No. 3), Sept. 1975, pp.
15-2 1.

Microelectronics

94. J.L. Hilburn and P. N. Julich. "Microcomputers/Microprocessors: Hardware, Software, and
Applications," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

95. "Special Issue on Microprocessor Technology and Applications," Proc. IEEE, Vol. 64 (No.
6), (June 1976).

Microelectronic Circuit Elements

96. J.F. Gibbons, Semiconductor Electronics, McGraw-Hill Book Company, New York, 1966.
97. A.S. Grove, Physics and Technology of Semiconductor Devices, John Wiley & Sons, Inc.,

New York, 1967.
98. Sorab K. Ghandhi, The Theory and Practice of Microelectronics, John Wiley & Sons, Inc.,

New York, 1968.
99. J.D. Meindl, Micropower Circuits, John Wiley & Sons, Inc., 1969.

100. D. Hamilton and W. Howard, 'Basic Integrated Circuit Engineering, McGraw-Hill Book
Company, 1975.

Large-Scale Integration of Microelectronic Circuits

101. R.G. Hibberd, Integrated Circuits: A Basic Course, McGraw-Hill Book Company, 1969.
102. W.C. Hittinger, "Metal-Oxide-Semiconductor Technology," in Scientific American 229 (No.

2), 48-57 (Aug. 1973).
103. H.W. Gschwind and E.J. McCluskey, Design of Digital Computers, Springer-Verlag, 1975.
104. A.G. Vacroux, "Microcomputers," in Scientific American 232 (No. 5), 32-40 (May, 1975).
105. S. Middelhoek and P. Dekker, Physics of Computer Memory Devices, Academic Press, Inc.,

* 1976.
106. E.W. McWhorter, "The Small Electronic Calculator," in Scientific American 234 (No. 3),

88-96,98 (Mar. 1976).

Fabrication of Microelectronic Circuits

107. A.B. Grebene, "Integrated Circuit Fabrication Processes," in Analog Integrated Circuit
Design. Van Nostrand Reinhold Company, New York, 1972.

108. "MOS Integrated Circuits: Theory, Fabrication, Design, and Systems Applications of MOS
LSI," Engineering staff of American Micro-systems, Inc., edited by W.M. Penny and
L.Lau. Van Nostrand Reinhold Company, New York, 1972.

109. "MOS/LSI Design and Application," W.N. Carr and J.P. Mize, R.E. Sawyer and J.R.
Miller, eds. McGraw-Hill Book Company, New York, 1972.

110. W.C. Hittinger, "Metal-Oxide-Semiconductor Technology," in Scientific American 229 (No.
2) 48-57 (Aug. 1973).

146

NRL REPORT 8247

Microelectronic Memories

111. Semiconductor Memories, D.A. Hodges, ed. IEEE Press, New York, 1972.
112. Rein Turn, "Mass Memories," in Computers in the 1980s. Columbia University Press, New

York, 1974.
113. Rein Turn, "Random-Access Memories," in Computers in the 1980s. Columbia University

Press, New York, 1974.
114. C.H. Sequin and M.F. Tompsett, "Digital Memories," in Charge Transfer Devices,

Academic Press, Inc., New York, 1975.
115. Magnetic Bubble Technology: Integrated-Circuit Magnetics for Digital Storage and Processing.

Hsu Chang, ed. IEEE Press, New York, 1975.
116. "Special Issue on Large Capacity Digital Storage Systems," Proc. IEEE 63 (No. 8) Aug.

1975.
117. J.A. Rajchman, "New Memory Technologies," in Science, 195 (No. 4283), 1223-1229

(Mar. 18, 1977),

Microprocessors

118. "Special Issue on Microprocessor Technology and Applications," Proc. IEEE, 64 (No. 6)
(June 1976).:

119. "Special Issue on Small Scale Computing." Computer 10, (No. 3) (Mar. 1977).
120. S.E. Madnick, "Trends in Computers and Computing: The Information Utility," in Science

195 (No. 4283), 1191-1199 (Mar. 18, 1977).

The Role of Microelectronics
in Data Processing

121. T.C. Bartee, Digital Computer Fundamentals, 3rd ed., McGraw-Hill Book Company, New
York, 1972.

122. C. Weitzman, Minicomputer Systems: Structure, Implementation and Application, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1974.

123. T.A. Dolotta, M.I. Bernstein, R.S. Dickson, Jr., N.A. France, B.A. Rosenblatt, D.M.
Smith and T.B. Steel, Jr., Data Processing in 1980-1985: A Study of Potential Limitations to
Progress, John Wiley & Sons, Inc., New York, 1976.

124. D.A. Hodges, "Trends in Computer Hardware-Technology," in Computer Design 15 (No.
2), 77-85 (Feb. 1976).

The Role of Microelectronics in
Instrumentation and Control

125. B.M. Oliver, "Servo-Motor Response," in Proc. IEEE 53 (No. 2), 201-202 (Feb. 1965).
126. Electronic Measurements and Instrumentation, M. Oliver and J.H. Cage, eds., McGraw-Hill

Book Company, 1971.
127. W. Banks and J. C.. Majithia, "Microprocessors: Design and Applications in Digital Instru-

mentation and Control," in IEEE Trans. IM-25 (No. 3), 245-249, Sept. 1976.
128. A. Santoni, "Digital Systems Spawn New Tasks in Measurement," in Electronics 49 (No.

22), 100-106 (Oct. 28, 1976).
129. "LSI Chips Taking Over More Household Chores," G.M. Walker in Electronics 49 (No.

22), 128-134 (Oct. 28 1976).

147

L. W. LEMLEY

The Role of Microelectronics
in Communication

130. Principles of Pulse Code Modulation, K.W. Cattermole, American Elsevier Publishing Com-
pany, Inc., New York, 1969.

131. N.S. Jayant, "Digital Coding of Speech Waveforms: PCM, DPCM, and DM Quantizers,"
in Proc. IEEE 62 (No. 5), 611-632 (May 1974).

132. I. Jacobs and S.E. Miller, "Optical Transmission of Voice and Data," in IEEE Spectrum 14
(No. 2), 32-41 (Feb. 1977).

133. "Special Issue: The IA Processor," Bell Sys. Tech. J. 56 (No. 2) (Feb. 1977).
134. W. Peil and R.J. McFadyen, "Single-Slice Superhet," in IEEE Spectrum 14 (No. 3), 54-57

(Mar. 1977).

Microelectronics and Computer Science

135. E.F. Moore, "The Shortest Path Through a Maze," The Annals of the Computation Labora-
tory of Harvard University: Vol. XXX, Proceedings of an International Symposium on the
Theory of Switching, Part 11. Harvard University Press, Cambridge, Mass. 1959.

136. B. Hoeneisen and C.A. Mead, "Fundamental Limitations in Microelectronics, I: MOS
Technology," in Solid-State Electronics 15 (No. 7), 819-829 (July 1972).

137. B. Hoeneisen and C.A. Mead, "Limitations in Microelectronics, II: Bipolar Technology," in
Solid-State Electronics 15 (No. 8), 891-897 (Aug. 1972).

138. I. E. Sutherland D. Oestreicher, and "How Big Should a Printed Circuit Board Be?" in
IEEE Trans. C-22 (No. 5), 537-542 (May 1973).

Microelectronics and the Personal Computer

139. J. S. Bruner, "Towards a theory of Instruction," Belknap Press of Harvard University
Press, Cambridge, Mass., 19"6.

140. S. A. Papert and M. Minsky, "Artificial Intelligence," Condon Lectures, Oregon State Sys-
tem of Higher Education, 1974.

141. A. Kay and A. Goldberg, in "Personal Dynamic Media," 10 (No. 3), 31-41 (Mar. 1977).
142. Torrero, E. A., "Solid-State Devices," IEEE Spectrum, (Jan. 1977).

148

Appendix A

DERIVATION OF TABLE IV-9

Table IV-9 represents the number of thousands of times each second that a given
configuration of processor type and memory type can perform the simple Benchmark Flywheel
tracking algorithm presented in Section II.C.2.

The equations toube solved are

9p(K + 1) =pk + 16 (Al)

(k + 1) D + 16 k--3k (A2)

3&(k + 1) 3-3/4 D(k + 1) = 4 (k + i) =1/4f(k + 1) (A3)

L.L. = 9,(k + 1) - 3&(k + 1) (A4)

U.L. =p(k + 1) + 3&(k +1) (AS)

where

Spk is the kth estimate of the signal parameter vector, consisting of three signal parame-
ters.

Sik is the kth measured value of the signal parameter vector.

Dk is the mean absolute deviation of the signal parameter vector from the estimated
value.

35(k + 1) is an approximation to the 3o- interval generally used to set the acceptance
windows. 3ar represents three standard deviations in a normally distributed variable.

L.L. is the lower limit of the acceptance window.

U.L. is the upper limit of the acceptance window.

The three signal parameters chosen for the example are TOA, AOA, and frequency,
although any other three parameters may be used to perform the signal sorting and tracking
function.

In the case of TOA, which is continually increasing, it is not practical to keep a running
average. Therefore, Eq. (Al) must be modified to calculate the running average of the TOA
differences - or the PRI, Therefore, for the TOA calculation, Eq. (Al) must be modified as
follows:

PRI(k + 1) = PRI(k) + (TOA)mk - (TOA)pk
16

(TOA)p(k + 1) = (TOA)pk + PRI(k + 1).

149

L. W. LEMLEY

A. Software Solutions

1. Technique

The program steps required to perform these calculations are given in Table Al. The
table was constructed under the following assumptions:

* The microprocessor contains two independent accumulators, A and B, each capable of
performing any microprocessor function.

* The data memory addressing scheme is assumed to be absolute addressing, so that the
data address register does not have to be updated or incremented. This could be accomplished
by data paging, where the page number is the emitter number being processed and is deter-
mined by hardware or software external to the processor.

* All instructions require a single instruction word. In the load and store instructions,
the address (within the page) is part of the instruction word.

* All data are stored in integer format, so that multiplication and division by powers of 2
can be accomplished by shifting left or right, respectively.

Program steps 10 and 11 in Table Al are required only when the TOA calculation is
made, and are to be skipped for the other calculations. Therefore the normal parameter update
calculations require 32 program steps, 10 of which reference the memory. The TOA update
calculations require 34 program steps, 12 of which reference the memory.

If all parameters are to be updated in parallel, the program requires 34 program steps, 12
of which reference the memory. The non-TOA parameter calculations remain idle (or address
dummy memory locations) during steps 10 and 11. If the three parameters are to be updated
in series, steps 10 and 11 are skipped for the non-TOA calculations and the program requires
98 program steps, 32 of which reference the memory.

For the simple move, add, and shift instructions in Table Al, the time required to exe-
cute one computer instruction in the register-to-register mode is given by (see Section VI.A)

T = T. + Tp (A6)

where Tm is the time required to fetch the instruction, and Tp is the time required to execute
the instruction.

For the memory reference instruction, an additional memory cycle time is required to
fetch the data, so if the data and instruction read/write times are the same,

T, = 2Tm + T. (A7)

For the Benchmark Program, the data address (within the page) location is assumed to be
included within the instruction word, so that an additional address fetch cycle is not required.

Adding up the time required to perform the instructions in Table Al, using Eqs. (A6)
and (A7) (assuming T,, and Tp are the same for each instruction used) yields the total time
required to run the program:

150

NRL REPORT 8247

Table Al - Steps Required to Perform the
Benchmark Program

Fuction

1.* Load A with Smk
2.* Subtract 3pk from A
3. Arith Shift Right A
4. Arith Shift Right A
5. Arith Shift Right A
6. Arith Shift Right A
7. Move A to B
8. Skip next instruction if

positive
9. Two's complement of B

10.* Add PRI to A I

Store A in (PRI) J
Add 3pk to A
Store A in 3pk,
Load A with Dk
Add A to B
Arith. Shift Right A
Arith. Shift Right A
Arith. Shift Right A
Arith. Shift Right A
Subtract A from B
Store B in Dk
Move B to A
Arith. Shift Left A
Arith. Shift Left A
Arith. Shift Right B
Arith. Shift Right B J
Subtract B from A
Store A in (3cr)
Load B from (Spk)
Subtract A from B
Store B in (L.L.)
Add A to B
Add A to B
Store B in (U.L.)

Operation

Divide A by 16

Skip if not
TOA

Divide by 16

Multiply A by 4

Divide B by 4

9.

Register A

5rnk 3

v~nk ak

(Smk pk) /2
(S~nk pk) /4
(S~mk'pk) /8
(Sk-Spk)/16
(S3k-Spk)/16

(3mk-pk)/16
(S3k-Spk)/16
PRI(k+ 1)

PRI(k+ 1)
PRI(k+ 1)

3(k+ 1)
53p(k+ 1)

P~k
Dk

1k/2

1k/4

Dk/8
Dk/1 6

fskl 6f)k/16
fk/1
D (k+l)
2 D(k+l)
4 D(k+l)
4 D(k+l)
4 D(k+l)
3 o-(k+l)
3a-(k+1)
3a-(k+1)
3ar(k+1)
3a-(k+1)
3or(k+1)
3o-(k+1)
3ar(k+1)

Contents B

(3mk-3pk)/16

(3mk-gpkt/16
(Smk< Spk)/1l6.

Ik S~kI/16
I 'rnk S5pk /16
IkI SmkSpk /16
ISmk-+ pk/16
I+I Smk pk |/1/6

I mk 1/16
k+S k-qS pk /16

Dk+1Smk) pk /16
Dk+1 qk-&) 116
D~k+1)~mk S0k116
D~k+Ig,,k-gSpk l 16

D(k+l)
D (k+l)
D (k+l)
D (k+l)
D (k+l)

D (k+l))/4
D (k+1)/4
D (k+1)/4
Sp(k+l)
L.L.
L.L.
3p(k+1)
U.L.
U.L.

Notes: (Smk) refers to the contents of the memory location that holds the data value for 3mk)*

* represents external memory access.

151

Step

11.*
12.*
13.*
14.*
15.*
16.
17.
18.
19.
20.
21.*
22.
23.
24.
25.
26.
27.
28.*
29.*
30.
31.*
32.
33.
34.*

L. W. LEMLEY

Serial Program

T= 130T, + 98To (A8)

Parallel Program

Tp = 46 Tm + 34 Tp. (A9)

For a microprogrammed computer, where the entire sequence is microprogrammed, the
individual instructions need not be fetched, so there is a saving of one Tm for each instruction
after the first (the first instruction must be fetched to start the sequence). The resulting time
required to run the program is:

Serial Microprogrammed Computer

Tm, + 33 To + 98 Tp (AIO)

Parallel Programmed Program

T p - 13 Tm + 34 Tp. (All)

The total times calculated are the times required to completely process one pulse by the Bench-
mark Program. The number of emitters processed, assuming 1000 pulses per emitter, is

Ne = Int |l00TJ (A12)

where Int(x) is the integer value of x.

2. The Processors

a. NMOS processor

The computer chosen for the NMOS processing example' is the CP 1600 microprocessor
made by General Instruments coupled with an MM 2102-type static NMOS memory.

The memory has a read/write cycle time of 1.0 Us maximum. The processor takes four
internal clock periods to read the memory (to fetch the instruction), and about two additional
clock periods to execute simple instructions. There are two versions of the processor: the 1600
with a minimum clock period of 300 ns, and the 1600' with a minimum clock period of 200
ns. Assuming a "halfway" clock period of 250 ns for the processor yields

T, = 2.0 us

Tp = 1.0 As. (A13)

Note that, since the microprocessor allots 2 Aus to read the memory, the effective memory cycle
time is 2 As, even though the actual memory cycle time is 1 As. Substituting Eq. (A13) iIdto
(A8) through (A12) yields the values presented in Table A2.

152

NRL REPORT 8247

Table A2 - Signal Tracking Capability of Various
Processors Number

Number of Emitters

General Purpose | Microprogrammed
Processor Memory Series I Parallel Series Parallel

SOFTWARE
NMOS NMOS 2 7 6 16
Bipolar Core 6 18 17 46
AN/UYK-20 Core 10
Bipolar Fast NMOS 11 31 24 66
Bipolar Bipolar 17 50 30 85

Number of Emitters
Serial Memory Parallel Memory

Processer Memory Series I Parallel J Series Parallel

HARDWARE
TTL Core 36 94 133 400
TTL Low-Power TTL 105 333 350 1052
TTL - TTL 196 512 455 1395

b. Bipolar processor

The processor selected for the bipolar processing example is the Advanced, Micro Devices
AM 2900 chip set. The processor data sheets specify a minimum clock period of 120 ns for the
processor clock, based on delays within the processor itself. When the delays in the external
circuitry that must be included to complete the computer are added to the processor's internal
delays, a processor clock period of 200 to 300 ns is a more realistic value for reliable operation.
The read/write cycle time for a bipolar RAM (using the 7489 as an example) is about 80 ns.
The read/write cycle time for the low-power 74L89 is about 165 ns (max). Using these values
as a guide, the cycle times for the all bipolar computer are assumed to be

7T,, = 250 ns

T, = 250 ns. (A14)

c. Bipolar-core processor

A good high-speed, modern magnetic core array has an access time under 1 us, which is
about the same as a relatively slow MOS memory like the 2102. High-speed MOS memory
read/write cycle times of 500 ns are now common. With this in mind, the following values
may be assigned to the mixed bipolar-MOS processor:

Bipolar core or slow MOS

Tm = 1.0 uts

Tp = 250 ns (A15)

153

L. W. LEMLEY

Bipolar - fast MOS

T= 500 ns

Tp= 250 ns. (A16)

Substituting Eqs. (A13) through (A16) into Eqs. (A8) through (A12) yields the values
presented in Table A2.

B. Hardware Solutions

The hardware solution to Eqs. (Al) through (A5) is presented in block diagram form in
Fig. Al. The hardware solution parallels the software solution in detail, except that shift
instructions are replaced by changing the connections between blocks and are not apparent in
the diagram. Instruction 8, which takes the absolute value of Register B (Table Al) is replaced
by an add/subtract circuit whose function is selected by the most significant bit of (Smk-pk).
As before, each memory is paged and stepped by external circuitry, which is not shown. - The
hardware solution can be broken down into steps just as the software solution was. These sig-
nal flow "steps" depend on whether the quantities to be processed are stored and accessed seri-
ally from the main memory, or whether they are available in parallel, each in its own memory
module.

Table A3 shows the memory timing for the serially accessed memory case. The sequence
consists of 4 memory read steps, 4 latch steps, 7 add/subtract steps, and 7 memory write steps.
The memory write steps can run concurrently with the add/subtract steps, since the hardware
computations need not be halted to perform the memory write cycles. Therefore, the total tim-
ing of the hardware circuit need only choose the largest of the following combinations, in addi-
tion to all the other steps listed:

Step 9 or Step 10

Step 13 or Step 14 and 15

Step 16 or Step 17

Step 18 or Step 19.

In the case of the serial computation, Steps 6 through 9 are deleted for the non-TOA cal-
culations. If the same hardware is used for both the TOA and the non-TOA calculations, a data
selector must be added to the circuit between Steps 9 and 10 to bypass calculations 6 through 9.

Since the memory is addressed serially (all blocks labeled "memory" in Fig. Al are the
same common memory module), additional time must be added for setting up the address of
the next memory location in the address counter. Also, the memory module must be clocked
to insure that there is sufficient delay between the initiation of consecutive memory read/write
cycles for the data to stabilize.

The maximum throughput delay for the various blocks in Fig. Al is shown in Table A4
(taken from the National Semiconductor TTL Data Book, 1976 Edition). To account for addi-
tional delays for wiring capacitance, circuit layout, etc., of a practical circuit application, 20 ns

154

NRt REPORT 8247

Table A3 - Hardware Timing Diagram
for Serially Accessed Memory

Clock Ticks

7489 74L89

Get S,
Latch Sm
Get 3p
Latch 3,
Subtract (Sm p)
Get PRI -

Latch PRILaddh PRI) used for TOA only

Store PRIJ
Add (Sp[k+1I)
Get Dk
Latch Dk
Store Sp(k+l)
Add/Subtract (13k+I3Sn'Spj/16)
Subtract b(k+1)
Store 1(k+1)
Subtract (3&)
Store 35
Add (U.L) and Subtract (L.L)
Store U.L.
Store U.L.

Total

Function

2

1

2
1

1

2
1

1

2

2
1

2

2

2

2
2

26

3"
1

3

1

1

3
1

1

'3

3
1

3

3

3

3

3

36

*Represents external memory access.

Table A4 - Maximum Throughput Delay for the Various
Processing Blocks in 'tables A3 and A5

Function TTL Number - Max, Delay Assumed Delay
(ns) (ns)

Bipolar Memory 7489 80 150*
Bipolar Memory 74L89 165 250*
Core Memory - _ 1000
Latch (J-K flip-flop) , 7474 40 60
Add/Subtract 74181, 74182 50 70
Data Selector 74157 14 35
Counter 74191 36 55'

Includes address set-up time in the counter.

155

c-.
>-.

1.*

2.
3.*
4.
5.
6.*
7.
8.
9.*

10.
11.*
12.
13.*
14.
15.
16.*
17.
18.
19.
20.*
21.*

-

L. W. LEMLEY

\/STOA ONLY

F\-I /I

Fig. A-I-Hardware processor

are added to each published delay in the column labeled "assumed delay." The memory
"assumed delay" times also include the assumed address set-up time of about 55 ns. Using
these values in Table A4 in th~e timing diagram, and assuming clocks as follows:

75-ns clock for fast bipolar memory (7489)

83.3-ns clock for low-power memory (74L89)

100-ns clock for core memory

yields the data in Table A2.

156

NRL REPORT 8247

The fastest possible way to process the Benchmark Program is to arrange the memory in
such a manner that all data necessary to process one signal parameter can be accessed simul-
taneously. A signal flow diagram of this scheme (based on the block diagram of Fig. Al) is
shown in Table A5. If the assumed delay from Table A4 is used to determine the timing, it
becomes apparent that the signal ripples from Step 2 through Step 7 is 410 ns, irrespective of
whether TOA or some other parameter is being processed. Using this information and the
memory clocking scheme discussed previously yields the parallel memory data of Table A2.

Table A5 - Hardware Timing Diagram for Parallel Accessed Memory

1.* Get Sm Get S; Get PRI; Get bk.
2. Latch So- Latch S Latch PRI Latch Dk
3. Subtract t -Sd)
4. Add PRI Add/Subtract (Dk+ISm-SpI /16)
5. Add (S§p[k+1) Subtract [I(&k+1))1
6. Add 3cr
7. Add (U.L.); Subtract

(L.L.)
8.* Store U.L.; Store

L.L; Store 9 ; Store PRI; Store 3cr
*Represents external memory access.

157

Appendix B

- BENCHMARK ALGORITHMS

0. TTY Input Driver
1. Message Buffering and Transmission
2. Multiple Priority Interrupt Handler
3. Virtual Memory Exchange
4. Scale Vector Display
5. Array Manipulation - LU Decomposition
6. Target Tracking
7. Digital Communications Processing
8. Hash Table Search
9. Linked List Insertion

10. Presort on Large Address Space
11. Autocorrelate on Large Address Space
12. Character Search
13. Boolean Matrix Transpose
14. Record Unpacking
15. Vector-to-Scan Line Conversion

0. Simple Device I/0 - TTY Input Driver

Features Tested: I/O to slow devices with minimal interfaces.

Problem: Input one line of ASCII characters from a TTY device. ASCII rubouts should delete
the previous character. A carriage return terminates the line.

Algorithm: A subroutine' TTYIN(BUFFER) initiates the transfer. It has a single reference
parameter, the buffer to be filled. The buffer consists of

ADDRESS TERMADOR
CHARACTER CBUF[1:?]

The buffer is assumed to be large enough for the line. The transfer is started and the routine
returns.

The interrupt service routine collects the line in some machine-dependent manner. The
TTY interface is assumed to be a minimal one. It does the serial-to-parallel conversion, but
does not do fancy things like giving blue interrupts for rubouts and green ones for carriage
returns. When a carriage return is entered, the TTY input is discontinued, and a transfer to the
buffer TERMADOR is made.

1. Fast Device I/0 - Buffer Queue and Transmit

Features Tested: I/O structure for DMA devices.

158

NRL REPORT 8247

Problem: Produce a program to queue message buffers and transmit them over a DMA link in
FIFO order. This program need not be reentrant.

Algorithm:
RECORD BUFR(ADDRESS NEXT, ADDRESS TERMADOR, INTEGER SIZE

INTEGER DATA[I:SIZEI);
POINTER BUFR END, START;
ADDRESS TEMP;
!QUEUE SUBROUTINE
PROCEDURE QUEUE (REFERENCE BUFFER)=
BEGIN
IF START NEQ 0 THEN END.NEXT - ADDRESS(BUFFER) FI;
END (ADDRESS(BUFFER);

!QUIT IF CHANNEL ALREADY RUNNING
IF START NEQ 0 THEN RETURN
ELSE

START < ADDRESS (BUFFER);
TEMP < 0;
GO TO RESTART

FI;
END;

INTERRUPT:
BEGIN
!INSERT CODE TO TERMINATE DEVICE TRANSFER

TEMP < START.TERMADOR; !GET TERMINATION ADDRESS
START - START.NEXT; RESTART:
IF START = 0
THEN

GO TO TEMP
ELSE

INSERT CODE TO INITIATE DEVICE TRANSFER
FI;
IF TEMP = 0
THEN RETURN
ELSE GO TO TEMP
FI
END

2. Multiple Priority Interrupt Handler

Features Tested: Priority handling of devices, priority level changes.

Problem: This test program is designed to process interrupts from four devices in priority order.
Upon receiving an interrupt, the processor will branch to the appropriate device service routine.
A-Il interrupts from lower priority devices will be disabled. Device priority is equal to device

159

L. W. LEMLEY

number; dev 1 has lowest priority, 4 has highest. After the device-dependent service, the dev-
ice 1/0 is added to the executive queue for user scheduling purposes.

For test purposes we are not really interested in providing device-dependent or executive
service routines. However, we are interested in context swap costs. Therefore, we will use the
following rather peculiar method.

Each device service routine will be simulated by the algorithm below. Prior to performing
the actual measures, you will comment out the code you wrote to do the algorithm. You will
not remove any context save or restore code necessitated. Your code may not make use of the
fact that all the device service routines are the same.

!DEVICE SERVICE ROUTINE
INTEGER OWN A;
FOR 1 6 1 TO A<0:2>DO
A 6 (A * 899) MOD 123757
OD;

The executive service routine will be null.

The flowchart included (Fig. Bi) is merely an outline of the program desired. Any
hardware features that would change the flowchart without changing the function performed
may be used.

3. Virtual Memory Space Exchange

Features tested: Executive calls and process context swap cost.

Problem: Write a supervisor call handler that provides the two functions "call" and "return."
Call is function 0, return is function 1 (that is, SVC 0, SVC 1 on a 370 or 8/32, TRAP 0,
TRAP 1 on a PDP- 11, etc). Parameter passing is restricted to be compatible with reentrance of
user routines.

The supervisor is to implement protected procedure call with parameters. "call" will select
a procedure to invoke by passing an index in the range 0 leq CALLEE leq 255. This is an
index into a table of address space descriptors maintained by the supervisor. PARAMETER is
an address in user space. "call" performs the following functions:

1. Save the caller's state (fixed and floating access, index registers, program counter, user
status registers, etc.).

2. Determine the callee's address space. The address space selected by CALLEE will
contain an index of a null segment. The CALLER'S segment that contains the address
PARAMETER will be inserted in this null slot. This is the parameter passing process.

3. Set up the memory mapping and protection to address the address space determined in
step 2. Start the called procedure at the address specified in the address space descriptor
selected by CALLEE.

160

-NRL REPORT 8247

_ PROCESS

Fig. B-I -Multiple priority interrupt flowchart

In the above, "segment" means the largest unit into which the address space is divided by
the mapping hardware. Thus it would be a segment on a 370, 8/32, AN/UYK-7, a page on a
PDP-11, AN/UYK-28, AN/GYK-12.-

"return" takes no parameters. It restores the environment active before the previous call.

Calls may be nested up to eight deep; you need not check for this bound being exceeded.
Note that in nested calls the CALLER'S parameter segment is part of his state and must be

161

L. W. LEMLEY

unchanged after the called routine returns. You may assume that calls will not be recursive.
You need not check for this, nor for a return with no matching call. You need not build the
entire address table, merely specify its format.

4. Scale Vector Display

Features Tested: Integer manipulation and fixed field extraction.

Problem: Scale a list of graphics vectors about a given center. The vectors are represented as

function 4 bits

X coordinate 12 bits

intensity 4 bits

Y coordinate 12 bits

If function is 0, the X,Y coordinates are displacements from the last endpoint, otherwise,
X,Y is the endpoint of the vector.

Algorithm:

PROCEDURE SCALEADJUST(REF DLIST, VALUE LEN, VALUE XCENTR,
VALUE YCENTR, VALUE SCALE)=

BEGIN
10 LEQ XCENTR, YCENTR LEQ 2047
!SCALE IS THE ACTUAL SCALE FACTOR TIMES 128

INTEGER LEN, XCENTR,' YCENTR, SCALE, I, XTMP, YTMP;
RECORD VECTOR(INT4 FUNCT, INT12 X, INT4 INTEN, INT12 Y);
VECTOR DLIST[1:LEN];

FOR I < 1 TO LEN DO
XTMP < DLIST.X[t]*SCALE;
YTMP < DLIST.Y[I]*SCALE;
IF DLIST.FUNCT[I] = 0
THEN

XTMP < XTMP + XCENTR*(128-SCALE);
YTMP (YTMP + YCENTR*(128-SCALE);

FI:
DLIST.X [l] <' XTMP/128;
DLIST.Y[II < YTMP/128

OD
RETURN

END

Applications: Display generation

162

NRL REPORT 8247

5. Array Manipulation -L U Decomposition

Features Tested: Floating-point computation, array addressing, nested iteration constructs.

Problem: Factor a square matrix into a lower and an upper triangular matrix.

Algorithm: Gaussian Elimination

LUDECOMP (REFERENCE A, VALUE N) =
BEGIN
REAL ARRAY A[I:N,1:NI;
REAL MULT;
INTEGER DIAG, ROW, COL;

FOR DIAG - 1,N-1 DO
FOR ROW - DIAG+1,N DO

AI[ROW, DIAGI T-MULT - A[ROW, DIAGI/A[DIAGI,DIAGI
FOR COL -DIAG + 1,N DO

AIROW, COLI 4-AIROW, COLI - MULT*A[DIAG, COLI
OD

OD
OD
END

Uses: Solution of linear systems

6. Floating-Point Flow Control - Target Match

Features Tested: Floating-point comparisons and conditional branching on floating-point results.

Problem: Given the coordinates of an unknown object, find in a table sorted by X-coordinate
the closest entry. For simplicity, we will use a metric search rather than the standard Euclidean
one. The distance between X1,YI and X2,Y2 is defined to be ABS(XI-X2)+ABS(YI-Y2).

Algorithm: Use binary search to find the closest X coordinate and then search that neighbor-
hood for the closest entry.

PROCEDURE TARGET (REFERENCE TABLE, VALUE LEN, VALUE X
VALUE Y, REFERENCE FOUND)=

BEGIN
INTEGER LEN, START, END, MID, UP, DOWN;
REAL MINDIST;
ADDRESS FOUND;
RECORD TENTRY(REAL X, REAL Y, REAL DAT1, REAL DAT2);
TENTRY TABLE[1:LEN];

START - 1; END - LEN;
WHILE START < END DO

163

L. W. LEMLEY

MID - (START+END)/2
IF TABLE.X [MID] < X
THEN

START - MID + 1
ELSE

END - MID
FI

OD;

!COMPUTE DISTANCE OF "NEAREST" X ENTRY
MINDIST - DIST (TABLE [MID], X, Y);
FOUND - ADDRESS(TABLE[MID);,

!SEARCH NEIGHBORHOOD FOR A NEARER ENTRY

UP - MID + 1; DOWN - MID -1;
WHILE UP>O OR DOWN > 0 DO . . '.

IF UP > 0 THEN CHECK(UP); UP - + 1 FI;
IF DOWN > 0 THEN CHECK(DOWN); DOWN - DOWN - 1 FI

OD;
RETURN;
!CHECK AN INDIVIDUAL ENTRY AGAINST CLOSEST FOUND
PROCEDURE-MACRO CHECK(J) = .
BEGIN
IF J <1 OR J > LEN OR ABS (TABLE.X [JI - X)->= MINDIST
THEN J - 0; RETURN Fl;

IF DIST(TABLE[J],X,Y) < MINDIST
THEN

MINDIST - DIST(TABLE[J],X,Y);
FOUND - ADDRESS(TABLEIJI)

FI;
RETURN
END
!DISTO IS THE METRIC DEFINED IN THE PROBLEM
END

7. Communications - Message Forwarding

Features Tested: Fast table lookup, block move.

Problem: Given a message with header that contains destination and connection I/O, place the
message in the appropriate transmission line's output buffer. For each possible destination the
table DESTABLE contains an entry that points to the appropriate output line table. The latter
contains an entry for each connection I/O, giving the appropriate buffer to use. The message
header also contains the message size in bytes including the header.' The message is guaranteed
to be a multiple of 4 bytes long.

164
:

�q

I I ! . . I

.,e I

I : - " 1. Ii I I , -, i ;

NRL REPORT 8247

Algorithm: The structure DESTABLE is assumed global.

PROCEDURE FORWARD (REFERENCE MSG)
BEGIN
RECORD MESSAGE (INT16 CID, INT16 DEST, INT16 SIZE

CHARACTER MSG[1:?]),
BUFTABLE (INTEGER CID, ADDRESS BUFFER);

MESSAGE MSG;
POINTER BUFTABLE LINE;
INTEGER 1, ADDRESS BUFFER;
EXTERNAL ADDRESS DESTABLE[1;?];

!FIND BUFFER TABLE FOR DESTINATION LINE
LINE - DESTABLE [MSG.DESTJ;

!FIND RING BUFFER FOR THIS CONNECTION
I1 1;
WHILE LINE.CID[I1 NEQ MSG.CID
DO I-I + 1 OD;
BUFFER - LINE.BUFFER[1]; -

!COPY THE MESSAGE TO THE BUFFER
MOVE(ADDRESS(MSG), BUFFER, MSG.SIZE);

RETURN
END

8. Hash Table Search

Features Tested: Integer manipulation and indexing

Problem: Locate the position a key would occupy in a hash table

Algorithm:

PROCEDURE HASHLOOK (REFERENCE TABLE, VALUE SIZE, VALUE KEY,
REFERENCE POSITION, REFERENCE FULL-

BEGIN
ADDRESS POSITION;
INTEGER SIZE, KEY, CHECK;
BOOLEAN FULL;
RECORD TENTRY(INTEGER KEY, INTEGER DATA);
TENTRY TABLE [O:SIZE-11;

!COMPUTE FIRST PLACE TO LOOK
CHECK - KEY MOD SIZE;
FULL -FALSE;

165

L. W. LEMLEY

FOR I - 1 TO SIZE/2 DO
IF TABLE.KEY[CHECK] = KEY OR TABLE.KEY[CHECK]= 0
THEN

POSITION - ADDRESS (TABLE. KEY[CHECK]);
RETURN

FI;
CHECK - (CHECK + I) MOD SIZE 3

OD
FULL - TRUE;
RETURN
END

Applications: Fast table lookup

9. Linked List Insertion

Features Tested: Address manipulation.

Problem: Insert a new node in an ordered doubly linked list. LISTCB contains a pointer to a
list control block, containing the entries:

HEAD pointer to first node

TAIL pointer to last node

NUMENTRIES number of entries in list

NEWENTRY is a pointer to a new entry to be inserted in the list. List entries have the form:

KEY 32-bit signed integer

NEXT pointer to next entry

PREV pointer to previous entry

The first node on the list is marked by a PREV of 0, the last by a NEXT of 0. The list shall be
maintained in ascending order. The list may be empty when the routine is called; this will be
indicated by a zero in NUMENTRIES.

Algorithm:

Procedure LISTINSERT(value LISTCB, value NEWENTRY) = Begin
Record LCB (address HEAD, address TAIL, integer NUMENTRIES);
Record LISTENTRY (int32 KEY, address NEXT, address PREV);
Pointer LCB LISTCB;
Pointer LISTENTRY NEWENTRY, PRESENT;
IF LISTCB.NUMENTRIES = 0

then flist is empty, so initialize

166

NRL REPORT 8247

LISTCB.HEAD - LISTCB.TAIL - NEWENTRY;
LISTCB.NUMENTRIES - 1;
NEWENTRY.NEXT - NEWENTRY.PREV -0
else !list not empty

PRESENT - LISTCB.HEAD;
LISTCB.NUMENTRIES - LISTCB.NUMENTRIES + 1;

!determine position of new entry

While NEWENTRY.KEY geq PRESENT.KEY and PRESENT.NEXT neq 0
DO PRESENT - PRESENT.NEXT OD;

IF PRESENT.PREV = 0 and NEWENTRY.KEY - PRESENT.KEY
THEN
!new list head

LISTCB.HEAD - NEWENTRY;
NEWENTRY.PREV - 0;
PRESENT.PREV - NEWENTRY;
NEWENTRY.NEXT - PRESENT

else
IF NEWENTRY.KEY geq PRESENT.KEY

then
!new list tail

PRESENT.NEXT - LISTCB.TAIL - NEWENTRY;
NEWENTRY.NEXT - 0;
NEWENTRY.PREV - PRESENT

else
!insert in middle

NEWENTRY.NEXT - PRESENT;
NEWENTRY.PREV - PRESENT.PREV;
PRESENT.PREV - NEWENTRY;
!back up and link with predecessor

PRESENT - NEWENTRY.PREV;
PRESENT.NEXT - NEWENTRY

FI
FI

FI
return end

'167

L. W. LEMLEY

10. Manipulation of Large Address Space - Heapify

Features Tested: Cost of address manipulation, cost of accessing large address spaces in nonse-
quential order.

Problem: Given an array of records in random order, rearrange them to form a HEAP.

A HEAP is a binary tree in which each node or record is GEO (alternately LEQ) its des-
cendants.

Algorithm: The tree is compressed into an array with the root at position 1. The descendants
of node I are placed at 2*1 and 2*I+ 1. Record 1 forms a one-element HEAP. Each record (in
increasing index order) is tacked onto the end of the HEAP and the resulting set adjusted to
once again be a HEAP.

HEAPIFY (REFERENCE REC, VALUE N)=
BEGIN
INTEGER ARRAY REC[1:N];
INTEGER CHECK, NEW;

FOR NEW - 2,N DO
CHECK - NEW;
WHILE CHECK - NEQ 1 AND REC [CHECK] > REC[CHECK/21
DO

REC [CHECK] < = > REC [CHECK/21;
CHECK - CHECK/2

OD
OD
END

Uses: Heaps can be converted to sorted lists yielding an N log N sorting algorithm. They can
also be used to implement priority queues with a cost of log N for adding or removing an entry.

11. Sequential Access of Large Data Space - Autocorrelate

Features Tested: Sequential access to large memory space, floating point.

Problem: Compute the autocorrelation of the vector A from 1 to T.

Algorithm:

PROCEDURE AUTO(REFERENCE A, VALUE N, VALUE T, REFERENCE RES)-
BEGIN
INTEGER N, T, TAU;
REAL A[1:N], RES f1:TI;

FOR I - 1 TO T DO RES[I] - O OD

168

NRL REPORT 8247

FORI - ITONDO
FOR TAU -1 TO T DO

IF I+TAU-1 > N THEN EXITLOOP FI;
RES[TAUI + A[I]*A[I+TAU-1];

OD
OD
RETURN
END

12. Character Search

Features Tested: Byte manipulation, sequential access to byte strings.

Problem: Search a string SRCHSTR of length SRCHLNGTH to see if it contains a substring
that exactly matches a string SRCHARG of length ARGLNGTH. If the search is successful
the relative position of the first occurrence of the substring shall be returned. Either string may
be null. A null SRCHARG shall match any string at postition 0.

Algorithm: LOC is the result returned.

Procedure CHARSRCH(ref SRCHSTR, value SRCHLNGTH, ref SRCHGARG,
value ARGLNGTH, ref LOC) = Begin

Integer I, SRCHLNGTH, ARGLNGTH;
Bytevector SRCHSTR[O:SRCHLNGTH- 1], SRCHARG [O:ARGLNGTH- 11;
LOC - -1;
IF ARGLNGTH eql 0 then LOC - 0; returtn FI;
FOR I IN 0, SRCHLNGTH-ARGLNGTH DO

IF SRCHSTR[I:I+ARGLNGTH-II eql SRCHARG
then LOC i I; return FI;

OD;
return END

13. Boolean Matrix Transpose

Features Tested: Random addressing and access of bits.

Problem: Given an N x N matrix of bits, compute the transpose of the matrix in place. The
matrix is stored as a bit vector by rows. The bit vector begins at bit A2 of word Al.

Algorithm:

Procedure BMT(val N. val Al, val A2)= begin
Integer I,J;'
Boolean [1:N,1:NJ beginning at bit A2 of word Al;

FOR I in 1,N; J in I+1,N DO
B[I,J] < = > B[J,II

OD
return
end

169

L. W. LEMLEY

14. Generalized Byte Mainpulation-Unpack Record

Features Tested: Ability to manipulate fields within words.

Problem: Design a subroutine that will unpack fields of a record into an integer array. The
unpacking is controlled by a format string, which is constant at assembly time. In all cases I
leq field size leq 32.

Algorithm: The length of each field is stored in order in the format array. If sign extend is
required the value in the format is altered in some machine-dependent, distinguishable manner.

PROCEDURE UNPACK(REFERENCE RECORD, REFERENCE FORMAT,
VALUE LEN, REFERENCE RESULT)=

BEGIN
BITSTRING RECORD < 0:? >;
INTEGER LEN, START, RESULT[1:LEN], TEMP, I;
ARBTYPE FORMAT[1:LENI;'

START - 0;
FOR I - 1 TO LEN DO

TEMP - RECORD<START:START+FORMAT[1I-1>;
START - START + FORMAT[1];
IF FORMAT [I] IS A DISTINGUISHED VALUE
THEN

TEMP - SIGNEXTEND(TEMP)
FI;
RESULT[Ij - TEMP

OD;
RETURN
END

Applications: Access of a data base that has been compressed for storage.

15. Display Processing - Vector to Scan Line

Features Tested: Integer and bit manipulation.

Problem: Given a list of vectors, produce a raster scan image. The image must be generated in
top-to-bottom order to reduce internal storage; no more than one raster line may be kept in
memory. The display is 1024 by 1024. Vectors are specified by their start and end coordinates
and are sorted in order of their increasing starting x-coordinate.

Algorithm: The display list is converted to a more usable but larger form and stored in a tem-
porary vector. Each raster line is generated by scanning only those vectors that appear in it.

PROCEDURE VECSCAN(REF DLIST, VALUE LEN, REF TEMP)'=
BEGIN
RECORD DISPLAY(INT16 XS, INT16 YS, INT16 XE, INT16 YE),

WORKLIST(INT16 XS, INT16 XE, INT32 Y, INT32 SLOPE);

170

NRL REPORT 8247

DISPLAY DLIST [1:LEN];
WORKLIST TEMPI[:LEN+1];
INTEGER I, START, LINE, DENOM,
BITSTRING BIT [1:10241;

!GENERATE WORKING VECTOR
FOR I - I TO LEN DO

TEMP.XS[I] - DLIST.XS[I1;
TEMP.XE[I1 - DLIST.XE[I];
TEMP.Y[I1 - DLIST.YS[I]*1024;
DENOM - (DLIST.XE[I] - DLIST.XS[I] + 1);.
TEMP.SLOPE [I] - (DLIST.YE [II -DLIST.YS [I] * 1024/DENOM;

OD;
TEMP.XS[I1 - 1025; !THIS MARKS LIST END
!GENERATE THE SCAN IMAGE
START - 1; !FIRST VECTOR TO CHECK
FOR LINE - 1 TO 1024 DO

BIT - 0; !ZAP THE WHOLE LINE
Ii- START;
WHILE TEMP.XS[I] LEQ LINE DO
FOR K TEMP.Y [I] / 1 024 TO (TEMP.Y [I +

TEMP.SLOPE[I]/1024
DO BIT [K] - TEMP.Y[I1 + TEMP.SLOPE[I1;
!FORGET THIS VECTOR IF THIS IS ITS END
IF TEMP.XE[I] = LINE
THEN

TEMP [START] < = > TEMP [I1;
START - START + 1

FI;
1-+ 1

OD;
'DISPLAY BIT OD; RETURN END

171

*U.S. GOVERN.MENT PRiINTING OFFICE: 1979 281-484/217 1-3

